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Abstract: The continued reliance on machine learning
algorithms and robotic devices in the medical and engineering
practices has prompted the need for the accuracy prediction of
such devices. It has attracted many researchers in recent years
and has led to the development of various ensembles and
standalone models to address prediction accuracy issues. This
study was carried out to investigate the integration of EKF,
RBF networks and AdaBoost as an ensemble model to
improve prediction accuracy. In this study we proposed a
model termed EKF-RBFN-ADABOOST. It uses EKF to
enhance the slow training speed and to improve the
effectiveness of the RBF network training parameters.
AdaBoost was then applied as an ensemble meta-algorithm to
generate and combine several RBFN-EKF weak classifiers to
form a final strong predictor of the model. Breast cancer
survivability, diabetes diagnostic, credit card payment
defaults and staff absenteeism datasets used in the study were
obtained from the UCI repository. The prediction accuracy of
the proposed model was explored using various statistical
analysis methods. During the study we also proposed and
developed an ensemble logistic regression model using the
breast cancer dataset. Results are presented on the proposed
model EKF-RBFN-ADABOOQOST, as applied to breast cancer
survivability, diabetes diagnostic, credit card payment
defaults and staff absenteeism predictive problems. The model
outputs an accuracy of 96% when EKF-RBFN was applied as
a base classifier compared to 94% when Decision Stump was
applied and AdaBoost as an ensemble technique in both cases.
Also, a significant performance was observed for staff
absenteeism at 96 % compared with credit card payment
defaults that had a performance accuracy of 85%. The
ensemble logistic model outputs an accuracy of 94% when we
used 70% and 30% as training and testing datasets
respectively compared with accuracy of 95% prediction when
we used 60% of the data for training and 40% for testing
respectively.
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l. Introduction

Ensemble algorithms play crucial roles in many applications
and related devices that are operated with the use of decision

control mechanisms. Studies show that many of such
algorithms are essentially iterative, and that their results are
inconsistent and not as accurate as it should be. Therefore, the
need to develop an improved predictive ensemble models are
very significant to the acceptability of such devices in the
health care and other industrial sectors that relies on them. In
addressing this, many researchers have devoted attention to
the problem. This has led to the development of a wide range
of approaches and variants of ensemble algorithms. However,
there are still some problems, such as the need to further
improve their prediction accuracy and minimize overfitting
problems. This paper is an extended version of the work that
was originally presented in European Modelling Symposium
on Mathematical Modelling and Computer Simulation
(Adegoke, et al., 2018).

In general, ensemble algorithm combines several weak
learners to produce a strong classifier instead of the traditional
standalone algorithms that are based on a single classifier.
Study shows that the choice and the diversity of the selected
weak classifiers plays important role in prediction accuracy
and reliability of the ensemble models. Recent study further
shows that the potentials in ensemble prediction models
through the merging of existing benchmark algorithms to
improve prediction accuracy has not been fully considered.
One of the main objectives of ensemble machine learning
algorithms as addressed in this research is to propose a new
algorithm termed EKF-RBFN-ADABOOST that integrates
EKF, RBFN and AdaBoost as an ensemble model for
improved binary classification tasks. The proposed model
builds and combines several weak learners on the same task to
stabilize the prediction accuracy and to achieve a better
generalization result. The rationale behind the proposed model
is that it takes the advantage of AdaBoost’s high prediction
accuracy, RBFN’s (Radial Basis Function Network)
noncomplex design and EKF’s (Extended Kalman Filter)
quicker convergence during iterations when addressing
complex estimation problems. Therefore, enabling the model
to have good generalization, strong tolerance to input noise
and missing data.

A substantial additional output of this paper is the creation of
a working computerized ensemble EKF-RBFN-AdaBoost and
an Ensemble Logistic Regression models. The models were
evaluated and used as a computer assisted diagnosis device for
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early prediction of breast cancer, diabetic diagnostic diseases,
staff absenteeism, and credit card payment defaults on
datasets obtained from the UCI repository. The analysis of the
simulation results of the study shows that the proposed
algorithm EKF-RBFN-ADABOOST as a promising modelling
technique. The result further shows that the model
outperforms some of the standard ensemble and standalone
classifiers. The accuracy prediction of breast cancer survival
and diabetes diagnosis using data mining techniques based on
historical records of patients using the proposed model can
save lives by assisting doctors and policy makers in
managerial decisions.

The rest of the paper is arranged in the following format: In
section 2 we provided an overview background of the
problem. In section 3 we presented an outline of algorithms
that were integrated into the model proposed in this paper, the
EKF, RBFN, AdaBoost and the logistic regression models.
Section 4 covers the experimental setup, results of our
investigation and discussion of our findings. Finally, in
section 5 we present the conclusion of the models we proposed
in this study, and further work to be carried out in the future.

Il Background and Problem overview

Review shows that ensemble techniques have become a
popular method applied to solve classification and predictive
problems in order to improve the quality and robustness of
ensemble systems (Ghosh & Acharya, 2011; Kuncheva, et al.,
2006), however not without challenges and problems. Despite
the fact that ensemble algorithms are essentially iterative,
study shows that their results are inconsistent and not as
accurate as it should be in many areas.

For instance, breast cancer which is one of the most common
causes of cancer related death amongst women in the world in
the past years, requires the integration of predictive models
with adequate and reliable results. In the USA alone in 2015
an estimated 231,840 new cases of invasive breast cancer were
diagnosed among women and 60,290 additional cases of in-
situ breast cancer (Society American Cancer, 2015; Adegoke,
et al., 2017). Similarly, in the UK over 55,222 women were
diagnosed with new cases of the disease in 2014 which
amounted to 11, 433 deaths (Cancer Research, 2018) and the
ailment reached 25.2% of women worldwide (Kwon & Lee,
2016). The disease is also a looming epidemic in the
developing countries where advanced techniques for early
detection and treatments are not readily available (Formenti,
etal., 2012; Adegoke, et al., 2017). Similarly, “Diabetes is a
chronic progressive disease that is characterized by elevated
levels of blood glucose. Research shows that diabetes of all
types can lead to complications in many parts of the body and
can increase the overall risk of dying prematurely” (WHO,
2016). To address this it also requires the development of
reliable and accurate predictive models. According to the
British Heart Foundation, “the increasing number of people
suffering from the epidemic could trigger a 29% rise in the
number of heart attacks and strokes linked to the condition by
2035” (BHF, 2018; ITV, 2018). Currently, about four million
people in the UK have diabetes with the condition accounting
for 10% of all NHS spending (BBC, 2018).

Therefore, the application of ensemble algorithms (which are
non-invasive) in early prediction of breast cancer and diabetes
which are two common diseases that affects a lot of peoples
both in the developing and developed countries can no longer
be overlooked. There is an urgent need to develop and

integrate predictive models that can meets the required levels
of predictive accuracy to control these diseases. Even though
AdaBoost, EKF and RBFN have proved to be impressive
algorithms in many devices and predictive applications.
However, there are some situations where standalone
networks might not be able to produce the required predictive
results when handling complicated tasks. Such as imbalance
datasets, and tasks where very high prediction accuracy are
required such as cancer and diagnostic diabetes predictions as
previously highlighted. Research shows that AdaBoost is
susceptible to outliers (Changxin, et al., 2014; Kobetski &
Sullivan, 2015) and in some cases overfitting (Jin & Zhang,
2007; Saravanakumar & Thangaraj, 2019). On the other hand,
RBF networks could suffer from slow training speed and low
efficiency (Gan, et al., 2012) if proper training algorithms are
not applied in optimizing the training parameters as such can
affect the predictive accuracy of the network.

A. Related Work

Even though considerable research has been carried out in data
mining tasks using different ensemble techniques in
predicting probable events based on historical datasets. One
of the key challenges is the choice of the base classifier, the
suitable loss function that goes with it and in some cases the
appropriate algorithm to train the base classifier. Review
shows that the goal of any ensemble algorithm is to minimize
the error rate in order to achieve required accuracy and
improved reliability. Irrespective of the successful research
efforts and application of ensemble methods (Adegoke, et al.,
2017), recent work shows that the problem with prediction
accuracy, speed and computational costs are still puzzling
problems (Huang, et al., 2017) that needs attention in order to
take full advantage of the potentials of ensemble techniques.
Therefore, the development of reliable ensemble models that
can be applied for efficient medical diagnosis, incidents
management and execution of automated technologies that are
decision based and in some cases life dependent medical
devices are highly essential. Hence, to address the issue of
prediction accuracy, reliability and to extend the applications
of ensemble algorithms, we propose a new model that bridges
the potentials of RBFN, EKF and AdaBoost algorithms as an
ensemble technique.

B. Breast Cancer Survivability Models
Recent research reveals that medically, breast cancer can be
detected early during screening examinations through
mammography or after a woman notices an unusual lump
(Society American Cancer, 2015) in her breast. However,
owing to the recent advancement in technology and
availability of patient medical records, computer aided
diagnosis cancer detection applications have been developed
to detect and consequently control the spread of the disease
(Adegoke, et al., 2017). Recent research also shows that many
of such applications rely on pattern recognition algorithms
that are used to process and analyze medical information of
images obtained from mammograms for diagnostic and
decision making (Weedon-Fekjer, et al., 2014; Sapate &
Talbar, 2016). Similarly, Yang et al (Yang, et al., 2013)
proposed a genetic algorithm that detects the association of
genotype frequencies of cancer cases and no cancer cases
based on statistical analysis. The authors analyzed the possible
breast cancer risks using odds-ratio and risk-ratio analysis.
Likewise, McGinley et al (McGinley, et al., 2010) applied



Spiking Neural Networks algorithm as a novel
tumor classification method in classifying tumors as either
benign or malignant cancer. The performance of the technique
was rated to outperform the existing Ultra-wideband (UWB)
Radar imaging algorithm.

Equally, different algorithms have also been proposed to
extract relevant patterns from patient’s breast cancer datasets
for instance Yang et al (Yang, et al., 2013) came up with a
genetic algorithm that identifies the relationship between
genotypes that can lead to cancer cases using mathematical
analysis. Also, in their work Adegoke et al proposed
standalone and ensemble predictive models using AdaBoost
as a technique and several base classifiers (Adegoke, et al.,
2017). The authors found that the topology and complexity of
the algorithms does not necessarily improve the prediction and
performance accuracy of the models. In another approach
(Pak, et al., 2015) proposed a breast cancer detection and
classification in digital mammography based on Non-
Subsampled Contourlet Transform (NSCT) and Super
Resolution was proposed to improve the quality of digital
mammography images. The authors then applied AdaBoost
algorithm to determine the probability of a disease being a
benign or malign cancer. Likewise, in breast mass cancer
classification (Xie, et al., 2015) the authors used computer-
aided diagnosis (CAD) system for the processing and
diagnosis of breast cancer. In their predicting irritable bowel
syndrome, a disease that is common among children Kau et al
employs the use of a wrapper method to determine the
optimum sample attributes (Kaur, et al., 2019). Then using an
ensemble approach that comprises of five models and meta-
algorithm to form the final classifier. According to the authors
the model achieves an accuracy of 93.75%.

In another study using an automatic breast cancer detection
technique that was based on hybrid features for pathological
images, using a 3-output convolutional neural network that
gives better segmentation results. The authors then applied a
support vector machine with improved generalization and
classified pathological image as benign or malignant based on
the relief method for feature selection. According to the
authors the method performs better when compared with
existing technigues with a classification accuracy of 96.7%
and 0.983 as the area under the curve (Bychkov, et al., 2018).
In another approach an SVM-based ensemble learning
algorithm was used to reduce the diagnosis variance and
increase diagnosis accuracy of breast cancer diagnosis. In the
study, 12 SVM models that were based on hybridized
Weighted Area Under the Receiver Operating Characteristic
Curve Ensemble were used in experimentation. According to
the authors, the model reduces the variance by 97.89% and
increases accuracy by 33.34% in comparison to the best single
SVM model on the SEER dataset (Wang, et al., 2018).

C. Diabetes Diagnostic Models
In their study Alghamdi et al using SMOTE and ensemble

techniques, the authors carried out experimental work by
applying several algorithms to establish and compare their
performances in predicting diabetes using data obtained from
patients’ medical history (Alghamdi, et al., 2017). The model
comprises of ensemble-based predictive methods that uses 13
out of the 62 available features. The selected attributes were
based on patient’s clinical importance, multiple linear
regression (MLR) and the Information Gain (IG). The authors
reported an accuracy of 89% for G1/G2 attributes and

accuracy (AUC) of 0.922 for the ensemble method. Similarly,
in their work (Zheng, et al., 2017), the authors proposed a
framework that identifies type 2 diabetes using patient’s
medical data. They utilized various classification models that
extract features to predict identification of T2DM in datasets.
According to the authors, the average results of the framework
was 0.98 (UAC) compared with other algorithms at 0.71. To
validate whether there is a connection between
diabetes mellitus and glaucoma chronic diseases, in their
study the authors (Apreutesei, et al., 2018) applied a
simulation technique constructed using artificial neural
networks on clinical observations datasets. According to the
authors the model was able to predict an accuracy of 95%.

In their MOSAIC project (Dagliati, et al., 2018), they used a
data mining technique to derive predictive models of type 2
diabetes mellitus (T2DM) complications based on electronic
health record data of patients. The model was based on
patient’s records: gender, age, time from diagnosis, BMI,
glycated hemoglobin, hypertension, and smoking habit. They
used Logistic Regression algorithm with a stepwise feature
selection. The model was able to predict the onset of
retinopathy, neuropathy, or nephropathy at different time
scenarios, at 3, 5, and 7 years from the first visit of the patient
at the Hospital Centre for Diabetes. The authors reported an
accuracy of up to 84% of the model.

Even though reviews show that there is correlation between
diabetes mellitus and glaucoma chronic diseases that affects
people mainly over the age of 40. However, there is no
validated evidence to support this. To validate whether there
is a connection between the two diseases, in their work
(Apreutesei, et al., 2018) the authors applied a simulation
method constructed on artificial neural networks which was
used in combination with clinical observations. They used a
sample of 101 eye samples with an open angle glaucoma
associated with the patients that had diabetes mellitus.
According to the authors the model was able to predict an
accuracy of 95%. Likewise, in addressing diabetes which been
reported as a major cause of hospitalization and mortality in
Taiwanese hospitals, Li et al (Li, et al., 2018) proposed a
model that estimates of the risks of type 2 diabetes among
patients. The authors used the Cox proportional hazard
regression model to derive risk scores. According to the
authors: “For the one-, three-, five-, and eight-year periods,
the areas under the curve (AUC) for diabetes-related
hospitalization in the validation set were 0.80, 077, 0.76, and
0.74, respectively with a corresponding value for in-hospital
mortality in the validation set were 0.87, 080, 0.77, and 0.76.”
Similarly, in their study (Barakat, et al., 2010), the authors
proposed a hybrid model for the diagnosis and prediction of
diabetes using support vector machines algorithm. According
to the authors the extracted rules using the model are reported
to agree with the outcome of appropriate medical studies. The
results of the model on a diabetes dataset indicate that model
shows a prediction accuracy of 94%, a sensitivity of 93%, and
a specificity of 94%.



In their study Zu et al applied decision tree, random forest and
neural network on patient’s dataset to predict diabetes
mellitus. Due to the unbalanced nature and size of the dataset
the authors used principal component analysis and minimum
redundancy maximum relevance to reduce dimensionality of
the dataset. According to the authors random forest produces
the highest accuracy of 81% when all the attributes were used
in simulating the data (Zou, et al., 2018). In a similar
approach, a deep learning method was applied for the
classification of diabetic and normal HRV signals (Swapna, et
al., 2018). A short-term memory (LSTM), Convolutional
Neural Network (CNN) and its combinations were used to
extract complex temporal dynamic features from the heart rate
variability data. The features were then passed into support
vector machine’s (SVM) for classification. According to the
authors the technique gives a performance improvement of
0.03% and 0.06% in CNN and CNN-LSTM respectively
compared with similar models without the integration of SVM
algorithm.

111 EKF, RBF Network, AdaBoost and Logistic
Regression Algorithms

The performance of radial basis function network is based on
how the network is trained and how the training parameters
are obtained. Review shows that EKF have been used for
modelling and calibration of dynamic systems such as model-
based engine control architecture, ballistic and other space-
based projects (Csank & Connolly, 2016) with good
performance even when noises are present. Equally RBFN
have also been used in real world applications with good
results compared with other algorithms. Despite the
reliability, advanced applications of EKF and RBFN and the
benefits of the algorithms offered individually, review shows
that the algorithms have not been integrated together with
another meta-algorithm such as AdaBoost to form an
ensemble predictive model. In this section we a give brief
property description of EKF, RBFN, AdaBoost, and ensemble
Logistic techniques that the models we proposed in this study
were based on.

A. Radial Basis Function Network

RBF network is a type of multi-layer perceptron artificial
neural network for non-linear modelling. The commonly used
activation function for the network is Radial Basis Function
Network (RBFN), other common functions such as
Multiquadric or Thin-plate spline can similarly be applied.
Similarly, other kernel functions as depicted in Table 1 could
also be used in training the network. Recent study shows that
researchers have trained RBF networks by random selection
of the centers from the data while others have used
unsupervised methods such as the K-means algorithm (Qiao,
et al., 2016) in selecting the network centers. In addition,
others have also used supervised methods such as Particle
Swarm Optimization (PSO) (Kelwade & Salankar, 2016;
Wang, et al., 2015) and Gradient Descent (Malathi & Suresh,
2014; Soni, et al., 2015) algorithms to determine the
parameters of the network. However, in this paper we used
EKF to train RBF networks to optimize the network training
parameters before applying AdaBoost as a technique to form
ensemble of EKF-RBF networks as presented in next section.
The output of RBF network is a linear combination of the
radial basis functions of the inputs and neuron parameters that
form part of the training process of the network. The structure
of a typical RBF network is as shown in Figure 1. The output
of the network can also be expressed as in Equation 1.

y(x) = ij(l)j + wy 1)
=1
¢ =9 (|lk—l|) @

where, w; is the weight of jth centre,¢; are the basis functions
and w, are the bias weights and || x — C;|| as expressed in
Equation 2 as the Gaussian activation function.

Table 1 Common Radial Basis Kernel Functions

Basic Function (Abbreviation) Formula @(r) = @(||x — ul|)/o | Smoothness
Gaussian (GA) e’ Infinite
Generalized Multiquadratic (GMQ) | (c? + r?)# Infinite
Inverse Multiquadratic (IMQ) 1/ -2 Infinite
Inverse Quadratic (1Q) (c* +rHt Infinite
Multiquadratic (MQ) m Infinite
Hyperbolic Secant (sech) sech(cr) Infinite
Cubic (CU) r3 Piecewise
Linear (LI) r Piecewise
Monomial (MN) r2k=1 Piecewise
Thin Plate Spline (TPS) r2log(r) Piecewise

B. Kalman Filter as a training algorithm
Hypothetically, Kalman Filter is a recurrence algorithm with
several equations that can be used to estimate the state of a

process that is
based on series of measurements taken over a period of time.
The filter (Kalman, 1960) is an optimal estimator algorithm
that can deduce unknown values of interest from inaccurate
and uncertain observations. Even though it was originally
developed as a recursive solution to the discreet data linear



filtering problem, it has been used to estimate linear system
models with additive independent white noises. Theoretically,
the filter uses several measurements observed over time that
contains noises and other inaccuracies which it filters to
predict the future behaviour of a system based on the system’s
past behavior, taking into consideration the environmental
constraints of the system. The Extended Kalman Filter
(EKF)on the other hand is the nonlinear version of
the Kalman Filter which linearizes the estimate of the current
mean and covariance. The algorithm has been considered as a
standard in the theory of nonlinear state estimation, navigation
systems and other related problems. The filter is able to
produce estimates of unknown variables that is more precise
than those based on a single measurement. It also minimizes
the estimated covariance error in a Gaussian environment.
The mean square error of the filter is minimized even when
the measurements taken contains noises or missing data. The
filter has been used in training neural network (Lima, et al.,

2017; Chernodub, 2014). The process of calculating the
ensemble weights can be considered as a discreet and
sequential estimation problem.  Therefore, EKF as a

sequential estimator can be applied to optimize the weights
and parameters of the RBFN models as described above. The
filter consists of number ensemble equations as illustrated in
Figure 2. EKF was used in this study due to the non-linear
nature of RFFN.

Figure 1 The Topology of a Radial Basis Function Network
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Figure 2 Basic equations and process of Kalman Filter as a sequential ensemble method

C. AdaBoost as an ensemble technique
AdaBoost is an ensemble technique that forms a strong

classifier by combining the outputs of several weak classifiers
on the same task. It has many potential applications and has
been successfully applied in many areas such as text
classification, natural language processing; drug discovery;
computational biology (Fan, et al., 2015) vision and object
recognition (Viola & Jones, 2004; Lee, et al., 2013), medical
diagnosis (Abuhasel, et al., 2015) and industrial chemical fault

diagnosis (Karimi & Jazayeri-Rad, 2014). The key objective
of AdaBoost as a meta-classifier is to improve the accuracy of
the base classifiers by constructing and combining multiple
instances of weak classifiers (Schapire & Freund, 2014;
Adegoke, et al., 2017) and then producing a strong classifier
that performs better than the arbitrary guessing.

The concept of AdaBoost is based on the idea that better
algorithms can be created by combining multiple instances of
a simple classifier. An ensemble model showing a committee



of weak neural network predictors is as illustrated in Figure 4.
The success of AdaBoost have been attributed to the
algorithm’s ability to reduce the training error and accelerate
convergence after several iterations (Mukherjee, et al., 2013).
Each instance of the base classifier is trained on the same
training dataset with different weights assigned to each
instance based on classification accuracy. AdaBoost’s
description here follows Schapire (Schapire, 2013) : assume
we are given a number of labelled training examples such
thatM = {(x;,51), (%2, ¥2) ., (n , ¥)} Where x; € RM and
the label y, € {—1,1}. On each iterationt=1,..,T, a
distribution D, is computed over the M training examples. A
given weak learner is applied to find a weak
hypothesis h;: R — {—1, 1}. The aim of the weak learner is to
find a weak hypothesis with low weighted error ¢, relative to
D,. The final classifier H(x) is computed as a weighted
majority of the weak hypothesis h, by vote where each
hypothesis is assigned a weight ;. This is given in Equation

3:
H(x) = sign (Z ah:(x) )

t=1
The accuracy of the hypothesis is calculated as an error
measure as depict Equation 4

(3)

& = Pry~D[h. (i) # y;] €))

The weight of the hypothesis is a linear combination of all the
hypotheses of the participating as expressed in Equation 5

1 1_815
a = 5in( e )

)

The distribution vector D, of the weak classifiers is expressed
as in Equation 6 where Z; is a normalization factor such that

training amar

1] 10 20 30 40 50
number of iterationz

Figure 3 AdaBoost properties: training error

the weights add up to 1 and makes D, a nhormal distribution
as illustrated in Equation 6.

D, (i) EXP(_atYiht(xi)) (6)

Ze

Dt+1(i) =

D. Some Theoretical Properties of AdaBoost
Some of the AdaBoost properties have been covered in several

studies (Freud & Schapire, 2014). Therefore, we only highlight
some of the properties that are relevant to our research in this
section. Studies shows that it is possible to obtain an ensemble
classifier with a lower exponential loss over training examples
after each iteration such that the component classifier error is
better than guess. This is illustrated in Equation 7 after
expanding Equation 3.

H, (X)

= a;h(X) + - )

+ a,h(Xp)
As depicted in Figure 3 the training classifdation error of the
model must go down exponentially if indeed the weighted
errors of the component classifiers are strictly better than
guessing i.e. €, <0.5, the final hypothesis output of
AdaBoost in Eg. 5.6 is bounded by Equation 8.

m

err(ﬁm) < 1_[2 ex(1— €) ) (8)
k=1

Similarly, the weighted error of each new component
classifier tends to increase as a function of the boosting

iterations as shown in Equation 9. (5)
1O ket -
& =05 =50 W' yih(X; 0 ©)
i=1

Figure 4 An ensemble model showing committee of

weak neural network predictors



The expected test error i.e. the generalization error as
presented in (Freund & Schapire, 1997; Freud & Schapire,
2014) has an upper bound with high probability and can be
expressed as in Equation 10.

~ ’dT
erroryye(H) < erroriqm(H) + 0 - (10)

Where T is number of boosting rounds, d is the Vapnik-
Chervonenkis (VC) dimension of weak learner that measures
complexity of the classifier and m is the number of training
examples. Review shows that AdaBoost has resistant to
overfitting in practice. However, Equation 10 shows that if T
is large AdaBoost will overfit. This means that the trained
model can overfit the data and exaggerates variations in the
data that can affect the generalization performance of the
model. Study further shows that boosting increases the
margin of classifier aggressively as it concentrates on the
difficult examples during training rounds. Therefore, with
large margin more weak learners and training rounds does not
necessarily improve classification accuracy or increase the
complexity of the final classifier. Despite this, boosting can
still over fit if the boundary of separation is too small as weak
learners can be too difficult to perform arbitrarily close to
random guessing. According to Schapire et al (Schapire, et
al., 1998) based on the concept of margin, given any threshold
@ > 0 of margin over data D, with a probability of 1 — 0, the
generalization error of the ensemble €, such that
(Pe-pf(x)) # H(x) is bounded by Equation 11.

€p< Prop((fOH(X) < 0+)+ 0 ( /mi(bz +1n§> (11)

As we can see in Equation 11, it shows that as other variables
are unchanged, then a larger margin over training data will
lead to a smaller generalization error.

E. Ensemble Logistic Regression Model
The null hypothesis of a multiple logistic regression is that
there is no connection between X variables and
the predictable Y variables (McDonald, 2014). However, in
multiple logistic regression there is a need to test a null

hypothesis for each X variable to obtain the predictable Y
variable, to show that adding X variable to the multiple

logistic regression does not necessary improve the prediction
accuracy of the equation. The main drive behind the use of
multiple logistic regression is to determine the significant and
the credible combination of the independenE variables that best
fit the dependent variable, such model can ﬂl expressed as in

Equation 12.
E(Y; |1 X)) = mEQY; | X)) (12)
e Bot B1Brit B2 Xpite -+ BreXpi)
T 1+ eBot BiBuit BaKait—+ BiKii)
Where B, ..., B; are the correlation coefficients and Xy; ..., X,

are the variables and Y; is like hood prediction for
variables X;; ..., X;;. Review shows that there are several
methods that allows one to specify how the independent
variables are chosen to form multiple regression models
(McDonald, 2014; Mangiafico, 2015). Among the common
techniques are the forward selection, the backward selection
and the stepwise. In forward selection a single predictor that
best fits the data is added to the equation, this is followed by
adding other predictors that contributes significantly to the
performance of the regression model one at a time. On other
hand, in backward elimination all independent variables are
added into the regression equation, then each variable is
examined and removed one at a time if they do not contribute
significantly to the regression equation. However, the
stepwise regression is a mixture of the forward and backward
selection methods that involves adding and removing
variables to the model’s equation. During our study we used
a cancer dataset to build an ensemble logistic regression model
for the prediction of cancer survivability. The plots
correlations among the features of the dataset and the ordered
variables with the highest correlation closest to the diagonal
are as shown in Figure 5 and Figure 6 respectively. The
statistical measures of the dataset using different features as a
predictor is as shown in Table 2. To identify the prognostic
factors and to develop an ensemble logistic regression model
with multivariate features, we applied the coef function in R
programming package to extract the model’s coefficients from
the object returned by the modelling function. Some of the
statistical properties of the model that were used in forming
the ensemble logistic regression model displayed in equation
13 is as illustrated in Table 2.

In(Y) = —10.10394 + 0.53501 * X1 — 0.00628 * X2 + 0.32271 * X3 + 0.33064 x X4 (13)
+ 0.09663 * X5 + 0.38303 * X6 + 0.44719 * X7 + 0.21303 * X8
+ 0.53484 = X9

Table 2 Statistical measures of Cancer dataset using different variables in predicting cancer prognosis

Data Accuracy | RSME | KAPPA | TP FP Precision | Recall | F-Measure | Features

Features

Clump 85 0.324 0.651 0.855 | 0.260 | 0.874 0.989 0.899 X1

thickness

Uni Cell 92 0.240 0.823 0.919 | 0.076 | 0.923 0.919 0.920 X2

Size
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Figure 5 Correlations among the features of the Breast cancer dataset
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Figure 6 Ordered variables of cancer dataset with the highest correlation closest to the diagonal

Table 3 Statistical properties of the regression model as illustrated in Equation 1

Significant

Z value

-8.600
3.767

-0.030

Std. Error

1.17488
0.14202

0.20908

Estimate

-10.10394

0.53501
-0.00628

Intercept

X1

X2




X3 0.32271 0.23060 1.399 1
X4 20.33064 0.12345 2.678 0.001
X5 0.09663 0.15659 0.617 1
X6 0.38303 0.09384 4.082 0
X7 0.44719 0.17138 2.609 0.001
X8 0.21303 0.11287 1.887 0.1
X9 0.53484 0.32877 1.627 1

# R-Code : Multinomial Regression for Cancer
Survivability Dataset

#Import data

setwd(""H:/Res5/Datasets™)

# Read CSV into R

cancerData <- read.csv(file="cancerDBlogit.csv",
header=TRUE, sep=",")

colnames(cancerData) <- ¢("X1", "X2", "X3", "X4",
X5 X6, X, X8, X9, Y™
#head(cancerData)

#str(cancerData)

# Prepare Training and Test Data

set.seed(100)

#Training data 70%

trainingRows <- sample(1:nrow(cancerData), 0.7 *
nrow(cancerData))

trainingData <- cancerData[trainingRows, ]

#Test data 30%

testData <- cancerData[-trainingRows, ]

#Build Multinomial Model

library(nnet)

#multinom Model

multinomCancerModel <- multinom(Y ~ .,
data=trainingData)

# model the summary
summary(multinomCancerModel)

#Predict on Test Data

predicted_scores <- predict (multinomModel, testData,
"probs")

#Prediction on new data

predicted_class <- predict (multinomModel, testData)
#Confusion Matrix

table (predicted_class, testData$Y)

#Get the Misclassification Error as a percentage
MissClassError <-(mean(as.character(predicted_class)!=
as.character(testData$Y))) * 100

#Round the output to 2 decimal place and concatenate the
output with %

MissClassError <- paste (round (MissClassError, 2),
sep=", '%")

Figure 7 R-code: Training and testing the Ensemble Logistic
Model

A snippet code of the R code used in training and testing the
ensemble logistic model based on Cancer dataset is as
illustrated in Figure 7. We found that the misclassification
errors of the model are influenced by the percentage of dataset
used in training and percentage used testing the model. Table 4
illustrates classification errors and the corresponding
percentages of training and testing data of the model. This is
graphically illustrated in Figure 8, while Table 5 shows a
typical confusion matrix output of the model on based 70% of
training data and 30% of testing data.

A. Optimization of BFN training parameters with
EKF
As illustrated in the previous section the optimization of the

ensemble weights is a type of discrete data filtering problem.
Therefore, it is possible to use EKF to optimize the weight
matrix in RBFN problems. Likewise, the training error of
ensemble model can be treated as a least squares’
minimization problem. The derivation and application of
Kalman Filter as a sequential ensemble method are widely
available in literature (Ribeiro, 2004). Review shows that only
a few studies have examined the applications of EKF in
training Neural Network (Haykin, 2008; Simon, 2002).
Despite this, none of such studies have integrated such a
solution with AdaBoost in generating ensemble of RBF
network classifiers. In this session emphasis is laid on how
EKF can be applied to optimize the training parameters of
RBFN to improve their prediction performance. Assuming a
non-linear finite dimension discrete time system we can
represent the state and measurements as in Equations 14 and
15.
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Table 4 Data Training size and classification error

Classification error Training data | Testing Data %
%
3.41 40 60
3.72 45 55
4.09 50 50
4.55 55 45
4.74 60 40 ]
4.42 65 35 E
6.34 70 30 %
6.43 75 25 2
6.57 80 20 8
4.85 85 15 B
4.35 90 10 =
Table 5 Model Confusion Matrix
class 0 1
0 126 6
1 7 55
Orr1 = f(O1) + wy (14)
Vi = h(6) + vy (15)

where, the vector 6, is the state of the system at time k, w,, is
the process noise, y, is the observation vector, v, is the
observation noise and f(6,) and h(6,) are the non-linear
vector functions of the state and process respectively. If the
dynamic state f(6,) and process h(6,) in Equations 14 and
15 are assumed to be known, then EKF can be used as the
standard method of choice to approximate maximum
likelihood estimation of the state 8, (Wan & Merwe, 2000).
Consequently, applying similar approach as in (Puskorious &
Feldkamp, 1994; Simon, 2002), we can view the optimization
of RBFN with weight W and the prototype v; as a weighed
least-square minimization problem. The error vector can
therefore be viewed as the difference between the RBFN
outputs and the expected target values. The optimization
problem of RBFN can therefore be represented using
Extended Kalman Filter algorithm by letting the output of the
weight W and the elements of the prototype v; represent the
state of a nonlinear system and the output of the RBFN
network respectively. The state and the output white noises
wy and vy have zero-correlation with covariance matrix Q;
and R, respectively and can be modelled as in Equation 16.

Q = Elw,w,"] (16)
R = E[VkaT]

(17
MSE = E[eye,"]1 = P, (18)

where, Py isthe error matrix at time k.

4.0 4.5 5.0 55 8.0 6.5

35

o
o

80 %0

Percentage of training data

Figure 8 Percentage of training data vs classification error

Afterward, EKF aim to provide is to find an estimate for 8,
from 6., given y; (j =0,..,k). If the EKF model in
Equation 14 and Equation 15 are further assumed to be
sufficiently smooth, then we can expand the equations and
approximate them around the estimate 6, using first-order
Taylor expansion series such that:

f0:)=(0,)+F.*(6,—8,) + Higher (19)
orders
f(6) =(8,)+ HL = (6, —8,) + Higher (20)
orders
where,
_0f(0)
k= —6(9) |9=§k (21)
r dh(6)
k= W 9=§k (22)

If drop the higher order terms of the Taylor series and
substitute Equation 19 and Equation 20 into Equation 14 and
Equation 15 respectively, then Equation 14 and Equation 15
can be approximated as Equation 23 and Equation 24
respectively.

Ors1 = Fibi + 0 + Dy

(23)
Y= Hi + v+ oy

(24)

Therefore, the estimated value 8, can be obtained using
recursion as in (Simon, 2002) such that:

Ok

f(ék—l + Kk [yk - h(ék—l )D

PyK (R + H{ P H)™!

(25)
K

(26)
MIR Labs, USA



Py = Fe(Py — K HE POFE +Q
27)
where, K, isthe Kaman Gain, P, is the covariance matrix of
the estimation error, 6, is state estimation, Q is the tuning
parameter for w, (a covariance matrix), and R is the tuning
parameter for v, (which is also a covariance matrix).

IV Experimental Setup and Discussion

In this section we briefly describe the integration of RBFN,
EKF, and AdaBoost algorithms that were applied to enhance
the prediction accuracy of the ensemble models we proposed
in this study. To evaluate the performance of the proposed
model and to compare it with existing standalone and
ensemble algorithms, some experimental case studies, and
simulations were carried out based on benchmark datasets that
were obtained from the UCI repository. The datasets are
Wisconsin breast cancer survivability, diabetes diagnostic,
staff absenteeism and credit card payment defaults. These case
studies were performed using AdaBoost as an ensemble
technique. We applied decision stump, K-means, random
forest, support vector machine, ANN and Naive Bayes as
standalone algorithms. We also carried out experimental
simulation on the cancer prognosis dataset using the ensemble
logistic regression model described in the previous section.

A. Enhancement of RBFN-EKF Predictors

In the study we fitted the enhanced RBFN weak classifiers on
the datasets as described in the previous section. EKF was
applied in training the RBFN at each iteration. The training
process comprises of several training points (X;, Y;) where X;,
€ Xand ¥; € {—1,+1}, on round t, wheret = 1,...T.
Then we calculated the weighted misclassification rate of the
learner and update the weighting measure used in the next
round t + 1. During the training process, AdaBoost called the
base classifier T times, in our case 20 times. As AdaBoost
trains RBF network at each round, RBFN layers are optimized
using EKF to train and update the network training parameters
namely the: standard deviation (o), mean (1) and the weights
(w) using N different RBFN functions to generate different
RBFN weak classifiers. The output of the model is the sum of
the outputs of the several weak predictors trained by
AdaBoost. The architectural flowchart of the model is as
illustrated in Figure 9 and the framework is as depicted in
Figure 10. As shown in Figure 10, it is possible to switch the
dotted section (i.e. RBFN parameter optimization) of the
framework with other parameter optimization algorithms such
as Decoupled Kalman Filter, Particle Swarm Optimization
(PSO) or with other training algorithms.

B. Experimental Results and Analysis
Some of the results of applying the proposed model, EKF-
RBFN-AdaBoost are presented in this section. The following
evaluation measures were used namely: Prediction Accuracy
Error Rate, True Positive, False Positive and F-Measure;

Sensitivity and Precision. Tables 6, 7, 8 and 9 depicts the
performance of the proposed model described on breast cancer
survivability, diabetes diagnostic, staff absenteeism and
clients credit card payment default datasets compare with
benchmark ensemble and standalone models. As can be seen
in Table 6 the prediction accuracy of the proposed model on
Cancer dataset is 96% compare with performance accuracy of
97% when Random Forest was use as base classifier with
AdaBoost as prediction accuracy of 97% when random forest
was used as a standalone algorithm. Likewise, in Table 7 the
prediction accuracy of the proposed model on diabetics’
dataset is 76%, as can be seen in the table this is the same
prediction accuracy as Random Forest and ensemble
AdaBoost + Random forest, however, the proposed model
outperforms other models. Similarly, Table 8 illustrates the
prediction accuracy of the proposed model compared with
other methods on workers’ absenteeism dataset. It shows that
the performance accuracy of the model and that of the ANN
are both 96%. The proposed model outperforms other models
apart from Random Forest and AdaBoost + Random Forest
which both have a prediction accuracy of 98%.
Correspondingly, Table 9 shows the performance of the
proposed algorithm based on credit card payment defaults
with prediction accuracy of 85%. As can be seen in the table
the model outperforms other predictive algorithms and
techniques used in the study. The predictive performance of
both Random Forest and ensemble Random Forest are 78%
respectively. The performance of the proposed model on
diabetes dataset compare with other models are as illustrated
graphically in Figures 11, 12, 13, and 14. Likewise, the
performance of the model on cancer dataset compare with
other algorithms are as illustrated in Figures 15, 16, 17 and 18.
Figures 19, 20, 21 and 22 also illustrates the performance of
the proposed model on Absenteeism dataset compare with
other machine learning methods. Similarly, Figures 23, 24, 25
and 26 demonstrates the performance of the proposed model
on credit card payment default dataset compare with other
machine learning methods. The performance of the proposed
model on diabetes dataset compare with other models are as
illustrated graphically in Figures 11, 12, 13, and 14. Likewise,
the performance of the model on cancer dataset compare with
other algorithms are as illustrated in Figures 15, 16, 17 and 18.
Figures 19, 20, 21 and 24, 25 and 26 demonstrates the
performance of the proposed model on credit card payment
default dataset compare with other machine learning methods.
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‘ Data Collection and Pre-processing ‘

ﬂ

Set Parameters: RBFM - number of hidden neurons
AdaBoost — number of iterations and initialize EKF

Using EKF to Train RBFN to obtain and update
Network parameters

0

Training procedure
accomplished?

Initialize and
update training
weights

Save and Pass RBF network parameters to AdaBoost ‘

®)
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| Using AdaBoost to train RBFN using Network parameters r
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l
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Figure 9 The Architectural flowchart of the proposed EKF-RBFN-AdaBoost Model

AdaBoost Generates T Ensemble Weak Classifiers
Initialization of » RBFN 1
input data
1 [
poTTTTTTTTET eI »
: RBFN 2 | < o H(x
|| EKF:To -2 2 X Z a.h,(x)
1| Optimize RBFN * =1
1| Parameters
crhy
RBFN T

Figure 10 The framework of the proposed ensemble model based on training RBFN with EKF showing the exchangeable
node with dotted lines (that be integrated with other training algorithms such as PSO)
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Table 6 Prediction comparison of Wisconsin Cancer Survivability dataset

Algorithms/Measures | TPR FPR Recall Precision | F-Measure Accuracy
EKF-RBFN- 0.93 0.03 0.80 0.97 0.87 0.96
AdaBoost

AdaBoostM1 with 0.94 0.08 0.94 0.94 0.94 0.94
Decision stump

AdaBoostM1 with 0.96 0.04 0.96 0.96 0.96 0.96
RBFN trained with

K-Means

AdaBoostM1 with 0.97 0.04 0.97 0.97 0.97 0.97
Random Forest

AdaBoostM1 with 0.97 0.04 0.96 0.96 0.96 0.96
Support Vector

Machine

Random Forest 0.97 0.04 0.97 0.97 0.97 0.97
Support Vector 0.97 0.03 0.97 0.97 0.97 0.96
machine

K-NN 0.96 0.06 0.96 0.96 0.96 0.96
ANN 0.96 0.04 0.96 0.96 0.96 0.96
Naive Bayes 0.96 0.03 0.96 0.97 0.96 0.96

Table 7 Prediction Comparison on Diabetes Diagnostic dataset

Algorithms/Measures | TPR FPR Recall | Precision F-Measure Accuracy
EKF-RBFN-AdaBoost | 0.74 0.34 0.74 0.74 0.74 0.76
AdaBoostM1 with 0.74 0.35 0.74 0.74 0.74 0.74
Decision stump

AdaBoostM1 with 0.74 0.34 0.74 0.74 0.74 0.74
RBFN trained with K-

Means

AdaBoostM1 with 0.76 0.32 0.76 0.76 0.76 0.76
Random Forest

AdaBoostM1 with 0.65 0.65 0.65 0.42 0.51 0.65
Support Vector

Machine

Random Forest 0.76 0.31 0.76 0.75 0.76 0.76
Support Vector 0.65 0.65 0.65 0.42 0.79 0.65
machine

K-NN 0.65 0.65 0.65 0.42 0.51 0.65
ANN 0.75 0.31 0.75 0.75 0.75 0.75
Naive Bayes 0.76 0.31 0.76 0.76 0.76 0.76

MIR Labs, USA
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Table 8 Performance Comparison Using Workers Absenteeism

Algorithms/Measures TPR FPR Recall Precision | F-Measure | Accuracy
Predictive Models based on Ensemble Classifiers
EKF-RBFN-AdaBoost 0.95 0.85 0.95 0.94 0.95 96
AdaBoostM1 + Decision 0.94 0.81 0.94 0.94 0.91 94
stump
AdaBoostM1 + K-Means 0.94 0.52 0.94 0.93 0.93 94
AdaBoostM1 + with Random | 0.98 0.31 0.98 0.98 0.98 98
Forest
AdaBoostM1 + Support 0.91 0.72 0.91 0.90 0.90 92
Vector Machine
Predictive Models Based Standalone Classifiers
Random Forest 0.98 0.28 0.98 0.98 0.98 98
K-NN 0.98 0.52 0.94 0.93 0.93 94
Support Vector machine 0.92 0.91 0.92 0.88 0.89 92
ANN 0.97 0.34 0.97 0.96 0.97 96
Naive Bayes 0.93 0.52 0.93 0.92 0.93 93
Table 9 Performance Comparison Using Clients Credit Card Defaults
Algorithms/Measures TPR FPR Recall Precision F-Measure Accuracy
Predictive Models based on Ensemble Classifiers
EKF-RBFN-AdaBoost 0.80 0.85 0.82 0.84 0.88 85
AdaBoostM1 with Decision 0.80 0.59 0.81 0.78 0.78 81
stump
AdaBoostM1 with RBFN 0.73 0.55 0.73 0.73 0.73 73
trained with K-Means
AdaBoostM1 with Random 0.79 0.77 0.79 0.73 0.70 78
Forest
AdaBoostM1 with Support 0.78 0.54 0.78 0.76 0.76 78
Vector Machine
Predictive Models based on Standalone Classifiers
Random Forest 0.78 0.76 0.79 0.75 0.70 78
Support Vector machine 0.78 0.54 0.78 0.76 0.74 78
K-NN 0.73 0.55 0.73 0.73 0.73 73
ANN - - - - - -
Naive Bayes 0.53 0.43 0.53 0.70 0.57 53
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V Conclusion and Further Work

Even though ensemble algorithms have been widely used
extensively in science and engineering applications,
nevertheless there is a need for improved prediction accuracy
of the algorithm. EKF has been considered as a benchmark
algorithm in estimating the state of a system due to its
recursive structure, faster convergence and ability to correct
itself without storing current or past estimates. Therefore, in
this paper we proposed a model that integrates EKF as an
optimizing agent to enhance the training parameters of RBFN.
Then applied AdaBoost as a meta-algorithm to generate and
combine several weak classifiers that produces a stronger
predictive output. A performance comparison of the model
was carried out using breast cancer survivability, diabetes
diagnostic, staff absenteeism and clients credit card payment
default datasets that were obtained from the UCI repository.
The result shows a good prediction outcome, minimizes
overfitting, and improves convergence rates of the model
compared with other standard standalone and similar
ensemble RBFN models trained with K-means algorithm or
Support Vector Machine. Likewise, the prediction accuracy of
the ensemble logistic model proposed prosed on cancer
dataset is 94% when 70% and 30% of the dataset were used
for training and testing the model respectively. We found that
the performance of Random Forest as a standalone algorithm
or as an ensemble classifier were highly competitive
compared with other models used in this study. The findings
indicated that using EKF to train RBFN can improve the
performance efficiency of ensemble algorithms significantly.
The study has gone some way towards improving our
knowledge and enhancing prediction accuracy through the
unification of EKF, RBFN and AdaBoost algorithms as an
ensemble model. The prediction performance of the proposed
ensemble logistic regression model also outperforms some of
the existing predictive models. In the future, further research
will be focused on the application of the proposed models on
complex, imbalance datasets, the effects of diversity and
algorithmic settings on prediction accuracy, combination
methods and possible extension of the ensemble logistic
model.
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