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Abstract—High penetration of renewable energy resources
in distribution systems brings more uncertainty for system
control and management due their intermittent behaviour. In
this context, besides generation side, demand side should be
also controlled and managed. Since demand side has variant
flexibility over time, in order to timely facilitate Demand
Response (DR), distribution system operators (DSO) should be
aware of DR potential in advance to see whether it is sufficient for
different services, and how much and when to send DR signals.
This indeed requires accurate short-term or medium-term load
forecasting. There are many methods for predicting aggregated
loads, but more effective DR schemes should involve individual
residential households which would require load forecasting of
single residential loads. This is much more challenging due to
high volatility in load curves of single customers. In this paper, we
present a novel method of forecasting individual household power
consumption using recurrence plots and deep learning. We use
Convolutional Neural Network (CNN) for such a two-dimensional
deep learning approach, and compare it with one-dimensional
CNN, as well as Support Vector Machine (SVM) and Artificial
Neural Network (ANN). Demonstrating some experimental tests
on a real case proved that our approach outperforms the other
existing solutions.

Index Terms—load forecasting, deep learning, recurrence plot,
demand response, residential load

I. INTRODUCTION

Both planning and operation of power systems have

been always dealing with power balance challenges due to

the uncertainty of many uncontrollable parameters in the

system [1]. System security, stability, and reliability would be

jeopardized if power balancing is not well addressed [2], [3].

Conventionally, power balance is ensured mainly by load

frequency control capability of some bulk generators equipped

with Automatic Generation Control (AGC). Active and

reactive power of generators are constantly controlled to keep

the power system in the steady-state. The load frequency

control (LFC) loop controls the real power and frequency,

and the automatic voltage regulator (AVR) loop regulates the

reactive power and voltage magnitude. The methods developed

for control of individual generators and finally control of large

interconnections, play a crucial role in power system control

and management.

To feed proper load data for above-mentioned analysis

to avoid large amount of unexpected power imbalance, an

accurate ex-ante load estimation is required. This is practically

performed by forecasting electricity demand in different time

horizons.

It has been decades that different forecasting methods

could support power system analysis, especially for forecasting

distributed loads in aggregated amount in transmission

systems. But nowadays penetration of distributed generations

in distribution systems, especially from variable renewable

energy (VRE) resources make forecasting of net consumption

of distribution systems more challenging. In case of low

system flexibility and ramping reserve, sudden severe weather

changes would lead to power imbalances by VREs [4].

Therefore, the load centers cannot be considered as passive

systems with high predictability any more, instead they

are becoming more active with higher uncertainty due to

emerging intermittent VREs. As an example, in a modern

urban distribution system with high penetration of rooftop

PV generation and presence of lots of electric vehicles (EV),

system operators face more challenges than before if a high

power is demanded by many EVs exactly when PV generation

is dropping due to some clouds which are dramatically

reducing solar irradiation [4]. Net power absorption of this

distribution network would rapidly increase and result in

frequency control challenges in transmission systems.

In order to increase system flexibility to tackle the above-

mentioned challenges of VREs, not only generation side,

but also demand side should be managed and controlled.

Distribution system operators exploit flexibility of some

available resources such as storage units along with demand

side management (DSM) schemes to ensure system stability

and proper performance.

DSM consists of mechanisms that aim at modifying the

consumers’ demand profile to match the supply. It facilitates

the integration of distributed generation, and it eases handling

emergency conditions. As a class of DSM mechanisms,

Demand Response (DR) reschedules energy consumption

patterns of users in response to the variance of the power

utility’s incentive or electricity price [5]. In all these DR

schemes, in order to wisely adjust the incentives or tariffs,

we need load forecasting to estimate demand flexibility.

The load forecasting of aggregated loads have been studied

in many literature (e.g. in [6] and [7]), and quite accurate

methods have been proposed to predict the demand at the



aggregated level (e.g. at a primary or secondary substation

level). Some new methods are based on machine learning

algorithms which increase the accuracy of the prediction of

these aggregated loads ([8]).

Some methods are applied to single large consuming

devices, such as heat pumps [9], water heaters for interfacing

electricity grid and district heating networks [10], electric

vehicles at the station columns [11], etc. In some of these

papers, some machine learning algorithms are used for load

forecasting of only one single-phase or three-phase appliance

([12], [13]).

Our focus of study, instead, is on load forecasting of

single residential customers. Regarding DR systems, in order

to widely exploit flexibility of demand in the distribution

system, not only large-scale assets of the network (e.g. water

heater for district heating network) should be involved, but

also residential customers could participate in DR for a more

efficient contribution. As an example, in low voltage (LV)

grids, to fix problem of unbalanced three-phase systems,

shifting some residential loads supplied by one single-phase

LV feeder, may bring back the three-phase balance to the

network. This implies the importance of contribution of

individual customers in DR programs. Nevertheless, solutions

and discussions on this context is less mature with respect

to the solutions provided for aggregated loads and large-scale

consuming devices in the distribution systems. One of the main

challenges is the high volatility in the small residential load

profiles. The fewer the appliances, the higher volatility in the

load curve could be expected, and this makes forecasting more

difficult.

There are recent studies on proposing different machine

learning solutions for accurate load forecasting of individual

residential customers. Most of the effective algorithms are

based on deep learning methods ([14], [15]). However, the

performance of the methods and the accuracy of the solutions

are the main points of discussions and comparisons. Within

this context, we propose integration of recurrence plots to

Convolutional Neural Network (CNN) to make the first layer 2

dimensional (2-D) instead of directly feeding time-series. The

results of our tests showed a higher accuracy of this solution

with respect to Support Vector Machine (SVM) [16], Artificial

Neural Network (ANN) [17], and also 1-D CNN [18].

The rest of this paper contains following discussions: the

methodology of our proposed solution is introduced in Section

II. To evaluate the performance of the new solution, we applied

it to a set of historic data of active power consumption of a

single residential household. The experiments and the results

are demonstrated and compared with three existing methods

in Section III. The paper will be concluded with some short

remarks and ideas of extension of the work in Section IV.

II. METHODOLOGY

In this section, proposed methodology is discussed. Firstly,

time series forecasting problem is formulated in II-A. Deep

learning methods and structures are discussed in II-B. Time

series image encoding and generating recurrence plots are

explored in II-C. Finally the proposed method based on deep

learning and time series image encoding as depicted in Fig. 1

is discussed in II-D.

A. Time Series Prediction

Time series is a sequence of vectors or scalars that depend

on time. Time series of vectors can be defined as (1).

{x(t0),x(t1),x(t2), ...} (1)

Fig. 2 illustrates sample sequence of the dataset used in this

study that is described in III-A.

On of the important tasks in time series processing is

predicting future values of x(t). The problem of predicting

future values can be done using past values of time series.

From this point of view the future value can be predicted

based on a model such as (2).

x̂(ti+1) = f
(
x(ti),x(ti−1),x(ti−2), ...

)
(2)

where f is the prediction function and i is the current time

index.

B. Deep Learning

Deep learning techniques attracted a lot of interest in

machine learning problems like classification, clustering and

regression. There are two main types of deep learning

networks named convolutional neural network (CNN) and

recurrent neural network (RNN) [19]. Typically in regression

and forecasting problems, one dimensional CNN (1D CNN)

is used since the problem is based on time series data that is

one dimensional intrinsically. CNN consists of convolutional,

pooling and fully connected layers. In each convolutional

layer, the input data is convolved with a number of filters.

Values in the filter are equivalent to weights in neural networks

that should be updated during the training procedure based

on algorithms like backpropagation. After each convolutional

layer, activation functions are applied to add nonlinearity to the

system. Pooling layers are used to reduce spatial dimension in

order to control the number of the parameters and overfitting.

Finally fully connected layers maps the feature maps to the

desired output.

In this paper we used deep 2D CNN to predict individual

household power consumption. In 2D CNN, the input layer

accepts two dimensional data in contrast to 1D CNN that

accepts one dimensional time series. One convolutional layer

and one max pooling layer is used with 16 filters and kernel

size of 4. Fully connected layer with 64 nodes has been used

after convolutional layer. All activation functions are set to

rectified linear unit (ReLU ). Fig. 3 shows the structure of

used CNN network.

C. Time Series Image Coding

To improve performance of classification and prediction of

time series it is possible to encode time series as images.

The reason behind this idea is that deep networks shows

high ability to understand images [20]. There are different
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Fig. 1: Proposed structure for individual household power consumption prediction using RP and Deep CNN.

Fig. 2: Sample Individual Residental Load Profile.

ways to encode time series to images like recurrence plots

(RP), Gramian angular field (GAF) and Markov transtion filed

(MTF) [21].

In this paper, recurrence plots (RP) have been used to

encode individual household power consumption data as

images. To generate recurrence plots [22] first states in the

phase space trajectory of time series sequence should be

computed according to the following equation:

s(ti) =
(
x(ti),x(ti−1)

)
(3)

Then recurrence plots are formed using the following

equation:

R(i, j) = dist
(
s(ti), s(tj)

)
(4)

where R is the recurrence plot and dist is the distance function

that can be calculated based on Euclidean distance.

Fig. 4a and 4b show RPs for two different sample times.

The data set used here is described in III-A. As it can be

seen in this figures different times ended to different encoded

images containing different features.

D. Proposed Method

The proposed structure is depicted in Fig. 1. In this structure

firstly time series data are encoded to recurrence plot images

and then these images are fed into deep CNN to get the

predicted value of time series data. Details of used deep 2D

CNN is discussed previously in II-B and depicted in Fig. 3.

III. EXPERIMENTS AND RESULTS

In this section used dataset is described in III-A. Conducted

experiments and comparison results to evaluate proposed

method are discussed in III-B.

A. Dataset

In this paper, individual household electric power

consumption data set [23] has been used for evaluation of

proposed method. In Advanced Metering Infrastructure (AMI),

data is typically collected as measurements from the meters or

pushed as commands to devices every 15 minutes or hourly to

ensure a wealth of granular information exchange for demand

response service.

The dataset extracted for our experiments contain 2075259

records gathered in a house located in Sceaux (7km of Paris,

France) between December 2006 and November 2010 (47

months). There are missing values in this dataset that in this

work we replaced them by average of available measurement

at that time section in other years [24]. Down-sampled data in

conjunction with original high resolution data are depicted in

Fig. 5.

B. Results

To evaluate performance of the proposed method, three

different methods has been used to evaluate: support vector

machine (SVM) [16], artificial neural network (ANN) [17]

and convolutional neural network (CNN) [18].

The proposed algorithm and compared methods

implemented using Python and Tensorflow. CNN with

one convolutional layer, one pooling layer and one fully

connected layer has been used in this study.

Fig. 6 and 7 demonstrate predicted and true values of test

samples. These figures show that the proposed method can

predict next values more efficiently in comparison with 1-

D CNN. However, to evaluate quantitatively, two common
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Fig. 3: CNN Structure.
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Fig. 4: Sample recurrence plot of 96 points load profile time

series calculated at two different time steps.

Fig. 5: High resolution and downsampled data by averaging

every 15 minutes.

criteria used: Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE). These metrics are defined in Eqs. 5

and 6.

Fig. 6: Individual household power consumption prediction

using CNN-1D.

Fig. 7: Individual household power consumption prediction

using CNN-2D-RP.

MAE =

∑N
i=1 | ŷ(ti)− y(ti) |

N
(5)

where ŷ and y are the predicted and true values of test samples

respectively and N is total number of test samples.



TABLE I: Comparison of different methods based on MAE

and RMSE.

Methods MAE RMSE

SVM 1.12 1.25
ANN 1.08 1.15
CNN-1D 0.68 0.92
CNN-2D-RP 0.59 0.79

RMSE =

√∑N
i=1

(
ŷ(ti)− y(ti)

)2
N

(6)

Table I shows comparison of the proposed method, 1D

CNN, ANN and SVM based on MAE and RMSE. As it shows

the proposed method outperforms compared methods in terms

of defined criteria.

IV. CONCLUSION AND FUTURE WORK

To apply an effective DR, individual residential customers

should get also directly involved in DR process. Practically,

this is possible thanks to widely distributed smart meters

and emerging AMI. However, this would require accurate

load forecasting of single residential loads, which is quite

challenging with respect to the aggregated loads due to high

volatility of power consumption of single customer.

In this paper, we introduced a deep learning based structure

to predict such individual loads. In the proposed structure we

exploit using recurrence plots to encode time series data into

images. Results based on MAE and RMSE criteria show that

the proposed method performs better in comparison with CNN

and classic machine learning methods namely SVM and ANN.

The proposed method outperforms its 1D counterpart about

20% in terms of RMSE.

For further works, one can use other image encoding

methods like Gramian angular field (GAF) or Markov

transition field (MTF) to convert time series into images before

feeding to deep networks. Besides, recently proposed deep

learning structures can be used instead of conventional deep

CNN.
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