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ABSTRACT For control-oriented battery management applications in electric vehicles, Equivalent Circuit Model (ECM) of 
battery packs offer acceptable modelling accuracy and simple mathematical equations for including the cell parameters. 
However, in real-time applications, circuit parameters continuously changes by varying operating conditions and state of the 
battery and thus, require an online parameter estimator. The estimator must update the battery parameters with less 
computational complexity suitable for real-time processing. This paper presents a novel Online Reduced Complexity (ORC) 
technique for the online parameter estimation of the ECM. The proposed technique provides significantly less complexity 
(hence estimation time) compared to the existing technique, but without compromising the accuracy. We use Trust Region 
Optimization (TRO) based Least Square (LS) method as an updating algorithm in the proposed technique and validate our 
results experimentally using Nissan Leaf  (pouch) cells and with the help of standard vehicular testing cycles, i.e. the Dynamic 
Driving Cycle (DDC), and the New European Driving Cycle (NEDC). 
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1. INTRODUCTION 
In recent years, energy storage technology has become the 

centre of focus due to the high power applications in plug-in 
electric vehicles (PEVs) and government mandates in Europe 
and UK for the mass adoption of PEVs in the near future [1]. 
Lithium-Ion Batteries (LiBs) have a dominant role in PEV 
manufacturing as a main energy source due to their high power 
density, low Self Discharge (SD) and high energy efficiency 
[2]. Moreover, other characteristics such as wide operating 
temperature range [-20°C,+60°C], light weight, small cell 
size,  long life cycle and no residual gas discharge turns LiBs 
as a suitable candidate for grid side stationary as well as 
mobile applications [3]. In both scenarios, a Battery 
Management System (BMS) has the role of performance 
monitoring and control of LiBs to provide safety and 
reliability of their operation. However, to carefully investigate 
the design of a proper BMS, the key element responsible is an 
efficient and accurate battery model. 

Different type of modelling approaches exists to 
characterize the behaviour of LiB. Among those, pseudo-2-
dimensional (P2D) electro-chemical (physics) models offer 
high accuracy with the cost of high computational time to 
solve non-linear Partial Differential Equations (PDEs). This 
rules out P2D models as a candidate  for real-time control-
oriented applications due to the short and fixed time intervals 
in processing the information received from the sensors by the 
control unit, and sending the appropriate commands to the 
actuators [4]. The battery model is typically resolved within 
the BMS running on the embedded microcontroller with 
limited processing capabilities. Using the complex models 

require more processing time and often result in overflowing 
the real-time execution for a given sampling rate. Therefore, 
the sampling rate must be reduced that may, in turn, results in 
more discretization error and signal inaccuracies [5]. For on-
board vehicle processing, Equivalent Circuit Models (ECMs) 
are good candidate as they offer less computational 
complexity and ease of implementation with an acceptable 
accuracy [6, 7]. As a result, ECM has been dominantly used in 
real-time BMS applications for monitoring and control of 
battery [8-10]. 

The ECM uses a series of RC circuits to represent the 
battery cell/pack dynamics. Adding the RC circuits (levels) 
may increase the accuracy along with the computational 
complexity and there must be always a trade-off between 
them. A number of ECM-type models have been suggested in 
the literature based on single or multiple RC circuit. The first-
order-RC is the simplest topology suggested for ECMs [7]. In 
[10-12], the parameters of first-order-RC are identified using 
Recursive Least Square (RLS) and Extended Kalman Filter 
(EKF). Multiple-RC branch topologies are suggested in the 
literature by many authors, including the 2nd-order-RC models 
[13-15] and the 3rd-order-RC models. Even though, the multi-
RC models showed better accuracy in approximating the 
LiB’s behaviour using large number of parameters, however, 
they have a discouraging high computational cost for real-time 
control applications [7]. 

After the selection of ECM, estimating and updating the 
model parameters online is yet a challenging task. Different 
methods exist in the literature to estimate the battery 
parameters under different operating conditions. In [16] and 
[9] sigma point KF and EKF are respectively used to estimate 
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the varying model parameters and states of the battery. 
Similarly, methods like Generic Algorithm (GA) [17], RLS 
technique with adaptive multiple forgetting factors [18, 19] 
and Recursive Extended Least Square (RELS) algorithm [20] 
are proposed to capture the LiB’s parameters. In [21], a novel 
multi-timescale estimator is developed for the online 
estimation of battery state and model parameters. All the 
aforementioned methods provide improved accuracy in 
estimation; however, they are unable to provide the reduced 
complexity required for the real-time processing in the BMS. 
It should be noted that the computational resources of the 
embedded microcontroller within the BMS are actually 
limited and thus, the complexity is a critical aspect to be 
considered for the design and development of estimation 
algorithms involved in the BMS. 

Another concern using ECM is that the battery parameters 
may vary with changing operating conditions [15, 22, 23]. 
Thus, battery parameters must be updated based on these 
variations. A widely-used technique for ECM 
parameterization is the tabulation of the model parameters 
under various operating conditions in the form of a look-up 
table [24, 25]. A numerical parameter estimation technique for 
pulsating load is proposed in [26, 27]. In [28], the battery 
parameters are estimated in the form of a look-up table using 
Lyapunov’s direct method and data is obtained for different 
set of temperature ranges. These methods are frequently used 
due to the less complexity and acceptable accuracy; however, 
they require a number of experiments to build up the look-up 
tables based on different operating conditions. Another 
drawback of these methods is that the measured data may 
become obsolete with battery’s aging.  

In this article, to reduce the complexity and dependency on 
the look-up tables, an Online Reduced Complexity (ORC) 
technique is proposed for the online parameter estimation of 
LiBs. For the analysis and design of the developed technique, 
parameters are identified using the Trusted Region 
Optimization (TRO) based Least Square (LS) algorithm for a 
single-order ECM model. In comparison with the existing 
methods, the proposed ORC technique is online, has reduced 
complexity resulting in a considerable reduction in estimation 
time. The proposed technique is also applied to a second order 
ECM resulting in a faster estimation compared to existing 
method. However, it is observed that single-order ECM with 
proposed ORC technique has much promising results with 
equivalent accuracy but lower processing time in comparison 
with higher order ECM. Moreover, reduced order look-up 
tables are employed to remove the dependency on varying 
operating conditions due to battery ageing and subsequently, 
decreases the additional memory units normally used for 
containing look-up tables. The technique developed in this 
paper for ECM is generic and applicable to any type of 
Lithium-ion battery cell. Therefore, by measuring the internal 
parameters of a cell, the proposed technique can be customised 
for any manufactured battery cell and is validated by means of 

real-driving load cycles and experimental laboratory results 
using Nissan Leaf pouch cell module. 

The rest of the paper is organized as follows: the model 
formulation of LiB is described in Section 2. The design and 
analysis of the proposed ORC technique along with TRO 
based LS algorithm is discussed in Section 3. Section IV 
presents the validation of the proposed technique using the 
pulsating load and two sets of real world driving cycle data, 
i.e. the Dynamic Driving Cycle (DDC) and the New European 
Driving Cycle (NEDC), and experimental hardware test 
results. Section 5 outlines the benchmarking comparison of 
existing and proposed techniques for the validation carried out 
in Section 4. Finally, the paper concludes in Section 6. 

2. EQUIVALENT CIRCUIT MODELLING OF LIBS 
The most commonly used ECM model is the Thevenin 

battery model, where circuit elements (such as resistors, 
capacitors and dependant voltage source) are used to represent 
the battery dynamics [29] (see Figure 1). As mentioned in the 
previous section, adding the number of series RC branches in 
this type of models in order to increase the accuracy would 
increase the computational complexity and resulting 
processing time. In this paper, a single RC Thevenin model is 
considered for the investigation and design of the proposed 
ORC technique, as shown in Figure 1.  

In Figure 1, the open circuit voltage 𝑉𝑉𝑜𝑜𝑜𝑜  is the voltage across 
the battery terminals under no load condition, and 𝑅𝑅𝑜𝑜 is the 
internal resistance representing the internal voltage drop when 
a load is connected to the battery system. Furthermore, the RC 
branches are responsible for the transient/dynamic behaviour 
of the battery.  

The dynamic mathematical model for an nth-order ECM is 
shown in (1). 

⎩
⎪
⎨

⎪
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where, 𝑁𝑁 is the total number of 𝑅𝑅𝑆𝑆 branches, 𝑉𝑉𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆) is the 
State of Charge (SoC) dependent open circuit voltage, 𝑖𝑖 is the 
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Figure 1. First order Thevenin model of the battery. 
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current delivered by the battery, 𝑣𝑣𝑛𝑛 is the voltage across the 
𝑁𝑁𝑏𝑏ℎ 𝑅𝑅𝑆𝑆 branch, and 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏  is the battery output voltage. 

The control of battery in general is implemented in a 
discrete domain. Thus, the dynamics of nth-order RC model 
can be written in an equivalent discretized form using Zero-
Order Hold (ZOH), as shown in (2). 

�
𝑣𝑣1(𝑘𝑘 + 1)

⋮
𝑣𝑣𝑁𝑁(𝑘𝑘+ 1)

� = �
𝑥𝑥1       0
⋱

 0       𝑥𝑥𝑁𝑁  
� �
𝑣𝑣1(𝑘𝑘)
⋮

𝑣𝑣𝑁𝑁(𝑘𝑘)
�

+ �
𝑦𝑦1
⋮
𝑦𝑦𝑁𝑁
� 𝑖𝑖(𝑘𝑘) 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆) −𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏�����������
𝑉𝑉(𝑘𝑘)

= 𝑅𝑅𝑜𝑜𝑖𝑖(𝑘𝑘) + �𝑣𝑣𝑛𝑛(𝑘𝑘)
𝑁𝑁

𝑛𝑛=1

 

(2) 

where: 

�𝑥𝑥𝑛𝑛 = 𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑇𝑇𝑠𝑠

𝑅𝑅𝑛𝑛𝑆𝑆𝑛𝑛
�

𝑦𝑦𝑛𝑛 = 𝑅𝑅𝑛𝑛(1− 𝑥𝑥𝑛𝑛)
 (3) 

and 𝑇𝑇𝑠𝑠 is the sampling period, and 𝑖𝑖(𝑘𝑘) is the current at the 𝑘𝑘𝑏𝑏ℎ 
sampling time.  

The critical circuit parameters (𝑆𝑆1, 𝑅𝑅1 ,𝑅𝑅0 and 𝑉𝑉𝑜𝑜𝑜𝑜) for 
ECM, in general, are varying and unknown that need to be 
estimated to allow the high-fidelity approximation of the 
actual battery behaviour. We propose to use the TRO based 
LS algorithm for the parameter estimation as will be presented 
in the subsequent section.  

3. THE PROPOSED ONLINE REDUCED COMPLEXITY 
(ORC) PARAMETER ESTIMATION TECHNIQUE 

The proposed technique is designed based on an investigation 
carried out by analyzing the ECM model for various set of 
look-up tables associated with each parameter. The 
investigation considers the size of the table, the required 
estimation time and the estimation accuracy (measured from 
the error) as the base for our analysis. Consequently, the 
single- and multi-order-RC models are tested for various 
orders of look-up tables that is from 11x1 to 1x1 for each 
parameter under various type of loading conditions. The load 
types considered are real-time driving cycles, worst-case 
pulsating (rectangular/square) load and experimental 
laboratory test. It has been concluded that the single-RC model 
with reduced-order 3x1-lookup table has the best results with 
minimum estimation time and error for pulsating load. 
Whereas a single value (1x1 look-table) of each parameter is 
sufficient to accurately estimate the LiB parameters for 
practical driving cycles and laboratory results, with minimum 
estimation time and without compromising the estimation 
accuracy. Thus, equivalent accuracy can be achieved by 
selecting less number of parametric values (related to each 

parameter) in comparison with the existing technique using 
look-up tables [26]. This results in the preposition of our 
proposed Online Reduced Complexity (ORC) technique 
which considers less number of parametric values (3x1 or 1x1 
lookup tables for each parameter) to achieve similar accuracy 
with reduced complexity and lower processing time. In 
addition, due to reduction in the order of lookup tables, the 
need for more memory units is also reduced. 
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Figure 2. Flow diagram of the parameter estimation process. 

A TRO based LS algorithm has been developed to 
estimate the parameters of the proposed ORC technique. The 
parameter estimation is carried out by comparing the 
simulated data (output voltage of the designed simulated 
model) with a set of experimental data (output voltage of the 
practical battery), as depicted in Figure 2. The load current and 
voltage datasets are obtained from real-world driving cycles 
and the experimental laboratory measurements. The same load 
(current profile) is also provided to the simulation setup in 
order to calculate the simulated terminal voltage and execute 
the estimation process. The parameters are estimated and error 
(between the output voltage of hardware and simulation setup) 
is minimised. 

In the estimation procedure, the parameters are updated 
at each iteration and error is minimized between the simulated 
and the experimental output voltage. The estimator minimizes 
the error based on a predefined threshold and the procedure 
ends when the error goes below the threshold limit (0.001 V) 
or when the difference of the two successive iterations 
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becomes zero. The TRO based LS algorithm developed for the 
parameter estimation of a single-order ECM is presented 
below.  

The z-transformation of (2) yields the following transfer 
function: 

𝐻𝐻 (𝑧𝑧) =
𝑉𝑉(𝑘𝑘)
𝐼𝐼(𝑘𝑘) = 𝑅𝑅𝑜𝑜 +

𝑦𝑦1
𝑧𝑧 − 𝑥𝑥1

+
𝑦𝑦2

𝑧𝑧 − 𝑥𝑥2
+ ⋯

+
𝑦𝑦𝑁𝑁

𝑧𝑧 − 𝑥𝑥𝑁𝑁
 

(4) 

where, 
𝑉𝑉(𝑘𝑘) = 𝑉𝑉𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆) −𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏  (5) 

Rearranging (4) as: 

𝑉𝑉𝑜𝑜𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆)− 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏[1 + 𝑎𝑎1𝑧𝑧−1 + 𝑎𝑎2𝑧𝑧−2 + ⋯+ 𝑎𝑎𝑛𝑛𝑧𝑧−𝑁𝑁] 
= 𝐼𝐼(𝑘𝑘)[𝑏𝑏𝑜𝑜 + 𝑏𝑏1𝑧𝑧−1 + 𝑏𝑏2𝑧𝑧−2 + ⋯+ 𝑏𝑏𝑛𝑛𝑧𝑧−𝑁𝑁] 

(6) 

Equation (6) can be rewritten as (7) 
𝑉𝑉𝑜𝑜𝑜𝑜(𝑘𝑘) −𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏(𝑘𝑘) + 𝑎𝑎1�𝑉𝑉𝑜𝑜𝑜𝑜(𝑘𝑘 − 1)− 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏(𝑘𝑘 − 1)� 
+⋯𝑎𝑎𝑁𝑁�𝑉𝑉𝑜𝑜𝑜𝑜(𝑘𝑘 −𝑁𝑁)−𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏(𝑘𝑘 −𝑁𝑁)� = 𝑏𝑏𝑜𝑜  𝐼𝐼(𝑘𝑘) + 

𝑏𝑏1 𝐼𝐼(𝑘𝑘 − 1) +⋯𝑏𝑏𝑁𝑁 𝐼𝐼(𝑘𝑘 − 𝑁𝑁) 
(7) 

Rearranging (7) as: 
𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏(𝑘𝑘) = 𝑉𝑉𝑜𝑜𝑜𝑜(𝑘𝑘) + 𝑎𝑎1�𝑉𝑉𝑜𝑜𝑜𝑜(𝑘𝑘 − 1) −𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏(𝑘𝑘 − 1)� 

+⋯𝑎𝑎𝑁𝑁�𝑉𝑉𝑜𝑜𝑜𝑜(𝑘𝑘 − 𝑁𝑁)−𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏(𝑘𝑘 − 𝑁𝑁)� − 𝑏𝑏𝑜𝑜  𝐼𝐼(𝑘𝑘)
− 𝑏𝑏1 𝐼𝐼(𝑘𝑘 − 1)−⋯𝑏𝑏𝑁𝑁  𝐼𝐼(𝑘𝑘 −𝑁𝑁) 

(8) 

All the coefficients in (8) are the function of circuit 
parameters that are continuously updating. 

Therefore, (8) can be rewritten as the following Least 
Square regression form [30]. 

𝑦𝑦(𝑘𝑘) = 𝜃𝜃𝜃𝜃(𝑘𝑘) (9) 
where, 𝜃𝜃 and 𝜃𝜃(𝑘𝑘) given in (10) and (11) are 

respectively the parameter vector and the regressor. 

𝜃𝜃 = [𝑉𝑉𝑜𝑜𝑜𝑜(𝑘𝑘) 𝑎𝑎1 … 𝑎𝑎𝑁𝑁    𝑏𝑏𝑜𝑜    𝑏𝑏1 … 𝑏𝑏𝑁𝑁]
= ℱ(𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆1, … ,𝑆𝑆𝑁𝑁 ,𝑅𝑅𝑜𝑜 , … ,𝑅𝑅𝑁𝑁) (10) 

𝜃𝜃(𝑘𝑘) = [1 + 𝑉𝑉(𝑘𝑘 − 1) … + 𝑉𝑉(𝑘𝑘 −𝑁𝑁)   
− 𝐼𝐼(𝑘𝑘)  − 𝐼𝐼(𝑘𝑘 − 1) …
− 𝐼𝐼(𝑘𝑘 − 𝑁𝑁)]𝑇𝑇 

(11) 

𝑦𝑦(𝑘𝑘) = 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏  (12) 

The LS parameter identification described above is for 
the nth-order ECM model. However, for a single-order ECM 
(in this paper), the parametric coefficients are characterised in 
the following equations: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑎𝑎1 = −𝑥𝑥1 = 𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑇𝑇𝑠𝑠
𝑅𝑅1𝑆𝑆1

�

𝑏𝑏𝑜𝑜 = 𝑅𝑅𝑜𝑜
𝑏𝑏1 = −𝑅𝑅𝑜𝑜𝑥𝑥1 + 𝑦𝑦1        

     = −𝑅𝑅𝑜𝑜𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑇𝑇𝑠𝑠
𝑅𝑅1𝑆𝑆1

�+ 𝑅𝑅1 �1− 𝑒𝑒𝑥𝑥 𝑒𝑒 �−
𝑇𝑇𝑠𝑠
𝑅𝑅1𝑆𝑆1

��

 (13) 

The battery’s terminal voltage 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏  and load current 𝐼𝐼 are 
known. On the other hand, the open circuit voltage 𝑉𝑉𝑜𝑜𝑜𝑜 =
ℱ(𝑆𝑆𝑆𝑆𝑆𝑆) (which is actually the function of battery’s state of 
charge, SoC) and the electrical parameters of circuit are 
unknown. Hence, TRO based LS algorithm is used to obtain 
the unknowns by online parameter estimation. 

The parameter vector 𝜃𝜃 is estimated by minimizing the 
following cost function. 

𝑊𝑊𝐿𝐿𝐿𝐿(𝜃𝜃�) = ��𝑦𝑦(𝑘𝑘) − 𝜃𝜃�𝜃𝜃(𝑘𝑘)�2
𝑘𝑘

𝑗𝑗=1

 (14) 

Thus, based on LS, the estimated vector (𝜃𝜃�) is obtained 
by minimizing 𝑊𝑊𝐿𝐿𝐿𝐿(𝜃𝜃�) as: 
𝜕𝜕𝑊𝑊𝐿𝐿𝐿𝐿�𝜃𝜃��

𝜕𝜕𝜃𝜃�
= ��𝑦𝑦(𝑘𝑘) − 𝜃𝜃�𝜃𝜃(𝑘𝑘)�

𝑇𝑇
�𝑦𝑦(𝑘𝑘) − 𝜃𝜃�𝜃𝜃(𝑘𝑘)��

= 0 
⇒ 𝜃𝜃� = [𝜃𝜃𝑇𝑇𝜃𝜃]−1𝜃𝜃𝑇𝑇𝑦𝑦 

(15) 

The estimated vector 𝜃𝜃� in (15) provides a unique solution 
for linear least square problems. However, battery model 
whose parameters needs to be estimated are non-linear in 
nature, thus require using iterative method. Consequently, the 
least square, in this paper, is augmented by a trust region 
optimization algorithm to achieve a better and faster 
convergence. 

The stepwise execution of the TRO based LS on the 
ECM is detailed as below:  
Step 1: Measure the battery’s load current (input) and terminal 
voltage (desired output) for 𝑘𝑘𝑏𝑏ℎ sampling time. 
Step 2: Take an initial point 𝜃𝜃 such that 𝜃𝜃 ∈ ℵ-space. The 
objective is to update 𝜃𝜃 such that the cost function is 
minimized. The TRO defines a two-dimensional subspace ɲ 
around 𝜃𝜃 and approximate the cost function in this region by 
taking the first two terms of Taylor series expansion as: 

𝑤𝑤�𝐿𝐿𝐿𝐿 = �1
2
𝑠𝑠𝑇𝑇𝐻𝐻𝑠𝑠+ 𝑠𝑠𝑇𝑇∇      𝑠𝑠 ∈ ɲ�  (16) 

where, 𝐻𝐻 represents the Hessian matrix and ∇ is the 
gradient of 𝑊𝑊𝐿𝐿𝐿𝐿 at the current point 𝜃𝜃.  
Step 3: The approximate function (𝑤𝑤�𝐿𝐿𝐿𝐿) is minimized for a 
trial step 𝑠𝑠 within the ɲ-subspace as: 
𝑚𝑚𝑖𝑖𝑚𝑚�
𝑠𝑠

{𝑤𝑤�𝐿𝐿𝐿𝐿} ⟺𝑚𝑚𝑖𝑖𝑚𝑚�
𝑠𝑠
�1
2
𝑠𝑠𝑇𝑇𝐻𝐻𝑠𝑠 + 𝑠𝑠𝑇𝑇∇      𝑠𝑠 ∈ ɲ�  (17) 

The approximation approach used in the TRO restricts 
the sub-problem of trust region to a two-dimensional (2D) 
space ɲ and the solution to (17) comes out as trivial. The 2D 
subspace is formed by spanning  𝑠𝑠1 and 𝑠𝑠2 over a linear space. 
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The 𝑠𝑠1 follows the gradient direction, whereas 𝑠𝑠2 is an 
approximate Newton direction given by solution to 𝐻𝐻. 𝑠𝑠2 =
−∇. The main objective in selecting the 2D space ɲ is to 
achieve a global convergence using gradient direction and 
thus, attaining a faster local convergence via the Newton based 
trial step 𝑠𝑠. 

Consequently, the solution to (17) is obtained using the 
Quadratic Programming (QP) algorithm, which result in an 
optimal trial step 𝑠𝑠 that minimizes the quadratic function 𝑤𝑤�𝐿𝐿𝐿𝐿 
such that 𝑠𝑠 ∈ ɲ.  
Step 4: Subsequently, if 𝑓𝑓( 𝜃𝜃 + 𝑠𝑠) < 𝑓𝑓( 𝜃𝜃), update the 
current point as 𝜃𝜃 =  𝜃𝜃 + 𝑠𝑠 and go to step 5. Otherwise, the 
initial 𝜃𝜃 remains unchanged, the size of trust region is shrunk 
and step 3 is repeated.  
Step 5: Calculate the error based on updated 𝜃𝜃. If the error is 
not minimized to the pre-defined value, update the trust region 
dimensions and repeat the iteration by going to step 3. 
Step 6: Stop the algorithm if cost function reaches to pre-
defined threshold value and calculate the final model 
parameters using (13). 
Step 7: Calculate the SoC of LiB by using Coulomb Counting 
(CC) method, given in (18). 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘 − 1) −
𝑇𝑇𝑠𝑠
𝑄𝑄𝑛𝑛

�(𝜂𝜂 ∗ 𝑖𝑖(𝑘𝑘) −𝐷𝐷𝑠𝑠)
𝑘𝑘

0

 (18) 

where 𝑄𝑄𝑛𝑛 is the battery’s nominal capacity, 𝜂𝜂 is the 
Coulombic efficiency, and 𝐷𝐷𝑠𝑠 is the self-discharging rate of 
the LiB. Ideally, the value of self-discharge is zero, which 
shows that the Coulombic efficiency is 100%. The typical 
value of LiBs self-discharge is between 2% to 3% per month 
[31]. Thus, in this paper, 𝐷𝐷𝑠𝑠 and 𝜂𝜂 are respectively assumed as 
0 and 1. 

The main problem associated with the parameter 
estimation of a single cell model in [26] using lookup table is 
estimating large number of parametric values (11x4=44) 
which actually increases the complexity and calculation time. 
Consequently, in LiB packs where a large number of cells 
connected in series and parallel, the computational complexity 
and the resulting response time will be increased to a greater 
extend, making it impractical for real-time control 
applications. In the proposed ORC technique, we substantially 
reduce the online estimation time by reducing the number of 
parametric values without compromising the estimation 
accuracy. 

4. RESULTS AND DISCUSSION 
To provide a good comparison with the existing results 

in [26], we first present the analysis for square/rectangular 
type discharging load pulse. Following this, Dynamic Driving 
Cycle (DDC) and New European Driving Cycle (NEDC) 
waveforms are used to verify the effectiveness and advanced 
performance of the proposed technique under standard driving 

cycles. Finally, the proposed technique is validated using 
practical laboratory results.  

4.1. Simulation results for pulsating discharging pulses 
The proposed ORC parameter estimation technique is 

first applied to the pulsating load similar to the one used in 
[26]. The constant magnitude load pulses are considered in the 
first half of the load cycle (as used in [26]) and variable load 
pulses in the rest in order to investigate the performance of 
proposed technique under fixed and variable pulse magnitude. 
The single order-RC model is tested for various orders of look-
up table that is from 11x1 to 2x1 for each parameter, and it has 
been concluded that the reduced order 3x1-lookup table 
presents best results with minimum estimation time and error. 
Consequently, Figure 3 presents and compares the results of 
the proposed ORC technique with the method discussed in 
[26]. The (3x4) and (11x4) in Figure 3 respectively refers to 
the results for the proposed ORC technique and the method in 
[26]. 

Figure 3 shows that there is no significant difference in 
the estimated output voltage waveforms either by estimating 
44 or 12 parametric values (that is 11x1 or 3x1 lookup tables 
of each parameter for the existing and the proposed technique, 
respectively). It can also be seen from the error subplot that the 
difference between measured and simulated voltage for both 
proposed and existing techniques is negligible. The time taken 
to estimate 44 parameters is 8 min 25 s, whereas for estimating 
12 parameters, the proposed technique takes 2 min and 35 s 
only, as shown in Table 1. The 11x4 parametric values 
minimized the sum of squared error to 9.8966 × 10−4%. On 
the other hand, the method with 3x4 parameters minimizes the 
sum of squared error to 6.4 × 10−3%. It is worth mentioning 
that the relative error is the difference between the last two 
iterations, and the maximum error is the value of cost function 
at iteration zero. 

 
Figure 3. Estimation results of the proposed ORC technique and the existing method 
[26]. 
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The trajectories of estimated parameters during each 

iteration for existing and proposed technique are shown in 
Figure 4 and Figure 5, respectively. For the proposed case, 3 
parametric values for each parameter are updated after each 
iteration. However, on the other hand, the existing technique 
requires 11 parametric values to be estimated for each 
parameter.  

It can be observed that the estimation presented by the 
proposed ORC technique is approximately equal to the 
existing estimation method with significant reduction in 
complexity and computational burden. Almost 70% reduction 
is observed in the overall estimation time of the proposed 
technique with performance equivalent to the existing method. 
Thus, the proposed ORC technique is able to replace the 
existing methods for a less-complex and faster estimation, but 
without compromising the accuracy of the results.  

Table 1: The estimation progress status of the existing and the proposed techniques 
for pulsating load. 

 
Figure 4. The parameter values at each iteration of the existing method for the 
pulsating load. Note: The trajectories in each subplot refer to values of a single 
parameter, and the corresponding parameter is specified on the y-axis  

 
Figure 5. The parameter values at each iteration of the proposed technique for the 
pulsating load. Note: The trajectories in each subplot refer to values of a single 
parameter, and the corresponding parameter is specified on the y-axis. 

4.2. Validation of the proposed ORC technique using 
realistic driving cycles 
To validate the proposed technique for ECM, we use 

standard real-world driving cycles which accurately emulate 
the behaviour of an electric vehicle for a given driving load in 
real environment. This has become a common approach to 
check the validity of the new algorithms developed for ECMs.  

A driving cycle is a series of data points representing the 
speed of a vehicle with respect to the time. The driving cycles 
are produced by different countries and organizations to 
assess the performance of vehicles in various ways. The 
testing companies usually provide corresponding speed, 
battery voltage and current waveforms for such standard 
driving cycles and are easily available in the literature [32]. 
Hence, the proposed ORC technique is tested for DDC and 
NEDC waveforms in order to validate its advanced 
performance under practical standard driving cycles.  

4.2.1. Dynamic Driving Cycle (DDC) 
In the dynamic driving cycle, the vehicle tends to move on a 
road having rough surface. The speed of the vehicle fluctuates 
too much so as the load on the battery used in the electric 
vehicle. The load profile of such driving cycle with 
regenerative braking system is shown in Figure 6. For such a 
load, the terminal voltage (with and without estimation) for 
both proposed and existing method of [26] is also depicted in 
Figure 6. 
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Existing method [26] (44 parametric values) 
Iterations 0 1 2 3 4 

Cost function 
error (%) 2.5341 0.1485 0.0046 4.020

× 10−4 
9.896
× 10−4 

Relative error 
(%) 5.87 × 10−4 

Estimation 
time 8 min 25 s 

Proposed ORC Technique (4 parametric values) 
Iterations 0 1 2 3 4 

Cost function 
error (%) 2.2541 0.1723 1

× 10−2 
6.3
× 10−3 

6.4
× 10−3 

Relative error 
(%) 1.62 × 10−4 

Estimation 
time 2 min 35 s 
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Figure 6. Before and after estimation results of the existing and the proposed ORC 
techniques under the DDC. 

Table 2: The estimation progress status of the existing and the proposed techniques 
for the DDC load. 

Existing method [26] (44 parametric values) 
Iterations 0 1 2 3 4 5 6 

Cost function error 
(%) 36

0.
36  
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0.
12
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0.
10

99
 

0.
10
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0.
10
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Relative error (%) 1.38 × 10−4 
Estimation time 17 min 21 s 

Proposed ORC Technique (4 parametric values) 
Iterations 0 1 2 3 4 5 6 7 8 

Cost function error 
(%) 

36
0.

43
9 

21
.4
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2 

3.
58

70
 

1.
72

65
 

0.
66

94
 

0.
31

33
 

0.
27

95
 

0.
27

38
 

0.
27

31
 

Relative error (%) 5.7 × 10−4 
Estimation time 1 min 26 s 

 

Figure 7. The parameter values at each iteration of the existing method for the DDC. 

For DDC, the ECM model is tested for various orders of 
look-up tables staring from 11x1 to 1x1, and it is observed that 
the 1x1-lookup table has best results with minimum estimation 
time and error. This means a single value of each parameter is 
enough to estimate for this practical load. The corresponding 
trajectories of the estimated parameters at each iteration for the 
existing method of [26] and proposed ORC technique are 
depicted in Figure 7 and Figure 8, respectively. It is clear from 
Figure 8 that only single value of each parameter is updated at 
each iteration, which actually contributes to promising 
reduction of complexity and estimation time.  

It can be seen from the terminal voltage and error response 
of Figure 6 that there is no significant difference between the 
results for model estimated using 44 parameters (11x4 lookup 
tables) and 4 parameters (1x4 lookup tables). The time taken 
to estimate 44 parameters is 17 min 21 s. Whereas, a time of 1 
min 26 s is required to estimate single value of the 4 
parameters, as shown in Table 2. The 11x4 parameters 
minimized the sum of squared error to 0.1060%. On the other 
hand, the 1x4 parameters minimize the sum of squared error 
to 0.2731%. 

 

Figure 8. The parameter values at each iteration of the proposed technique for the 
DDC. 

The results show that the proposed technique has similar 
estimation performance with reduced computational burden 
when compared to method in [26]. It requires less estimation 
time and a few number of parametric values to be estimated 
while maintaining the estimation accuracy, as shown in second 
subplot of Figure 6. 
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Figure 9. Before and after estimation results of the existing and the proposed ORC 

techniques under the second-order DDC. 

The proposed ORC technique is also implemented on a 
second-order RC circuit for a DDC as shown in Figure 9 and 
results are compared to the existing method presented in [26] 
and single-order RC circuit. Comparing the proposed ORC 
technique for the first and second order ECM (Figure 6 and 
Figure 9) shows that there is no significant difference in the 
output voltage estimation results for both type of circuits. 
However, with equivalent estimation results, the proposed 
technique with second-order RC requires 1 min and 13 s more 
estimation time comparing to the single-order RC (see Table 
2 and Table 3). Hence, it would be logical for us to use single-
order RC circuit in this study. Furthermore, as can be seen 
(Table 3), compared to the existing method, the proposed 
technique requires 94.5% less estimation time.  
Table 3: The estimation progress status of the existing and the proposed techniques for 
the second-order DDC load. 

Existing method [26] (66 parametric values) 
Iterations 0 1 2 3 4 5 6 7 8 9 10 

Cost 
function 
error (%) 41

0.
36

6 

23
.1

27
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0.
61

06
 

0.
21

58
 

0.
13
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0.
13

46
 

0.
12

53
 

0.
10

91
 

0.
10
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0.
10
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0.
10
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Relative 
error (%) 2.86 × 10−4 

Estimation 
time 48 min 18 s 

Proposed ORC Technique (6 parametric values) 
Iterations 0 1 2 3 4 5 6 7 8 9 

Cost 
function 
error (%) 41

9.
71

9 

32
.0

65
7 

6.
34

57
 

3.
22

33
 

1.
28

40
 

0.
33

01
 

0.
12

31
 

0.
10

85
 

0.
10

85
 

0.
10

84
 

Relative 
error (%) 9.08 × 10−5 

Estimation 
time 2 min 39 s 

4.2.2. New European Driving Cycle (NEDC) 

The NEDC is supposed to represent the typical usage of a 
car in Europe [33]. The voltage and current curves for NEDC 
during battery discharge are presented in the Figure 10. 
Initially the battery was fully charged and then discharged to 
89%.  

The NE driving cycle is applied to both proposed and 
existing estimation methods, and results are depicted in Figure 
10. The estimation carried out by the existing method is 
accurate enough that it reduces cost function error from 
153.6384% to 6.5 × 10−3%. The relative error between the 
two successive iterations in this case is 6.62 × 10−4%. 
However, it takes 6 iterations to estimate the 11x4=44 
parametric values within the estimation time of 33 min 39 s, 
(see Table 4). 

On the other hand, the proposed technique requires 2 min 
38 s to estimate the parameters, which is far less than the time 
taken by the existing method. From the results in Figure 10, it 
can be observed that there is no significant difference in the 
estimated waveforms for both methods, except that the 
proposed one requires less computational resources. The sum 
of squared error and relative error are respectively reduced to 
 1.1 × 10−2 and 9.15 × 10−4 in less time when compared to 
the existing method. Hence, it can be concluded that the 
proposed method shows good performance in terms of 
accuracy with reduced estimation time and computational 
complexity without compromising on the error. 

 
Figure 10. Before and after estimation results of the existing and the proposed ORC 
technique for NEDC. 

The corresponding trajectories of updated parameters for 
both proposed and existing methods are shown in Figure 12 
and Figure 11, respectively. The reduction in number of 
parametric values to 1 for each parameter in the proposed 
technique actually contributes to lower computations and 
faster estimation. 
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Table 4: The estimation progress status of the existing and the proposed technique for 
NEDC load. 

Existing method [26] (44 parametric values) 
Iterations 0 1 2 3 4 5 6 

Cost function error 
(%) 
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Relative error (%) 6.62 × 10−4 

Estimation time 33 min 39 s 
Proposed ORC Technique (4 parametric values) 
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Figure 11. The parameter values at each iteration of the existing method for the 
NEDC. 

 

Figure 12. The parameter values at each iteration of the proposed technique for the 
NEDC. 

4.3. EXPERIMENTAL RESULTS 
The experimental laboratory setup is shown in Figure 14. The 
test bed includes a second generation Nissan Leaf pouch 
Lithium-ion battery module. The battery consists of 4 cells (2 
in series, 2 in parallel). The rated capacity of each cell is 
33.1Ah, which consist of LiMn2O4/LiNiO2 cathode and 
graphite anode. The Neware battery testing unit BTS 4000 
5V/20A comprising of a testing equipment and a control unit 
is an eight channel device, which is used to generate different 
charging/discharging load cycles for the battery. The dSPACE 
MicroLabBox DS-1202 is used to record the load current and 
output voltage waveform of the battery. The recorded data is 
then processed by Matlab/Simulink estimation model for 
online parameter estimation of the battery ECM. This is 
achieved by minimizing the error between the terminal voltage 
of Nissan leaf battery and simulated equivalent electrical 
model. 

 
Figure 13. Experimental setup.  

In the online estimation process, the load waveform and its 
corresponding output voltage is recorded for every 600 s and 
given as input to the ORC parameter estimation model. 
Subsequently, the model estimate and update the parameters 
by minimising the error between the output voltage of the 
experimental recorded data and simulated model. Thus, the 
model parameters are updated after every 600 s by repeating 
the online estimation process for a new set of data. The five 
different load cycles and their corresponding waveforms taken 
for every 600 s are shown in Figure 14. The experimental 
results are analysed using both existing technique and 
proposed reduced complexity technique. It can be seen from 
Figure 14 that the proposed technique estimates the 
parameters with less time in comparison to the existing 
technique without compromising on the accuracy. There is 
almost no difference between the voltage waveform estimated 
using 44 parameters (11x4 look-up tables) and 4 parameters 
(1x4 values). The time taken by existing technique to estimate 
the desired experimental voltage waveform for load 1 to 5 is 
20 min 12 s, 14 min 16 s, 18 min 30 s, 29 min 39 s and 34 min 
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27 s, respectively (see Table 5). The time taken is far more 
than the recording period of 600 s or 10 minutes. In other 
words, the time taken by the existing technique to estimate the 
parameters is such a high value that in meanwhile 3 more 
cycles become ready for the repeating process of estimation. 
Hence, the existing technique is not suitable for real-time 
estimation. On the other hand, the time taken by the proposed 
reduced complexity technique for load 1 to 5 is 0 min 46 s, 0 
min 58 s, 2 min 3 s, 2 min 34 s and 1 min 49 s, respectively 
(see Table 5). The time taken by the proposed technique is 
considerably less and a practical solution to EVs. By 
comparing the error at last-iteration for each load of proposed 
and existing technique, it can be seen that accuracy is not 
compromised in the proposed method. Hence, it is validated 
that the proposed ORC technique can estimate parameters 

online without compromising on accuracy and with reduced 
complexity in comparison with the existing technique.  

In real-time, the proposed technique will run in parallel with 
the electric vehicles, receives the terminal voltage and current 
with a specific sampling time, and predicts the internal 
parameters of battery (used in the vehicle). Consequently, the 
resulting estimated model (which keep on updating itself 
based on new samples) is used by battery management system 
for the control and management purposes of the battery. 
5. COMPARISON 
A comparison of estimation time is established for single-RC 
ECM under various type of loads, i.e. pulsating load, driving 
cycles and experimental load cycles (see Figure 15 (a) and 
(b)). It can be seen that for all type of loads, the proposed 
approach requires significantly less time for online estimation 

 
Figure 14. Experimental validation of the proposed ORC technique using NEWARE battery cycler, Nissan Pouch cell battery and MATLAB-dSPACE control desk. 
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Table 5: The estimation progress status of the existing and the proposed techniques for the experimental results. 
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comparing to the existing method with equivalent 
performance in terms of estimation. For pulsating load, DDC 
and NEDC, the proposed technique respectively requires 70%, 
91.7% and 92.1% less processing time when compared to the 
existing one. Furthremore, the experimental results in Figure 
15 (b) also show that the proposed technique for load 1 to 5 
respectively takes 96.2%, 93.2%, 88.9%, 91.3% and 94.7% 
less estimation time as compared to the existing one. This 
makes the proposed technique a good candidate for real time 
applications (such as EVs). 

A comparison is also established between the number of 
parametric values vs. the estimation time as well as the Sum 
Square Error (SSE) for DDC (see Figure 16). The line graph 
shows that the estimation time is reduced by decreasing the 
parametric values but without compromising the accuracy. 
From this step wise evaluation (11x4 to 1x4), the single value 
for each parameter requires least estimation time. On the other 
hand, the bar chart graph in Figure 16 quantifies the SSE of 
the terminal voltage, showing that the maximum error for 
minimum number of parameters is 0.2731%. Hence, in the 
proposed technique the complexity and estimation time is 
reduced without compromising on accuracy, i.e. estimation 
error, as shown graphically in Figure 16. 

 

 

Figure 15. The estimation time comparison chart between the existing and the 
proposed technique of (a) pulsating load and driving cycles (b) experimental load 
cycles. 

 
Figure 16. Reduction in estimation time and error bar chart with decrease in number 
of parametric values. 

6. CONCLUSIONS 
The electric circuit modelling of Lithium-ion batteries is 

widely used for real-time BMS applications. The model 
parameters in an ECM are purely dependant on the operating 
conditions. So, for real-time operation, they need to be 
estimated and updated online to hold the modelling accuracy. 
The computational complexity is a critical aspect in the design 
and development of estimation algorithms for BMS due to the 
limited computational resources of the embedded 
microcontrollers. We proposed a novel ORC technique for the 
estimation of battery’s circuit parameters, which is 
computationally less complex, easy to implement and 
accurate, and requires less estimation time. In addition, the 
order of lookup tables and memory units are also reduced. 
Under realistic standard driving loads including DDC and 
NEDC and practical laboratory tests, the proposed technique 
showed a significant reduction in the processing time in 
comparison with the existing technique. Hence, we believe the 
proposed ORC technique is a strong candidate for the real-
time battery management applications.  
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