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Abstract—Improving the ultrasound image contrast ratio (CR)
and contrast to noise ratio (CNR) has many clinical advantages.
Breast cancer detection is one example. Anechoic cysts which
fill with clutter noise can be easily misinterpreted and classified
as malignant lesions instead of benign. Beamforming techniques
contribute to off-axis side lobes and clutter. These two side effects
inherent in beamforming are undesirable since they will degrade
the image quality by lowering the image CR and CNR. To
overcome this issue a new post-processing technique known as
contrast enhanced delay and sum (CEDAS) is proposed. Here
the energy of every envelope signals are calculated, mapped, and
clustered in order to identify the cyst and clutter location. CEDAS
reduce clutter inside the cyst by attenuating it from envelope
signals before the new B-Mode image is formed. With CEDAS,
the image CR and CNR improved by average 12 dB and 1.1
dB respectively for cysts size 2 mm to 6 mm and imaging depth
from 40 mm to 80 mm.

I. INTRODUCTION

Clutter is a type of noise artefact in ultrasound images

that often obscures anechoic regions such as cysts and blood

vessels. This complicates and limits measurement of the cyst

size and other anatomical measurements such as blood vessel

and urine-filled bladders [1]. Clutter noise not only reduces the

B-Mode image contrast but at the same time limits the depth

at which diagnostic information can be obtained [2] [3]. A

few main sources for clutter noise are reverberation, scattering

from off axis and random acoustic noise [4]. Much work

has been carried out to increase the image contrast ratio (CR)

by eliminating or reducing the clutter noise effect. However

not all manage to improve the B-Mode image CR together

with contrast to noise ration (CNR). Work carried out by [5]

manage to improve the image CR but not the CNR. But as a

result of losing the image CNR values, the dynamic range has

been increased by up to 100 dB. Increasing the dynamic range

eventually decreases the image CR by returning the removed

or reduced clutter noise inside the cyst. Thus a new signal

post-processing technique known as CEDAS is proposed in

this paper. Here, the clutter noise inside the cyst is attenuated,

CR increased and CNR maintained by mapping and clustering

the energy level of the envelope signal.

II. METHODS

The first step in identifying the location of a cyst and

eliminating the clutter inside it starts with calculating the

energy of the envelope signal for each of the image lines

using the windowing technique [6]. Mapping the envelope

signal into energy through the windowing process helps to

classify and differentiate from the speckle destructive region

and the clutter inside the cyst. Classifying clutter inside

the cyst with radio frequency (RF) or envelope signals is

not feasible. This is because the speckle destructive region

produces the same values as the clutter inside cyst.The energy

of the envelope signal, Gi calculated from a small segment

separately. According to rectangular window size, N, Gi is

given by following equation:

Gi =

N−1+k
∑

j=0

|Xj+k|
2 (1)

i = 1, 2, ..., n; n = (m−N)/s; k = 0, s, 2s, ..., ns.

Where X is number of sample in envelope signal, i is

number of windowing, k is the step increment from one

window to another, s is an integer even number, m is the

length of the envelope signal and finally n is total number

of windowing. All small chunks of energy calculated for each

window, Gi are merged so that it becomes one single energy

line, El as given by

El = 20log10{Gi=1(0 : s), Gi=2(2s : 3s), ...

..., Gi=n((n− 1)s : ns)} (2)

Where l represents the number of imaging lines. Next,

before grouping or clustering the energy level into different

groups, the transition of the energy level or change in the

energy mean are determined. The main objective is to find

the most significant changes in the energy level to identify

hyperechoic, speckle and hypoechoic region. The highest

levels of energy indicate a hyperechoic region. Medium levels

of energy indicate speckle region while the lowest energies

indicate cyst or hyperechoic regions. Optimal detection

of change-points algorithm created by [7] have been used

to find the points where the energy signal mean changes

most significantly by specifying a minimum residual error

improvement in the function. More detailed mathematical



works on finding abrupt points can be found in [7] [8]. All

changing points, qld obtained for every energy line, El are

contained in the following matrix,

Ql =







q11 · · · q1c
...

. . .
...

qx1 · · · qxc






(3)

qld ∈ El; d = 1, 2, ..., c.

Where the first horizontal direction in the matrix, Ql=1

represents all changing points, (q11 , q12 , ..., q1c) in the first

energy line, El=1 while c represents the total number of

changing points.

Once the changing points on the energy signal level are

identified for all the lines, they are next grouped or clustered

into four different groups by using k-means clustering tech-

nique as given by [9]

J(a) =

p
∑

a=1

x
∑

l=1

‖ Ql − va ‖2 (4)

p < x

Where p is the number of clusters and va are the centroids

for cluster a. The second lowest cluster, J(a−1) was used as

a threshold to determine the clutter present. The new envelope

signal, X̀ was formed for every image line according to the

condition stated below

X̀ =

{

X, Ql ≥ J(a− 1)

X × 0.25, Ql < J(a− 1)
(5)

New envelope signal formed, X̀ is equal to former envelope

signal, X if the changing points, Ql is more than the data

inside the second lowest cluster, J(a− 1) else X is attenuated

by factor of 0.25 if the changing point, Ql is lower than data

inside the second lowest cluster, J(a-1). The new envelope

signals are converted into a log scale to form B-Mode image.

III. SIMULATION AND PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed

method, Field II [10] simulations have been carried out on

multiple cyst diameter sizes from 2 mm to 6 mm at different

depths, between 40 to 80 mm. The simulation parameters are

shown is Table 1. A B-mode image was formed with plane

wave imaging (PWI) steered at a 0◦ angle. The window size, N

used for the simulation was 64 and the increment size, k is 2.

If the increment step is small, the overlapped region between

the windows will be more and this will eventually produce

smoother transition in the energy values calculated between

the windows. The whole process of calculating the energy

from the envelope signal is shown in Fig. 1(a). The variation

of speckle formation that is produced from constructive and

destructive interference of the scattering signal as can been

seen in Fig. 1(b) are now becoming less as in Fig. 1(c).

TABLE I
SIMULATION PARAMETERS

Parameters Values

Speed of Sound, m/s 1540

Sampling Frequencies, MHz 160

Centre Frequencies, MHz 5

Bandwidth, % 100

No. of Elements 128

Elements Spacing λ

Excitation Signal Hanning Windowed

2 Cycles Sinusoidal
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Fig. 1. (a) Energy calculated by applying the windowing technique on the
envelope signal. (b) Envelope signal in dB scale. (c) Shows the energy values
calculated from (a) mapped into single lines.

The energy changing points were sorted from minimum

to maximum before they were clustered in order to have

better visualisation on the cluster hierarchy. All four clusters

are shown in Fig. 2 with their centroids points. Note that

the clusters are not in order since k-means assigned centroid

points randomly . Thus centroids points are sorted before each

one of the cluster identified in order. The lowest clusters are

considered as clutter regions and the preceding cluster group

is used as the threshold level. In Fig. 2 data in cluster 1 ,red,

was used as a threshold. In the case where only two changing

points in the energy level are present, the clustering divided

whole points into four groups where upper or the top two

groups represent the same energy region and the lowest groups

represent clutter.

IV. PERFORMANCE EVALUATION

In order to evaluate the final B-Mode images qualities

formed with DAS and CEDAS techniques, two key perfor-

mance indicator haven used. First the CR is used to express the
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Fig. 2. Cluster assignment for changing points in the energy level.

detectability of the object contrast between region of interest

(ROI) inside the cyst and its background. Second the CNR

is used the measure the cyst contrast with speckle or noise

variation inside and outside of the cyst [11]. High CNR value

means cyst can be visualize easily and the acoustic noise

standard deviation is small or more uniform. Both CR and

CNR equation are given by

CR(dB) = 20log10(
µcyst

µback

) (6)

CNR(dB) = 20log10(
|µcyst − µBack|

√

(σcyst
2 + σBack

2)
) (7)

Where µcyst and µBack are means of image intensities

inside and outside of the cyst respectively while σcyst
2 and

σBack
2 are their variances. CR and CNR were calculated on

the cysts at different depths on the B-Mode images produced

by creating two different regions with the same dimensions.

The first region is inside the cyst while the other region is

located outside the cyst at the same depth. This is to ensure

that the attenuation caused by frequency doesn’t affect the

measurements.

V. RESULTS AND DISCUSSIONS

In this section, performance of both conventional DAS and

CEDAS were evaluated qualitatively as shown in Fig. 3 and

quantitatively as presented in graphical form in Fig 4. B-Mode

image of conventional DAS as shown in Fig. 3(a) clearly

shows that all ten cysts are effected by clutter noise. The noise

level inside the cysts increase with depth. One of the reason

for high noise level is due to low signal-to-noise ratio from

PWI [12]. On the other hand, the proposed method, CEDAS as

shown in Fig. 3(b) successfully detect and attenuated almost

all clutter noise that is present inside those cysts.

These results are supported by the axial distance graph

shown in Fig. 4(a) and the lateral distance graph as shown

in Fig. 4(b). Both graphs show that clutter noise variations

inside the cyst are attenuated.
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Fig. 3. B-Mode images for (a) DAS, (b) CEDAS.
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Fig. 4. (a) Axial Distance plotted from -4 mm, (b) Lateral Distance plotted
from 40 mm location referring to Fig. 3.

As predicted, the CR for CEDAS out performed DAS. At a

depth of 40 mm, the CR for DAS is -21 dB while for CEDAS

is -33 dB. The CR difference between both techniques retained

throughout the depth regarding the cyst sizes. In average, CR

for CEDAS is 12 dB higher than DAS. Complete results

presented in Fig. 5(a). At the same time, the CNR values

for CEDAS also increases compared to DAS even though no

changes are applied to the speckle formation outside the cyst.

Initial hypothesis was made that the CNR values will be same

in both techniques. However due to less noise variance inside

the cyst for CEDAS compared to DAS, the CNR value also

increase. At 40 mm depth the CNR values for CEDAS is 5 dB

compared to 4.3 dB for DAS. CEDAS continuously produces

better results compared to DAS by average 1.1 dB for all cyst

size at all depth as shown in Fig. 5(b).

The ability for an object to be easily detected depends on

the contrast. Since CEDAS enhanced the CR, the border of the

cyst can be easily detected. Edge detection technique applied
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Fig. 5. (a) CR, (b) CNR for DAS and CEDAS.

on 6 mm diameter cyst located at 40 mm depth using Sobel

methods with fudge factor of 0.3 is shown in Fig. 6. CEDAS

able to trace the edge inside the cyst while DAS could not

since the noise variation is high.

 (a)                               (b)

Fig. 6. Border detection using Sobel method on (a) DAS, (b) CEDAS.

A histogram is plotted for the number of amplitude oc-

currences on both B-Modes images as shown in Fig. 3(a)

and (b). The histrogram as shown in Fig. 7 shows significant

changes in the distribution of the amplitude. The speckle

and strong reflective points which dominate higher amplitude

portion shows more number of occurrence with CEDAS when

compared to DAS. This is due to reduction or attenuation

of clutter noise. Normalizing signal with less noise level

eventually give rise to high value signal. Thus non-cyst region

in Fig. 3(b) shows more prominent when compared with same

region in Fig. 3(a). At the same time, it can be seen on

the histogram that second smaller peaks appear on CEDAS

amplitude distribution approximately at -57 dB. This portion

represent clutter noise which have been brought down through

attenuation process. Displaying the B-Mode image with 40 dB

dynamic range eventually dimmed its appearance and increase

the image CR and CNR. Area under the curves for both

amplitude distribution is same.
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Fig. 7. Histogram for DAS and CEDAS normalized amplitude distribution.

VI. CONLUSION

The proposed new technique, CEDAS has successfully

demonstrated its ability to eliminate clutter inside the cysts

with diameter of 6 mm to 2 mm from 40 mm to 80 mm depths.

High CR and CNR is achieved without changing or modifying

any formation of the B-Mode image. Edge detection on cyst

border also improved with CEDAS. Since the idea is only

implemented on PWI with DAS, future works will be carried

out on compound PWI and other beam-forming techniques

such as filtered delay and sum (FDMAS). Data from laboratory

experiments on a multi-purpose phantom also will be used to

test the workability of this new technique.
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