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Abstract: Mammography is the gold standard technology for breast screening, which has been
demonstrated through different randomized controlled trials to reduce breast cancer mortality.
However, mammography has limitations and potential harms, such as the use of ionizing radiation.
To overcome the ionizing radiation exposure issues, a novel device (i.e. MammoWave) based on low-
power radio-frequency signals has been developed for breast lesion detection. The MammoWave is a
microwave device and is under clinical validation phase in several hospitals across Europe. The device
transmits non-invasive microwave signals through the breast and accumulates the backscattered
(returned) signatures, commonly denoted as the S21 signals in engineering terminology. Backscattered
(complex) S21 signals exploit the contrast in dielectric properties of breasts with and without lesions.
The proposed research is aimed to automatically segregate these two types of signal responses by
applying appropriate supervised machine learning (ML) algorithm for the data emerging from this
research. The support vector machine with radial basis function has been employed here. The
proposed algorithm has been trained and tested using microwave breast response data collected at
one of the clinical validation centres. Statistical evaluation indicates that the proposed ML model can
recognise the MammoWave breasts signal with no radiological finding (NF) and with radiological
findings (WF), i.e., may be the presence of benign or malignant lesions. A sensitivity of 84.40% and a
specificity of 95.50% have been achieved in NF/WF recognition using the proposed ML model.

Keywords: radiation-free technology; non-invasive lesion detection; X-ray free breast screening;
MammoWave’s dielectric breast response; supervised machine learning

1. Introduction

Breast cancer is the most common cancer in women worldwide, affecting 1 in every
8 women [1]. Mammography is the gold standard technology for breast screening but it
has ionizing radiation which leads to potential harms for patients; specifically, the cumula-
tive effect of routine mammography screening may increase women’s risk of developing
radiation-induced breast cancer [2]. Thus, age and screening frequency have been de-
fined taking into account mammography risk-benefit ratio. Also, women feel some pain
and discomfort [3] when undergoing mammography. Specifically, many women avoid
mammography screening by fear of pain, embarrassment, discomfort, and radiation [1].
Additionally, the level of anxiety about the screening outcome is a tangible factor reducing
mammography screening adherence, although the attitude differs depending on the age,
profession, marital status, ethnicity, racial and educational differences [4,5].

To overcome the fear of pain, discomfort and ionizing radiation exposure issues,
a novel device (i.e. MammoWave) based on low-power radio-frequency signals has been
developed for breast lesion detection by UBT S.R.L. (Italy) team [6].
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Moreover, in some cases, lesions prove difficult to detect from mammography, espe-
cially when the breast is highly dense [7–9], or if the breast comprises small, elongated
salt-like microcalcification particles [10]. However, the evolution of machine learning (ML)
algorithms and the greater availability of medical datasets from different modalities is
enabling improved assisted detection and better performance hopes [11–13].

A recent case study on early breast cancer detection using AI methods from the
mamographic images has been demonstrated in [14]. This study focus on the data collected
from UK and US clinical trials. They shown a cancer case (small, irregular mass with
associated microcalcifications and ) that was missed by six readers in the examination,
but correctly identified by the AI system. In this case three level deep learning was used to
train the model for the breast cancer detection. In [15], a background on the key ethical,
technical, legal and regulatory challenges of AI in breast imaging and performance in breast
screening have been provided.

Recently, microwave-based techniques have emerged and received attention as an
alternative breast-screening tool [6,16–19]. Ultrawide band microwave breast imaging
(UWB-MWBI) demonstrates strong evidence of the dielectric property contrast between
healthy and malignant tissues. Usually, a multistatic or monostatic radar mechanism is
employed to measure the dielectric property contrast of breast tissues in the spectrum
between 0.5 GHz to 9 GHz [20,21]. Hitherto, seven clinically tested MWBI operational
systems have been reported in the literature such as; (a) UBT Srl, Italy who designed a
MWBI system, named MammoWave, differentiate healthy tissues and tissues with lesions.
MammoWave has been tested on 150 patients [22]; (b) Dartmouth College, USA, constructed
a MWBI device for breast cancer identification where patterns were inspected by a the
Surgical Pathology team at Dartmouth-Hitchcock Medical Center (DHMC). The trial was
performed with 150 patients with and without lesions [23]; (c) Multistatic Array Processing
for Radiowave Image Acquisition (MARIA) system was developed at the University of
Bristol, UK and a clinical trial was carried with over 300 patients including healthy and
lesion breast patterns [24,25]; (d) Tissue Sensing Adaptive Radar (TSAR) system was
developed at the University of Calgary, CA and a clinical trial was reported with a small
group of patients [26,27]; (e) Southern University of Science and Technology, China was
constructed a MWBI imaging system and completed their first trial with a small group of
patients [28]; ( f ) Hiroshima University, Japan trialled a MWBI for cancer identification
with a small group of patients [29]. Additionally, McGill University, Canada [30] and
Shizuoka University, Japan [31] have also developed their own MWBI system and recently
started trials.

Microwave breast screening is non-ionising, non-invasive, and painless as it does
not include any form of breast compression. A handful of microwave-based studies
have been performed by researchers to detect breast cancer using real data, with the
majority investigated using either numerical simulations or with phantoms. UBT Srl’s
MammoWave is one of the few Ultra-Wide Band (UWB) based microwave breast screening
prototypes built, tested, and validated. MammoWave, uniquely functions in air with
2 antennas rotating in the azimuth plane, operating within the frequency band of 1–9 GHz.
MammoWave examinations record the complex S21 (backscattered (returned) complex
signals), in the frequency domain. Artefact removal is performed through appropriate
mathematical procedures, namely rotation subtraction [32,33].

Contribution towards This Research

This work demonstrates that Machine learning (ML) can help understand phenomena
from the frequency spectrum collected through MammoWave in response to the stimulus,
segregating breasts with and without lesions. Specifically, ML can recognise the Mam-
moWave signal response of breasts with no radiological finding (NF) and breasts with
radiological findings (WF), i.e., with lesions (finding) which may be benign or malignant.
Contributions of this study are: (a) the experiment has been performed across 61 breasts,
enabling the exploration of lesions with different dimensions. (b) The new data appear



Tomography 2023, 9 107

differently in the hyperplane, motivating the authors to explore Gaussian kernel of SVM
alongside of quadratic kernel (SVMQ ) and Gaussian kernel (SVMG), which are found to
be more efficient in this case. (c) Making better use of the frequency response signals has
been explored and experimentally it is shown that 50 components obtained using principal
component analysis (PCA) provide best classification in this case. (d) The prediction results
have been analysed by the team of researchers and radiologists through statistical measure-
ments to understand the false positive and negative classifications, revealing that lesion
size and breast density have effect on microwave response as well as ML predictions.

2. Materials and Methods

A diagrammatic interpretation of the proposed work is presented in Figure 1. Each
breast has its own correspondent output of the radiologist study assessment, which has
been used as gold standard for categorization of the breasts in two categories: breasts with
no radiological finding (NF), and breasts with radiological findings (WF), i.e., with lesions
which may be benign or malignant.

Figure 1. Proposed flow chart of MammoWave signal classification for the breast lesion detection.

Regarding the radiological study review, the radiologist assessment (NF/WF) used
(accordingly to his/her opinion) one or more of the following conventional techniques:
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mammography, performed using Selenia LORAD Mammography System (Hologic, Marl-
borough, MA, USA); echography, performed using the MyLab 70 xvg Ultrasound Scanner
(Esaote, Genova, Italy); magnetic resonance imaging, performed through a 3.0 T MAG-
NETOM scanner (Siemens Healthcare, Erlangen, Germany). Gold standard labels of the
breasts (NF or WF) have been employed to train and test the ML algorithms to automat-
ically identify breast response signals backscattered from lesions via the MammoWave.
The approach follows six primary steps: patient’s undergo breast examinations through
conventional approaches and breast type annotation (WF or NF) by the resident radiolo-
gist; subsequently, patient’s undergo breast examination through MammoWave and the
microwave signal data is collected. Once this is done, classification of resulting microwave
signals is performed. The reduction of microwave feature space applying PCA to improve
the classification result then follows. Finally, classification of signals employing only the
real fragments of the complex signals, reduction of real part’s feature space for improving
the classification result. Each phase is explained in the following subsections.

The proposed research aims to identify the optimal classification settings for the research
question using the components of complex S21 numbers. There are four possible ways to em-
ploy complex numbers (not alter the form of the original signal)and perform the classification
task: (i) applying actual complex S21 responses, (ii) using features extracted from the complex
S21 responses, (iii) using resistance values (real part of the complex S21 responses) from the
transmitted voltage and current (reactance or imaginary part of S21 varies inversely with
increasing frequency thus unsuitable for this classification task), (iv) using features extracted
from the real part of S21. The possible classification directions involved in the proposed study
to improve breast lesion identification performances detailed in the later section.

• MammoWave breast signal classification considering features extracted from the
complex S21 responses. Features have been extracted using PCA a powerful math-
ematical tool for multivariate data transformation. SVMQ has been chosen for the
ML task applying the team’s previous research. Subsequently, SVMG has been ex-
perimented alongside observing spherical data shapes for improved classification
SVMG performed better than SVMQ here, thus SVMG has been further adopted for
the following classification tasks.

• MammoWave breast signal classification considering real parts of complex S21 re-
sponses and employing SVMG.

• MammoWave breast signal classification considering features extracted (by PCA) from
real parts of complex S21 and employing SVMG.

Characteristics of the data used in each of these stages and their performance sum-
maries are explained in the following sections.

Apparatus Description and Data Collection

The MammoWave device (shown in Figure 2a) has been designed by Umbria Bio-
engineering Technologies (UBT), Italy. The device comprises a cylindrical aluminium
container equipped with a chamber and cup to comfortably place the breast when women
(or, participants) lay down to be screened. There is one transmitting (tx) and one receiving
antenna (rx) which operate at 1 to 9 GHz frequency to obtain the breast’s response to the
applied microwave signals. The 2 antennas rotate around the breast, illuminating it from
a number of angles. Figure 2b displays how patients undergo the MammoWave’s breast
examination, placing the breast inside the chamber with no breast compression required.
To support all patients, three different cup sizes are available, and the best fit for the patient
breast is selected. The largest cup has a diameter of 135 mm; thus, it cannot accommodate
very large breasts. The cups have the following features. They are made using polylactic
acid (PLA) to ensure biocompatibility [34] and with a width of 1 mm. This 1 mm thickness
is based on modelling and experimental investigations by the team which demonstrated
that this thickness has no effect on the microwave imaging outcomes [35].
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(a) (b)
(c)

Figure 2. (a) MammoWave device designed by Umbria Bioengineering Technologies (UBT), Italy.
(b) Patient’s breast examination procedure with MammoWave. (c) Pictorial view of the transmitting-
receiving antenna positions of MammoWave measurement.

The functioning principle of the MammoWave system is based on the dielectric prop-
erties (i.e., relative dielectric constant and conductivity) contrast between breast normal
tissue and tissue with lesions at microwave frequencies. The antennas inside the container
(covered to absorb microwaves) are fitted at the constant height, in free space and can rotate
across the azimuth for collecting the microwave signals from diverse angular locations.
The transmitting and receiving antennas are attached to a 2-port VNA (Cobalt C1209,
Copper Mountain, Indianapolis, IN) that operates up to 9 GHz. Measurements have been
accomplished by recording the complex S21 in a multi-bistatic fashion. For every transmit-
ting and receiving spot, the complex S21 is gathered from 1 to 9 GHz, along with 5 MHz
sampling. Let, rx rotate across the azimuth collecting the microwave signals from diverse
angular at a radius a0. The received signals can be expressed as, n = 1,2,. . . ,80, denotes
the receiving points; m = 1,2 . . . ,5 indicates the transmitting sections, p = 1,2 indicates the
position inside each transmitting section; and f is the frequency.

MammoWave uniquely functions in air with 2 antennas rotating in the azimuth plane,
operating within the frequency band of 1–9 GHz. The 2 antennas, one transmitting and
one receiving, both rotate around the breast, illuminating it from a number of angles.
MammoWave examinations are performed by recording the S21 (backscattered (returned)
complex signals), in the frequency domain. Artefact removal is performed through appro-
priate mathematical procedures, namely rotation subtraction [32,33]. The MammoWave
system has been employed to collect patient data: according to the conventional radiologist
review, 25 breasts without lesions and 36 breasts with lesions, have been used in the work.
Different S21 signatures are found when the microwave signals interact through breast
tissues. This signature is due to the contrast in dielectric properties i.e., permittivity and
conductivity, within the spectrum of microwave frequencies as they pass through the
breasts. A high contrast (up to 5) has been reported [36] between healthy breast tissue
and malignant tissue, while recent studies confirm a high contrast only between fatty and
malignant breast tissues, while it decreases between healthy fibro glandular and malignant
tissues [37].

MammoWave removes the need for applying any matching liquid. For each breast,
measurements have been performed recording the complex S21 in a multibistatic fashion.
Specifically, we employed here 15 transmitting positions, displaced in 5 triplets centred at
0◦, 72◦, 144◦, 216◦, and 288◦; in each triplet, the transmitting positions are displaced by 4.5◦.
For each transmitting position txm, the receiving antenna is moved to measure the received
signal at 80 receiving points rxn, equally spaced along the azimuth of 4.5◦. For each trans-
mitting and receiving position, we recorded the complex S21 in the frequency band from 1
to 9 GHz, using a frequency sampling of 5 MHz. Thus, that for each breast, the raw-data
can be represented by a matrix of complex S21 with dimension (15× 80)× (1601× 2).
Figure 2c shows a pictorial view of the measurements setup. A breast scan is completed
in ∼ 10 min, whilst the person is in a horizontal face down position on a thin mattress,
with no breast compression. Numbers and displacements of transmitting and/or receiv-
ing positions can be changed [35]; specifically, an increase of the number of transmitting
and/or receiving positions will lead to an increase of the measurement time. We verified
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in phantoms that the proposed configuration allows detection in a reasonable measure-
ment time [35], i.e., ∼ 10 min, a duration which is similar to a traditional X-ray breast
screening examination.

The MammoWave feasibility clinical validation has been performed in Perugia and
Foligno Hospitals, Italy (Ethical Committee of Umbria, Italy, approval N. 6845/15/AV/DM
of 14/10/2015, N. 10352/17/NCAV of 16/03/2017, N 13203/18/NCAV of 17/04/2018).
The correspondent clinical protocol aims to quantify the device’s accuracy in breast lesions
detection. As an inclusion criterion, the subjects should have a radiologist study output
obtained through conventional examinations (mammography and/or ultrasound and/or
magnetic resonance imaging) within the last month. The protocol and procedures were
in accordance with institutional and ethical standards in research, with Declaration of
Helsinki (1964) and its later amendments.

For this study, we used data of 61 breasts, each one with its own correspondent
radiologist study review output, which has been used as gold standard for classifying
the breasts in two categories: breasts with no radiological finding (NF), and breasts with
radiological findings (WF), i.e., with lesions which may be benign or malignant. Some
details of the detected or suspected lesions have been collected for WF breasts; moreover,
pathology and/or clinical follow-up has been performed for lesions’ final assessment
(benign/malignant). The subject’s information is charted in Table 1. In Table 2 some details
of the radiologist study review are given for WF breasts.

Table 1. Summary of the patient population used in this study.

Name of Parameters Values

Total patients 34

Total subjects (breasts) 61

Number of patients age between 20–49 year 23

Number of patients age between 50–80 year 38

Mean of patient’s age (in year) 52

Standard deviation of patient’s age (in year) 12

Table 2. Details and related radiologist’s review for the breasts with radiological findings (WF).

Age Breast
(L/R)

ACR
Breast Density

Mammography
BI-RADS

Echography
BI-RADS

Radiologist’s Output Details:
Sizes (mm) & Notes (if Available)

Pathology or 1-Year
Clinical Follow-up Output

48 L D 3 - Microcalcifications Benign

65 L C 4 - Cluster of microcalcifications Benign

40
L B 2 2

Three masses:
15 mm, 21 mm, and 23 mm Benign

R B 2 2 Microcalcifications Not available

52 L C 5 - Microcalcifications Malignant

47 L D 2 2 Microcalcifications Benign
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Table 2. Cont.

Age Breast
(L/R)

ACR
Breast Density

Mammography
BI-RADS

Echography
BI-RADS

Radiologist’s Output Details:
Sizes (mm) & Notes (if Available)

Pathology or 1-Year
Clinical Follow-up Output

55
R C 2 2 1.6 mm microcalcifications Benign

L C 2 2 3.8 mm microcalcifications Benign

51 L C 2 2 Presence of metallic marker Benign

54 R A 2 2 Microcalcifications Benign

77 R D - 5 17 mm mass Malignant

61
R C 4 -

Multifocal lobular type suspected
carcinoma (MRI BI-RADS 4) Malignant

L C 2 -
Macrocalcification and Focal

contrast enh. (MRI BI-RADS 3) Not available

50 L B 2 2 10 mm mass Benign

67 L C 4 - Microcalcifications Malignant

49 L A 3 - Microcalcifications Benign

70 L D 3 4 Mass Malignant

42 L C 2 3 7 mm mass, hypoechoic Benign

67 L B 3 - Architectural distortion Benign

56 R B 4 4
31 mm mass, hypoechoic,

irregular borders Malignant

43 R D 1 3 12 mm mass Benign

51 L C 3 - Microcalcifications Benign

59 L B - 4
11 mm areolar, suspicious

of malignancy Malignant

40 L D 2 2 30 mm mass Benign

35 R C 2 3 7 mm, hypoechoic Benign

37 L A 2 3 25 mm mass Benign

43 R B 3 2 Microcalcifications Malignant

54 R B 2 2 18 mm mass Benign

49 L A 2 3 16 mm mass Benign

56 L D 4 4 27 mm mass Malignant

63 L A 3 4 6 mm mass Malignant

55 R C 4 4 23 mm mass Malignant

L C 2 2 Multiple cysts Benign

64 R B 3 - 1.6 mm microcalcifications Benign

37
R - - 3 15.4 mm mass Benign

L - - 2 Multiple cysts Not available

3. Proposed Methodology

The proposed ML for segregating breasts with and without lesions from the Mam-
moWave signal consist of mainly three stages. At first the PCA has been applied to the
collected data from 61 breasts for the optimum use of the frequency response signals. Then
SVM was applied on the extracted feature by PCA for the classification and results were
compared with two different kernel functions. Finally, the performance of the classification
method were analysed and results were validated statistically. A flow chart of the proposed
method shown in Figure 3.
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Figure 3. A Flowchart of the classification stages involved in the proposed ML experiment. SVMG

and SVMQ have been trialled and compared, employing PCs of the complex S21 data (raw data).
The investigation continued with SVMG, comparing its performance with SVMQ. Subsequently, real
parts and PCs obtained from the real parts of the complex S21 have been employed in the second and
third stages respectively to classify the NF-WF signals by SVMG. The optimal performance attained
in the third stage applying PCs of real parts of complex S21 with SVMG.

3.1. Principal Component Analysis

Principal components (PCs) have been extracted from the MammoWave’s complex
S21 responses, represented as λ = ∑NF=1601

n=1 λreal(n) + jλimg(n), where n is the number of
frequencies, λreal and λimg are the real and imaginary components respectively. The The
λreal indicates the resistance of the dielectric materials (tissues) to the transmitted signals
with n number of frequencies. The λimg indicates the capacitance of the dielectric ma-
terials (tissues) of the transmitted signals with n number of frequencies. PCA has been
implemented on both λreal and λimg components to extract principal components (PCs) for
classifying signals obtained from breast considering covariance matrix and Eigen vector.

3.2. Basic Theory of the Proposed Algorithms

Several ML algorithms present for classification in the literature, although the selec-
tion of appropriate methods is quite intuitive and needs to be determined heuristically.
In support vector machine (SVM), each breast signal data consist of S−dimensional feature
vector and a class is refer to each corresponding pattern [38]. SVM assigns a class label to
each signal data pattern on the basis of its position with respect to a decision hyperplane,
which defines by Equation (1), where, b is bias and x is variable. The distance between
those boundaries of a margin area around the decision hyperplane, is called the margin
width defined by wTx + b = ±1. In SVM, kernel function must be chosen in order to
achieve better performance. It defines the structure of the high-dimensional feature space
to determine maximise margin hyperplane Equation (2).

wTx + b = 0 (1)

ŵ, b̂ = arg min
w,b

(
1
2
‖w‖2

)
(2)
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The experimented data distribution appears non-linearly separable and to avoid model
overfitting, hence the quadratic kernel (SVMQ) and Gaussian kernel (SVMG) function have
been chosen for this NF and WF signal classification.

SVMQ have been employed to differentiate data points by minimising the gap between
the two groups. The considered quadratic function is obtained by the optimisation problem
define by Equation (3), where, xi, xj are real valued vectors, d is degree of polynomials, here
d = 2 (quadratic), since larger value tend to overfit.

k(xi, xj) = (xi · xj + 1)d (3)

SVMG is popular kernel function for its excellent learning performance which can
approximate bounded and continuous functions arbitrarily well, defined by Equation (4).
The non-linear Euclidean distance controlled by kernel width parameter σ, which has great
influence for the classification accuracy. It determine the feature space that the samples
will be mapped onto. As σ → 0, where all samples is classified correctly, but learning
generalisation performance is poor and SVM can not classify new samples; whereas σ→ ∞,
the whole sample is classified as one class. This function creates the best hyperplane to
classify the subjects here.

k(xi, xj) = exp

(
−
‖xi − xj‖2

2σ2

)
, (4)

3.3. Performance Analysis

In this work, 61 breasts were used, of which: 26 NF and 35 WF breasts (see Table 2).
A summary statistic of two raw microwave scan population is shown in Table 3. Quantita-
tive range of features of each population are not significantly high and compact in nature.
Hence, application of normalisation could make the features insignificant for machine
learning application and has been avoided in this work.

Table 3. Approximated quantitative summary of raw S21 signals, as these values may vary with the
addition of new patients.

Breast Type Mean Maximum Minimum Median Standard
Deviation Variance

No-Finding (NF) 2.179 × 10−5 0.114 −0.105 −8.286 × 10−5 0.011 4.578 × 10−7

With-Finding (WF) 1.985 × 10−5 0.118 −0.108 −1.640 × 10−4 0.011 4.651 × 10−7

MammoWave’s breast screening data is non-linearly separable and logistic regression
assumes the linearity between dependent and independent variables. Hence, logistic
regression algorithm has not been attempted for classifying the data into WF and NF classes.
In case of decision tree, a small change in the test/unseen data can cause a large change
in the structure of the decision tree causing instability. Also, decision tree is very much
sensitive to the new data which may put the whole system into risk. Therefore, decision
tree has not been employed for the classification task. The leading supervised and non-
linear classifiers such as, k-nearest neighbour, and multi-layer perceptron neural network,
support vector machines have been attempted before and reported in the previously
published article [39]. Support vector machine’s quadratic (SVMQ) kernel has been selected
following the previous research findings. As SVMQ was applied on a limited number
of patients after performing dedicated S21 pre-processing for artefact removal. Here,
with the aim of exploring the applicability of ML algorithms directly to S21, i.e., raw-
data and observing spherical data shapes. Hence, the two algorithms SVMG and SVMQ
are investigated and compared for obtaining improved classification performance. Also,
the proposed work explores the possible way for improving previous results using principal
component analysis (PCA) [40] on raw S21 signals (described in Section 4.1), real parts
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of S21 signals (described in Section 4.2, and PCA over real parts of S21 signals (described
in Section 4.3 minimising false positive-negative signals and identify the appropriate
numerical sequence for the classification of NF and WF signals. It is possible that even
the data are labelled into two groups by the radiologists but the finite differences are
not suitable for classification when the elements of S21 and principal components are
prepared. Therefore, two sample t-test has been implemented three times before applying
machine learning algorithm. Null hypothesis (H0) of the proposed work assumes the
S21 values or extracted features applying PCA of two population (NF and WF group)
comes from independent random samples from normal distributions with equal means
and equal but unknown variances. However, the alternative hypothesis (Ha) assumes
the S21 values or extracted features applying PCA of two population (NF and WF group)
comes from unequal means. Hence, Ha needs to be accepted in order to perform NF-
WF signal classification. The ideal importance level α = 0.05 has been expected for
tolerating and dismissing the null hypothesis, where p-value has been thought about for
choosing the factual importance. Additionally, the confidence interval for the distinction in
populace method for NF and WF signals have been considered, where CL and CU show
the lower and upper limits of the certainty span. The ML experiment has been divided
into two major parts; (a) realisation of optimal feature combination through training and
validation phase (described in Sections 4.1–4.3), (b) testing the trained model with optimal
settings (described in Section 4.4). The data have partitioned using Monte Carlo cross
validation (MCCV) [41] in both cases. This is done because it randomly partitions to
select the training and validation dataset helping to understand the impact of risk and
uncertainty in NF-WF breast signal prediction. The performance outcomes (statistical
metrics) have been aggregated and averaged over all the rounds. A number of statistical
metrics, accuracy, sensitivity, and specificity have been used to investigate the classification
performance of the classifiers [42]. Subsequently, Matthews Correlation Coefficient (MCC)
[43] has been implemented to investigate the classification outcomes and estimate quality
of classification and probability of the informed decision respectively. Receiver operating
characteristic (ROC) curve has been generated for the optimally performing ML model
to explain the diagnostic competence and steadiness of the classification system with
different discrimination threshold. The hyperparameter optimisation has been conducted
in training-validation phase and best operating point decided analysing ROC curve. While
the optimised parameters and ROC threshold have been used to produce final testing result
(described in Section 4.4).

4. Results Analysis

According to the radiologist’s review, a total of 34 patients have been included in
this study, with a total of 61 breasts examined (see Table 1). Among the total examined
breasts, 25 NF and 36 WF breasts underwent the MammoWave exam, collecting S21 raw
data. WF breasts are breasts having lesions, which may be benign or malignant; lesions
were found to have dimensions ranging up to 32 mm. The raw-data of each breast are
represented by a matrix of complex S21 having dimensions 1200 × 3202 (described in
Section 2), where each complex signal contains 1601 real and 1601 imaginary components.
Hence the classification experiment has been conducted on total 73,200 signals (31,200 NF
signals and 42,000 WF signals). Complex S21 raw data signals and its components have been
individually employed for experimental purpose, where prediction efficiency is influenced
by the discriminating ability of individual features i.e., real, and imaginary parts of complex
S21. Each simulation has been run twenty-five times to observe the result stability before
reporting average performance metrices.

4.1. Classification Applying PCs of Complex S21

Figure 4 shows the percentage of total variance obtained from each PC for two different
breast S21’s, and the first 80 PCs are found to be quantitatively significant. This is because
numerically, the variance values are a factor of 10−5 after the 80 PCs, hence extremely
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small and quantitatively insignificant, thus the team will investigate the first 80 PCs only.
Figure 4a,b show an example of percentage variance for the first 80 PCs, where the x−axis
and y−axis represent the number of components and percentage of variance respectively.
Figure 4a displays the percentage of variance of a NF breast and Figure 4b describes the
percentage of variance of a WF breast. Hence, the experiment for reduced feature space
has been started from 80 PCs and features are continually eliminated until the optimal
performance achieved with this feature setting. Maximum variances of 23.774% and
32.289% were achieved for NF and WF breast contained the within 80 PCs mentioned above.

0 20 40 60 80

Principal Components

0

5

10

15

20

25

P
er

ce
n

ta
g
e 

o
f 

th
e 

T
o
ta

l 
V

a
ri

a
n

ce

(a)

0 20 40 60 80

Principal Components

0

5

10

15

20

25

30

35

P
er

ce
n

ta
g
e 

o
f 

th
e 

T
o
ta

l 
V

a
ri

a
n

ce

(b)
Figure 4. Example of significant variance achieved applying PCA on complex S21 signals. (a) Signifi-
cant variance achieved applying PCA on complex S21 signals of a NF breast. (b) Significant variance
achieved applying PCA on complex S21 signals of a WF breast.

Table 4 shows the outcomes of the t-test, where p < α rejects the null hypothesis H0
(H0 = 1), accepts alternative hypothesis Ha, and the true mean of the population belong
between −3× 10−5 to −1.500× 10−5. Hence, the acceptance of alternative hypothesis
indicates that the λreal data comes from populations with unequal means and can be
employed for NF-WF signal classification task.

Table 4. Two-sample t-test on PCA features extracted from MammoWave’s complex S21 data.

Null Hypothesis
(Hnull)

Probabilty (p) Confidence Interval
(CL)

Confidence Interval
(CU )

1 7.516× 10−10 −3.000× 10−5 −1.500× 10−5

The results obtained here are from the selection of 80 PCs based on the investigation
of Figure 4. With the PC length varied from 80 to 40 at 10-unit intervals, the variation of
the classification performance of SVMQ and SVMG was obtained and tabulated in Table 5.
Accuracy (Ac), sensitivity (Se), specificity (Sp), and the Matthews Correlation Coefficient
(MCC) performance measure have been computed to investigate the predictions provided
by SVMQ and SVMG. Table 5a,b show the classification performance of SVMQ and SVMG
respectively. Each set of performance metrics varying principal components (PCs) have
been included here. The optimal performance of both SVMQ and SVMG in this case was
obtained in the first 50 PCs. Outcomes have been plotted in Figure 5 for comparing the
performance in graph. Figure 5a,c,e,g show the Ac, Se, Sp, and MCC respectively obtained
from classification applying SVMQ. The best sensitivity Se of 0.448 obtained by SVMQ
employing 50 PCs which is not significant and satisfactory for breast lesion identification.
Though, achieved the specificity Sp is 0.820 but the misclassification of breast WF signals
(signals reflected from lesions) i.e., false positives lowered the overall Ac and MCC. The best
set of performance of SVMQ achieved employing 80% of training data (and 20% validation
data) with 50 PCs, where Ac = 66.80%, Se = 44.80%, Sp = 82%, and MCC = 29%.
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Table 5. The classification results over reduced feature space (i.e., extracted features from MammoWave’s original frequency response) after applying SVMs.
(a) The classification results over reduced feature space (i.e., extracted features from MammoWave’s original frequency response) after applying SVMQ. (b) The
classification results over reduced feature space (i.e., extracted features from MammoWave’s original frequency response) after applying SVMG.

Feature
Dimension → PC-80 PC-70 PC-60 PC-50 PC-40

Validation
Data ↓ Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC

95% 0.644 0.509 0.737 0.251 0.635 0.434 0.774 0.221 0.626 0.489 0.720 0.213 0.616 0.416 0.754 0.180 0.601 0.410 0.733 0.150

90% 0.670 0.510 0.781 0.302 0.653 0.471 0.781 0.264 0.647 0.468 0.772 0.251 0.630 0.422 0.775 0.210 0.611 0.368 0.779 0.161

85% 0.682 0.518 0.797 0.328 0.670 0.501 0.787 0.301 0.654 0.455 0.793 0.264 0.642 0.427 0.791 0.235 0.621 0.370 0.796 0.183

80% 0.690 0.522 0.807 0.345 0.680 0.535 0.781 0.326 0.666 0.458 0.811 0.289 0.649 0.423 0.806 0.248 0.629 0.391 0.794 0.202

75% 0.693 0.528 0.808 0.352 0.684 0.516 0.799 0.330 0.666 0.462 0.808 0.289 0.653 0.430 0.808 0.257 0.632 0.343 0.832 0.201

70% 0.706 0.565 0.804 0.380 0.689 0.542 0.791 0.345 0.676 0.498 0.799 0.313 0.658 0.434 0.813 0.268 0.630 0.345 0.830 0.201

65% 0.704 0.549 0.812 0.376 0.695 0.551 0.795 0.357 0.673 0.488 0.801 0.305 0.654 0.433 0.807 0.259 0.630 0.318 0.847 0.195

60% 0.708 0.570 0.805 0.387 0.692 0.527 0.808 0.350 0.676 0.487 0.808 0.313 0.659 0.443 0.808 0.270 0.634 0.349 0.832 0.207

55% 0.715 0.559 0.824 0.400 0.700 0.531 0.818 0.366 0.681 0.492 0.813 0.324 0.662 0.425 0.826 0.277 0.629 0.301 0.855 0.189

50% 0.717 0.583 0.809 0.405 0.702 0.536 0.818 0.371 0.682 0.501 0.809 0.327 0.663 0.423 0.831 0.280 0.629 0.319 0.846 0.195

45% 0.718 0.577 0.815 0.405 0.697 0.541 0.805 0.360 0.683 0.503 0.807 0.327 0.661 0.417 0.829 0.273 0.634 0.328 0.848 0.207

40% 0.713 0.568 0.813 0.394 0.701 0.532 0.819 0.368 0.680 0.494 0.808 0.320 0.661 0.424 0.825 0.273 0.636 0.345 0.838 0.211

35% 0.718 0.571 0.820 0.406 0.708 0.558 0.811 0.384 0.685 0.501 0.812 0.331 0.666 0.440 0.822 0.286 0.637 0.356 0.830 0.213

30% 0.718 0.570 0.822 0.407 0.714 0.564 0.818 0.396 0.686 0.499 0.817 0.335 0.665 0.428 0.830 0.284 0.631 0.307 0.857 0.197

25% 0.722 0.576 0.822 0.413 0.706 0.559 0.806 0.379 0.690 0.503 0.818 0.341 0.668 0.423 0.839 0.291 0.637 0.324 0.857 0.216

20% 0.723 0.583 0.818 0.415 0.710 0.565 0.810 0.388 0.688 0.513 0.807 0.336 0.668 0.448 0.820 0.290 0.638 0.327 0.855 0.217
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Table 5. Cont.

Feature
Dimension → PC-80 PC-70 PC-60 PC-50 PC-40

Validation
Data ↓ Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC

95% 0.633 0.118 0.990 0.233 0.633 0.129 0.983 0.228 0.641 0.163 0.972 0.242 0.649 0.235 0.936 0.247 0.649 0.311 0.883 0.241

90% 0.664 0.202 0.985 0.320 0.674 0.237 0.978 0.338 0.677 0.264 0.964 0.334 0.687 0.350 0.923 0.342 0.682 0.381 0.890 0.322

85% 0.703 0.307 0.978 0.405 0.711 0.347 0.965 0.414 0.719 0.375 0.957 0.426 0.726 0.450 0.918 0.428 0.716 0.481 0.878 0.399

80% 0.731 0.383 0.972 0.461 0.736 0.414 0.960 0.467 0.748 0.456 0.950 0.485 0.756 0.532 0.912 0.491 0.736 0.538 0.874 0.445

75% 0.753 0.442 0.970 0.508 0.766 0.491 0.957 0.527 0.771 0.514 0.951 0.536 0.775 0.556 0.929 0.536 0.759 0.579 0.884 0.495

70% 0.779 0.501 0.972 0.559 0.792 0.548 0.960 0.579 0.793 0.566 0.951 0.579 0.794 0.612 0.921 0.573 0.778 0.619 0.888 0.534

65% 0.800 0.556 0.970 0.602 0.807 0.588 0.958 0.608 0.810 0.610 0.949 0.612 0.812 0.651 0.925 0.611 0.797 0.657 0.894 0.576

60% 0.815 0.595 0.969 0.631 0.826 0.630 0.962 0.648 0.827 0.651 0.950 0.647 0.828 0.690 0.923 0.642 0.809 0.682 0.897 0.600

55% 0.832 0.631 0.972 0.664 0.842 0.670 0.960 0.678 0.842 0.680 0.955 0.678 0.842 0.710 0.935 0.674 0.820 0.699 0.904 0.625

50% 0.843 0.660 0.971 0.685 0.851 0.692 0.960 0.695 0.852 0.704 0.955 0.698 0.855 0.743 0.932 0.699 0.833 0.728 0.906 0.653

45% 0.857 0.690 0.973 0.712 0.866 0.715 0.971 0.729 0.866 0.734 0.957 0.726 0.870 0.763 0.943 0.731 0.844 0.743 0.914 0.675

40% 0.867 0.716 0.971 0.730 0.876 0.743 0.968 0.748 0.877 0.759 0.958 0.747 0.879 0.783 0.945 0.749 0.850 0.761 0.911 0.687

35% 0.881 0.740 0.978 0.760 0.887 0.764 0.974 0.772 0.885 0.773 0.964 0.765 0.883 0.795 0.944 0.758 0.861 0.772 0.924 0.713

30% 0.887 0.756 0.979 0.772 0.892 0.775 0.974 0.781 0.892 0.787 0.965 0.779 0.893 0.812 0.949 0.778 0.871 0.786 0.930 0.733

25% 0.891 0.763 0.981 0.781 0.906 0.804 0.975 0.807 0.897 0.795 0.969 0.790 0.900 0.825 0.951 0.792 0.873 0.799 0.924 0.736

20% 0.905 0.796 0.979 0.806 0.911 0.820 0.974 0.818 0.910 0.826 0.968 0.815 0.909 0.843 0.953 0.810 0.883 0.806 0.936 0.757
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Figure 5. NF and WF signal classification results obtained from SVMQ and SVMG applying PCA
over MammoWave’s complex S21 data. (a) Accuracy obtained from SVMG varying PCs and vali-
dation data. (b) Accuracy obtained from SVMQ varying PCs and validation data. (c) Sensitivity
obtained from SVMG varying PCs and validation data. (d) Sensitivity obtained from SVMQ varying
PCs and validation data. (e) Specificity obtained from SVMG varying PCs and validation data.
(f) Specificity obtained from SVMQ varying PCs and validation data. (g) MCC obtained from SVMG

varying PCs and validation data. (h) MCC obtained from SVMQ varying PCs and validation data.
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Figure 5b,d,f,h exhibit Ac, Se, Sp, and MCC respectively by implementing SVMG.
In case of SVMG, all the achieved performance metrics are satisfactory. The best perfor-
mance of SVMG obtained using 80% of training data (i.e., 20% of validation data) with
50 number of PCs, obtained Ac = 90.90%, Se = 84.30%, Sp = 95.30%, and MCC = 81%.
Further reduction of PCs length (40 PCs) drops the performance of classification using
SVMG (shown in Figure 5 and Table 5b).

4.2. Classification Applying Real parts of Complex S21

During the previously executed experiments SVM performed well with the Gaussian
kernel, thus the SVMG has been considered here to obtain optimal outcomes for NF and WF
breast signal classification. Only real components ΣNF

n=1λreal(n) from the complex S21 signals
λn = ΣNF=1601

n=1 λreal(n) + jλimg(n), NF = 1601, have been chosen for this classification
employing SVMG and the work flow stated in Figure 3. The resistance components λreal(n)
have employed as features to inspect whether these are more revealing features for NF-WF
signal prediction along with the SVMG and increasing true predications.

λreal(n) data has been analysed and studied through two sample t-test for comparing
the average values of λreal(n) from two different classes i.e., NF and WF signal data. Table 6
shows the outcomes of the t-test, where p < α rejects the null hypothesis H0 (H0 = 1),
accepts alternative hypothesis Ha, and the true mean of the population belong between
−6.600× 10−5 to −4.600× 10−5. Hence, the acceptance of alternative hypothesis indicates
that the RealS21 data comes from populations with unequal means and can be employed
for NF-WF signal classification task.

Table 6. Two-sample t-test on real-parts of MammoWave’s S21 data.

Null Hypothesis (H0) Probabilty(p) Confidence
Interval (CL) Confidence Interval (CU )

1 8.864× 10−27 −6.600× 10−5 −4.600× 10−5

Table 7 shows the NF-WF signal classification performance using λreal(n) applying
SVMG. The best classification performance of SVMG was obtained with 80% training
data (i.e., 20% of validation data). Achieved metrics Ac, Se, Sp, and MCC are 0.798, 0.704,
0.863, and 0.577 respectively. The performance metrics did not improve on the previous
test (using PCs obtained from the actual complex S21 sequences). Sensitivity Se = 0.704
clearly indicates the increment of false positive predictions or misidentification of WF (or,
lesion) signals. These misidentifications affect the MCC measure (= 0.577) in the other
way. All these results have been pictured in Figure 6. This parameter setting becomes
unreliable as a significant number of misidentifications were found, also reflected in the
performance metrics. The 20% validation data indicates 14,640 number of signals out of
which approximately 3597 signals misidentified (false positive signals 2962 approx. and
false negative signals 635 approx.) in each run.

Table 7. NF and WF signal classification results obtained from SVMG applying real-parts of Mam-
moWave’s complex S21 data.

Validation Data Ac Se Sp MCC

95% 0.623 0.400 0.777 0.190

90% 0.652 0.427 0.808 0.255

85% 0.673 0.455 0.824 0.303

80% 0.694 0.513 0.820 0.353
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Table 7. Cont.

Validation Data Ac Se Sp MCC

75% 0.709 0.542 0.825 0.385

70% 0.724 0.568 0.832 0.418

65% 0.729 0.578 0.834 0.430

60% 0.746 0.610 0.840 0.465

55% 0.751 0.615 0.847 0.478

50% 0.760 0.625 0.855 0.497

45% 0.767 0.640 0.855 0.511

40% 0.775 0.659 0.855 0.528

35% 0.779 0.660 0.862 0.538

30% 0.786 0.678 0.861 0.552

25% 0.793 0.685 0.868 0.567

20% 0.798 0.704 0.863 0.577
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Figure 6. NF and WF signal prediction results (accuracy, sensitivity, specificity, and MCC) obtained
using real parts of MammoWave’s complex S21 signals applying SVMG over different amount of
validation data.

4.3. Classification Applying PCs of Real Parts of Complex S21

The third phase of the proposed work has been performed by extracting principal
components from λreal(n) and applying SVMG for NF-WF classification (as stated in
Figure 3). PCs extracted from λreal(n) are denoted as σ1, σ2, . . . , σn. Two vectors of
variances (applying PC) have been selected from NF-WF breasts to study the magnitude of
variances which has been employed to choose the number of PCs for classification task,
as shown in Figure 7. Significant variance has been found upto 80 PCs (σ1, σ2, . . . , σ80) and
selected for NF-WF signal classification. Number of PCs have been varied anticipating an
improved performance. In addition, the spherical data distribution and more compactness
than before may help in better classification.
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Figure 7. Example of significant variance achieved applying PCA on real part of complex S21 signals.
(a) Significant variance achieved applying PCA on real part of complex S21 signals of a NF breast.
(b) Significant variance achieved applying PCA on real part of complex S21 signals of a WF breast.

The variance of PCs are close to each other in Figure 7. Two sample t-test has been
repeated on PCs to understand the capability to represent two signal groups and the data
compactness. The probability has been found to be less than the significance level, P < α.
Hence, the t-test accepts alternative hypothesis Ha and clearly demonstrates the presence
of two different means for two different populations. Subsequently, the difference between
lower and upper boundary (−1.770× 10−4 and −1.570× 10−4) is reduced which implies
improved data compactness than before detailed in Table 8.

Table 8. Two-sample t-test on PCA features extracted from real-parts of MammoWave’s S21 data.

Null Hypothesis
(H0) Probabilty (p) Confidence Interval

(CL)
Confidence Interval

(CU )

1 8.219× 10−23 −1.770× 10−4 −1.570× 10−4
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Table 9. Classification results applying PCs extracted from real parts of MammoWave’s complex S21 signals with SVMG.

Feature
Dimension → PC-80 PC-70 PC-60 PC-50 PC-40

Validation
Data ↓ Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC Ac Se Sp MCC

95% 0.632 0.118 0.990 0.232 0.632 0.127 0.983 0.224 0.638 0.150 0.977 0.237 0.650 0.243 0.932 0.248 0.652 0.313 0.887 0.248

90% 0.664 0.203 0.985 0.320 0.682 0.269 0.967 0.346 0.686 0.288 0.962 0.354 0.691 0.357 0.923 0.351 0.686 0.424 0.867 0.330

85% 0.704 0.308 0.979 0.407 0.712 0.351 0.964 0.416 0.712 0.362 0.957 0.413 0.729 0.464 0.913 0.433 0.711 0.482 0.870 0.388

80% 0.732 0.385 0.972 0.463 0.746 0.449 0.952 0.482 0.750 0.473 0.942 0.487 0.754 0.528 0.911 0.487 0.732 0.512 0.886 0.437

75% 0.754 0.442 0.971 0.509 0.767 0.494 0.957 0.529 0.766 0.503 0.950 0.524 0.777 0.580 0.915 0.538 0.758 0.579 0.883 0.493

70% 0.780 0.503 0.972 0.561 0.790 0.550 0.957 0.575 0.788 0.557 0.950 0.570 0.798 0.621 0.922 0.582 0.780 0.630 0.883 0.538

65% 0.800 0.555 0.971 0.602 0.812 0.605 0.955 0.617 0.810 0.601 0.956 0.615 0.814 0.658 0.922 0.614 0.792 0.649 0.891 0.565

60% 0.816 0.597 0.969 0.631 0.825 0.632 0.959 0.645 0.832 0.657 0.953 0.657 0.831 0.698 0.923 0.649 0.806 0.679 0.893 0.594

55% 0.833 0.633 0.973 0.667 0.842 0.672 0.958 0.677 0.844 0.681 0.956 0.681 0.846 0.718 0.935 0.682 0.822 0.702 0.905 0.628

50% 0.843 0.660 0.972 0.686 0.854 0.696 0.964 0.705 0.851 0.697 0.957 0.695 0.852 0.739 0.930 0.693 0.829 0.724 0.902 0.644

45% 0.858 0.690 0.973 0.713 0.864 0.714 0.968 0.724 0.866 0.727 0.963 0.727 0.865 0.765 0.935 0.721 0.841 0.731 0.918 0.670

40% 0.867 0.717 0.971 0.731 0.873 0.739 0.966 0.741 0.873 0.753 0.956 0.739 0.875 0.785 0.937 0.741 0.854 0.756 0.923 0.697

35% 0.881 0.741 0.977 0.760 0.888 0.775 0.967 0.772 0.881 0.766 0.962 0.758 0.886 0.800 0.947 0.765 0.862 0.776 0.922 0.713

30% 0.888 0.757 0.979 0.775 0.896 0.785 0.972 0.787 0.890 0.781 0.966 0.776 0.894 0.811 0.951 0.781 0.867 0.787 0.922 0.723

25% 0.892 0.765 0.981 0.782 0.900 0.798 0.970 0.795 0.905 0.809 0.971 0.805 0.900 0.821 0.956 0.795 0.879 0.806 0.930 0.749

20% 0.906 0.800 0.980 0.810 0.910 0.813 0.977 0.817 0.905 0.810 0.972 0.806 0.910 0.844 0.955 0.812 0.885 0.823 0.928 0.760
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Figure 8. NF and WF signal classification results obtained from SVMG applying PCA over real-
parts of MammoWave’s complex S21 data. (a) Accuracy obtained from SVMG varying PCs and
validation data. (b) Sensitivity obtained from SVMG varying PCs and validation data. (c) Specificity
obtained from SVMG varying PCs and validation data. (d) MCC obtained from SVMG varying PCs
and validation data.

NF-WF signal classification has been performed with the PCs extracted from λreal(n)
(up to 80 PCs) and executing SVMG for breast lesion identification. Classification results
have been tabulated in Table 9, where Ac, Se, Sp, and MCC are presented with varying
number of PCs (interval of 10 units). The optimal classification performance was achieved
with 50 PCs, but begins to decrease upon further reduction (i.e., 40 PCs). The resultant
metrics are plotted in Figure 8a–d for comparison between each metric with the PCs varia-
tion. Metrics, Ac, Se, Sp, and MCC increased from 90.90% to 91%, 84.30% to 84.40%, 95.30%
to 95.50%, and 81% to 81.20% respectively using the PCs (σ1, σ2,. . . , σ50) extracted from
λreal(n) instead of the PCs extracted from λn = ΣNF=1601

n=1 λreal(n) + jλimg(n). Classification
performance improved from the performance achieved in Section 4.1, signifying that PCs
derived from resistance components are more enlightening than PCs derived from both
S21 resistance and reactance components to represent NF-WF breast signals (as well as the
NF-WF breasts). Hence, the performance obtained from 50 PCs with SVMG is considered as
the optimal validation classification performance. Further two parameters; regularisation
and scaling parameter have been tuned to search the space of possible hyperparameter
values that results optimum validation results of the proposed model. The regularisation
parameter 1 found to be optimal while the model is noticed to be reactive to the variation
of kernel scale. Therefore, the ROC curve has been calculated varying kernel scaling pa-
rameter to select optimal value, displayed in Figure 9 and measured the area under the
ROC curve (AUC = 0.99). The x and y-axes of Figure 9 represents false positive rate (FPR)
or (1-specificity) and true positive rate (TPR) or sensitivity respectively. The threshold of
ROC curve has been found to be kernel scaling parameter 1.8 for locating the balanced true
and false positive rates. Hence, the optimal results Ac = 95.07%, Se = 92.40%, Sp = 98.32%,
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and MCC = 89.90% for validation performance have been decided considering kernel
scaling parameter 1.8.
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Figure 9. ROC curve obtained from SVMG employing principal components of real parts of S21

signals for NF-WF signal classification.

4.4. Classification Applying Optimal Settings: Training, Validation, Testing Experiment

Once the training and validation process have been completed that apprise the 50 PCs
extracted from real parts of complex S21 are most efficient for classifying NF and WF
signals among all the feature extraction combination employed before. The experiment
has now reorganised with the data broken into training, validation, and testing set for
addressing data contamination and realise the final unbiased model performance on truly
unseen test data set. Table 10 demonstrates the final performance obtained in the proposed
work. As limited number of breasts (61 breasts’ data) are available at this stage of research,
20% (12 randomly selected breasts), 25% (15 randomly selected breasts) data have been
stratified and held-out using MCCV procedure as test set initially. Rest of the 80%, 75%
data have been used for training-validation process using optimal number of 50 PCs of
real parts and applying SVMG on 80% allocated training and 20% validation, as settled in
Section 4.3. Same performance metrics accuracy, sensitivity, specificity, and MCC have been
calculated to analyse the performance. It is found that, the trained and validated SVMG
model with 50 PCs of real parts of complex S21 outperforms in 20% testing dataset (and
80% training-validation set). The attained performance includes the accuracy Ac = 95.50%,
sensitivity Se = 97.20%, specificity Sp = 94.50%, and MCC = 90.90%, whereas the metrics
were Ac = 95.00%, Se = 92.40%, Sp = 98.30%, and MCC = 89.90% before.
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Table 10. Training, validation, and testing dataset: classification results applying PCs extracted from real parts of MammoWave’s complex S21 signals with SVMG.

Total Breasts Training-Validation
Data

Training
Data

Validation
Data

Feature Dimension PC-50 Testing Data Feature Dimension PC-50

Ac Se Sp MCC Ac Se Sp MCC

61 Breasts
75% of Data
(46 Breasts) 80% 20% 84.20% 88.20% 82.20% 67.40%

25% of Data
(15 breasts) 94.40% 96.20% 93.40% 88.50%

61 Breasts
80% of Data
(49 Breasts) 80% 20% 85.40% 88.80% 83.60% 69.70%

20% of Data
(12 breasts) 95.50% 97.20% 94.50% 90.90%
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5. Discussion & Conclusions

The proposed methodology have three primary focuses: (1) the absence of radiation
exposure through MammoWave have many potential benefits compared to the mammog-
raphy; specifically, women will benefit from safe and accessible radiation-free breast cancer
screening, more inclusive (no age-limitation), and more comfortable (no breast compres-
sion), (2) the study is part of a retrospective clinical trials, (3) the embrace of robust machine
learning models using microwave breast imaging, makes it a cutting edge solution for safe
breast lesions detection.

The structure of proposed support vector machine is simple to interpret and performed
flexibly with the data. Proposed research outperformed with statistically and biologically
dependent data as signals are generated and transmitted using same frequency band for
each breast scanning and each patient’s body responds differently to microwave signal
transmission. The signal data are fused while preparing for ML application. The procedure
is computationally less complex and fast. Results are cross validated using MCCV method.
Therefore, the proposed research is protected from several limitations. The experiment
in [39] showed that breast frequency response is discriminative and independent where
quadratic kernel of SVM can differentiate the signal response reflected from NF and WF
breasts with acceptable sensitivity and specificity. However, in [39], SVMQ was applied
on a limited number of patients after performing a dedicated S21 pre-processing for arte-
fact removal. The proposed work aims to provide a quantitative portrayal of NF-WF
breast classification through MammoWave applying the ML algorithm directly to the raw
S21, i.e., raw-data. In this scenario, it has been found that SVMG outperformed SVMQ.
Specifically, SVMG was executed on the NF-WF signals of 61 breasts from 35 patients who
participated in the feasibility clinical trial, showing satisfactory and improved prediction
performance. Accuracy > 91%, sensitivity > 84%, specificity > 95%, and MCC > 81% were
achieved through this study. Hence, this proposed study attained remarkable performance
in the task of identifying or separating NF and WF (or lesion) signals automatically from
raw signal data. The achieved sensitivity (84.40%) and specificity (95.50%) are similar
to digital mammography sensitivity [44,45]. However, the MammoWave breast screen-
ing is non-invasive and painless and can be used across all ages, during pregnancy and
multiple times.

The sensitivity value aligns with the MARIA system which has been used in symp-
tomatic patients [24,25]. The MARIA system (Micrima Ltd, UK) uses an array of 60 antennas
and a matching liquid to carry out the radar approach), which is far more complex that
the one presented here. The proposed classification algorithm predicted false negatives
(actually WF but predicted as NF) in some cases, effecting the sensitivity (84.40%) measure.
This was due to the presence of very small sized lesion (few mm or smaller). There are
low differences found between the signals value of NF and WF breasts with very small
sized lesions. Therefore, numerically NF breasts and WF breasts with very small sized
lesion behave similarly, misguiding the classification process, resulting in false negative
predictions. This issue will be addressed in our future work by modifying the conventional
SVMG kernel structure and performing advance research on feature representation. More-
over, we will investigate the use of microwave image features [22] for dedicated machine
learning models, following a procedure similar to [46], where the authors used radiomics
derived from Contrast-Enhanced Spectral Mammography Images, obtaining a sensitivity
and specificity of 88.37% and 100%.

Raw scan of each breast contains 1200 complex S21 signals. Classification of NF-WF
signals with high specificity and sensitivity will help to decide the threshold for a breast
to be entitled as NF or WF which will help to determine further clinical procedure for the
patients. The research for detecting the threshold is underway. Also, further research and
more breast data are required to generalise that threshold for breast classification because,
a main limitation of the study is represented by the fact that a limited number of breast has
been used. Research is in progress using data collected in other MammoWave clinical trials,
just ended (https://clinicaltrials.gov/ct2/show/NCT04253366). In this circumstance, ML
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study will be carried on with ongoing MammoWave clinical trial data [47]. Moreover,
further clinical trials are planned to enlarge the resulting research database [48], paving
the way for the use of microwave imaging into clinical practice as complementary tool for
the screening of asymptomatic women of any age and without any safety restrictions. It
is worthwhile pointing out that one of the goals of HORIZON-MISS-2021-CANCER-02-
01 scheme is to validate new methods and technologies for cancer screening and early
detection, preferably non-invasive and more-inclusive than current approaches. In this
context, one of the selected projects has the aim of generating evidence on thousands of
women regarding the use of MammoWave as breast cancer screening technique [48].
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