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ARTICLE INFO ABSTRACT

Handling Editor: Jin-Kuk Kim Energy intensive industries can be classified into those that process metal, glass, ceramics, paper, cement,
and bulk chemicals. They are associated with significantly high proportions of carbon emissions, consume
a lot of energy and raw materials, and cause energy wastage as a result of heat escaping from furnaces,
reheating of products, and rejection of parts. In alignment with UN sustainable development goals of industry,
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Intelligent manufacturing innovation, infrastructure and responsible consumption and production, it is important to ensure that the
Sustainability energy consumption of EIls are monitored and reduced such that their energy efficiency can be improved.
Artificial intelligence Towards this aim, it is possible to employ the concepts of digitalisation and smart manufacturing to identify
Life-cycle management the critical areas of improvement and establish enablers that can help improve the energy efficiency. The
Simulation aim of this research is to review the current state of digitalisation in energy-intensive industries and propose

Discrete event simulation a framework to support the realisation of sustainable smart manufacturing in Energy Intensive Industries

(EIls). The key objectives of the work are (i) the investigation of process mining and simulation modelling to
support sustainability, (ii) embedding intelligence in Ells to improve energy and material efficiency and (iii)
proposing a framework to enable the digital transformation of Ells. The proposed five-layer framework employs
data acquisition, process management, simulation & modelling, artificial intelligence, and data visualisation
to identify and forecast energy consumption. A detailed description of the various phases of the framework
and how they can be used to support sustainability and smart manufacturing is demonstrated using business
process data obtained from a machining industry. In the demonstrated case study, the process management
layer utilises Disco for process mining, the simulation layer utilises Matlab SimEvent for discrete-event
simulation, the artificial intelligence layer utilises Matlab for energy prediction and the visualisation layer
utilises grafana to dashboard the e-KPIs. The findings of the research indicate that the proposed digital life-cyle
framework helps Ells realise sustainable smart manufacturing through better understanding of the energy-
intensive processes. The study also provided a better understanding of the integration of process mining and
simulation & modelling within the context of EIls.

1. Introduction CO, emissions to at least 80% by 2050 (Chowdhury et al., 2018;
Liu and Wang, 2017). However, barriers such as lack of interest in
energy efficiency, inertia, energy price distortion, complex decision
making, improper evaluation criteria, lack of information and initial
investment costs impede the transition. Nonetheless, there exist drivers
to achieve sustainable Ells, stemming from international competition,
environmental management systems, long-term energy strategy, rising
energy prices, and renewable energy incentives (Chowdhury et al.,
2018).

Owing to the above-mentioned drivers, it is possible to address en-
ergy efficiency improvements at multiple levels by designing for envi-
ronment, re-using wasted energy, upgrading legacy systems, analysing

Energy Intensive Industries (EIIs) are important for the economic
growth of a country since they produce raw materials such as paper,
glass, steel and metal. They produce basic materials that are sold to
other industries downstream in the supply chain and while they only
account for approximately 1%—6% of the end-user product value, they
are accountable for a large proportion, typically 60%-80%, of the in-
dustrial greenhouse gas emissions (Ahman et al., 2017). Technological
improvements in Ells, improving energy efficiency, and investing in
cleaner production technologies can help achieve the goal of reducing
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the product life-cycle from raw material extraction to end-of-life, im-
proving material efficiency and implementing the best available tech-
nologies. Large-scale implementation of such methods can result in
improving the energy efficiency by around 15%-30%. However, further
improvement depends on the realisation of breakthrough technologies
and fundamental changes to the core process (Ahman et al., 2017).
Existing literature has highlighted key enabling technologies that can
support this endeavour; this includes big data analytics, artificial intel-
ligence, digital twin, Internet-of-Things, advanced robotics and cloud
computing (Murri et al., 2019; Majeed et al., 2021).

A review of current knowledge presents the lack of a systematic
framework to support digital transformation in EIls partly due to the
limited understanding of existing processes and their deviations. A few
research articles on using big data analytics, Al, and digital twins to
support Ells have been published, however, they do not consider the
benefits of integrating process mining and simulation. In addition to
this, Ells do not have proper infrastructure to realise the holistic digital
transformation to support energy efficiency. In summary, the research
gaps can be highlighted as:

1. the limited research on systematic approaches to support energy
efficiency in ElIs;

2. the lack of existing knowledge on the integration of process
mining and simulation;

3. the lack of necessary infrastructure and policies in EIIs to enable
digital transformation towards sustainability;

4. the limited integration between digital models and Al for sus-
tainability.

The insights from literature review enabled the authors to formulate
the following research questions.

R1: How can the integration of digitalisation and Al support sustainability
in ElIs?

R2: What strategies can be employed to improve the process understanding
of EIIs?

This article aims to answer the questions by providing an overar-
ching methodology that encompasses Al, data acquisition, data visu-
alisation in addition to process management, and simulation & mod-
elling in order to support the digital transformation in EIls. The main
contributions of this article can be summarised as below.

» A survey of the key enablers for improving energy efficiency,
the current state of digitalisation in EIIs, the opportunities to
improve energy efficiency, and the barriers to sustainable smart
manufacturing (SSM).

Proposing a framework to support the digital life cycle manage-
ment of Ells which is then demonstrated with the help of a case
study.

The integration of process mining and simulation to support
sustainability.

The introduction of process mining within the context of EII
digital transformation.

Embedding intelligence within EIls to improve energy and mate-
rial efficiency.

Section 2 of the article explains the state-of-the art in sustain-
able smart manufacturing and digitalisation of Ells and identifies the
key enabling technologies. This is followed by a detailed review of
frameworks that are relevant for Sustainable Ells. The summary of
the literature review highlights research gaps and how the proposed
framework is intended to fulfil them. Section 3 explains the method-
ology that comprises of five different layers: data acquisition, process
management, simulation & modelling, Al, and data visualisation. Sec-
tion 4 discusses the implementation of the framework in a test case
and Section 5 explains potential applications for the methodology and
reviews the challenges to digital transformation in EIlIs. Section 6
concludes this article and scopes out the future work.
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2. Sustainable smart manufacturing (SSM)

The term ‘Sustainable Smart Manufacturing’ is defined by Ren et al.
(2019) as “the paradigm that integrates data analytics with up-to-date infor-
mation to support operations and decision making with the ultimate aim of
achieving intelligent and sustainable production”. The goal of SSM encom-
passes responding to dynamic markets, optimising and enabling flexi-
bility, improving economical and environmental aspects and improving
intelligence in decision making for the whole life-cycle. Towards this
aim, Abubakr et al. (2020) identify the opportunities for implemen-
tation of sustainable practices for SSM and the challenges faced by
industries in the implementation of SSM. Dincer and Acar (2015) high-
light three different routes to achieving sustainability, namely, the use
of renewable sources that are environmentally friendly, optimisation of
system resource utilisation, and recycling and waste recovery.

A work-centre digital twin for smart and sustainable manufacturing
is presented by Park et al. (2020). In their research, a work centre
for textile dyeing and finishing is chosen as the test case and a digi-
tal twin is employed for functionalities such as planning, scheduling,
and diagnosis; the steps involved in the practical implementation of
the digital twin are also discussed in detail. From the perspective of
developing frameworks, Ren et al. (2019) have proposed a conceptual
framework of big data analytics in Sustainable Smart Manufacturing. In
their work, a comprehensive review of big data analytics and its role in
SSM is explored. The author concludes the article by highlighting the
key contributions in smart manufacturing. The framework comprises of
Intelligent design, Intelligent production, Intelligent maintenance and
service, and Intelligent recovery. Although the approach is detailed
and covers various aspects, it does not consider some enablers such as
simulation & modelling, and process management.

A data driven sustainable smart manufacturing framework is pro-
posed by Mabhiri et al. (2020) that comprises of following components:
(i) smart design of product and production, (ii) smart production
planning, (iii) smart production, (iv) smart equipment maintenance
and service, (v) smart product recycling and (vi) re-manufacturing.
The framework provides an overview of the key enablers at a high
level of abstraction and does not delve deeper into the details of
implementation. In a work proposed by Majeed et al. (2021), a frame-
work combining big data analytics, additive manufacturing and sustain-
able smart manufacturing technologies is presented. Their framework,
named Big Data-Driven Sustainable and Smart Additive Manufacturing
(BD-SSAM), targets the additive manufacturing industry and comprises
of the following phases: (i) perception and acquisition of big data,
(ii) big data storage and pre-processing, (iii) data mining and deci-
sion making, and (iv) big data application services. The BD-SSAM
framework is demonstrated with a test case where the optimisation
of process parameters to improve product quality and reduce energy
consumption is presented. In another related work, Mahiri et al. (2022)
proposed a 5G enabled IIoT (Industrial Internet of Things) architecture
for sustainable smart manufacturing comprising five different layers:
business, application, support, edge computing, and perception. The
focus of the architecture is on enabling IIoT in smart manufacturing.
Following the brief review on frameworks and approaches to support
Sustainable Smart Manufacturing, the next section explores the Key
Enabling Technologies for SSM in EIls.

2.1. Key enablers for SSM in Ells

Artificial Intelligence (AI), a branch of computer science, comprises
of a set of tools and techniques that allow human behaviour to be
transferred to a machine (Simmons and Chappell, 1988; Taulli and Oni,
2019). AL, when coupled with simulation models, has been found to
support production optimisation, performance monitoring, scheduling,
fault diagnosis and predictive maintenance through the approaches
of descriptive, prescriptive, predictive, and diagnostic data analytics
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supported by surrogate modelling and predictive modelling (Ors et al.,
2020).

Big Data Analytics is an important base technology of Industry 4.0
and is a core element of smart manufacturing (Frank et al., 2019).
Big data essentially represents the significant amount of structured,
semi-structured and unstructured data obtained through various data
acquisition technologies and allows the exploration of hidden value and
information about a system (Qi and Tao, 2018). Through analysis of
the collected data, various applications such as health and condition
monitoring, asset maintenance, and defect detection and prevention
have become a reality. There are opportunities to improve the sustain-
ability aspects of manufacturing systems that are associated with costs,
environmental impact, waste management, energy consumption, etc.,
by leveraging Al technologies (Kishawy et al., 2018). However, there
exist challenges associated with the cost of implementing sustainability
measures, lack of knowledge, lack of guidance on Al-enabled SSM, and
lack of metrics to measure sustainability (Tanco et al., 2021).

Energy simulation and modelling encompasses physics-based simu-
lations, discrete-event simulations, virtual commissioning model, kine-
matic models, etc., that enable decision-making and production plan-
ning when connected to the physical entities in real-time. The term
‘Digital Twin’ (DT) was originally coined by NASA in the aerospace
domain as “integrated multi-physics, multi-scale, probabilistic simulation of
a vehicle or system that uses the best available physical models, sensor up-
dates, fleet history, and so forth, to mirror the life of its flying twin ” (Shafto
et al., 2012). Over the years, DT technology has evolved and established
itself as an imperative element in various domains for (i) collective
impact assessment, (ii) Al-based ecosystem decision submodel, and
(iii) independent interlinked ecosystem control submodel (Miehe et al.,
2021). Through the use of digital twins, it is possible to represent a
physical entity and its behaviour as a virtual model for various analyses
throughout the lifecycle of the system (Qi and Tao, 2018).

In Ells, the digital transformation starts with first measuring the
energy consumption and other relevant data. Smart meters and soft
sensors can capture and calculate energy consumption while protect-
ing the sensor elements from harsh environmental conditions; various
dashboards and platforms can then be used to display the real-time
consumption (Meijer et al., 2018). On establishment of the energy mon-
itoring system, digital models and data analytics can capture the be-
haviour of the system and enable the comparison of different scenarios
and support autonomous decision-making.

The term ‘Edge Computing’ refers to computing performed in close
proximity to the data source (Satyanarayanan, 2017; Shi et al., 2016).
This opens up various possibilities such as edge analytics, higher re-
sponsiveness, and reduced concerns regarding privacy; the processing
of data is done at the edge and raw data does not need to be shared to
the cloud (Shi et al., 2016). Edge computing is beneficial for SSM due
to the ability to process high volumes of data generated from smart
sensors without the need to rely on external cloud services.

Within the context of business process management, process mining
is a technique that can be used to discover business processes and
support decision making with the use of event logs (van der Aalst
et al.,, 2012). The state-of-the art research in process mining pertains
to the development of process mining algorithms, particularly for the
healthcare sector (Zerbino et al., 2021). This elicits the opportunity
to adopt and apply process management and mining to discover and
analyse process flows and process deviations in EIls.

The key strategies to realise digital transformation rely on leverag-
ing the above-mentioned key enabling technologies for fault diagnosis,
condition monitoring, implementing planned maintenance, avoiding
energy expensive restarts (Abubakr et al.,, 2020), better capture of
energy data, planning or optimisation for energy efficiency, building
novel soft sensors for extreme working conditions, and better man-
agement of the temperatures used for energy intensive processes. A
thorough comprehensive review of enabling technologies for smart
manufacturing is available in the study published by Ren et al. (2019).
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2.2. Current state of digitalisation in EIls

The Digital Intensity Index (DII) of metals sector is found to be
lower than chemical manufacturers which could be attributed to the
fact that the metals industry had a period of stability and focussed
on continuous improvements. Interviews with 27 global metals and
mining industries, revealed the lack of existing capabilities in EIls
to bring about such radical changes. This is due to the fact that
current practices do not align with digital transformation and creates
a stagnant system with lack of focus. Furthermore, the limited support
from managerial personnel, inadequate training in digital tools, cynical
attitude to Al, concerns regarding privacy and data breach, challenging
operating environment, use of safety policies as an excuse to improve,
and fear of unemployment create a challenging ecosystem with barriers
to innovation (Gao et al., 2019). Moreover, the Ells are not considered
as an attractive workplace for people with digitalisation and IoT skills.
Therefore, the recruitment of younger workforce who are familiar
with such technologies and the training and bridging the gap between
older and younger employees might act as catalysts to realise radical
changes (Branca et al., 2020b; Murri et al., 2019; Branca et al., 2020a).

A review of the pulp and paper, steel, and chemical industries in
Sweden highlighted that EIls comprehend the importance of digitalisa-
tion; however, the digital maturity of Ells is not high and digitalisation
is not linked to energy efficiency measures. As previously highlighted,
the level of digital maturity varies across the sectors and was the
lowest for steel industries and strongest for the pulp and paper in-
dustries (Jasonarson, 2020). A report on the Swedish environment
protection agency showed that 34% of greenhouse gas emissions are
from the Iron and Steel sector. Pulp and paper industry have high
energy consumption but their emission is low due to use of bio fuels
and low carbon electricity.

Continuous improvements and small-scale changes can make a step
change in the consumption of energy in Ells. In alignment with this
notion, steel-specific decarbonisation can be achieved by: (i) replacing
coal with biochar, (ii) use of hydrogen or biogas as reducing agent,
(iii) electrolytic steel production, and (iv) carbon capture and storage.
In the case of mining, improvements achieved by renewable electricity
generation, electrifying the mining equipment, innovations in process
and technology, and replacing fossil energy with biomass can drive the
progress in sustainability. In case of the cement industry, fuel switching,
electrification, carbon capture and storage and clinker substitution are
some of the approaches that can be employed. In the pulp and paper
industry, fuel switching and electrification can help reduce energy
emissions. The chemical industry is continuous and hence any problem
in equipment could result in unexpected maintenance cost. Improving
equipment reliability plays a key role in achieving better energy ef-
ficiency in such industries. Few other techniques include the use of
LED lighting, reusing waste heat, better insulation, equipment redesign,
etc., such that the energy efficiency can be increased. Although such
improvements are beneficial, the emissions in iron and steel refineries is
expected to be higher in 2045 due to a marked increase in production.
On the other hand, pulp and paper and cement industries are expected
to have lower CO, emissions by 2045 (Nurdiawati and Urban, 2021).

To ensure attainment of sustainability goals, it is evident that there
is need for radical changes to policies and manufacturing paradigms
in ElIs. This section highlights the extent of such advancements, par-
ticularly in steel working. Approximately 156 projects on coal and
steel manufacturing research have been funded for the realisation of
digitalisation and Industry 4.0 (Arens, 2019). It is envisioned that the
research on digitally connected products and processes can allow for
intelligent automation (Zsifkovits et al., 2020). In alignment with this
notion, the following projects highlight the extent to which innova-
tion and energy efficiency in steel production is currently realised.
The ‘NewTech4Steel’ project focusses on advanced data analytics in
steel processing (Avellino et al., 2022), the ‘DROnes for autonomous
MOnitoring of Steel PLANts’ (DROMOSPLAN) project explores the use
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of Unmanned Aerial Vehicles (UAV) for steelworks (Piancaldini et al.,
2019), the ‘Robotic workstation in harsh environmental conditions to
improve safety in the steel industry’ (RoboHarsh) project identifies
opportunities for human robot collaboration in the steel industry (Colla
et al., 2021), the ‘DEtection of Steel DEfects by Enhanced MONitoring
and Automated procedure for self-inspection and maintenance’ (DES-
DEMONA) project utilised robotics and automation for steel defect
detection (Kazemi Majd et al., 2022), the ‘Optimisation of the manage-
ment of the process gases network within the integrated steelworks’
(GASNET) project uses neural networks and predictive modelling to
improve energy efficiency in steelworks (Dettori et al.,, 2019), the
AdaptEAF project focusses the optimisation of energy efficiency of
electric arc furnaces (European Commission and Directorate-General
for Research and Innovation et al., 2019), and the Cyber-POS project
employs concepts of cyber-physical production systems for the steel
industry (lannino et al., 2022). Research on embedding intelligence
in steel manufacturing is done as part of the steel 4.0 paradigm (Hsu
et al., 2018). Another interesting work done with respect to Internet
of Things is the tracking of product from steelmaking to delivery, and
the use of data analytics to prevent error and improve safety (Branca
et al., 2020a). The shift from product-based to consumer-centric ser-
vices using digital technologies to create a shared digital ecosystem
can bring about some innovation in Ells (Newman and McClimans,
2017). An interesting research pursued by the facility for intelligent
fabrication in Australia is on the use of CAD designs, integration of
smart sensors, and use of AR and VR for enhanced robotic handling
in steel industries (Australian Steel Institute, 2020). In summary, the
extent of research and project funded in this domain highlights the
attention provided for sustainable steelworking. The majority of work
conducted employ one or more key enabling technologies to ensure
energy efficient steel production. The next section will highlight the
key articles that are relevant to this research and identify the research
gaps that need to be fulfilled.

2.3. Review of frameworks related to sustainable Ells

Zhang et al. (2018) address the need for a big data driven analytical
framework for EIls wherein they consider four components: (i) energy
data perception and acquisition, (ii) energy big data storage and pre-
processing, (iii) energy big data mining and energy intensive decision
making, and (iv) application services of energy big data. Their approach
is implemented in a ceramic industry test case and their framework
provides a comprehensive overview of the current state of Ells. The
focus of their work is on Big Data Analytics and opportunities for
integration with other enabling technologies such as data acquisition
devices. However, there is scope to improve the work by considering
other enabling technologies such as process management tools and
virtual modelling.

A framework for sustainable intelligent manufacturing for Ells is
proposed by Ma et al. (2020). Their framework comprises of three
different layers: the perception layer, management layer and applica-
tion service layer. The primary focus of their work is the impact of
data-driven energy consumption analysis on Circular Economy. A case
study in ceramic industry is used as the proof of concept. While their
approach is detailed and applicable in the manufacturing stage of an
EII, it could be improved by considering further integration with other
enablers. In another related article, an architecture of energy cyber—
physical system and synergistic models of energy flow material flow
and information flow is presented (Ma et al., 2019). Their work is
demonstrated in a test case and the energy consumption modelling is
discussed.

A framework for sustainable smart manufacturing by integrating
concepts of big data and digital twin is proposed by Ma et al. (2022). In
their work, the energy monitoring and management across the produc-
tion lifecycle is analysed along with the creation of an energy digital
twin. Nilsson et al. (2021) propose an industrial policy framework
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that explores the changes that need to be brought about in EIls to
achieve zero emission targets. Their work predominantly focusses on
the unexplored area of bringing about green policy changes in EIIS
and presents a brief discussion of socio-economic implications and
international coherence. The concept of Industrial Symbiosis in EIls
by symbiotic coupling of iron and steel, thermal power and cement
industries is proposed by Xue et al. (2023). The implementation in a
test case highlights the benefits of the approach for energy and emission
reduction.

2.4. Summary of literature review

A summary of the literature review is presented in Table 1. A brief
review of relevant articles elicits the various facets of sustainable smart
manufacturing; it can be seen that there is lot of attention towards
implementation of Big Data Analytics, IoT and Artificial Intelligence in
SSM. Although the concept of SSM continues to garner attention, it is
evident that there is a lack of research highlighting the technical know-
how and implementation of SSM frameworks in Ells. Specifically, it can
be seen that (i) there is limited practical research and implementation
of the integration of multiple enabling technologies to support sustain-
able smart manufacturing in Ells, (ii) the existing knowledge on smart
manufacturing cannot be adapted seamlessly to Ells due to limited
knowledge and understanding of the processes and energy monitoring,
and (iii) there is lack of research on the use of simulation & modelling
and process management tools to support energy consumption analyses
in EllIs despite their benefits for intelligent energy decision making.

Therefore, this research aims to:

+ propose a framework to support the digitalisation of Ells along
with a detailed approach highlighting the information flow be-
tween the various steps;

- investigate the interplay between process mining and simulation
modelling to support sustainability in EIls and SSM.

3. Methodology

The proposed methodology can help realise two main strategies, di-
rectly improving energy efficiency by reducing the energy consumption
and indirectly improving energy efficiency by reducing the material
wastage (also referred to as improving the material efficiency). The key
enablers such as data acquisition using IoT, simulation & modelling, ar-
tificial intelligence, and process management are integrated to create a
comprehensive framework to support sustainable smart manufacturing
in Ells. As seen from literature on existing frameworks for Ells, the link
between process management, and simulation for sustainability is an
area that is least explored. The authors present Fig. 1 as a synthesis
of the organisational enablers and technological enablers for smart
sustainable manufacturing at various stages of a manufacturing system
lifecycle. Extending this further, in Fig. 2, the authors identify steps
to monitor and improve energy efficiency at each stage of product
lifecycle, starting from raw material extraction to end-of-life. From
Fig. 1 and Fig. 2, the scope of this research pertains to the technological
enablers of smart sustainable manufacturing and the steps to improve
energy efficiency in the operation phase of the system and product
lifecycle.

The proposed framework is constructed on five main layers that
are indicated in Fig. 3; the data acquisition layer, process management
layer, simulation & modelling layer, artificial intelligence layer, and
data visualisation layer. Each layer is explained in detail in the follow-
ing paragraphs and it is important to note that the various layers are
not to be viewed as sequential steps.
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Table 1

Summary of literature review.
Article Big Data CPS IoT Al Process mgt Simulation Overview
(Zhang et al., 2018) v v v Focus on big data analytics and energy data mining for Ells
(Ma et al.,, 2019) v v v Focus on energy CPS and energy management for Ells
(Ma et al., 2020) v v v Focus on data analytics & circular economy for Ells
(Ma et al., 2022) v v v v Focus on digital twins and big data for energy efficiency for Ells
(Ren et al., 2019) v v v Focus on Big Data and its application in Sustainable Smart Manufacturing
(Mabhiri et al., 2020) v v v Focus on improving intelligence in Sustainable Smart Manufacturing
(Majeed et al., 2021) v v v Focus on big data analytics for sustainable and smart additive manufacturing
Proposed approach (2023) v v v v Focus on data acquisition, Al, process mining and simulation for Ells
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Fig. 1. Organisational and technological enablers for Sustainable Smart Manufacturing.
Source: Adapted from (Malek and Desai, 2019; Koho et al., 2011)
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Fig. 2. Energy efficiency strategies at various stages of product lifecycle.

3.1. Data acquisition layer

The data acquisition layer comprises various components such as
smart sensors, smart meters, IoT, RFID, thermocouples, energy mon-
itoring devices, Enterprise Resource Planning (ERP), Manufacturing
Execution Systems (MES), databases, Excel/CSV, and data warehouses
that capture both direct and indirect energy consumption and carbon
emissions.

« Direct energy consumption — refers to recording of temperature,
pressure, vibration, acoustics, water usage, gas usage, electricity
usage, power usage, and fuel consumption that enable the cal-
culation of machine-level or manufacturing system-level energy
consumption. An example of direct energy consumption is the
recording of temperature values using thermocouples.

Indirect energy consumption — refers to the recording of number
of parts rejected, reworked, machine utilisation statistics and
process-related statistics that enable the calculation of wasted
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Fig. 3. Digital Life-cycle Management framework.

energy. An example of indirect energy consumption is the use of
RFID tags to record products that are rejected or sent for rework.

The data acquisition is the first step in the methodology and the
captured data is crucial for forecasting and monitoring the energy
consumption. It is important to note that data might be available in
different formats and needs to be pre-processed, cleaned, filtered and
stored either locally or in the cloud. Therefore, this initial step is
significantly time-consuming and becomes tedious as the volume and
variety of data increases; strategies to convert unstructured and semi-
structured data to structured data will alleviate the problems associated
with big data.

3.2. Process management layer

This layer retrieves information from the data acquisition layer to
actively manage and monitor the process. Considering the operation
stage of the system lifecycle, existing process records play an important
role in energy consumption forecasting and prediction. Process mining
is a data-driven technique that can extract hidden evidence from event
logs and records (Zerbino et al., 2021) that exist in the data acquisition
layer. Since EIIs lack an understanding of existing processes, the authors
believe that the process management layer and process mining can help
overcome the issue. This layer comprises of various components for
process discovery, process conformance checks, knowledge representa-
tion, and process analysis and can be realised using tools such as ProM,
Disco, etc.

* Process discovery — the process-related information are discov-
ered from event logs through process mining. For example, event
logs obtained from database, transaction logs or workflow sys-
tems can be used to unearth and visualise the factual representa-
tion of the industrial process.

» Process conformance — the event log ‘traces’ can be re-run to
check for conformance and process deviations.

» Knowledge representation — the existing process knowledge can
be mapped to products and equipment using tools such as Pro-
tége.

« Statistical analysis — process metrics such as the number of
events, cases, case variants, events per case, case duration, case
utilisation, mean activity duration, mean waiting times, etc., can
be obtained using this component.

Through process discovery and analysis, the frequency of the pro-
cesses, the variants catered to, and the process routes through the
system can be obtained. This not only enables further understanding
of the industrial process for policy generation and continuous improve-
ments that are much needed in EIIs, but also helps analyse the process
with metrics such as mean duration of processes, process variants and
their frequencies, part rejection and rework, etc.

3.3. Simulation & modelling layer

The simulation & modelling layer comprises of components such as
Discrete-Event Simulation (DES), kinematics model and digital twins
that can be generated with the process logs and process metrics ob-
tained from the process management layer. Energy flow simulation
paradigms have benefits such as process improvements, efficiency anal-
ysis and can help calculate yearly cost savings, production output and
energy consumption (Herrmann et al.,, 2011). Therefore, the authors
believe it is a suitable choice for the framework.

+ Discrete-Event Simulation — this component is used to model the
stochastic behaviour of a system and analyse ‘what-if’ scenarios.

+ Agent-based models — this component can be used to represent
the behaviour of various resources, people, and products in a
manufacturing system and their interaction with each other.

+ Energy Digital Twin — represents the physics and behaviour of
energy intensive equipment such as furnaces, heat treatment and
annealing chambers.



M. Kaniappan Chinnathai and B. Alkan

Variants (221)
Variant 23

Cases (1)
Case 116

1 case (0.44%)

12 events

o it
I ’“
Rty
W ey
Wt
e, P
W e 0
lIP‘i.I Y?a:isaer::)jl"o) ’
o VIR,

Journal of Cleaner Production 419 (2023) 138259

Case 116

Case with 12 events

|
® N o os» N

| Activity | Resource

Round Grinding - Manual
Round Grinding - Manual
Round Grinding - Manual
Packing

Round Grinding - Manual
Final Inspection Q.C.
Round Grinding - Manual
Round Grinding - Manual
Round Grinding - Manual
Round Grinding - Manual
Packing

Final Inspection Q.C.

Machine 27 - Grinding
Machine 27 - Grinding
Machine 27 - Grinding
Packing

Machine 27 - Grinding
Quality Check 1
Machine 27 - Grinding
Machine 27 - Grinding
Machine 27 - Grinding
Machine 27 - Grinding
Packing

Quality Check 1

il Case ID  Activity Resource Start Times Complete 1Span Work Orde Part Desc. Worker ID Report Typ Qty Completed  Qty Rejected Qty for MR Rework
Pl Case 1 Turning & Milling - Machine4 Machine4 ~ 24:00.0  43:00.0 006:19 10 Cable Head 1D4932 S 1 0 [¢]
£l Case 1 Turning & Milling - Machine4 Machine4  44:00.0  42:00.0 000:58 10 Cable Head 1D4932 D 1 0 0
EHl Case 1 Turning & Milling - Machine4 Machine4  59:00.0  21:00.0 000:22 10 Cable Head 1D4167 S 0 0 0
Bl Case 1 Turning & Milling - Machine4 Machine4  21:00.0  58:00.0 003:37 10 Cable Head 1D4167 D 8 0 0
(3l Case 1 Turning & Milling Q.C. Quality Che  20:00.0  50:00.0 001:30 10 Cable Head ID4163 D 9 i 0
@l Case 1 Laser Marking - Machine 7 Machine 7-  18:00.0  27:00.0 000:09 10 Cable Head 1D0998 D 9 0 0
Ll Case 1 Lapping - Machine 1 Machine 1 00:00.0 15:00.0 000:00 10 Cable Head 1D4882 D 0 0 0
R Case 1 Lapping - Machine 1 Machinel  00:00.0  15:00.0 000:00 10 Cable Head 1D4882 D 0 0 0
[0 Case 1 Lapping - Machine 1 Machinel  05:00.0  20:00.0 000:00 10 Cable Head 1D4882 D 1 0 0
(Y Case 1 Lapping - Machine 1 Machinel  05:00.0 38:00.0 000:33 10 Cable Head 1D4882 D 8 0 0
Py Case 1 Round Grinding - Machine 3 Machine3  13:00.0  37:00.0 004:24 10 Cable Head ID4445 S 0 0 0
Case 1 Round Grinding - Machine 3 Machine3  37:00.0 27:00.0 001:50 10 Cable Head 1D4445 D 9 0 0
Casel Final Inspection Q.C. Quality Che  59:00.0  59:00.0 001:00 10 Cable Head 1D4493 D 0 0 0
B Case 1 Final Inspection Q.C. Quality Che  11:00.0  12:00.0 004:01 10 Cable Head 1D4493 D 0 0 0
[ Case 1 Final Inspection Q.C. Quality Che  43:00.0  58:00.0 000:00 10 Cable Head 1D4493 D 9 0 [¢]
[l Case 1 Packing Packing 00:00.0  00:00.0 000:00 10 Cable Head 1D4820 D 9 0 0

Fig. 4. ERP data used for process discovery.

These models can support decision making, analyse ‘what-if sce-
narios’, virtual commissioning, reconfiguration analysis, and process
planning. Majority of EIls have limited understanding of their processes
that makes it difficult to gather data such as rework rate, process flow,
product variants, etc., for simulation & modelling.

3.4. Artificial intelligence layer

Machine learning techniques can be coupled with simulation models
for explainable analytics, improving system performance, predictive
visibility, and optimising performance (Biller and Biller, 2023). Specif-
ically, the energy consumption, scrap rate and product rework data
can be analysed to monitor assets, detect failures, and realise preven-
tive maintenance measures. Therefore, the artificial intelligence layer
is introduced in the proposed framework such that existing energy
consumption data can be used to forecast the energy consumption for
subsequent weeks. It can also be coupled with an online real-time
simulation model to enable real-time energy predictions using data
streaming platforms such as Apache Storm and Kafka.

3.5. Data visualisation layer

The data obtained from the AI layer such as the forecast of energy
consumption and cost, and forecast of machine usage can be displayed
in the form of graphs and plots using data visualisation software such
as PowerBI, Tableau, and Grafana. This layer can also be coupled with
the simulation & modelling layer to display real-time energy and usage

statistics at varying levels of granularity. When displayed as dashboards
and reports, it can help making informed decisions about the system.
For purposes of communication between the different layers, OPC-UA
servers can be established to ensure that the dashboards are regularly
updated. Another point to note is that the dashboards from this layer
can be displayed in desktops, hand-held devices, laptops or Human—
Machine Interfaces (HMIs) to managers and engineers. Subsequently,
any discrepancy in the system can then be visualised and necessary
actions could be taken before it propagates to a serious problem.

The next section delves deeper into each of the layers and demon-
strates one possible application of the methodology as proof of con-
cept. Please note that there are multiple applications for the proposed
framework, but only one is discussed in detail.

4. Case study

To demonstrate the framework, a test case in an industry that
does machining operations on metal parts such as drills, bearing, ball
nuts, springs, etc., is presented. The dataset (Levy, 2014) used in
this research is sourced from Enterprise Resource Planning (ERP) and
Manufacturing Execution Systems (MES). As a proof of concept, only
one possible application of the framework is discussed starting with
process discovery using ‘Disco process mining software’. As machining
operations are energy-intensive (Shang et al., 2019; Moradnazhad and
Unver, 2017), the authors believe that the following demonstration
can provide guidance on the practical implementation of the digital
lifecycle management framework in EIIs.
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Table 2
Process-level data obtained by process mining.
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Resource Frequency Relative frequency Median duration Mean duration Duration range
Quality Check 1 1193 26.26% 1 h 15 min 1 h 44 min 10 h 47 min
Machine 1 - Lapping 369 8.12% 1 h 15 min 1 h 46 min 22 h 41 min
Packing 277 6.1% 1h 1h -
Machine 2 - Grinding 273 6.01% 3 h 3 min 3 h 55 min 15 h 50 min
Machine 3 - Grinding 275 6.05% 2 h 53 min 3 h 48 min 16 h 49 min
Machine 4 - Turning and Milling 271 5.97% 5 h 30 min 5 h 34 min 22 h 7 min
Machine 5 - Turning and Milling 264 5.81% 5 h 22 min 5 h 20 min 22 h 22 min
Machine 6 - Turning and Milling 261 5.75% 4 h 28 min 5h 4 min 22 h 24 min
Machine 7 - Laser Marking 252 5.55% 52 min 30 s 57 min 45 s 4 h 9 min
Machine 8 - Turning and Milling 219 4.82% 2 h 45 min 3 h 38 min 14 h 36 min
Machine 9 - Turning and Milling 198 4.36% 4 h 1 min 4 h 40 min 23 h 49 min
Machine 10 - Grinding 178 3.92% 5 h 29 min 5 h 38 min 22 h 59 min
® marking, and one wirecut machine. Apart from the operations carried

Tuming & Milling Q.C
169

69

Laser Marking - Machine 7
167

Lapping - Machine 1 29
132

Round Grinding - Machine 2
a7

Final Inspection Q.C
176

e R

Packing
175

®

Fig. 5. Process discovery using event logs in Disco.

4.1. Process discovery

The data provided in Fig. 4 is the event log that was used for process
mining. Each row in the event log represents a ‘trace’ that is a set
of activities. By importing this data into the process mining software
(Disco), the ‘as-is’ process is discovered. The process flow in Fig. 5
provides a high-level view of the actual activities that take place in
the industry. It can be seen that the most frequent processes are shown
in dark blue and accordingly the turning & milling and final inspection
(quality check) processes are the most frequent. The arrows connecting
the processes have different thickness depending on the frequency
of the flow between two processes. Moreover, by zooming into each
variant category, as seen from Fig. 4, the mean process duration, range
of process duration, frequency of the process, and process routes can
be obtained as shown in Table 2. From the above data, the ten most
frequent process flows are identified and provided in Table 3. The
product variants flow through different process routes spanning across
12 machines: five turning and milling machines, two round grinding
machines, one flat grinding, one lapping, one deburring, one laser

out in these machines, two other less energy-intensive operations of
quality check and packing also form part of the process flow. It can
be seen that the products undergo different machining operations de-
pending on their route. For example, from Table 3, variant 8 has three
processes: round grinding, quality check and packing and variant 1 has
seven processes: turning & milling, quality check, laser marking, round
grinding, lapping, quality check, and packing. Therefore, variants 1
and 8 will follow different process routes through the system as a
result of which they will have different process metrics. Each variant
category has different ‘cases’ or ‘instances’ of products that follow the
same process flow but have different timestamps, energy consumption
and machining duration. Corresponding to the number of cases in each
variant, the percentage of variant categories in the system is according
to the values provided in the last row of Table 3.

4.2. Discrete-event simulation model

The idea behind the DES model is to use the process data that
was discovered in the process management layer to further understand
the system. With the help of the model, the KPIs such as machine-
level energy consumption and machine-level utilisation are calculated
using SimEvent parametric DES model in Simulink (Matlab version
R2022). An overview of the simulation model is provided in Fig. 6.
An inter-arrival time that varies between the range of 0 to 3 h was
set in the entity generator block; the variant-specific service time for
each machining process was set within the service blocks, as triangular
probability distributions. The service time values were obtained from
the process duration and mean duration statistics from the Fig. 4. The
order in which product variants arrive for each run of simulation varies
and the frequency of each variant is modelled according to Table 2
and Table 3. When products enter quality checks, there is a 5% chance
that they might be sent for rework. All queues follow First In First Out
(FIFO) rule and have a maximum capacity of 50. The simulation is run
for a period of one week (168 h); the weekly demand for each product
variant changes according to Table 4.

4.2.1. Assumptions for simulation
The main assumptions for the simulation are as follows:

The machining operations and transportation are performed using
appropriate equipment but operated manually.

The final quality check, turning and milling quality check and
round grinding quality check are considered as variations of the
quality check process. Therefore, the same process block in DES
is used to model them.

The simulation runs over a period of three shifts per day. But
the labour allocation per shift is not modelled; it is assumed that
equipment/machines play a primary role in energy consumption.
The warmup time for simulation is 10 h (based on trial runs) and
the system reaches steady state after this period; as this did not
significantly affect the statistics, the warm-up time is ignored in
the output statistics calculations.
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Fig. 6. SimEvent model of the test case (detailed image available in Link).

» The quality inspection and packing processes are manual process
and are assumed to consume negligible amount of energy.

4.2.2. Simulink - energy consumption model

It is important to conceptualise an energy consumption model
within Simulink in order to calculate the machine-level energy con-
sumption. The machine tool power profile was adopted from existing
literature (Zhao et al., 2017; Li and Kara, 2011) and considered for
the energy consumption modelling. Accordingly, three different energy
values for machine-level energy consumption, namely, E,,., Ecying
and E,,,,, are considered. At the start of the simulation, the E,,,, value
is updated; this value is the idle energy consumed by the machines.
When a product variant enters the service block (machine), there is a
setup phase, represented by the E,,,,, value, where the spindles and
fixtures are readied. Following this, the cutting/machining operation

begins and runs for a certain duration, represented by the E,,;,, value.

E

machine = Ebase

+E

cutting

+ E 1

ready

The Epyges Ecypring and E,o4q, are defined as variables and the energy
consumption of a machine is calculated as per Eq. (1). Each machine
corresponds to three ‘simulink function’ blocks, one for each energy
value. The ‘E,,,;, simulink block’ is triggered when product enters
a machine. Following this, the ‘E,,,;,” value is updated according to
the time taken for setup. When material removal/cutting begins, the
‘Euing Simulink block’ is triggered and the value is updated according
to the time taken. The primary aim of the simulation model is to
calculate the machine level energy consumption subject to stochasticity
which was achieved using random number generators.

To test the working of the simulation model, desk checking, peer
testing, submodel testing, model interface testing, visualisation and
sensitivity analysis (Balci, 1998) were done with the help of data
inspector and signal logging; the model was subject to several iterations

before recording the output data in Matlab workspace.

4.3. Forecasting the energy consumption

Twenty datasets were obtained from the simulation model, one for
each week of simulation run; each dataset comprises of timestamp in
the first column, energy consumed by machine 1 in the second column,
energy consumed by machine 2 in the third column and so on. It should
be noted that the timestamps at which the energy values are recorded
is not equally spaced and this is because the time interval between
events in DES vary. The timestamp data is converted to timeseries using
the ‘retime’ function in Matlab to obtain the daily and weekly energy
consumption. The dataset is split into training set that corresponds to
90% of the data; the remaining is considered as the test set and the lag
is ‘1’. During the training, the weights and bias values are updated using
an LSTM neural network with the following parameters: adam solver,
L2 regularisation of 0.0001, max epochs of 1000, and minimum batch
size of 128. The results of the energy consumption forecast is provided
in Fig. 7. Although there is scope to improve the architecture of the
neural network, in view of delivering the proof of concept, further
details will not be discussed in this article.

4.4. Visualising the results

The results obtained from both simulation and neural networks
are displayed using grafana as it has good visualisation features such
as charts and plots. The dashboarding data is sourced from multiple
sources at different time intervals and needs to be constantly updated
to show the real-time information. For this purpose, OPC-UA (Unified
Architecture) which is a protocol for machine-to-machine communica-
tion is used. Kepware is a server that is built upon OPC-UA architecture
and can enable the real-time data transfer between software for inter-
operability. In this study, Matlab and InfluxDB are established as clients
to the Kepserver for real-time data transfer. Following this, grafana
is integrated with influx DB to create real-time dashboards. A sample
dashboard built for this proof of concept is shown in Fig. 8. Further
details of the real-time communication using Kepserver and energy KPIs
for manufacturing systems can be found in a previous work by the
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Fig. 8. Grafana dashboard.

authors (Chinnathai et al., 2021; Assad et al., 2019). From Fig. 8, it
can be noted that machines 6 and 12 have the lowest utilisation and
hence the least efficient.

5. Discussion

In this paper, a digital lifecycle management framework for Ells is
used to demonstrate how process discovery, discrete-event simulation
and data analytics can be used to forecast the energy consumption of a
machining industry. It should, however, be noted that the applicability
of the framework is not restricted to the above-mentioned case study.
The framework was developed to cater to the need of delivering radical
improvements in EII energy efficiency. However, the applicability of
the framework is not restricted to Ells. The potential of integrating
process mining and simulation for energy efficiency in a diverse range
of manufacturing systems is an area of interest for future research.
Considering the concept of Digital Twin, the proposed digital lifecycle
management framework considers the integration of various software

10

to create a digital representation of Ells. They can be enriched with
physics, electronics and data to be considered as a digital twin of the
production system or its components. In this research, the operational
phase of the EII was considered during demonstration of the method-
ology. It is to be noted that, in Ells, concepts such as reconfiguration
and production system changes do not happen as frequently as other
manufacturing systems such as automobile assembly and semiconduc-
tor industries. However, the proposed framework is equally beneficial
in the system design phase for planning and validation of systems.
Ells can also benefit from technologies such as block-chain enabled
digital twins that can help in decarbonising the whole supply chain
in addition to providing traceability, compliance, authenticity, quality
and safety (Yaqoob et al., 2020). Moreover, the proposed framework
helps achieve Industry 5.0 targets of adaptability, autonomous decision
making while adhering to sustainability constraints and goals; this is
with the help of AI and advanced forecasting to adapt to external
circumstances through adaptive scheduling, job allocations, transparent
and autonomous decision-making.
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Table 3

Case study - Process details.

S.No

Variant 1

Variant 2

Variant 3

Variant 4

Variant 5

Variant 6

Variant 7

Variant 8

Variant 9

Variant 10

Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process 9
Percentage

Turning & Milling
Quality check
Laser marking
Lapping

Round grinding
Quality check
Packing

41%

Turning & Milling
Quality check
Laser marking
Flat grinding
Quality check
Packing

4%

Turning & Milling
Quality check
Laser marking
Flat grinding
Lapping

Round grinding
Quality check
Packing

11.7%

Turning & Milling
Quality check
Laser marking
Flat grinding
Quality check
Packing

7.9%

Turning & Milling
Quality check
Laser marking
Deburring

Flat grinding
Lapping

Round grinding
Quality check
Packing

4%

Turning & Milling
Quality check
Laser marking
Lapping

Quality check
Packing

15.6%

Turning & Milling

Quality check
Packing

5.8%

Round grinding
Quality check
Packing

2%

Turning & Milling
Quality check
Flat grinding
Lapping

Quality check
Wire cut

Packing

4%

Turning & Milling
Quality check
Laser marking
Round grinding
Quality check
Packing

4%
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Table 4
Case study - Variant details.
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S.No Variant 1 Variant 2 Variant 3 Variant 4
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Week 1
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Week 10
Week 11
Week 12
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5.1. Implication for practitioners

The research can be employed for condition monitoring using
sensors, data acquisition systems, predictive and diagnostic tech-
niques to formulate energy-efficient maintenance plans.

Process data integrated with simulation models and machine
learning can be used for anomaly detection and asset health
monitoring. As a result, manufacturers can simulate maintenance
strategies before implementation.

Ells can employ the framework to improve the process design and
reduce wasted energy and materials. As an example, simulation-
based optimisation can be employed to identify the best operating
conditions and process parameters for various energy-intensive
processes while maximising profit and minimising the energy
consumption.

Engineers can automatically generate energy DES models with
embedded intelligence from ontologies, knowledge representa-
tion, and Al

5.2. Implication for researchers

» The recent environmental policies and initiatives have put EIIs
on the spotlight. As a result, EllIs are seeking to innovate and rad-
ically transform their processes with the support from academia
and researchers. The focus has been on the integration of big data
analytics and data acquisition systems. However, the proposed
framework will aid researchers to explore other key enablers
such as process mining and simulation & modelling to achieve
a holistic digital transformation of Ells.

The experiment performed in this research study serves as a proof
of concept for improving energy and material efficiency of EIls.
The digital life-cycle management framework considers the hor-
izontal and vertical integration of the various components for
real-time decision support. It paves way for researchers to ex-
plore the concepts of interoperability, data storage, and industrial
network for ensuring organisation-wide sustainability in EIIs.

5.3. Key findings

A comprehensive evaluation of the proposed framework helped
identify the below findings.

1. A review of past studies indicates the focus of existing research
on IoT devices, and big data analytics. There is a lack of technical
know-how regarding the seamless transition of EIls from legacy
systems to sustainable digital factories.

12

. The proposed framework primarily relies on existing data from
the data acquisition layer and any issues with data quality are
propagated throughout the framework.

. The accuracy of the models developed in the simulation and AI
layers significantly depends on the quantity and quality of the
data.

. During implementation of the framework, there exist interoper-
ability issues due to the use legacy systems in EIIs.

. The framework can be applied in the operational phase of a
system and all five layers of the framework play an important
role in discovery and monitoring of the data.

5.4. Challenges and outlook

This section discusses the challenges and outlook for digital trans-
formation from the perspective of organisational enablers. The first
and foremost issue is that the investments in digital technologies are
expensive. This is compounded by the lack of proper digital infrastruc-
ture as a result of outdated legacy systems, inexperienced personnel,
lack of accurate data, and challenges in data collection. Long term
strategies and radical changes are not easy to implement since they
need to be considered at the organisational level. Existing industries
lack knowledge on where and how the principles of Industry 4.0 can
be applied. In order to build intelligent digital models it is important to
have a good knowledge of the complex processes in a system. However,
lack of proper documentation, and use of paper-based systems add to
existing challenges (Jasonarson, 2020). The age gap between current
workers and prospective employees is huge. The experienced workers
who have a better idea of the factory are resistance to training (Murri
et al., 2019). According to Newman and McClimans (2017), the key
to achieving best effective use of digital technologies is successful
vertical integration, horizontal integration, as well as considering the
lifecycle assessment of the production. In order to bring about such a
transformation, it is necessary to have a multi-disciplinary project team
with skill set that allows digital modelling, embedding intelligence, and
performing analysis.

5.4.1. Research question 1: How can the integration of digitalisation and
Al support sustainability in EIIs?

Past studies show that increased collaboration among researchers,
industries and academia plays an important role in digital transforma-
tion of Ells. The digital models that will be created should be holistic
to capture the different stages of the lifecycle along with integration of
lifecycle assessment tools. To answer this research question, the digital
life-cycle management framework considers five different layers that
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enable the integration of digitalisation and Al for asset monitoring,
measuring utilisation, zero-defect manufacturing, traceability, adaptive
online control and effective process plans to reduce wastes. However, it
should be noted that this necessitates proper training to personnel along
with improvements in safety, and working conditions. Additionally,
it is worth considering cloud-based Platform as a Service (PaaS) and
federated learning for specific stages of the digital transformation.

5.4.2. Research question 2: What strategies can be employed to improve the
process understanding of Ells?

The benefits of process mining for EIls is established as part of this
study. Event logs and traces obtained from industries help with process
discovery and improves process understanding. Having established that
the monitoring and understanding of processes in an EII can bring about
a positive transformation, the proposed digital life-cycle framework
enhances existing methodologies that are based on big data analytics,
digital twin, and IoT with the addition of process management and
simulation & modelling. This research study demonstrated the steps
involved in the process discovery of a mining operation and identified
data that can be readily used for the development of an energy DES
model. The research can benefit from further understanding of the
data model schema and interoperability between process mining and
simulation.

6. Conclusion and future works

In this research, the authors have reviewed the current state of
digitalisation in energy-intensive industries and proposed a framework
to support the realisation of sustainable smart manufacturing in Energy
Intensive Industries (EIls). The investigation of process mining and
simulation modelling to support sustainability has enabled the devel-
opment of a five-layer framework consisting of (i) data acquisition, (ii)
process management, (iii) simulation & modelling, (iv) artificial intel-
ligence, and (v) data visualisation, to embed intelligence in Ells such
that energy and material efficiency can be improved. The framework
is demonstrated with a machining industry test case and the various
phases of the framework support different facets of sustainable smart
manufacturing to bring about a holistic digital transformation. It should
be noted that the primary research contribution is the application of
process mining and simulation & modelling to understand the ‘as-
is’ process; the process data was used to discover process deviations,
represent knowledge, and analyse processes to support the creation
of a parametric discrete-event simulation model. The output of the
simulation model was used to forecast the energy consumption; the
energy consumption is then displayed using dashboards to identify
areas for improvement. The authors would like to point out that to
the best of their knowledge there is no existing research that explores
the process understanding of Ells through the use of process mining
integrated with simulation & modelling. The study also indicated the
importance of the veracity of data and the accuracy of the modelling
process. Moreover, the barriers associated with interoperability and
hardware/software compatibility were also discovered. As part of the
future work, the limitations associated with as data quality issues,
interoperability and compatibility with legacy systems, can be ad-
dressed by: (i) considering and integrating data quality checks and
data governance policies at the gateway of each of the five layers, (ii)
identifying historical datasets that are relevant to the current processes
and evaluating their suitability to train the models used in the Al layer,
(iii) identifying open source software and APIs that can help overcome
issues with real-time data transfer and compatibility issues. Addition-
ally, there are plans to extend this research work with the inclusion
of detailed knowledge representation, ontologies and mapping in the
process management layer, consideration of cloud-computing and edge
computing, and self-adapting automation & manufacturing systems.
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