
Financing Policies via Stochastic Control: a

Dynamic Programming Approach

Roy Cerqueti

University of Macerata

Department of Economic and Financial Institutions

Via Crescimbeni, 20 - 62100 - Macerata, Italy.

E-mail: roy.cerqueti@unimc.it

May 4, 2011

Abstract

This paper deals with a theoretical stochastic dynamic optimization

model for the external financing of firms. We aim at searching for the

best intensity of payment that a financier has to apply to a company in

order to have a loan repaid. The techniques involved are related to the

optimal control theory with exit time. We follow a dynamic programming

approach. Our model also presents a distinction between the legal and

the illegal financier, and a theoretical comparison analysis of the results

is presented. Some numerical examples provide further validation of the

theoretical results.

Keywords: Stochastic optimal control, dynamic programming, Hamilton Jacobi

Bellman equation, viscosity solutions, company financing model.

1 Introduction

In the breakthrough paper of Modigliani and Miller (1958), the authors used an

arbitrage argument to prove the separability of corporate financing and invest-

ment decisions, when perfect capital market assumptions hold. Modigliani and

Miller’s result can be summarized as stating the irrelevance of capital structure
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in the evaluation of the firm value.

In actual fact, the life of a firm can be influenced by several events, the impact

of which can drastically change the evolution of the dynamics associated to the

firm value. We focus in this paper on a relevant issue of company wealth, that

is the external financing.

Part of the literature on mathematical models for company external financing

relies on decision theory. Indeed, the scientific research on this microeconomic

subject often provides an answer to some simple questions, e.g.:

Q1 What is the best payment flow that a financier should apply to a firm in

order to have a loan repaid?

Q2 What is the best financing strategy that a company holder should follow to

maximize the wealth of the company?

In both of cases, an optimization model has to be constructed and developed.

Moreover, due to the randomness and the evolutive nature of the economic envi-

ronment with which we work, a dynamic stochastic optimization model should

be proposed.

Brennan and Schwartz (1978) is the starting point of quantitative studies in

terms of searching for the optimal external financing strategy. They perform

a numerical analysis to determine the optimal leverage when the wealth of

the firms follows a diffusion process with constant volatility. Brennan and

Schwartz’s paper is undoubtedly relevant, although the lack of a purely the-

oretical perspective does not allow closed form solutions to Q2. In this respect,

Leland (1994) shows closed form solutions for debt values and equity values

assuming infinite life for the debts. In Leland and Toft (1996), the (very restric-

tive) assumption of infinite life debt is removed.

More recently, Sethi and Taksar (2002) focus on problem Q2. In fact, the au-

thors consider the problem of searching for the best financing mix of retained

earnings and external equity in a stochastic framework, in order to maximize

the value of a company. For their purposes, they formulate and explicitly solve

a singular stochastic control problem. Sethi and Taksar (2002) is the stochastic

extension of the deterministic model stated in Krouse and Lee (1973) and im-

proved in Sethi (1978).
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Caballero and Pindyck (1996) also provide an answer to Q2. They examine

the sources of randomness in company investments and the effects of external

financing on the incomes of an industrial system. Their approach is to use

dynamic optimization tools with a dynamic programming perspective. The au-

thors extend and complement Dixit (1989) and Leahy (1991): indeed, on one

hand they adopt the viewpoint of these papers and focus on the entry or exit

decisions; on the other hand, in contrast with the quoted papers, they empha-

size the effects of different sources of uncertainty on company financing policies.

The problem proposed in Q1 belongs to the standard theory of corporate fi-

nance, and there is a large amount of literature dealing with the analysis of the

best loan interest rate that a financier should apply. For a detailed description

of this subject, we refer to the monographs Brealey et al. (2006), Damodaran

(2006), Tirole (2006).

Despite its relevance, problem Q1 has rarely been studied with quantitative

optimization techniques. It is worth citing some relevant recent contributions.

Stanhouse and Stock (2008) discuss the optimal rate that a bank should charge

on a loan to maximize the expected profit in presence of a prepayment risk. The

authors analyze also the relationship between such a loan interest rate and the

maturity of the loan.

Chang and Lin (2008) analyze the role of the interconnections among the banks

in determining the optimal loan interest rate. They deal with an option ap-

proach, and show the relationship between the optimal loan interest rate and

the degree of the capital market imperfections.

Kahn et al. (2005) focus on the bank behavior regarding customer loan market,

with a particular emphasis on the dynamics of the loan interest rates.

Cifarelli et al. (2002) propose a model for the choice of the best intensity of

payment that a legal or illegal financier has to apply to a firm in order to have

a loan repaid. The authors extend Masciandaro et al. (1997), and analyze the

ruin probability of the firm via the theory of differential equations. The firm

wealth evolves accordingly to a stochastic differential equation, which has also

been encountered in Li et al. (1996) in a different setting, where the stochastic

intensity of the debt restitution appears in the drift coefficient as an additive

term. As an extension of Cifarelli et al. (2002), see also Barone et al. (in press)
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for the case of illegal financier and Cerqueti and Quaranta (in press) for legal

financiers.

We contribute to this strand of literature by dealing with problem Q1 in a dy-

namic stochastic optimization perspective by following a dynamic programming

approach. More precisely, we consider a company and a financier operating in

a dynamic stochastic environment and construct a mathematical model for ex-

ternal financing, adopting the financier’s point of view. Definitively, we search

for the best, in some sense, payment flow that a financier has to apply to a firm

in order to have a debt repaid.

In our framework, the payment flows have to be intended as the annuities that

the funded company corresponds to the financier to repay the debt. We notice

that the most part of the literature on this field refers to loan interest rates.

The preference we accord to the analysis of the payment flows is grounded on

two basic principles. By one hand, payment flows and loan interest rates are

strongly interconnected, and it is possible to derive information on one of them

starting from the other. Hence, our arguments continue to be meaningful when

relying to loan interest rates instead of payment flows. By the other hand, as

we shall see below, the introduction of the payment flows implies a rather com-

plicated model, that can be treated only by using sophisticated mathematical

tools. Therefore, the development of our model leads also to some interesting

contributions by a purely theoretical perspective.

Furthermore, we maintain the distinction discussed in Cifarelli et al. (2002)

between the legal and the illegal financier. In fact, a suitable model for the ex-

ternal financing should take the differences between the financiers into account.

The targets of a bank and of an illegal financier are reasonably not the same:

the bank aims at maximizing its profit and is not interested in the failure of the

firm; the usurious financier uses illegal markets to get a profit from the failed

firm. To this end, it takes up the position which will bring about the bankruptcy

of the financed subject.

As we stated before, the choice of the best time-varying stochastic flow of pay-

ment is performed by solving a dynamic stochastic optimization problem. For

a collection of optimization techniques applied to real life problems, refer to

Pardalos and Tsitsiringos (2002), AitSahlia et al. (2008) and the monumental
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work of Christodoulos and Pardalos (2009).

In our setting, the problem is studied up to the time when the debt is completely

repaid or the company fails. Since the date of success or failure of the firm is

not fixed a priori, our optimization problem has a stochastic time horizon, en-

dogenously determined by the dynamics of the firm wealth.

A brief discussion on the stochastic control theory is now needed.

The term mathematical control theory was introduced about half a century ago.

Despite this fact, the nature of the optimal control problem has been the fo-

cus of researches into optimization since the fifteen century. The precursor of

the techniques involved in optimal control is commonly seen in the calculus of

variations. For a very interesting survey of the early optimization problems, we

suggest Yong and Zhou (1999, Historical Remarks, pp. 92). Bellman was one

of the first to point out the need to introduce the randomness into the optimal

control theory and to mention the stochastic optimal control theory (Bellman,

1958). Nevertheless, stochastic differential equations and Ito’s Lemma were not

involved in Bellman (1958) and the first paper dealing with diffusion systems,

Markov processes and differential equations was Florentin (1961). Nowadays,

the literature in this field is growing as it is applied to economics, biology, fi-

nance, engineering and so on.

Several monographs provide a complete survey of the mathematical control the-

ory. For the deterministic case, we remind the reader to Bardi and Capuzzo

Dolcetta (1997). Stochastic control theory is described in Borkar (1989), Flem-

ing and Soner (1993), Krylov (1980), Yong and Zhou (1999).

The keypoint of the optimal control theory is represented by an optimization

problem, where the constraints are associated to some functions properties (con-

trols α), which are elements of a certain functional space (admissible region A).

Thus, the objective function J is a functional which depends on the controls.

The optimum with respect to the controls of such objective functional is called

the value function V .

The stochastic framework is related to the analysis of cases with admissible re-

gion given by stochastic process spaces.

Starting from the objective functional and the definition of the admissible re-

gion, there are basically two methods of proceeding: Stochastic Maximum Prin-
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ciple (strongly related to the martingale theory) and Dynamic Programming

(bringing in the theory of differential equations). In the former case, a set

of necessary conditions for stochastic optimal controls are provided through

forward-backward stochastic differential equations for adjoint variables and re-

lated stochastic Hamiltonian systems. In the latter case, one has to prove an

optimality principle, named the Dynamic Programming Principle, and relate

the value function to the (classical) solution (if it exists, if it is unique) of a

differential equation, named the Hamilton Jacobi Bellman (HJB) equation.

In this paper, we adopt this second point of view. For our purposes, we use a

Dynamic Programming Principle for stochastic control problems with exit time

recently proved in Cerqueti (2009) via analytic techniques.

The HJB equation states formally, in the sense that we derive it by using the

Dynamic Programming Principle, assuming the appropriate regularity of the

value function. Since the value function is generally not regular enough, a weak

solution definition is needed: the viscosity solution. For the concept of the vis-

cosity solution, we remind to the seminal works Crandall and Lions (1981, 1983,

1987), Crandall et al. (1984), Lions (1981, 1983a, 1983c, 1985). For a complete

survey, we remind the reader to Lions (1982), Barles (1994), Fleming and Soner

(1993) and the celebrated User’s Guide of Crandall et al. (1992).

In this work, we prove that the value function V is a classical solution of such

differential equation in two steps: in the first one, we prove that V is the unique

viscosity solution of the Hamilton-Jacobi-Bellman Equation; the second step

concerns the study of the regularity of V .

For the existence and uniqueness theorem for Hamilton-Jacobi-Bellman equa-

tions in the case with exit time, we suggest the papers of Barles and Burdeau

(1995) and Barles and Rouy (1998). Useful in this context are Malisoff (2001,

2002, 2003) and Malisoff and Sussmann (2000) and, furthermore, Barles and

Perthame (1988), Blanc (1997) and Ye (2000).

In order to prove the twice-differentiability of V , we use convex and functional

analysis argumentations, based on Alvarez et al. (1997), Fleming and Soner

(1993), Gilbarg and Trudinger (1977), Ladyzhenskaya and Uraltseva (1968) and

Rockafellar (1970).

Then, we find the optimal strategies in feedback form via a Verification Theorem
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and we provide an economic interpretation of them. Moreover, we analyze the

distinction between the legal and the illegal financier, with several comments

and suggestions for further research. Lastly, we propose some numerical experi-

ments, in order to show evidence of the usefulness of the Dynamic Programming

approach as a technique. The results obtained are totally in agreement with the

theoretical findings.

This work is organized as follows. The next section is devoted to the statement

of the models. In the third section, the Hamilton-Jacobi-Bellman is derived and

solved. The fourth section is devoted to the optimal strategies. In the fifth

section, we provide the comparison between the legal and the illegal financier.

The sixth section contains some numerical experiments. In the last section,

we present our conclusions, with some future research lines. The proofs are

relegated in the Appendix.

2 The model

The aim of this section is to describe the economic environment of the problem.

In particular, we define the state equation and the value function related to

our optimization framework and the main assumptions in force throughout the

paper are also discussed.

We introduce a probability space with filtration (Ω,F , {Ft}t∈R+ , P ) on which we

define a standard Brownian Motion W with respect to {Ft} under P . Here the

filtration Ft represents the P -augmentation of the natural filtration generated

by W , that is

Ft = σ
(
W (s) | s ∈ [0, t]

)
∨N , ∀ t ∈ R+,

where N is the collection of all the sets of measure zero under P , i.e.:

N :=
{

A ∈ F |P (A) = 0
}

.

Since the Brownian Motion is a continuous process, then the filtration {Ft}t∈R+

is right continuous. Hence, the filtration satisfies the usual conditions.

The state equation describes the stochastic evolution at time t of the dynamics

X(t) associated to the wealth of the firm. It is given by the following controlled
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stochastic differential equation with initial data.




dX(t) = (µX(t)− α(t))dt + σX(t)dW (t),

X(0) = X0

(1)

where

• µ, σ ∈ R are related, respectively, to the deterministic and stochastic

evolution of the firm wealth.

• α(·) is a stochastic process Ft-progressively measurable and it represents

the intensity of payment corresponded by the funded firm to the financier.

• X0 ∈ [0,K] is the initial wealth of the firm. Formally, it should be a

random variable in [0,K] with law π0, that is measurable with respect to

F0. Since it is reasonable that the initial situation of the funded company

is known, we can assume that X0 = x ∈ [0,K], x nonrandom.

• the standard 1-dimensional Brownian Motion W (·) is independent of X0.

It drives the stochastic term of the firm wealth evolution.

Remark 1. The bound values 0 and K are absorbing barriers for the dynamic

of the wealth of the firm which evolves under the pressure of the payment of the

debt. When the wealth of the firm reaches the value 0, then we have the company

failure; if the firm wealth reaches the value K, then the loan is extinguished.

We are interested in analyzing the external financing problem up to its natural

solution: the firm failure or the complete restitution of the debt. To this end, we

need to introduce the random times where the wealth of the company reaches

one of the absorbing barriers 0 and K. We denote with T the set of the stopping

times in [0, +∞] as follows:

T := {η : Ω → [0, +∞] | {η ≤ t} ∈ Ft, ∀ t ∈ R+}. (2)

The exit time τ of the dynamic from [0, K] is

τ := inf
{

t ∈ R+ |X(t) /∈ [0,K]
}

. (3)

Since Ft satisfies the usual conditions, then it results τ ∈ T .

The intensity of payment that a financier has to apply to a company is defined
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as the product between the value of the debt and the loan interest rate. Hence,

it must obviously be positive. Moreover, it should have an upper bound, as

evidence suggests. In our opinion, the upper and lower thresholds could be

numerically estimated, by studying a suitable number of financing cases. The

arguments above bring us to define the admissible region - the functional space

containing the admissible controls - as follows:

A :=
{

α : R+ × Ω → [δ1, δ2] ⊂ R+, Ft − progressively measurable processes
}

,

(4)

where the constants δ1, δ2 are upper and lower bounds for the admissible inten-

sity of payment.

The objective of our analysis is to search for the best intensity of payment that

a financier has to apply to a company, in order to optimize something. Here,

we propose setting the maximization of the expected discounted intensity of

payments related to the loan. The payments are effected up to the moment of

company failure or total restitution of the debt.

For our purpose, we define the objective functional as

J : [0,K]×A → R

such that

J(x, α(·)) = Ex

[ ∫ τ

0

α(t)e−δtdt + C(X(τ))e−δτ
]
, (5)

where Ex is the expected value conditioned to X0 = x, e−δ is the uniperiodal

cost of the capital for the financier, δ ∈ R+ and C is the terminal cost given by

C(x) =





A for x = 0,

H for x = K.

(6)

with A, H, ∈ R+.

The constants A and H describe the final amount obtained by the financier

when the company goes bankrupt or the debt is totally repaid, respectively.

The maximization problem can be now formalized by the definition of the value

function, that is

V : [0,K] → R,
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such that

V (x) = sup
α∈A

E
[ ∫ τ

0

α(t)e−δtdt + C(X(τ))e−δτ
]
. (7)

3 Hamilton-Jacobi-Bellman Equation and Veri-

fication Theorem

This section contains the formalization of the strategy we adopt to solve the

stochastic optimal control problem constructed in the previous section: the

dynamic programming approach. Starting from some recent results on the dy-

namic programming principle, we write the dynamic programming equation and

prove that the value function is its unique classical solution.

The dynamic programming principle for a class of stochastic optimal control

problems more general than ours has been recently proved in Cerqueti (2009),

by using analytical techniques grounded on the measurable selection theory.

Hence, we enunciate the dynamic programming principle for our particular set-

ting and omit the proof:

Theorem 2 (Dynamic Programming Principle). For each η ∈ T , we have

V (x) = sup
α∈A

E
[ ∫ η∧τ

0

e−δtα(t)dt + e−δ(η∧τ)V (X(η ∧ τ))|X0 = x
]
, (8)

where the sup is done over all α admissible controls.

The dynamic programming equation, named Hamilton Jacobi Bellman or HJB

Equation, is a direct consequence of Theorem 2 and it is solved by the value

function V only under strong regularity conditions (see Lions 1983b, 1983c,

1985). We formalize the dynamic programming equation in our framework as

follows:

Theorem 3 (HJB Equation). Suppose that V ∈ C0([0,K])∪C2((0,K)). Then

δV (x) = sup
a∈[δ1,δ2]

{
a(−V ′(x)+1)

}
+µxV ′(x)+

1
2
σ2x2V ′′(x), ∀ x ∈ (0,K), (9)

with the relaxed boundary conditions

min
{

δV (x)− sup
a∈[δ1,δ2]

{
a(−V ′(x)+1)

}
−µxV ′(x)−1

2
σ2x2V ′′(x), V (x)−C(x)

}
≤ 0, x ∈ {0,K},

(10)

10



and

max
{

δV (x)− sup
a∈[δ1,δ2]

{
a(−V ′(x)+1)

}
−µxV ′(x)−1

2
σ2x2V ′′(x), V (x)−C(x)

}
≥ 0, x ∈ {0, K}.

(11)

The optimal strategies of the dynamic stochastic optimization problem we are

studying are implied by the existence and uniqueness of the classical solution

for the HJB Equation (9) with boundary conditions (10)-(11), as we shall see in

the Verification Theorem. Unfortunately, the regularity of the value function is

not easy to prove, and the same is true of the existence and uniqueness of the

twice differentiable solution of the HJB equation. We are obliged to introduce a

weakness aspect in the definition of the solutions of the HJB equation, and prove

that V is the unique viscosity solution of the HJB Equation. The Introduction

contains also a list of key references for the concept of viscosity solutions of an

HJB equation.

The following Existence and Uniqueness Theorem is a consequence of some

results from Barles and coauthors (see Barles and Burdeau, 1995 and Barles

and Rouy, 1998).

Theorem 4. The value function V is continuous in (0,K) and can be extended

continuously on [0,K]. Moreover, V is the unique viscosity solution of the HJB

equation (9) with variational boundary conditions (10) and (11).

Theorem 4 allows a new perspective on V as the unique viscosity solution of

the HJB equation. This will turn out useful in the further step of our analysis,

that is the study of the regularity properties of the value function. We devote

the next section to this.

3.1 Regularity of the value function

Theorem 4 implies that, if the value function is twice differentiable in (0,K),

then it is a classical solution of the HJB equation. We have already men-

tioned that if V is the unique classical solution of the Hamilton Jacobi Bellman

equation, then we can formally discuss the optimal strategies of the stochastic

control problem. To this end, we firstly need a result on the concavity of the

value function.
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Theorem 5. V is a concave function in [0,K].

For the proof, see the Appendix.

A further result on the strict concavity of the value function is contained in

the next result. The strict concavity of the value function will be used in the

analysis of the optimal strategies.

Lemma 6. Assume that δ 6= µ.

Then V is strictly concave.

See the Appendix for the proof.

We come now to the regularity theorem, which guarantees that the viscosity

solution of the HJB equation is a classical solution. For the proof of the following

result, see the Appendix.

Theorem 7. V is twice differentiable in (0, K) and the second derivatives are

α-Hölder continuous with Hölder’s exponent α ∈ (0, 1), i.e. V ∈ C2,α(0,K).

4 Optimal strategies

This section contains the explicit formulation of the optimal solution of our

control problem.

The optimal strategies and trajectories of our stochastic control problem can be

theoretically identified by proving a Verification Theorem. To reach this goals,

we start from the HJB equation stated in Theorem 3. More precisely, we use the

fact that the value function is the unique classical solution of the HJB equation,

as comes out in theorems 4 and 7. The proof of the Verification Theorem is

contained in the Appendix.

Theorem 8 (Verification Theorem). Assume that u ∈ C0([0,K]) ∪ C2((0,K))

be a classical solution of (9).

Then we have

• (a) u(x) ≥ V (x), ∀x ∈ [0,K].

• (b) Let us consider (α∗, X∗) an admissible couple at x such that

α∗ ∈ argmaxa

{
(µX∗(t)− a)u′(X∗(t)) +

1
2
σ2[X∗(t)]2u′′(X∗(t)) + a

}
.
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Then (α∗, X∗(t)) is optimal at x if and only if u(x) = V (x), ∀x ∈ [0,K]

Theorem 8 guarantees the existence of the optimal strategies related to our

stochastic control problem, from a purely theoretical point of view. This result

is grounded on the regularity of the value function, which is a classical solution

of the HJB equation. The next step in our work is to provide an explicit form

to optimal strategies and trajectories.

First of all, we let the notation be less heavy. By Theorem 3, Theorem 4 and

Theorem 7, we can write the Hamilton Jacobi Bellman equation as

H(x, V (x), V ′(x), V
′′
(x)) = sup

a∈[δ1,δ2]

Ha(x, V (x), V ′(x), V
′′
(x)) = 0, (12)

where

Ha(x, V (x), V ′(x), V
′′
(x)) := δV (x)−µxV ′(x)− 1

2
σ2x2V ′′(x)−a

[
−V ′(x)+1

]
.

(13)

The next result explicitly formalizes the value optimizing the operator Ha de-

fined in (13).

Proposition 9. Fixed x ∈ [0,K], the absolute maximum point a∗ of the function

Ha defined in (13) is

a∗ =





δ1 for x | V ′(x) < 1

δ2 for x | V ′(x) > 1

arbitrary for x | V ′(x) = 1

(14)

See the Appendix for the proof.

Proposition 9 should be related to the optimal intensity of payment that a

financier has to apply to a funded company. Moreover, it should also drive the

optimal trajectory of the firm wealth. The connections between (14) and the

couple (optimal control, optimal trajectory) can be observed by introducing the

closed loop equation:




dX(t) = (µX(t)− a∗(X(t)))dt + σX(t)dW (t),

X(0) = x

(15)
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The significance of the closed loop equation and the optimal strategies are shown

in the next result.

Theorem 10. Let us consider

a∗(x) =





δ1 for x | V ′(x) < 1

δ2 for x | V ′(x) > 1

arbitrary for x | V ′(x) = 1

and X̄ the solution of the closed loop equation




dX̄(t) = (µX̄(t)− a∗(X̄(t)))dt + σX̄(t)dW (t),

X̄(0) = x

Then, setting ā(t) := a∗(X̄(t)), we have J(x, ā(·)) = V (x) and the pair (ā, X̄)

is optimal for the control problem.

Theorem 15 explicitly determines the optimal strategies for our stochastic con-

trol problem. We devote the next subsection to some further comments on our

optimality results.

4.0.1 Some remarks on the optimal strategies

In the discussion about the regularity properties of the value function, we have

shown that the value function V is twice differentiable in the space (0, K) and

is concave. Furthermore, under the hypotheses of Lemma 6, we get that V is

strictly concave. In this case, there exists the inverse of the function V ′, being

V ′ strictly decreasing and continuous.

Assume µ 6= δ and denote (V ′)−1 =: I. The optimal controls α∗ are bang-bang

in type. We get, by the analysis of HJB equation,

α∗(x) =





δ1 for x | x > I(1)

δ2 for x | x < I(1)

arbitrary for x | x = I(1)

(16)
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By the regularity properties of the value function, being δ 6= µ and V not a

constant function, there exists a unique point x0 ∈ (0,K) such that x0 = I(1).

We decompose the interval (0,K) as

(0,K) = (0, x0) ∪ {x0} ∪ (x0,K) =: Γ1 ∪ Γ2 ∪ Γ3.

If the initial wealth of the company is small enough (i.e., it belongs to Γ1), then

the best intensity of payment that a financier has to apply to a funded company

coincides with the larger admissible one; if the initial wealth is larger than x0

(i.e. it belongs to Γ3), the smaller intensity of payment is the best choice. When

the initial wealth of the firm coincides to the critical point x0, then the financier

has doubts about the best choice, and she/he does not understand whether a

large or small payment flow is better.

5 Comparison between the legal and the illegal

financier cases

The scope of this section is to propose and compare two different financing pol-

icy models, related to a legal and an illegal financier.

The following important monotonicity result holds

Proposition 11. Assume that

H ≥ A Hδ > δ2, Aδ < δ1. (17)

Then V is an increasing function.

For the proof, see the Appendix.

The differences between legal and illegal financiers are basically related to the

different wealth of a failed company, from a bank’s and an usurer’s point of view.

While the legal financier does not have a positive income from the bankruptcy

of a funded firm, the illegal financier is able, in this case, to take a position

in illegal markets and obtain a positive amount. Generally, such an amount is

larger than the income from the restitution of the debt. Therefore, we have:

• Legal financier case: A = 0, H > 0. We will refer to the objective func-

tional and the value function, respectively, as Jleg and Vleg.
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• Illegal financier case: 0 < H < A. We will refer to the objective functional

and the value function, respectively, as Jill and Vill.

Remark 12. Proposition 11 allows us to understand something about the value

functions in both cases. In the case of an illegal financier, we get immediately

that the value function Vill cannot be increasing, because H < A is in disagree-

ment with one of the conditions in (17). In the case of a legal financier, we

have to state a condition on the upper and lower thresholds for the admissible

intensity of payment in order to get that Vleg is increasing.

The illegal financier is expected to obtain more money from the funded firm

than the legal financier. This empirical fact can be formalized in our model, as

a consequence of Existence and Uniqueness Theorem 4:

Proposition 13. It results

Vill(x) > Vleg(x) ∀x ∈ [0,K].

An interesting result for the first derivatives of the value functions in the two

cases holds, in agreement with what we pointed out in Remark 12.

Proposition 14. It results

V ′
ill(x) ≤ V ′

leg(x) ∀x ∈ [0,K]. (18)

For the proof see the Appendix.

6 Numerical experiments

The aim of this section is to propose some numerical experiments to obtain

a further validation of our theoretical study. More specifically, we will derive

the intensity of payment α which maximizes the objective function J(x, α(·))
defined in (5) for three different starting points for the firm value.

We proceed by performing a Monte Carlo simulation. For this purpose, some

parameters values are assigned accordingly with the empirical literature:

• the initial intensity of payment α is given by the product of the loan

interest rate i and the debt amount D. To fit better with the available
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data, we will deal with the analysis of the optimal loan interest rate i,

which will lead to the optimal intensity of payment α;

• we consider α varying within a band. The variation range of the payment

flow derives from the range [i1, i2] of the loan interest rate i, and it should

take into account the applicability of our model to the cases of legal and

illegal financiers. The upper bound comes out from the studies of the usury

phenomenon. Indeed, although one should consider the upper bound of

the usury loan interest rate infinity, empirical evidence shows that i2 =

500% with only 9% of the event which overcomes such a high threshold1.

So, the upper bound is fixed to δ2 = 5 · D, while the lower bound is

assumed to be δ1 = i1 ·D = 0 ·D, in agreement with the purposes of the

illegal financier (to construct a trap for the company, to reinvest illegal

money);

• we consider µ = 1 + ρ = 1.001, where ρ is the revaluation rate of the

company, and σ = 0.01;

• our analysis is performed for three different starting points of the state

variable: x = 100, x = 500 and x = 900 respectively, to represent firm of

small, medium and large size;

• the initial amount of the loan D is assumed to be prudentially given as

the 20% of the value x. Hence we have D = 20, D = 100 and D = 180 for

small, medium and large companies, respectively.

• the threshold K is considered equal to 1000;

• the parameters A, H, δ are assumed to be 200, 1200, 0.03, respectively.

The simulation procedure is implemented as follows:

• the stochastic differential of the Brownian Motion is discretized, as usual:

dW (t) = Λ ∗ √∆t, where Λ is a random number extracted by a centered

normal distribution while ∆t = 1 (1 day);

1CENTRO STUDI E RICERCHE SULLA LEGALITA’ E CRIMINALITA’ ECONOMICA,

L’usura tra vecchi confini e nuovi mercati, Roma - 2002.
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• a discretization of the range [0, 5] of the loan interest rate i with a step

equal to 0.01 is applied, and each step is denoted as is, with s = 1, . . . , 50, 000;

• the time-points are identified as days and we consider 1000 points to con-

struct each trajectory in order to analyze the evolution of the firm wealth

for approximately three years;

• having fixed is, we build 1000 trajectories X
(is)
j , where j = 1, . . . , 1000;2

• for each X
(is)
j we derive the time τ

(is)
j in which, for the first time, the

trajectory of X
(is)
j hits the barrier {0, 1000}.

Let n(is) be the number of the τ
(is)
j such that X

(is)
j (τ (is)

j ) = 0; we calculate for

each value of is the bankruptcy probability as follows:

P (X(is)
j (τ (is)

j ) = 0) =
n(is)

1000
. (19)

Fix s = 1, . . . , 1000. According to definitions (5) and (6) and replacing the

expected value operator with the arithmetic mean, we can write

J(x, αs) =
1

1000

1000∑

j=1

[
− αs

δ

(
e−δτ

(is)
j − 1

)]
+ A · n(is)

1000
+ H ·

(
1− n(is)

1000

)
. (20)

The value function in (7) can be found by optimizing the functional J . There

exists s∗ ∈ {1, . . . , 1000} such that

V (x) = sup
i=1,...,1000

J(x, αs) = J(x, αs∗). (21)

By performing the simulations, we obtain that is∗ = 5. Hence, αs∗ = 5 ·D in

the three cases of x = 100, 500, 900. This is in complete agreement with the

bang-off-bang optimal control in (16), which has been found theoretically.

7 Conclusions and further research

In this paper, a model for optimal financing policies via dynamic optimization

is proposed. After the construction of a very general theoretical model, stochas-

tic control theory is used, in order to derive the main properties of the model

2Starting from i1 = 0, when the 1000 trajectories X
(is)
j , each composed by 1000 points,

are traced, the value is increases of 0.01 and then in relation to this new value of the loan

interest rate we determinate other 1000 trajectories of 1000 points, and so on, till i50,000.
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and solve the related optimization problem. The adopted approach is dynamic

programming theory, and we use a Dynamic Programming Principle proved in

Cerqueti (2009). The concept of viscosity solution is introduced, to study the

Hamilton Jacobi Bellman equation. As a further step, the distinction between

the legal and the illegal financier is pointed out. The optimal intensity of pay-

ment to be applied by the financier depends on the initial wealth of the funded

company: if the value of the firm is small (large) enough at the beginning of his

life, then the optimal intensity of payment is smaller (larger) as well. There is a

critical point for the initial wealth of the firm implying an arbitrary undefined

optimal payment flow. It represents the keypoint for the distinction between a

company with a large or small initial wealth, in the financier’s opinion. Some

numerical experiments provide further validation of our theoretical findings.

Several open problems come out from the theoretical model proposed in this

work. We point out some of them, leaving the related analyses to future re-

search.

• Analysis of the capital structure of the company, assumed to be dependent

on a large number of parameters. From this point of view, it is not mean-

ingless to consider µ and σ (see the state equation (1)) depending on the

dynamic X(·).

• Influence of the financier in the evolution of the firm wealth (only for

illegal financing). The model can be improved by inserting an additive

quantity describing the eventual influence of the investor on the dynamic

of the firm, in the deterministic term of the state equation.

• Endogenous α. In this context, it is possible to construct an evolution

equation for the payment flow α, which depends on the state variable.

The control variables should be chosen directly from the constitutive pa-

rameters of the dynamic of α.

• Empirical analysis. To validate our theoretical model, an empirical anal-

ysis based on data from both the legal and the illegal markets could be

carried out. Unfortunately, a suitable dataset is not easily available.
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Appendix

7.1 Proof of Theorem 5

We introduce the following equation:

δu(x)−µxu′(x)− 1
2
σ2x2u′′(x)+ sup

a∈[δ1,δ2]

{
a
[
u′(x)+1

]
} = 0, ∀ x ∈ (0,K), (22)

We obtain this equation starting from (9) as follows: given

H(x, u, u′, u′′) := −δu(x)+µxu′(x)+
1
2
σ2x2u′′(x)+ sup

a∈[δ1,δ2]

{
a(−u′(x)+1)

}
, ∀ x ∈ (0,K),

(23)

we obtain (22) as

H(x,−u,−u′,−u′′) = 0, ∀ x ∈ (0,K).

We need to recall some important results, which are useful in order to prove the

concavity of the value function.

Lemma 15. u ∈ C0((0,K)) is a viscosity supersolution (subsolution) of (9) if

and only if v := −u is a subsolution (supersolution) of (22).

The proof is omitted.

The previous result implies the following corollary.

Corollary 16. If u is the unique viscosity solution of (9), then it results that

v := −u is the unique viscosity solution of (22).

Now we recall an important general result.
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Lemma 17 (Alvarez et al., 1997). Let us consider the interval I ⊆ R.

Assume that the operator

H̃ : Ī × R× R× R→ R

satisfies the following properties:

• It results

H̃(x, v, p, q) = 0 on I. (24)

• H̃ ∈ C0(Ī × R× R× R).

• H̃ is elliptic.

• It results

(x, v) 7→ H̃(x, v, p, 0)

is concave, for every p.

Let v ∈ LSC(Ī) be a viscosity supersolution of (24).

Let us define the convex envelope v∗∗ of v as

v∗∗(x) := inf
{

λ1v(x1) + λ2v(x2) |x = λ1x1 + λ2x2,

with xi ∈ I, λi ≥ 0, i = 1, 2, λ1 + λ2 = 1
}

.

Then v∗∗ ∈ LSC(Ī) is a viscosity supersolution of (24).

Let us now prove the concavity of the value function.

Proof of Theorem 5. By the Existence and Uniqueness Theorem, the value

function is continuous in (0, K) and can be extended continuously on [0,K].

Thus, if V is concave in (0, K), then V is concave in [0,K].

Due to this fact, we need to prove the concavity of the value function in (0,K).

Let us fix 0 < ε < K/2. We define the interval Iε := [ε,K − ε].

To prove the concavity in (0,K), we need to prove the concavity in Iε, for each

ε.

The proof articulates itself in four steps.
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• First step

By Corollary 16, in order to prove the concavity of V it is sufficient to

prove that u := −V is a convex function.

Indeed, we have to work on (22).

Let us now define

0 = δv − µxp− 1
2
σ2x2q + sup

a∈[δ1,δ2]

{
a(p + 1)

}
=: H̃(x, v, p, q) x ∈ (0,K).

(25)

• Second step

The convex envelope u∗∗ is a viscosity supersolution of (25).

In order to prove the claim, we have to check the validity of the hypotheses

of Lemma 17. We get that

H̃(x, v, p, 0) = δv − µxp + sup
a∈[δ1,δ2]

[
a(1 + p)

]
,

and a simple computation gives us that the application

(x, v) 7→ H̃(x, v, p, 0)

is concave for every p.

Furthermore, it results, by a direct computation, that H̃(x, v, p, q1) ≥
H̃(x, v, p, q2) provided q1 ≤ q2 in Iε. So H̃ is an elliptic operator.

Then we are in the hypotheses of Lemma 17, and the claim is proved.

• Third step

The convex envelope u∗∗ is a viscosity subsolution of (25).

Let us now observe that, if w1 is a viscosity subsolution and w2 is a

viscosity supersolution of (25), then we get that w1 ≤ w2, by the Existence

and Uniqueness Theorem 4.

Thanks to this result, we need to prove that u∗∗ ≤ u in order to prove

that u∗∗ is the viscosity subsolution of (25). We easily get, by definition

of convex envelope, for each x ∈ Iε,

u∗∗(x) = inf
{

λ1u(x1) + λ2u(x2) |x = λ1x1 + λ2x2

}
≤ u(x),

with the choice λ1 = 1, λ2 = 0, x1 = x, x2 arbitrary in Iε.
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• Fourth step

By Theorem 4 and by Corollary 16, we get that v∗∗ is the unique viscosity

solution of (25), and so the viscosity solution of (22), and so u = −V is

convex in (0,K).

Indeed, V is concave in (0,K).

• Fifth step

By the Theorem 4, V can be extended continuously in [0,K]. Thus, the

concavity can be extended in [0,K].

The proposition is completely proved. 2

7.2 Proof of Lemma 6

Theorem 5 guarantees that V is concave. Therefore, it is sufficient to prove

that, for δ 6= µ, it does not exist α1, α2 ∈ R, α1 6= 0, such that

V (x) = α1x + α2 (26)

is a solution of (9) in I ⊆ [0,K], for each interval I.

Suppose that δ 6= µ and the value function V is as in (26). By substituting (26)

in (9), we obtain that the following system must be satisfied:




δα1 = µα1

δα2 = sup
a∈[δ1,δ2]

[
a(1− α1)

] (27)

Since δ 6= µ, then the system (27) does not admit solution. Hence, we can

conclude that condition δ 6= µ implies that V cannot be written as in (26).

2

7.3 Proof of Theorem 7

Let us fix ε ∈ R+. In order to prove the claim, it suffices to check that V is

twice differentiable in the compact set Iε := [ε,K−ε], for each ε ∈ R+ such that

∅ 6= [ε, K − ε] ⊆ [0,K].

The equation (9) is uniformly elliptic in Iε. Moreover, by the concavity and

the continuity, thanks to Alexandrov’s Theorem (see Fleming and Soner (1993),

Appendix E, and just observe that in this particular case we have n = 1),
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we know that V is twice differentiable a.e. in Iε. Moreover, we also get that

V ′ ∈ L∞(Iε).

We have V ′ ∈ L∞(Iε) ⇒ V ′ ∈ Lp(Iε), p ∈ [1, +∞]. Thus, since Iε is bounded,

for each p ∈ [1, +∞), we have
∫

Iε

|V ′(x)|pdx ≤ ess sup|V ′|p · (K − 2ε) < +∞.

Then we can write, a.e. in Iε,

V ′′(x) =
2

σ2x2

[
− δV (x) + µxV ′(x) + sup

a∈[δ1,δ2]

{
a(−V ′(x) + 1)

}]
. (28)

The right-hand side of (28) is the sum of functions which are in Lp in the

compact set Iε, and so we can state that V ′′ ∈ Lp(Iε), ∀ p ∈ [1,+∞].

Hence, we get that V is a function in the Sobolev space W 2,p(Iε), for each

p ∈ [1,+∞].

In the case we are considering, given x ∈ ∂Iε, there exists a 1-dimensional cone

Kx (i.e. an interval) with vertex x and such that Kx ⊆ Iε. Thus, by Sobolev’s

Embedding Theorem (see Gilbarg and Trudinger (1977), Corollary 7.11), we get

that V ∈ Cm(Iε), with m ∈ [0, 2 − 1
k ), ∀ k ∈ (1,+∞). So V ′ is a continuous

function, and the second term of (28) is continuous. Indeed V ′′ ∈ C0(Iε), and

so V ∈ C2,α(Iε), with α = 1− 1
k , k ∈ (1,+∞).

The theorem is completely proved. 2

7.4 Proof of Theorem 8

First of all, we show a technical lemma.

Lemma 18. Assume that u ∈ C0([0,K]) ∪ C2((0,K)) is the classical solution

of (9).

Then we have

E[Λ(t)] = 0, ∀ t ∈ R+, (29)

where Λ(t) is defined as

Λ(t) :=
∫ t

0

e−δsu′(X(s))σX(s)dW (s),

Furthermore, we have

lim
t→+∞

E
[
e−δtu(X∗(t))1{τ>t}

]
= 0. (30)

where (α∗, X∗) is an optimal couple associated to our control problem.
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Proof.

• By definition of stochastic integral, this condition holds if and only if the

stochastic process Y (s) := e−δsu′(X(s))σX(s) is squared integrable with

respect to s, i.e.

E
[ ∫ +∞

0

Y (s)2ds
]

< +∞. (31)

Hence, in order to prove the validity of (29), we have to prove the validity

of (31).

By the twice differentiability of the viscosity solution of the HJB equation,

we have that the first derivative of u is bounded. Therefore, there exists

a positive scalar Mu′ such that

[u′(x)]2 ≤ M2
u′ , ∀x ∈ [0,K].

Moreover, the dynamics (i.e. the solution of the state equation) is a process

in [0, K].

So we get, for each ω ∈ Ω,
∫ +∞

0

Y (s)2(ω)ds =
∫ +∞

0

{[
e−δsu′(X(s))σX(s)

]
(ω)

}2

ds ≤

≤ M2
u′K

2σ2

∫ +∞

0

e−2δsds = M2
u′K

2σ2 1
2δ

< +∞.

So (31) is true, and thus (29) holds.

• Since the solution of (9) is bounded and by the monotonicity of the ex-

pected value operator we get:

0 ≤ E
[
e−δtu(X∗(t))1{τ>t}

]
≤ K · E

[
e−δt1{τ>t}

]
. (32)

Setting a limit for t → +∞ for the three terms of (32), we obtain

0 ≤ lim
t→+∞

E
[
e−δtu(X∗(t))1{τ>t}

]
≤ 0,

and (30) holds.

2

Proof of Theorem 8. We give the proof separating the cases.
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• (a) Let us apply Ito’s Formula to the function e−δtu(X(t)). We get

d
(
e−δtu(X(t))

)
= e−δtu′(X(t))

[
(µX(t)− a)dt + σX(t)dW (t)

]
+

−δe−δtu(X(t)) +
1
2
e−δtσ2X(t)2u′′(X(t))dt.

Then we can write

e−δtu(X(t)) = u(x) +
∫ t

0

e−δs
[
u′(X(s))(µX(s)− a)−

−δe−δsu(X(s))+
1
2
e−δsσ2X(s)2u′′(X(s))

]
ds+

∫ t

0

e−δsu′(X(s))σX(s)dW (s)

Let us consider now the exit time τ ∈ T . We have
∫ t∧τ

0

α(t)e−δtdt + C(X(t ∧ τ))e−δ(t∧τ) =

= u(x)+e−δ(t∧τ)
(
C(X(t∧τ))−u(X(t∧τ))

)
+

∫ t∧τ

0

e−δs
[
u′(X(s))(µX(s)−a)+a−

−δu(X(s)) +
1
2
σ2X(s)2u′′(X(s))

]
ds +

∫ t∧τ

0

e−δsu′(X(s))σX(s)dW (s).

(33)

The expected value of (33) provides

Ex

[ ∫ t∧τ

0

α(t)e−δtdt + C(X(t ∧ τ))e−δ(t∧τ)
]

=

= u(x)+Ex

[
e−δ(t∧τ)

(
C(X(t∧τ))−u(X(t∧τ))

)
+

∫ t∧τ

0

e−δs
[
u′(X(s))(µX(s)−a)+a−

−δu(X(s)) +
1
2
σ2X(s)2u′′(X(s))

]
ds +

∫ t∧τ

0

e−δsu′(X(s))σX(s)dW (s)
]
.

(34)

We can pass to the limit for t → +∞ under expected value operator, in

virtue of Dominate Convergence Lebesgue’s Theorem and Fatou’s Lemma,

and we obtain, using (29),

Ex

[ ∫ τ

0

α(t)e−δtdt + C(X(τ))e−δτ
]

= u(x)+

+Ex

[ ∫ τ

0

e−δs
[
u′(X(s))(µX(s)−a)+a−δu(X(s))+

1
2
σ2X(s)2u′′(X(s))

]
ds

]
.

(35)

Then it results, by Theorem 3,

Ex

[ ∫ τ

0

α(t)e−δtdt + C(X(τ))e−δτ
]
≤ u(x). (36)
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(36) holds, for each α ∈ A. So it holds for the sup on such α. Then we

have

V (x) ≤ u(x).

• (b) Let us consider now the optimal pair (α∗, X∗), with

α∗ ∈ argmaxa

{
(µX∗ − a)u′(X∗) +

1
2
σ2(X∗)2u′′(X∗) + a

}

As in (a), we get
∫ t∧τ

0

α∗(t)e−δtdt + C(X∗(t ∧ τ))e−δ(t∧τ) =

= u(x)+e−δ(t∧τ)
(
C(X∗(t∧τ))−u(X∗(t∧τ))

)
+

∫ t∧τ

0

e−δs
[
u′(X∗(s))(µX∗(s)−α∗)+α∗−

−δu(X∗(s))+
1
2
σ2(X∗(s))2u′′(X∗(s))

]
ds+

∫ t∧τ

0

e−δsu′(X∗(s))σX∗(s)dW (s).

Then ∫ t∧τ

0

α∗(t)e−δtdt + C(X∗(τ))e−δτ1{τ≤t} =

= u(x) + e−δτ
(
C(X∗(τ))− u(X∗(τ))

)
1{τ≤t} + e−δtu(X∗(t))1{τ>t}+

+
∫ t∧τ

0

e−δs
[
u′(X∗(s))(µX(s)−α∗)+α∗−δu(X∗(s))+

1
2
σ2X∗(s)u′′(X∗(s))

]
ds+

+
∫ t∧τ

0

e−δsu′(X∗(s))σX∗(s)dW (s).

By (9) we obtain
∫ t∧τ

0

α∗(t)e−δtdt + C(X∗(τ))e−δτ1{τ≤t} =

= u(x) + e−δtu(X∗(t))1{τ>t} +
∫ t∧τ

0

e−δsu′(X∗(s))σX∗(s)dW (s).

By taking expectation, we get

Ex

[ ∫ t∧τ

0

α∗(t)e−δtdt + C(X∗(τ))e−δτ1{τ≤t}
]

=

= u(x) + Ex

[
e−δtu(X∗(t))1{τ>t} +

∫ t∧τ

0

e−δsu′(X∗(s))σX∗(s)dW (s)
]
.

As in (a), we pass to the limit for t → +∞ under expected value opera-

tor, in virtue of Dominate Convergence Lebesgue’s Theorem and Fatou’s

Lemma. Hence, by (29) and (30), we obtain

J(x, α∗) = u(x).

and so we get that V (x) = u(x).

2

32



7.5 Proof of Proposition 9

The function Ha is continuous with respect to the variable a ∈ [δ1, δ2], and

so Weierstrass’ Theorem guarantees that it has an absolute maximum point in

[δ1, δ2].

A straightforward computation gives that the maximum point of Ha is given by

(14). 2

7.6 Proof of Theorem 10

First of all, we need a technical lemma to proceed.

Lemma 19. The closed loop equation (15) admits an unique solution.

Proof. The proof of the result follows by (14) and by the existence and unique-

ness of the solution of (1). 2

Proof of Theorem 15. The proof is a straightforward application of Theorem 8,

starting from Proposition 9 and Lemma 19. 2

7.7 Proof of Proposition 11

Consider x, y ∈ [0, K] such that x < y and a control αx
ε ∈ A that is ε-suboptimal

for x, i.e.

V (x) ≤ ε + Ex

[ ∫ τx
ε

0

αx
ε (t)e−δtdt + C

(
X(τx

ε )
)
e−δτx

ε

]
,

where τx
ε (τy

ε ) is the exit time associated to the starting point x (y) and the

control αx
ε .

A partition of Ω can be written as follows:

Ω = Ω0 ∪ Ω11 ∪ (Ω121 ∪ Ω122) ∪ Ω2, (37)

where

• ω ∈ Ω0 ⇔ (X(τx
ε )(ω), X(τy

ε )(ω)) ∈ {0,K}2 and P ({ω}) = 0;

• ω ∈ Ω11 ⇔ X(τx
ε )(ω) = 0, X(τy

ε )(ω) = 0. In this case, it results τx
ε < τy

ε ;

• ω ∈ Ω121 ⇔ X(τx
ε )(ω) = 0, X(τy

ε )(ω) = K, τx
ε ≤ τy

ε ;
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• ω ∈ Ω122 ⇔ X(τx
ε )(ω) = 0, X(τy

ε )(ω) = K, τx
ε > τy

ε ;

• ω ∈ Ω2 ⇔ X(τx
ε )(ω) = K, X(τy

ε )(ω) = K. In this case, it results τx
ε > τy

ε .

We work on the partition (37), extending the result by the monotonicity prop-

erty of the expected value operator.

Consider ξ ∈ [0,K] and the control αε
x introduced above. Define the random

variable

J̃(ξ, αε
x) =

∫ τξ
ε

0

αx
ε (t)e−δtdt + C

(
X(τ ξ

ε )
)
e−δτξ

ε .

Suppose that ω ∈ Ω11. Then we simply have

J̃(y, αε
x)(ω)− J̃(x, αε

x)(ω) =
∫ τy

ε

τx
ε

αx
ε (t)e−δtdt + A

(
e−δτy

ε − e−δτx
ε

)
≥

≥
(δ1

δ
−A

)
·
(
e−δτy

ε − e−δτx
ε

)
> 0,

for Aδ < δ1.

In the case in which ω ∈ Ω121, we get

J̃(y, αε
x)(ω)− J̃(x, αε

x)(ω) =
∫ τy

ε

τx
ε

αx
ε (t)e−δtdt + He−δτy

ε −Ae−δτx
ε ≥

≥
(δ1

δ
−A

)
·
(
e−δτy

ε − e−δτx
ε

)
> 0,

for Aδ < δ1.

For ω ∈ Ω122 we can write

J̃(y, αε
x)(ω)− J̃(x, αε

x)(ω) = −
∫ τx

ε

τy
ε

αx
ε (t)e−δtdt + He−δτy

ε −Ae−δτx
ε ≥

≥
(δ2

δ
−H

)
·
(
e−δτx

ε − e−δτy
ε

)
> 0,

for Hδ > δ2.

Assume now that ω ∈ Ω2. Then we have

J̃(y, αε
x)(ω)− J̃(x, αε

x)(ω) = −
∫ τx

ε

τy
ε

αx
ε (t)e−δtdt + H

(
e−δτy

ε − e−δτx
ε

)
≥

≥ δ2

∫ τx
ε

τy
ε

e−δtdt + H
(
e−δτy

ε − e−δτx
ε

)
≥

≥
(
H − δ2

δ

)(
e−δτy

ε − e−δτx
ε

)
> 0,

for Hδ > δ2.

By the monotonicity of the expected value operator, we have that V is an

increasing function. 2
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7.8 Proof of Proposition 14

By the Regularity Theorem 7, it is sufficient to prove that

Vill(y)− Vill(x)
y − x

≤ Vleg(y)− Vleg(x)
y − x

, ∀x, y ∈ [0,K], x < y. (38)

Let us consider the partition of Ω defined in (37). Then, by the same arguments

developed in the proof of Proposition 11, we get (38). 2

35


