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Abstract 

This paper presents simulation and real-time implementation of input shaping schemes with a 
distributed delay for control of a gantry crane. Both open-loop and closed-loop input shaping 
schemes are considered. Zero Vibration and Zero Vibration Derivative input shapers are 
designed for performance comparison in terms of trolley position response and level of sway 
reduction. Simulation and experimental results have shown that all the shapers are able to 
reduce payload sway significantly while maintaining satisfactory position response. 
Investigations with different cable lengths that correspond to 20% changes in the sway 
frequency have shown the distributed delay-based shaper has asymmetric robustness behavior. 
The shaper provides highest robustness for the case of 20% increase in the sway frequency but 
lower robustness for the case of 20% decrease. However, other schemes give symmetric 
robustness behavior for both cases. 
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1. Introduction 

Input shaping is one of the most useful approaches to reduce motion-induced oscillations of 
oscillatory systems (Singhose, 2009). The input shaping theory was introduced in the late 
1950's (Smith, 1957) and the well-known input shaping technique was introduced by Singer 
and Seering (1990). Researchers have utilized different types of input shapers including Zero 
Vibration (ZV) and Zero Vibration Derivative (ZVD) (Mohamed et al., 2005), negative shapers 
(Singhose et al., 1994), multi-hump extra intensive shapers (Singhose et al., 1996), two mode 
shapers (Crain et al., 1996), adaptive shapers (Pereira et al., 2012) and unity magnitude shapers 
(Pao and Singhose, 1996; Gürleyük, 2011)). The input shaping has been implemented on a real 
gantry crane (Singer et al., 1997) and has been proven to be successful in reducing payload 
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sway during hoisting. Recently, implementing methods of input shaping for control of vibration 
have been improved by researchers (Yang et al., 2014). 

A gantry crane is one of the mostly used industrial crane in industries, factories and 
ware houses (Butler et al., 1991). Shipping yards and nuclear facilities are the other places 
where heavy loads must be transferred by gantry cranes. One of the significant factors affecting 
productivity and efficiency of the industrial systems is speed. However, it is obvious for a 
gantry crane, fast manoeuvres resulted in significant payload oscillation and considerable 
residual sway and negatively affects performance of the systems (Sorensen et al., 2007; Yu et 
al., 2014). At higher speeds, these sway angles prevent the payload to settle down during 
movement and unloading. This problem will be crucial particularly for industrial applications 
where operators should manipulate the cranes (Peng et al., 2012). Vast applications of cranes 
have encouraged many researchers to reduce the motion-induced oscillation of these structures 
(Le et al., 2014).  

Recently, a new input shaping scheme has been proposed based on a distributed delay 
(Vyhlídal et al., 2013) known as Distributed Zero Vibration (DZV) shaper, whereas other input 
shapers have been developed based on a lump type delay. However, its application for control 
of flexible systems such as gantry crane has not been investigated. This paper presents 
simulation and experimental study on the implementation of DZV shaper for control of a gantry 
crane both in open-loop and closed-loop input shaping schemes. Comparisons with ZV and 
ZVD shapers are provided to examine the performance of the DZV shaper. Initially, a complete 
mathematical model of the system is obtained based on Newtonian techniques. Curve fitting 
box of Matlab is utilized to find natural frequency and damping ratio of the system based on 
the sway output of the actual crane. For the closed-loop system, a closed-loop input shaping 
with PID controller is designed by considering saturation and dead band of the real crane 
system. Finally, the robustness performance of the control schemes to uncertainty in the cable 
length that changes the natural frequency of the crane is examined.  

 

2. Gantry Crane Dynamic 

Figure 1 shows a lab-scaled gantry crane used in this study. The gantry crane is capable of 
transferring a load from any location to a desired place in a restricted three dimensional space. 
The length, height and width of the crane are 1.0 m. The system hardware consists of three 
main components: a cart, a rail and a pendulum. Three DC 24 V motors are used to move the 
cart, rail and payload. These motors are actuated by specific DC drivers that produce 
corresponding sequence of PWM pulses. Both cart and rail are capable of moving in X direction 
but only cart is able to move in Y direction. The payload is lowered and lifted in Z direction. 
Therefore, the payload can move freely in three directions. The mathematical model is obtained 
based on the given characteristics of the crane by the manufacturer and the study by Pauluk et 
al. (2001). The obtained model is simulated using Simulink to investigate dynamic behaviour 
of the system. 
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Figure 1. A lab-scaled 3D gantry crane 
 

 

 

Figure 2. Schematic diagram and forces 
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A schematic diagram of the 3D gantry crane system is shown in Figure 2 with XYZ as 
the coordinate system. pm , tm  and rm are the payload mass, trolley mass (including gear box, 

encoders and DC motor) and moving rail respectively. l represents the length of the lift-line, α 
represents the angle of lift-line with Y axis and β represents angle between negative part of Z 
axis and projection of the payload cable onto the XZ plane. T is a reaction force in the payload 
cable acting on the trolley, Fx and Fy are the forces driving the rail and trolley respectively, Fz 
is a force lifting the payload and fx, fy and fz are corresponding friction forces. By defining 
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the dynamic equations of motion of the crane can be obtained as (Pauluk et al., 2001) 
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(5) 

where px , py and pz are position of payload in X, Y and Z axes respectively. tx
 
and ty are 

positions of trolley in X and Y axes. Dots represent derivative of the respective quantities. 
Although the obtained model considers a 3D gantry crane, the rail movement is not considered 
in this study to shorten the paper. It is envisaged that similar results are achieved for trolley 
and rail movements. Table 1 shows the parameters used for simulation and experiment which 
correspond to the lab-scaled crane shown in Figure 1.  
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Table 1. System parameters 

Variables Values 

Mass of payload,
 pm  1 kg 

Mass of trolley, tm   1.155 kg 

Mass of moving rail, rm  2.2 kg 

Cable length, l 0.47 m 

Gravitational constant, g 9.8 m/s 

Corresponding friction forces, zyx fff ,,  100, 82, 75 Ns/m 

 

3. Control Schemes 

A brief description and derivation of the control techniques is presented in this section. These 
include the open loop control scheme based on input shaping techniques and feedback control 
scheme utilising PID controller. The 3D gantry crane system under consideration is a nonlinear 
system and designing controllers normally involves linearisation and simplification of the 
equations (Sorensen et al., 2007). For this reason, in some special operating points there would 
be a slight difference between the performance of real and modeled systems (Abdel-Rahman 
et al., 2003). For instance, input shaping scheme is able to eliminate completely the residual 
sway of a simple second order crane model whereas there would be a slight residual sway in 
the sway response of the real crane. In this study, the nonlinear model is implemented and 
utilised for simulation. For this purpose, optimisation based tuning is utilised to tune the PID 
controllers for the gantry crane system. 
 

3.1.  ZV and ZVD Shapers 

Input shaping is a feed-forward control technique that involves filtering a desired command 
with an input shaper. A mathematical description of a general input shaper may be expressed 
as 
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and jA is amplitude of thj pulse and a non-zero value. The shaped input that results from the 

convolution will drive the system and the shaped command reduces the detrimental effects of 
the oscillatory system. An oscillatory system can be modeled as a superposition of second order 
systems each with a transfer function 
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where n  is the natural frequency and  is the damping ratio of the system. Thus, the impulse 

response of a single mode system at time t  is  
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where A  and 0t  are the amplitude and time of the impulse respectively. Further, the response 

to a sequence of impulses can be obtained using the superposition principle.  For m  impulses, 

with 21   nd , the impulse response can be expressed as 
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The residual single mode vibration amplitude of the impulse response is obtained at the time 
of the last impulse, mt  as 
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To achieve zero vibration after the last impulse, it is required that both 1V  and 2V  in 
Equation (10) are independently zero. Furthermore, to ensure that the shaped command input 
produces the same rigid body motion as the unshaped command, it is required that the sum of 
amplitudes of the impulses is unity.  To avoid response delay, the first impulse is selected at 

time 01 t . Hence by setting 1V  and 2V  in Equation (10) to zero, 



m

j
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a two-impulse sequence with parameters as (Singer and Seering, 1990)  
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 eK . This is known as ZV shaper. Figure 3 shows the designing process of a 
shaped input using a ZV shaper. 
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Figure 3: ZV input shaping 

The robustness of the input shaper to errors in natural frequencies of the system can be 
increased by setting dV/dωn = 0. Setting the derivative to zero is equivalent of producing small 
changes in vibration corresponding to natural frequency changes. By obtaining the first 
derivatives of 1V  and 2V  in Equation (10) and simplifying, yields a three-impulse sequence 
with parameters as  
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where  K  is as in Equation (11). This is known as ZVD shaper. 

 

3.2.  DZV Shaper 

The input shaping needs dividing the input signal into some different signals with a specific 
delay. In the ZV and ZVD shapers, the delay is a lumped type delay. However, in the recently 
proposed DZV shaper (Vyhlídal et al., 2013), the delay is distributed. Both types of delay can 
be described as 
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where y and x are the delay output and input respectively. The delay distribution over the 
interval [0, β] is described by )(w  where   is the upper limit. The equally distributed delay 
as shown in Figure 4 can be formulated as 
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Figure 4: The equally distributed delay 
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Using Laplace transform with zero initial conditions, the DZV transfer function can be 
described as 
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The DZV shaping process is illustrated in Figure 5 and a new shaped input is obtained which 
is different from the ZV and ZVD type shaped inputs.  For a second order oscillatory system 
as formulated in Equation (7), the values of D and β can be obtained as (Vyhlídal et al., 2013) 
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Figure 5: DZV Shaper 

 

3.3. Open loop Control 

Open loop control scheme is utilised in several industrial applications to transfer loads using 
gantry cranes. Therefore, it is desirable to study the performance of input shapers based on 
lumped-based delay (ZV and ZVD) and distributed-based delay (DZV) in reducing the payload 
sway in an open loop configuration. Figure 6 shows the feed-forward input shaping technique 
used for position control of the trolley where x and  represents trolley position and payload 
sway angle respectively. 

 

Figure 6: Open loop control scheme with input shaping 

 

3.4. Closed-Loop Input Shaping Control 

To further investigate the performance of DZV shaper, closed-loop input shaping scheme with 
PID controller is designed. Figure 7 shows a block diagram of the system where xref and x 
represent desired and actual positions of the trolley respectively. In this study, a PID feedback 
control of collocated sensor signals is adopted for control of trolley motion of the crane where 
the PID controller block consists of the proportional gain (Kp), integrator gain (Ki) and 
derivative gain (Kd). The PID controllers are designed independently for three different 
shapers. Essentially, the task of this controller is to position the trolley to a specified position 
of demand without payload’s sway consideration. The position signals are fed back and used 
to control the position of the trolley. As the input voltage of the lab-scaled gantry crane is 
limited and higher voltage may damage the DC motors of the crane, a saturation block is 
considered to limit the input voltage to the system. It is found that inputs with the values lower 
than 10% of the maximum value cannot actuate the motors while these inputs can affect the 
output of simulation block. For this reason a dead-zone block is added into the Simulink model 

Ө 

Input Shaper  Gantry Crane System 

x 
Input 



10 
 

to ensure accurate simulation results. For comparison, ZV and ZVD shapers are also designed 
for the closed-loop system. 

 

Figure 7: Closed loop input shaping control scheme with PID controller  

 

 

4. Simulation Results  

In this section, the shapers are implemented and tested within the simulation environment of 
the gantry crane system. The simplest shaper to be implemented is ZV shaper as it needs only 
gain and delay elements. ZVD shaper is similar to ZV shaper with only one additional delay 
element. However, DZV needs gain, delay and integrator elements and can be considered as 
the most difficult shaper to be implemented. Simulink is used to implement the open loop and 
closed loop control schemes. Natural frequency and damping ratio of the lab-scaled gantry 
crane are obtained as n  = 4.57 Hz and ζ = 0.008. Subsequently, the three shapers are designed 

using Equations (11), (12), (17) and (18) and the calculated parameters of the shapers are given 
in Table 2. The ZV, ZVD and DZV shapers are simulated based on the obtained values. 

Table 2: Parameters of the shapers 

ZV ZVD DZV 

1A  
2A  1t  2t  1A

 2A  
3A  1t  2t  3t  D

 
β 

0.506 0.494 0 0.688 0.256 0.499 0.244 0 0.688 1.375 0.052  1.306 

 

4.1.  Open-Loop Control 

Figure 8 shows the unshaped and three shaped torque inputs applied to the gantry crane system. 
It can be shown that ZV and ZVD shaped signals have the shortest and longest delay 
respectively while DZV shaped signal delay is located in between the others. Figure 9 shows 
the sway response of the payload for all input torques. Input shaping has significantly reduced 
the residual sway of the payload from 3.65 degrees to about 0.8 degrees. The reason that input 
shaping has not completely eliminated the residual sway is that the nonlinear model is 
implemented for simulation rather than the simple second order model similar to Equation (7). 
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Considering zero as desired sway, Integrated Absolute Error (IAE) values for unshaped, ZV, 
ZVD and DZV are 1025, 251, 262 and 241 respectively. A low IAE value is desirable as this 
indicates low sway. All the shapers reduce the IAE to nearly one-fourth of the unshaped value. 
It is also noted that sway response of payload using DZV shaper has the lowest transient sway, 
about 1.32 degrees. The fastest and slowest response are obtained using ZV technique (0.688 
s) and ZVD technique (1.375 s) respectively. 
 

 
Figure 8: Input to the open loop systems (simulation) 

 

 
Figure 9: Sway of the payload for the open loop systems (simulation) 

4.2. Closed-Loop Control 

The PID gains for all control schemes are shown in Table 3 and the shapers’ parameters as in 
Table 2. The closed-loop input shaping system with PID controller shown in Figure 7 is 
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simulated without input shaper (unshaped) and with the three shapers (ZV, ZVD and DZV). 
The gantry crane is required to move to a desired location of 0.55 m. 

Simulation results of trolley control signal shown in Figure 10 indicate that ZV shaped 
system produces the lowest delay as compared to other shaper systems. The position responses 
of all control schemes are shown in Figures 11. It is noted with the PID gains, the desired 
trolley location is achieved without overshoot using all the control schemes. Table 4 
summarises the settling time of the position responses using all shapers, where ZV provides 
the fastest response with 2.31 s follows by DZV and ZVD. 
 

Table 3: Controller gains for different closed loop systems 

Unshaped ZV-Shaped ZVD-Shaped DZV-Shaped 

pK  
iK  dK  pK  

iK  dK  pK  
iK  dK  pK  

iK  dK  

14.8 0.03 -1.84 6.33 -0.12 0.37 3.6 -0.08 0.55 4.89 -0.1 1.12 

 

 

Table 4: Settling time and IAE values of system responses (simulation) 

Control scheme Settling time (s) IAE (Sway) 

Unshaped 1.73 7421 

ZV 2.31 859 

ZVD 2.83 1057 

DZV 2.64 1314 
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Figure 10:  Control signals of the closed loop systems (simulation) 

 
Figure 11: Position of trolley for the closed loop systems (simulation) 

 

Figures 12 show the payload sway response for all control schemes. The results show 
that all the shapers are able to reduce the residual sway significantly from 12.8 degrees to about 
2 degrees. DZV shaper provides the lowest transient sway (2.84 degrees) but has the highest 
residual sway (2.08 degrees) whereas ZV shaper provides the lowest residual sway (1.04 
degrees) and highest transient sway (3.7 degrees). IAE values for unshaped, ZV, ZVD and 
DZV are 7421, 859, 1057 and 1314 respectively. This is the advantage of using input shapers 
although a slight delay in the position response occurs. 
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Figure 12: Sway of payload for the closed loop systems (simulation) 

 

4.3.  Robustness 

For evaluation of robustness of the control schemes, the crane system with different cable 
lengths is considered. In this case, l = 0.326 m and l = 0.73 m are used with payload sway 
frequency of 5.49 Hz and 3.66 Hz respectively. These imply 20% error in the sway frequency 
as compared to the first case with l = 0.47 m. Figures 13 and 14 show simulation responses to 
a step input in the open-loop configuration for l = 0.326 m and l = 0.73 m respectively.  

 
Figure 13: Sway of payload with 20% increase in natural frequency (simulation) 
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Figure 14: Sway of payload with 20% decrease in natural frequency (simulation) 

 

The results show that within 20% error tolerance, all the shapers are able to reduce the 
payload sway at least by half of the response with unshaped input. The IAE values and 
maximum residual sway for both cases using unshaped input, and ZV, ZVD and DZV shapers 
are summarised in bar charts in Figures 15 and 16 respectively. Further investigations noted 
that DZV shaper has an asymmetric behavior in respond to uncertainties in the natural 
frequency. Significant differences in the shaper’s performance can be seen in both bar charts. 
With 20% increase in the natural frequency, DZV is found to have highest robustness 
performance with lowest IAE value and maximum residual sway. However as the natural 
frequency reduce by 20%, robustness performance of DZV decreases which is almost similar 
to ZV shaper. On the other hand, ZV and ZVD shapers show similar behavior for both +20% 
and -20% errors in the natural frequency. As expected, ZVD shaper shows higher robustness 
than ZV shaper.  

 
Figure 15: IAE values of the payload sway for 20% increase and decrease in the natural 
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Figure 16: Maximum residual sway for 20% increase and 20% decrease in the natural 

frequency 

 

5. Experimental Results  

Experiments were performed on a lab-scaled gantry crane shown in Figure 1 to validate the 
simulation results. The crane is equipped with 5 incremental encoders to measure the position 
of trolley in X and Y directions (only X is considered in this paper), position of payload in Z 
direction and the payload sway in X and Y directions. All the data are transmitted on-line to a 
PC by an interface card. The motors are also actuated by specific DC drives. Similar input as 
used for simulation is applied to the real gantry crane.  
 

5.1. Open-Loop Control 

Figure 17 shows the sway response of the payload to similar inputs as in the simulation (Figure 
8). The results verify the simulation results where the input shaping has reduced significantly 
the motion induced sway of the payload. The residual sway of the payload has been reduced 
from 4 degrees to about 0.8 degrees. The IAE values for unshaped, ZV, ZVD and DZV are 
1007, 269, 188 and 200 respectively. This verifies the simulation results where IAE values for 
shaped inputs are nearly one-fourth of the IAE of unshaped input. Similar to the simulation 
results, sway response of payload utilizing DZV shaper has the lowest transient sway (1.4 
degrees). 
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Figure 17: Sway of the payload for the open loop systems (experiment) 

 

5.2.  Closed-Loop Control 

Similar PID gains and input shapers’ parameters as in the simulation (Tables 2 and 3) are used 
for experiment. Experimental control signal for trolley in Figure 18 verify that ZV shaped 
system produces less delay compared to other shaper systems. The experimental position 
responses of the control schemes systems are shown in Figure 19 and Table 5 summarises the 
settling time and overshoot of the position responses. It is noted that the position responses 
show no overshoot for unshaped signal while overshoots of ZV, ZVD and DZV increase to 
1.89%, 3.03% and 5.05% respectively. For the settling time, similar pattern as the simulation 
result is obtained where ZV gives the fastest response and ZVD is the slowest. 
 

Table 5: Settling time, overshoot and IAE values of system responses (experiment) 

Control Scheme Settling time (s) Overshoot (%) IAE (Sway) 

Unshaped 1.73 0 5911 

ZV 2.2 1.89 1005 
 

ZVD 2.65 3.03 1066 
 

DZV 2.56 5.05 1108 
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Figure 18: Control signals of the closed loop systems (experiment) 

 

Figure 20 shows the payload sway response using the control schemes. The results verify the 
simulation where the three shapers reduce motion induced sway significantly from 9.84 degrees 
to about 1.5 degrees. The IAE values are obtained as 5911, 1005, 1066 and 1108 for the 
unshaped, ZV, ZVD and DZV shapers respectively. Similar to the simulation results, ZV 
shaper provides the lowest residual sway (1.4 degrees) and the highest transient sway (3.6 
degrees), while DZV shaper provides the lowest transient sway (2.7 degrees) and the highest 
residual sway (1.8 degrees). 

 
Figure 19: Position of trolley for the closed loop systems (experiment) 
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Figure 20: Sway of payload for the closed-loop systems (experiment) 

 

5.3. Robustness  

Similar to the simulation study, the crane system with 20% error in sway frequencies is used 
for robustness analysis. Thus, sway frequencies of 5.49 Hz and 3.66 Hz that corresponds to l = 
0.326 m and l = 0.73 m respectively are considered and experiments are performed on the real 
lab-scaled gantry crane with new cable lengths. Figures 21 and 22 show experimental payload 
sway responses with unshaped, ZV, ZVD and DZV shaped inputs for cable lengths of 0.326 m 
and 0.73 m respectively. The IAE values and maximum residual sway are summarised in 
Figures 23 and 24 respectively. The experiments verify the asymmetric robustness behavior of 
DZV shaper where highest robustness is shown for the case of 20% increase in the natural 
frequency, but less performance for the case of 20% decrease.  Similar to the simulation results, 
ZV and ZVD shapers have the similar behavior for both +20% and -20% errors in natural 
frequency. 

 
Figure 21: Payload sway with 20% increase in natural frequency (experiment) 
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Figure 22: Payload sway with 20% decrease in natural frequency (experiment) 

 

 

Figure 23: IAE values of the payload sway for 20% increase and decrease in the natural 
frequency (experiment) 
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Figure 24: Maximum residual sway for 20% increase and 20% decrease in the natural 
frequency (experiment) 

 

6. Conclusion 

A new DZV shaper with ZV and ZVD shaping schemes have been designed and examined in 
reducing motion induced payload sway of a gantry crane in open-loop and closed-loop input 
shaping schemes. Simulation and experimental results have revealed that all the shapers are 
able to reduce payload sway significantly while maintaining desired position response 
specifications. Robustness tests with 20% changes in the sway frequency (cable length 
changes) have shown that DZV shaper has an asymmetric robustness behavior. The shaper has 
highest robustness performance for 20% increase in the natural frequency (reduce cable length) 
but has the lowest robustness for the case of 20% decrease (increase cable length). ZV and 
ZVD show similar robustness performances in both cases. As more parameters are required for 
DZV shaper, it is also found that this shaper is difficult to be implemented as compared to ZV 
and ZVD shapers.    
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