
 

ON THE ELASTO-PLASTIC STABILITY ANALYSIS OF CIRCULAR 
CYLINDRICAL SHELLS 

Rabee Shamassa, Giulio Alfanoa, Federico Guarracinob 
aCollege of Engineering, Design and Physical Sciences, Brunel University, UK  

bDepartment of Structural Engineering, University of Naples “FedericoII”, ITALY 

Abstract: The stability of thin circular shells under proportional and non-proportional load-
ing, i.e. axial tensile stress and external pressure is extensively investigated. Two plasticity 
theories are considered; the flow and the deformation theory of plasticity. The results obtained 
confirm that under over-constrained kinematic assumptions the deformation theory tends to 
provides lower values of buckling pressure and the discrepancies in the results from the two 
plasticity theories increase with increasing thickness ratios, tensile stresses, boundary clamp-
ing and / yE σ  ratio.  

1. Introduction 

Plastic buckling of circular cylindrical shells has been the subject of active research for many 
decades due to its importance to the design of aerospace, submarine, offshore and civil engi-
neering structures. It typically occurs in the case of moderately thick cylinders subjected to 
axial compression, external pressure, torsion or combinations of such loads.  

Generally speaking, the plasticity models that have been proposed for metals in the strain 
hardening range can be divided into two groups: the ‘deformation theory’ of plasticity and the 
‘flow theory’ of plasticity. In both of these theories the plastic deformations do not allow vol-
ume changes as plastic yielding is governed by the second invariant 2J  of the deviatoric part 
of the stress tensor, whereby in this respect they are both so-called 2J theories. However, the 
deformation theory of plasticity is based on the assumption that for continued loading the 
state of stress is uniquely determined by the state of strain and, therefore, it is a special class 
of path-independent non-linear elasticity constitutive laws. According to this assumption, af-
ter a strain reversal, rather than recovering the initial elastic stiffness, as is found in physical 
tests, the initial loading curve is followed. On the other hand, the flow theory of plasticity as-
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sumes that an (infinitesimal) increment of stress is uniquely determined by the existing strain 
and its increment. This  leads to a path-dependent relationship in which the current stress de-
pends not only on the value of the current total strain but also on how the actual strain value 
has been reached, thus making the constitutive relationship path dependent.  

There is a general agreement among engineers and researchers that the deformation theo-
ry of plasticity lacks physical rigour in comparison to the flow theory. However, use of the 
deformation theory predicts buckling loads that are less than corresponding loads obtained 
with the incremental theory, and evidence of comparison between measured and calculated 
buckling loads points in favour of deformation theory results. This is generally known as the 
“plate buckling paradox”.  

Onat and Drucker [1] first pointed out through an approximate analysis that buckling pre-
dictions based on the flow theory for long plates supported on three sides tend to those pre-
dicted by the deformation theory if small but unavoidable imperfections are taken into ac-
count. Restricting attention to the plastic buckling of circular cylindrical shells, Mao and Lu 
[2] analytically examined simply supported cylinders made of aluminium alloy subjected to 
axial compression load. They compared the buckling stresses predicted by their analytical 
formula with the experimental results conducted by Lee [3] and found that the deformation 
theory provides closer results with the tests while the flow theory significantly over-predicts 
the critical loads. 

Blachut et al. [4] conducted experimental and numerical analyses of 30 mild-steel ma-
chined cylinders, of different dimensions, subject to axial tension and increasing external 
pressure. They showed that agreement between the buckling stresses calculated using the two 
theories was strongly dependent on the ratio of the length L of the cylindrical shell to its outer 
diameter D. For short cylinders (L/D≤1) the plastic buckling pressure predicted by flow or 
deformation theory coincided only when the tensile axial load vanished. By increasing the 
axial tensile load, the plastic buckling pressure calculated using the flow theory of plasticity 
quickly diverged from corresponding values calculated using the deformation theory, which 
were closer to the experimental values. For specimens with L/D ranging from 1.5 to 2 the re-
sults predicted by both theories were very similar for a certain range of combined loading, 
beyond which the values calculated using the flow theory began to deviate from the corre-
sponding results using the deformation theory and became unrealistic in correspondence of 
large plastic strains. 

Bardi and Kyriakides [5] tested fifteen cylindrical stainless steel tubes, with D⁄t ranging 
between 23 and 52, under axial compression and determined the critical stresses and strains at 
the onset of wrinkling.  They reported the buckling modes, including the number and the size 
of waves. They also calculated the same quantities analytically using the deformation or the 
flow plasticity theory. The calculations included the effects of assuming both isotropic and 
anisotropic material behaviour. Bardi and Kyriakides concluded that the flow theory signifi-
cantly over-predicts the critical stresses and strains while the deformation theory leads to crit-
ical stress and strain in better agreement with the experimental results. Moreover, the flow 
theory grossly over-predicted the wavelength of wrinkles while the deformation theory was in 
better agreement with the wavelengths measured in the tests. 

On the basis of previous investigations led by the present authors [6-9], it is shown that 
the implicit kinematic constraint in assuming a certain buckling shape as the basis of the anal-
ysis seems to be the main reason for the discrepancy between the results from the flow and 
deformation theory of plasticity – a fact which has suggested the existence of a plastic buck-
ling paradox – and from carefully validated geometrically nonlinear finite element (FE) mod-
elling. In fact, it is shown that with an accurate modelling a very good agreement between 
numerical and experimental results can be obtained in the case of the physically sound flow 
theory of plasticity.  
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2. Constitutive relationships based on the deformation theory of plasticity 

The deformation theory of plasticity is based on the assumption that for continued loading the 
state of stress is uniquely determined by the state of strain and, therefore, it is a special class 
of path-independent non-linear elasticity constitutive laws.  

The deformation theory of plasticity is obtained by extending the Ramberg-Osgood law 
to the case of a multi-axial stress state using the von Mises formulation ( 2J  theory) and re-
sults in the following path-independent relationship 
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where  ε  and σ  denote the strain and stress tensors, while dev  σ and  sph  σ denote the devia-
toric and spherical parts of the stress tensor, respectively. n is a constant that depends on the 
material being considered. 

3. Constitutive relationships based on the flow theory of plasticity 

The classical 2J  flow theory of plasticity, with nonlinear isotropic hardening and in the small-

strain regime [14] is based on the additive decomposition of the spatial rate of the deformation 
tensor ε into its elastic and plastic parts eε   and pε , respectively: 

 
 e p= +ε ε ε     (2) 
 
The remaining well-known governing equations are as follows: 
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where  G  and  λ  denote the Lamé’s elastic constants, I  is the (rank-2) identity tensor, f  is 
the yield function according to von Mises’ yield criterion, η  is a hardening parameter. As-

suming nonlinear isotropic hardening, the current yield strength,  σ  is an increasing function 
of the equivalent plastic strain  eq

pe : 
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4. Stability analyses 

4.1 Bifurcation analysis 

The bifurcation analysis has been conducted by means of an analytical treatment developed ad 
hoc on the basis of the approach presented in Chakrabarty [10], by the program BOSOR5 [11] 
and by the application of the Differential Quadrature Method [12]. The employment of these 
different approaches has allowed to cover a number of loading conditions, cylinder geometry 
and boundary conditions. All the treatments have been extended, when necessary, to cover 
both the use of deformation and flow theory of plasticity. 

The bifurcation load in the plastic range and the corresponding buckling mode for ax-
isymmetrically loaded shells is determined in BOSOR5 through a sequence of two consecu-
tive analyses [11]. The first one is a nonlinear pre-buckling analysis which is valid for small 
strains and moderately large rotations and accounts for material nonlinearity. This nonlinear 
problem is solved using a strategy in which nested iteration loop are applied at each load lev-
el. The inner loop is used to analyse the nonlinear behaviour caused by the moderately large 
displacements using the Newton-Raphson method. The outer loop is used to evaluate the con-
stitutive matrix and the plastic strain components, and to test loading and unloading condition 
in the material by means of a sub-incremental strategy. The results from this analysis are used 
in the subsequent analysis, which is an eigenvalue analysis which yields the bifurcation load 
and the corresponding axisymmetric or non-symmetric buckling mode, respectively. At the 
bifurcation load the infinitesimal displacement field, has components in the axial, circumfer-
ential and radial direction denoted as δu,δv and δw. They are assumed to vary harmonically 
around the circumference. It is important to notice that the discretisation in BOSOR5 is only 
performed in the meridian direction because the resulting displacements are axisymmetric in 
the pre-buckling phase and the buckling mode is assumed to vary harmonically in the circum-
ferential direction in the bifurcation buckling analysis. BOSOR5, moreover, cannot handle 
any kind of boundary condition.  

Since there are many practical cases of buckling of shells having various combinations of 
boundary conditions the Differential Quadrature Method (DQM) may offer some advantages 
over the analytical and BOSOR5 approaches and at the same time a clearer insight into the 
mechanics of the problem under analysis. In fact, the DQM leaves a certain freedom in deal-
ing with the boundary conditions of the problem. The DQM is routinely employed to provide 
solutions to partial differential equations arising in various simplified models of fluid flow, 
diffusion of neutrons through homogeneous media and one-dimensional nonlinear transient 
heat diffusion and conduction problems. The DQM is an approximation method to calculate 
the kth-order derivative of the solution function f(x) at a grid point i. Consider firstly one di-
mensional problem. The kth-order derivative of the function f(x) is given by a linear weighting 
of the function values in the domain. 

4.2 Nonlinear stability analysis 

The nonlinear stability analysis of imperfect cylinders has been numerically simulated by 
means of  the non-linear FE commercial package ABAQUS, version 6.11-1 [13] using both 
the flow and deformation theories of plasticity.  Specific attention has been paid to adopt 
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model parameters which, in the case of proportional monotonic (increasing) loading, result in 
the same stress-strain curve in both theories, to within a negligible numerical error.  

The cylindrical specimens were modelled using a general purpose 4-noded shell element 
which has six degrees of freedom at each node.  This element is named “S4” in the commer-
cial software ABAQUS and is based on a thick shell theory. The shell formulation accounts 
for finite membrane strains, therefore this element can be used to perform large strain anal-
yses. The element is widely used for industrial applications because it is suitable for both thin 
and thick shells.  The S4 element uses a normal integration rule with four integration points. 
The enhanced-strains approach is employed to prevent shear and membrane locking. Among 
the ABAQUS elements, S4 outperforms S4R as the former evaluates more accurately the 
membrane strains, which plays a key role in the problem at hand. 

4.3 Experimental data 

As stated in the Introduction, Blachut et al. [4] conducted tests on 30 machined cylinders 
made of mild steel with outer diameter 34 mm and length-diameter ratio (L/D) of 1.0, 1.5 and 
2.0. In the experimental setting, one flange of the specimen was rigidly attached to the end 
flange of the pressure chamber and the other flange was bolted to a coupling device which in 
turn was bolted to the load cell, see Fig. 1. 

In order to prevent any eccentricity of the axial load exerted on the specimen, the load cell 
was cantered with respect to the test chamber. The authors pointed out that the maximum ini-
tial radial imperfections measured at the mid-length of the specimens were about 1% of the 
thickness.  

Giezen et al. [14] tested cylindrical specimens of aluminium alloy 6061-T4. Two sets of 
specimens were tested, namely Set A and Set B. The average wall-thickness values of the first 
and second set were 0.76 and 0.71 mm, respectively, and the length-diameter ratio (L/D) was 
equal to one. The maximum initial imperfection was found to be about 0.076mm (10% of the 
thickness). 

 
 

 
 

Fig. 1: Experimental setting by Blachut et al. [4]. 
 

5. Results and discussion 

Table 1 collects the results from experimental tests and BOSOR5 numerical analyses. The 
results have been chosen to represent cases in which the flow theory of plasticity, according to 
BOSOR5, does not provide a buckling load or strongly overestimates the ones from tests, and 
cases in which there is agreement between the flow and deformation theory of plasticity.  
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Table 2, along with the analytical results, shows the results from non-linear FE analyses ob-
tained by means of the commercial package ABAQUS.  
 

Table 1: Experimental vs BOSOR5 results (NA=Not Available) 

Sp. 

Experimental results BOSOR5 results: De-
formation theory 

BOSOR5 results: Flow 
theory 

Number 
of 

waves 

Axial ten-
sion (N) 

External 
pressure 

(MPa) 

Number 
of waves 

Buckling 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

S1  NA 17960 4.07 NA  5.65 NA  NA 
S2  NA 0 12.76 NA  13.29 NA  13.15 
S5 NA  12010 8.28  NA 8.63 NA  NA 
M2 NA  10670 8.14 NA  7.75 NA  NA 

SP.1-Set B 4 0 5.26 5 5.98 5 6.22 
SP.6-Set B 4 11771 3.00 5 3.32 4 6.20 
SP.3-Set A 5 2341 6.27 5 6.25 4 6.49 

 

Table 2: Numerical vs analytical results. 

Sp. 

Numerical results 
(ABAQUS): Defor-

mation theory 

Numerical results 
(ABAQUS): Flow 

theory 

Analytical results: 
Deformation Theo-

ry   

Analytical results: 
Flow Theory  

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

Number 
of 

waves 

Buckling 
pressure 

(MPa) 

S1 4 5.53 4 5.64 4 5.29 2 16.24 
S2 6 13.14 6 13.15 4 13.24 4 13.28 
S5 4 8.73 4 8.83 4 8.56 2 11.02 
M2 3 7.84 3 7.87 4 7.75 4 7.91 

SP.1-Set B 4 5.09 4 5.15 5 5.32 5 5.44 
SP.6-Set B 4 2.91 4 3.22 4 2.75 3 5.36 
SP.3-Set A 5 5.25 5 5.28 4 6.00 4 6.27 

 

The analytical treatment, differently from BOSOR5, always provides a value of the buck-
ling pressure, albeit sometimes very different from the experimental results. In fact, BOSOR5 
routines do not point to a buckling load in the cases of specimens S1, S2, S5 and M2 tested by 
Blachut et al. [4]. 

The numerical analyses conducted by means of the non-linear FE code ABAQUS, instead, 
lead to the correct determination of the buckling loads, in accordance with the experimental 
results, both for the deformation and the flow theory of plasticity. 

The main finding is that when the buckling modes coincide using either the deformation or 
the flow theory, i.e. in the case of specimens S2, M2, SP1-Set B and SP3-Set A, the buckling 
loads result the same and in line with the experimental and FE results. When the buckling 
modes do not coincide in the case of the deformation or of the flow theory of plasticity, then 
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the buckling loads provided by the flow theory of plasticity result much higher than those 
provided by the deformation theory, see specimens S1, S5 and SP6-Set B. 

By means of the DQM analyses it has also been possible to draw some deductions about 
the influence of the boundary conditions. It is concluded that, in presence of an overcostrained 
kinematics, the existence of axial, circumferential and rotational restrains at the edges of the 
cylinders with increasing the axial tensile stresses can significantly increase the discrepancies 
between the flow and deformation theories’ results in the range 8%-260%. 
Finally, in presence of an overcostrained kinematics Fig.3 shows the Influence of L/D ratio on 
the lateral buckling pressure q according both to the flow and the deformation theory of plas-
ticity. tσ  is the tensile axial load. 

 

 
 

Fig. 3: Influence of L/D ratio on the lateral buckling pressure q according both to the flow and 
the deformation theory of plasticity. tσ  is the tensile axial load. 

6. Conclusions 

The main findings of the study are: 
 

1. the root of the apparent plastic buckling paradox in the elasto-plastic analysis of cir-
cular cylindrical shells is due to over-constrained kinematic assumptions. This fact 
leads to overestimate the buckling pressures when the flow theory of plasticity is 
used, while the deformation theory counterbalances the excessive kinematic stiffness 
and provides results which are much lower that the flow theory findings [6-9]; 

2. by conducting geometrically nonlinear finite-element analyses, the flow theory pro-
vides physically reliable results, which are in accordance with the deformation theory 
ones and with the experimental results; 

3.  implementing the flow theory of plasticity in the elastic-plastic bifurcation analysis 
may lead to overestimate the buckling pressures. The large discrepancies between 
flow and deformation theories results observed analytically vanish when using the 
flow theory in non-linear incremental analysis. 

 
In conclusion, it is recommended to use a geometrically nonlinear finite-element formula-

tion for imperfect shells with carefully determined and validated constitutive laws to avoid the 
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discrepancies between two plasticity theories and to track accurate post-buckling curve in the 
case of the physically more sound flow theory of plasticity. 
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