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2.1 Introduction

The  simplest  example  of  matter,  self-organised  at  nanoscale,  rather  than

individual nanoparticles considered in the previous chapter, is provided by quasi

one-dimensional (1D) objects such as nanowires, rods, ribbons or tubes. The key

feature  of  these  systems  is  the  contrast  between  the  confinement  of  the

constituent electrons, and all relevant quasiparticles, in two orthogonal directions

and an extension in the third, which leads to a coexistence and co-dependence

of discrete and continuous properties as seen in electronic, vibrational (phonon),

magnetic (magnon), etc. spectra that are both dispersive and oscillatory.

The unique features of 1D systems have spurred a wide interest in their

fundamentals  and  led  to  a  variety  of  applications.  The  combination  of

improvements in synthesis and characterisation has resulted in the development

of  1D-structure-based  devices  for  optoelectronics,  energy,  device  physics,

nanomechanics, biomedicine, and nanochemistry. The full potential of nanowires

including  a  wider  context1-30 is  illustrated  in  Figure  2.2.1  (cf.  recent  reviews

31,32). 
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Figure 2.2.1. Applications of 1D materials.

The properties of particular 1D systems are determined by their atomic

structure; thicker nanowires behave in many ways like bulk crystallites whereas

ultrathin wires and nanorods (segments of nanowire or elongated nanoparticles)

have  more  pronounced  discrete  features.  In  direct  analogy  with  hollow  cage

structures of nanoparticles described in Section 2.1.9 of this book, nanotubes



proved to be readily formed and are well known, especially in their carbon form.

The latter has been extensively reviewed, with a number of monographs devoted

to  them  exclusively,  e.g.  references  33-35,  and  does  not  warrant  further

discussion.  Different  methods  of  synthesis,  preparation  and  post-synthetic

treatment allow complex structures involving the combination of two or more

materials,  such  as  nanorods  capped or  cladded with  another  material,  to  be

formed,  which  have  numerous  advantages.25 Key  to  the  properties  of  such

systems is how they interact with supports in devices; many nanorods and wires

are  formed  directly  on  a  substrate.  An  important  feature  to  understand,

therefore,  in  addition  to  the  properties  of  1D  systems  along  their  extended

dimension, is the structure of interfaces. Furthermore, the ability to assemble

branch  points  and  tripods  using  different  materials,  which  are  useful  for

increasing  the  surface  area  of  adsorber  materials  and  designing  nanoscale

electrical circuits,  involves a combination of interfaces between nanowires, as

well as the interface with a substrate or contact. A different form of support is

provided  by  materials  with  nanoporous  architecture  capable  of  hosting  1D

nanowires; either singly or assembled in stacking sequences thus giving rise to

highly  functional  nano-composite  materials.  Typically,  materials  formed  by

strongly  bound  inorganic  compounds  play  the  role  of  the  support  including

zeolites36 and semiconductors (e.g. silicon carbide37 and zinc oxide38), but more

recently organic and hybrid metal organic frameworks have found their use.39,40

Atomistic  and  electronic  modelling  is  an  essential  component  in

understanding and predicting properties of 1D nanostructures. In this chapter,

we will highlight the main contemporary approaches and outstanding examples

of their application. 

The central challenge to computational approaches in materials science is

to  bridge  the  gap  between  what  can  be  accurately  modelled  and  real  life



structures synthesised in the laboratory.1 The most successful  current models

have been developed for  gas phase  molecules  on one end of  the scale  and

crystalline materials using three-dimensional (3D) periodic boundary conditions

(PBC) on the other. The 1D systems of interest are of course neither; a major

model and software development is, therefore, a prerequisite of further work,

examples of which are discussed below.

The focus of our research into the structure and properties of 1D systems

is localised states, or point defects, the charge of which is perhaps one of the

most  essential  characteristics.  An accurate treatment of  charged defects,  i.e.

those supporting trapped electrons or holes, is required to model processes of

fundamental  and  applied  interest,  involving  charge  transfer  and  excitations.

Another  issue  is  the  behaviour  of  localised  states  in  1D  systems  of  a  large

effective diameter, where a large number of atoms (e.g. > 103) must be included

in the model. Appropriate methods providing such a treatment for bulk are now

routine, but are not applicable to lower dimensional systems. 

The  rest  of  this  chapter  is  as  follows:  the  electrostatics  of  systems

extended  in  one  dimensions  is  discussed  first.  The  essential  features  of  the

electronic  structure  theory  in  1D  are  introduced  next.  We  then  discuss  the

dynamical behaviour, structure, phase stability and transport in 1D. As the next

development,  kinetic  phenomena  are  overviewed,  leading  to  the  studies  of

defects and wire or tube surface properties.

To illustrate some of the main concepts in this chapter we will use a toy

system – an infinite line of atoms with a basis of one or two atoms in a unit cell.

The  line  can  either  be  straight  or  buckled  as  shown  in  Figure  2.2.2,  with  a

1 In this respect the computational science is in a surprisingly good position as 
the experimentalists report synthesis and preparation of smaller and smaller 
high quality nanostructures, for which modelling becomes feasible using modern 
high performance computers. 



metallic and covalent character of bonding represented by Si and ionic dielectric

behaviour exhibited by ZnO and CdS. Its electronic and vibrational properties will

be discussed in detail below.

Figure 2.2.2. The infinite 1D Si systems: (a) linear equispaced configuration, (b)

dimerised  chain,  (c)  buckled  saw-tooth  configuration;  ZnO (d)  linear  and  (e)

buckled chains; and CdS (f) linear and (g) buckled chains. Unit cell is highlighted

with a dotted line. Si – blue; Zn –grey; O – red; Cd – violet; and S – yellow.



2.2 Long-term interactions

Energy  evaluation,  as  introduced  in  the  previous  Section  2.1,  requires  an

accurate account of many interactions in the system including short- and long-

range terms.2 But in contrast to the finite nanoparticles and clusters, modelling

one-dimensional  systems  encounters  one  problem,  which  is  common  to  all

extended systems with long-range potentials – the conditional convergence of

electrostatic series. “Conditional” does not mean that the convergence is just

slow, but that the result of the calculation is mathematically ill defined, which we

illustrate below using our toy system of a linear (non-buckled) two-atomic chain

with an interatomic distance between nearest neighbours of  d (see  e.g. Figure

2.2.2 (d)). For clarity, in this following analysis we use the atomic system of units.

An electrostatic potential on atom A with a negative charge q can be calculated

as  a  series  of  contributions  from  more  and  more  distant  pairs  of  atoms

symmetrically arranged around A, whose charge alternates between +q and –q,

φ=
2q
d

∑
n=1

∞ (−1 )n+1

n
.

(2.2.

1)
The astute reader will have noticed that this infinite sum is a particular case of

the Taylor expansion of ln (1+x )  around zero with x=1 :
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n
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(2.2.
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Let us have a careful look at this series:
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We can rearrange its terms, for example thus,

2 Note, however, that some atomistic models, in particular for covalent and 
metallic systems, neglect completely the long-range interactions, e.g. using 
bonding harmonic or embedded atom force fields, respectively.
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which demonstrates that convergence of the series is conditional. The physical

implication  of  this  behaviour  is  that  the  total  energy  of  a  1D system is  not

defined, neither is any related property such as the work required to remove or

add a charged particle to the system in a particular location, i.e. to create a point

defect.

Figure 2.2.3. A model of an infinite 1D chain of dipoles with density p.

The origin of  this unphysical  result  is  usually related to an uncertainty

introduced by assumption that the 1D system is infinite in length. If, instead of

an infinite chain, we considered its finite neutral fragment (a rod) of length 2 l,

then charges  ±q  that  terminate  the chain  on both ends would  define the

overall  rod  dipole  P⃗  and  therefore  its  potential  at  any  point  sufficiently

removed from the rod (i.e. where the atomic structure can be neglected). So we

can  associate  with  the  system  a  dipolar  density  p⃗=P⃗/2 l=q e⃗  (see  Figure

2.2.3).  By  applying  the  cyclic  boundary  conditions  to  the  system,  we  would

recreate the original infinite chain, with a dipolar density, or polarisation,  p⃗ ,

the value of which depends on the termination procedure. This arbitrary choice

gives rise to an uncertainty in the potential reference in 1D, but in contrast to 3D

bulk systems the electric field is defined uniquely as the corresponding series

converges absolutely.   



In  nature  (or  the  laboratory),  any  such  system is  of  course  finite  and

terminated in a particular fashion, setting the values of both potential and field

uniquely.  If  the  “macroscopic”  local  field  is  nonzero,  the  system  would  be

ferroelectric and would naturally acquire a domain structure, where the voltage

the charge carrier is subjected to should be commensurate with usual physical

constraints, for example that of a characteristic band gap discussed in the next

section. More often however, the field will be very close to zero (subject only to

local  fluctuations),  and the potential  will  be uniquely determined by ordering

terms in the electrostatic series such that each fractional sum corresponds to a

fragment with a zero dipole. With the value of the potential thus defined, there is

still however a problem due to the slow convergence of the series.

To  tackle  this  problem of  slow  convergence,  in  an  ingenious  and  very

popular Ewald’s approach,41 a Coulomb potential is split into two contributions:

one short and another long range. The short range term is summed up directly

over the lattice where the speed of convergence can be tuned with a careful

choice of the potential form and parameters, customarily defined as the Coulomb

potential of a Gaussian charge distribution.  The long-range term can be easily

evaluated in reciprocal space, where its Fourier transform is short-ranged and the

therefore the corresponding sum converges quickly. Mathematical details of this

technique  and its  application  to  systems of  different  dimensionalities  can be

found,  for  example  in  references  42 and  43.  Notably,  an  alternative  approach

implemented in a number of atomistic and electronic structure codes has been

proposed by Saunders  et  al.44,  who exploited the Euler-MacLaurin  summation

formula rather than Fourier based constructs.

Finally,  we  note  that  only  few  current  codes  tackle  specifically  1D

boundary  conditions;  however  there  are  many  ab  initio and  atomistic  (in

particular,  molecular dynamics, or MD) codes providing accurate treatment of



any systems in 3D. Therefore a popular choice for modelling lower dimensional

systems is a supercell approach, in which for example a wire is modelled within

one  unit  cell  surrounded  in  two  directions  by  a  layer  of  vacuum.  Periodic

repetition of this unit cell in all three dimensions results in an infinite stack of

nanowires arranged on a 2D lattice. Although this system could be of interest as

it reflects the real situation of nanowire synthesis in some cases, more often the

resulting  interactions  between  periodically  repeated  nanowires  is  completely

fictitious. To improve the model, one should remove these interactions, which

can be incorporated in the relevant code or done a posteriori, which is an area of

continuing development, see e.g. reference 45. 

2.3 Energy and electronic structure theory

Having established the electric potential, in the field of which move all charge

carriers, we now discuss the energy states of such charge carriers. We begin by

briefly recalling qualitative theories of  the electronic  structure of  1D periodic

systems. This approach is commonly used in solid state texts as an introduction

to band theories of crystalline solids, but as we concern ourselves with 1D rather

than 3D, we feel that such a recall is beneficial for the reader.  

In a 1D system characterised by a linear coordinate x , an electron in a

stationary state is described by a wave function,  ψ ( x ) , which is subject to the

corresponding Schrödinger equation with an external general potential, V̂ (x) :

T̂ ψ ( x )+V̂ ( x )ψ ( x )=Eψ (x ) ,
(2.2.

5)



where  T̂=
−ℏ2

2me
∇2

 is  the kinetic energy operator,  ℏ  the reduced Planck’s

constant,  me  the electron mass, and E  the electron energy. For simplicity,

we  will  assume  here  that  the  potential  is  local,  working  as  an  operator  of

multiplication by a function of  argument  x ,  with  a  hat  dropped.   We now

introduce periodic boundary conditions so that

V (x+L )=V ( x ) ,
(2.2.

6)

with  L  being the period of potential (the unit cell parameter in 1D). Bloch’s

theorem states that solutions to eq. (1) should take the form:

ψnq(x)=e
iqxunq(x ) ,

(2.2.

7)

where unq ( x )  is a periodic function with the same periodicity as V . The two

indices number possible solutions of eq. (2.2.5). One simple implication is:

ψnq(x+ L)=e
iq (x+L)unq(x ),

(2.2.

8)

Then for ψ  to be a solution of eq. (1),

ψnq ( x+L )=eiqLψnq ( x ) .
(2.2.

9)
The two indices numbering wave functions have their  correspondence in  the

electronic energies, which form the band structure. The index q  is not unique

as

q ,q±
2π
L
,q±2

2 π
L
…

(2.2.1

0)



give  identical  wave  functions  and  energies.  To  describe  the  complete  band

structure it is therefore sufficient to consider only the range of q [−π /L, π /L] ,

known as the reduced zone scheme. 

In  fact,  spectra  of  elementary excitations of  quasiparticles  in  extended

systems are described with wave like equations closely related in their form to

eq.  (2.2.5) and  therefore  have  similarly  structured  solutions.  An  important

example,  considered  in  Section  2.2.4,  is  the  case  of  phonons,  which  are

quantised waves of atomic vibrations.

Further, for a given value of q , there is an infinite number of solutions,

which we typically index with  n  from low energy to high. The lowest energy

solutions correspond to the bound electronic states of atoms or molecules, from

which the unit cell (i.e. the smallest repeatable unit in the periodic system) is

made up;  they  are  occupied  by  the  core  and valence  electrons  and can  be

separated from or merge with the higher lying extended states. For an atom, the

full electronic energy spectrum consists of two parts – lower-energy discrete and

higher-energy continuous; for the periodic system, because of the variation of

energy  with  q ,  both  parts  of  the  spectrum  are  continuous.  However,  the

discrete nature of the bound states is retained in the spectra of the periodic

system in the form of discrete bands (which may, however, overlap with each

other) as will be seen below.



Figure 2.2.4. Kronig-Penney model: (a) potential, (b) solution, and (c) dispersion.

The origin of the discrete bands can best be described in terms of the

simplest example of an electron confined within a 1D system,  i.e. the Kronig-

Penney model, which consists of a periodic array of potential wells, each of width

a , separated by barriers of width  b  and height  V 0 , as shown in Figure



2.2.4(a).   Given  Bloch’s  theorem  (Eq.(2.2.8)),  the  allowed  solutions  of

Schrödinger’s  equation  for  an  electron  with  energy  E  subject  to  such  a

potential  are  linear  combinations  of  plane  waves,  the  wavenumbers  q  of

which are constrained by the boundary conditions:

cosq (a+b)=coska coshκb+½ (κ /k – k /κ)sin kasinh κb,
(2.2.1

1)

where  k=√2meE /ℏ  and κ=√2me (V 0−E)/ℏ .  If  we plot  the right-hand side

(RHS) of Eq. (2.2.11) as a function of k  (see Figure 2.2.4(b)), it is immediately

obvious that, for certain values of  k  (or equivalently  E ), its magnitude is

greater than 1, which is incompatible with the left-hand side, indicating that the

equation  at  this  value  has  no  solution.  Such  values  of  k  or  E  make

continuous bands of forbidden states and are commonly referred to as energy

gaps. When we consider  q  as a function of  E ,  i.e. the band structure, we

observe alternating intervals of allowed and disallowed states, with one example

(with  a=6 Å,  b=4 Å and  V0=6 eV) given in Figure 2.2.4(c). The range of  q  is

confined within the reduced zone scheme, which is the 1D first Brillouin zone.

The band structure can be used to derive other important features such as the

electron (or hole) effective mass  m¿

, and the density of states (DOS), which

shows  band  widths  and  gap  values,  on  which  many  optical  and  transport

properties depend.



A realistic  potential  in  eq.  (2.2.5),  however,  will  be  much more  complicated,

reflecting the chemical nature of the system, and, unfortunately, there are no

simple  closed  solutions  to  (2.2.5).  To  simplify  the  problem,  a  basis  set  is

introduced, which can either refer to the behaviour of the electron bound to a

nucleus, as in an atom, or to the extended plane-wave like nature of a nearly free

electron.  The  former  approach  is  employed  by  tight  binding,  or  model

Hamiltonian methods, whereas the latter by model potential techniques. Such

methods typically rely on empirical parameters fitted to reproduce experiment

or, more recently, high-level  ab initio calculations. A modern implementation of

model potentials, in particular in the field of quantum chemistry of molecules on

one  hand  and  solid  state  physics  the  other,  takes  the  form  of  semi-local

pseudopotentials,  which  account  for  the  core  electrons  –  see  for  example

references 46-50. One can then separate the many-electron system into core and

valence electrons, treating the valence electrons explicitly, which move in the

field of not just nuclei but also core electrons.

The band structure discussed so far relates to states that extend along the

periodic  spatial  dimension  of  the  1D  system.  In  the  other  two  orthogonal

directions quantum confinement will determine the form of the electronic states.

The degree to which confinement has an effect depends on the thickness of the

nanowire, where the typical localisation length of the corresponding state should

be compared with the characteristic confining dimension. 

The one-electron picture discussed so far is in many respects too simplistic,

when  we  consider  real  systems  of  many  electrons,  and  a  number  of  more

appropriate accurate theoretical approaches of various sophistication have been

developed and implemented  in  commonly  accessible  software  packages.  The

essential features of the electronic band structure, which we highlighted using a

simple Kronig-Penney model, are retained for the majority of systems of interest.



Key exceptions concern systems with critical  two- or more electron behaviour

observed, for example, in the superconducting regime. As the electronic system

in  quantum  mechanics  is  described  by  a  many-electron  wave  function,  the

solution  of  a  many-electron  analogue  of  eq.  (2.2.5) becomes  necessary  but

intractable. The applied studies typically employ one of the following levels of

theory, which accounts for the quantum-mechanical many-electron interactions,

that is exchange and correlation:

1. Mean  field  and Hartree-Fock  theory.  The  simplest  approach  to  treating

electron-electron interactions is to model each electron in the mean field

due to  all  electrons  in  the system,  or  rather  their  charge density.  The

obvious fault with such an approach is an ensuing self-interaction of an

electron which, perhaps, could be insignificant for systems in which there

are  very  large  numbers  of  electrons.  Importantly,  however,  in  close

proximity  to  a given  electron  at  a  given position  and time,  we should

expect  depletion in the probability to  find other  electrons,  due to both

Coulomb repulsion and the Pauli Exclusion Principle. The former dynamical

effect (and other related phenomena involving interactions with more than

two electrons) is referred to as electron correlation and the latter, which

concerns only same-spin particles, electron exchange. Mean field theory,

although neglecting these interactions, only requires the solution of the

one-electron Schrödinger equation ((2.2.5))) in an external local potential

derived from the total charge density (known as the Hartree potential). By

introducing  an  anti-symmetric  many  electron  wave  function,  in  an

approach known as Hartree-Fock theory, one can derive a potential that

contains a local (Hartree) term, and a non-local (Exchange) term, so that

electron  exchange  is  treated  explicitly.  The  formulation  of  these  terms

leads  to  a  fortuitous  cancellation  of  the  self-interaction  energy.  The



drawback, however, is an increased complexity in the calculation due to

the non-local term. Thus, to describe n electrons we need n one-electron

orbitals, a problem which becomes tractable using modern computers.  
2. Semiempirical methods that originate from the Hartree-Fock theory using

a minimal  basis  of  localised atomic  valence orbitals,  where  the matrix

elements associated with three or more atomic centres are omitted and

one-  and  two-centre  terms  are  approximated  using  simple  analytical

functions, which are then parameterised and fitted to experimental and/or

ab initio data. The variability in the chemical environment is treated by

these methods via an SCF (self-consistent field) procedure in full analogy

with  the  parent  ab  initio approaches.  SCF  versions  of  tight  binding

approaches have also been developed and widely applied to the study of

nanosized systems.
3. Density Functional Theory (DFT), where the total energy of the system is

represented as a functional of the charge density. The pragmatic approach

in the Kohn-Sham formulation of DFT is, in analogy with the mean field

approach, to map the many-electron function to a single-particle orbital,

representing an idealised electron moving in the mean field of all electrons

(including itself) and nuclear (core) charges, now also including exchange

and  correlation  effects.  Although  in  principle  exact,  the  potential

(exchange  and  correlation)  contribution  from  all  the  electrons  is  not

generally known, and therefore requires some form of an approximation.

The simplest Local Density Approximation (LDA) assumes a full locality of

the potential that only depends on the charge density at the point, where

it  is  probed,  and  is  usually  equated  with  the  known  potential  of  a

homogeneous  electron  gas  of  the  given  density.  Further  more

sophisticated approximations include the first  derivatives of  the charge

density  (Generalised  Gradient  Approximation,  GGA),  the  second



derivatives of the charge density and/or kinetic density (Meta-GGA), and a

fraction  of  exact  Hartree-Fock  exchange  (hybrid-DFT).  In  all  of  these

methods occupied Kohn-Sham orbitals are used to construct the potential

and  energy.51 Recently,  even  more  sophisticated  methods  using

unoccupied  Kohn-Sham  states  have  been  advanced,  termed  double

hybrids.52

4. Many-electron theories, in contrast to DFT, include an explicit account of

electron-electron interactions. In the first instance, the total energy can be

constructed as a series of consecutive improvements over the Hartree-

Fock approximation, taking into account correlation between pairs, trios,

and higher order combinations of particles in a perturbative or “exact”

manner, leading to Møller-Plesset (MPn) and coupled cluster (CC) methods

on one hand, and configurational interaction (CI) and multiconfigurational

(MC) SCF techniques on another. An analogous, closely related family of

methods deals with the problem of one-, two- and more particle spectral

properties of the system by employing the formalism of Green’s functions,

which  is  also  used  for  the  treatment  of  localised  defect  states  and

transport. The most widely used approaches include: GW, as applied to

calculations of  ionisation and attachment energies,  thus allowing direct

comparison with experimental photo- and secondary electron spectra; the

Random Phase Approximation (RPA), typically used in the same context as

GW, but recently applied with significant success to calculating the total

energy when perturbative single and double excitations are treated (both

GW and RPA are also used for the calculation of the dielectric function);

and, finally, the Bethe-Salpeter (BS) equation, which describes explicitly

two-particle  interactions  within  a  many-particle  system  and  allows

accurate  modelling  of  excitonic  spectra.  All  these  approaches  are  very



expensive with respect  to  computer resources,  but are  becoming more

accessible as the years pass by.

To  highlight  the  main  features  of  1D  band  structures  and  DOS,  we  have

calculated the band dispersion for a series of toy linear chain systems (see Figure

2.2.2) using hybrid DFT. The chains are assumed to repeat periodically in the x

direction, with a unit cell length of a. For each system, we have either carried out

full geometry optimisation or, in the case of perfectly linear chains, optimised the

structure with symmetry constraints. All calculations have been performed using

the  VASP  code,53-56 with  the  projector  augmented  wave  (PAW)  approach57 to

describe the interaction between the core (Si:[Ne], Cd:[Kr],  Zn:[Ar],  S:[Ne], O:

[He])  and  valence  electrons,  and  the  solids-corrected  Perdew-Burke-Ernzerhof

GGA  exchange-correlation  density  functional  with  25%  exact  Hartree-Fock

exchange included (PBEsol0).58-61 Total energy convergence within 10-4 eV/atom

has been achieved using a plane-wave cut-off energy of 1200 eV and a 48 × 1

× 1, 24 × 1 × 1, 12 × 1 × 1 Monkhorst-Pack  k-point mesh for the one,

two, and four atom unit cell cases, respectively. Calculations were deemed to be

converged when the forces on all atoms were less than 0.01 eV Å-1.



Figure 2.2.5. Band structure and density of states of the (a) linear, (b) dimerised, 

and (c) buckled Si chain. Here and below, blue lines are used for valence states 

(bands), red for conduction.

Figure 2.2.6. Band structure and density of states of the (a) buckled and (b) 

linear CdS chain.



Figure 2.2.7. Band structure and density of states of the (a) buckled and (b) 

linear ZnO chain.

The calculated band structures and DOS are shown in Figures 2.2.5-7. In all

cases we observe cosine-like dispersion, as expected from our discussion on the

Kronig-Penney potential above. For the ionic bonding cases, we have indicated

the orbital contributions to the DOS, which demonstrates the origin of the bands.

We now discuss the particular cases in more detail.

For metallic and covalent bonding, we have chosen Si  as a representative

system. The perfectly linear case, Figure 2.2.2 (a), consists of a single Si atom in

the unit cell, with a Si-Si bond length of 2.12 Å. This structure is unstable with

respect  to  a  Peierl's  type  distortion  (see  Section  2.2.5  below),  which  can  be

traced to its unpaired electrons occupying orbitals perpendicular to the chain.

The system is metallic, as can be seen from the band structure, Figure 2.2.4 (a),

where the metallic band is shown in green. Two distortions can occur to break the

symmetry  and  lead  to  electron  pairing:  dimerisation  (Figure  2.2.2  (b))  and

buckling (Figure 2.2.2 (c)). In both cases, the unit cell doubles to two atoms per

cell. We find that buckling, where the Si-Si bond length increases to 2.20 Å and

the bonds form an angle of 117.11, is the ground state, being 0.56 eV/atom

more  stable  than  the  linear  case  (and  0.52  eV/atom  more  stable  than  the

dimerised case). Looking at the band structures (Figure 2.2.5 (b) and (c)), we



observe band folding due to the increased unit cell sizes, and clearly see a direct

band gap opened up (0.46 eV for the dimerised chain, 0.49 eV for the buckled

chain). The reduced symmetry of the buckled chain is reflected in the breaking of

degeneracy of the bands.

For ionic bonding, we have considered two systems: CdS and ZnO. The main

features we observe in the band structures (Figures 2.2.6 and 7) are a large band

gap (approx. 2 and 5 eV) between anion  p (making up the top of the valence

band) and cation s orbitals (making up the bottom of the conduction band), and

localised (low dispersion) orbitals deep in the valence bands (cation d and anion

s orbitals). For CdS, the buckled chain structure (Figure 2.2.2 (g)), with two atoms

in its unit cell, is 0.18 eV/atom more stable than the linear chain (Figure 2.2.2

(f)).  Due  to  the  buckling  (with  an  angle  of  140.56°),  the  Cd-S  bond  length

shortens from 2.37 to 2.29 Å, which results in a greater anion-cation repulsion

and  a  corresponding  increase  in  the  band  gap  (from  2.38  to  2.93 eV).  On

buckling, the breaking of degeneracy within the p and d orbitals is evident from

the band structures.

For ZnO, a similar set of results to that of CdS was found, apart from one

important  difference:  the  buckling of  the chain  occurred  so  that  the Zn  ions

remained linearly coordinated. This coordination means that the unit cell consists

of four atoms (see Figure 2.2.2 (e)), which leads to a folding of the bands due to

the reduced reciprocal unit cell size. The buckling angle is 130.31°, and the Zn-O

bond length reduces from 1.742 Å to 1.736 Å, with a resulting increase in band

gap from 5.15 eV to 5.55 eV.

A  large  number  of  studies  have  been  performed  to  determine  the  band

structure of various nanowire systems, a representative set of which we list next.

Si  nanowires  are  the  most  well  studied,  using  computational  approaches

including kp,62 tight-binding,63 and DFT.64-66 A comprehensive kp study of core-



shell nanowires for III-V systems has been performed by Pistol,67 including Γ-point

energies and effective masses, while the band structure of InAs nanowires has

been determined using  a  tight-binding  approach  by  Lind.68 Ballistic  transport

through the 1D subbands is included in many of these studies. In all cases the

calculated band structures display the basic features of those of our toy models,

as is evident for example from a DFT study on Si nanowires by Nolan et al.65 – see

Figure  2.2.8.  Experimental  techniques  used  to  study  electronic  bands  in  1D

nanosystems include resonant  Raman spectroscopy (comparing the electronic

structure  of  GaAs  in  wurtzite  and  zinc  blende  phases),69 angle-resolved

photoluminescence spectroscopy,70 photoluminescence (PL),71 time-dependent PL

and PL excitation,72 and conductance measurements.73

Figure 2.2.8. Calculated band structure of Si nanowires using DFT.65 



2.4 Dynamical properties

The structure and properties  of  1D systems in equilibrium are still  of  course

affected by the thermal motion of atoms and, in particular, at low temperatures,

by its quantum character, which should be expected based on the uncertainty

principle. The fact that we are able to describe the electronic properties without

recourse to the nuclear motion is a consequence of the dramatic difference in

particle masses between an electron and even the lightest nucleus, i.e. a proton.

Such a separation of the electronic motion from the nuclear is described by the

Born-Oppenheimer theory, which uses the ratio of these two masses as a small

parameter ~O(10-3), about which the total energy of an electron-nuclear system

is expanded.  As  the  electronic  energy  can  be  determined for  a  given set  of

nuclear coordinates, it may be considered as a potential, in the field of which

nuclei move, which forms the basis of the semiclassical method of interatomic

potentials – see the preceding chapter.

The  potential  energy  of  any  system  is  a  smooth  function  of  nuclear

coordinates, about which it can be expanded into a Taylor series. Typically, the

potential  energy  of  nuclei  (usually  referred  to  as  atoms  in  this  context)  is

sufficiently  well  represented  by  harmonic  wells  with  a  possible  inclusion  of

anharmonic corrections, which corresponds to retaining the quadratic and higher-

order cubic terms (the first order term drops out as a necessary condition of the

system stability). On average, the atoms can be found at the bottom of these

wells, and the first computational task in a study of a material is to determine

positions of these minima, the object of geometry optimisation discussed in full

in Section 2.1.

When the coordinates of the minimum of interest are found, the thermal

motion  around  the  minimum  can  be  described  classically,  in  the  harmonic

approximation,  as  a  system of  coupled  linear  oscillators.  The  solution  of  the



problem leads  to  a  set  of  eigenmodes,  within  which  the  atomic  system can

vibrate.  The  corresponding  quantum-mechanical  description  involves  the

quantisation of such modes into particles of atomic vibration known as phonons.

By pumping in the energy into a particular eigenmode, at a classical level, we

increase an amplitude of the corresponding atomic oscillation, or, at a quantum-

mechanical  level,  we generate more phonons of  a  particular  eigenenergy (or

frequency).  The  eigenmodes  are  in  practice  vectors  of  pre-exponential

coefficients in a plane-wave representation of waves propagating through the

system, which are subject to the same periodic boundary conditions considered

above for electrons and consequently an analogous Bloch theorem. For  each

atom in a unit cell there are three spatial degrees of freedom, so there are three

corresponding unique phonon (vibrational) modes, implying a very large number

for an extended system, which can however be conveniently enumerated using

q-points in the reciprocal space, all within just one, 1st Brillouin zone. If our unit

cell contains M atoms, the number of possible modes due to just these atoms will

be 3M, which is the number of branches spanning the 1st Brillouin zone, with the

energy (frequency) dependence on the  q-point known as dispersion. The three

lowest frequency modes are termed the acoustic modes, as in the elastic limit

they correspond to sound waves in the solid, and consist of in-phase motion of

the atoms within the unit cell. Any other modes are termed optical, and consist

of motion where the centre of mass of the atoms remains constant, implying a

well-defined phase difference between their individual vibrations.

Similar  to  electrons,  in  1D,  the  atomic  degrees  of  freedom  may  be

restricted,  depending  on  the  level  of  confinement.  In  the  two  orthogonal

directions where periodicity is removed, the phonon modes become restricted or

confined, which alters their dispersion. This lack of periodicity results in much

larger unit cells, which in turn leads to an increase in the number of eigenmodes.



Moreover,  surface  scattering  leads  to  a  lifetime or  broadening  of  the  modes

which can be directly observed using Raman spectroscopic techniques. In order

to demonstrate the basic concepts of phonon dispersion in 1D systems, we now

discuss the dynamical properties of our toy 1D chain systems presented in Figure

2.2.2.

Phonon frequencies have been calculated with a frozen phonon approach,

which requires knowledge of second derivatives of energy (force constants) with

respect to atomic degrees of freedom in a suitably chosen supercell (24 atom

unit  cells  in  all  cases  discussed below).  The  force  constants  were  evaluated

numerically, employing the method of finite atomic displacements and energy

and forces calculated at the hybrid DFT level (introduced in our discussion of the

electronic bands in Section 2.2.2). q-point interpolation as implemented in the

post-processing program PHONOPY74 was then used to determine the dynamical

matrices and phonon dispersions.

Figure 2.2.9. Phonon dispersion of the (a) buckled and (b) linear CdS chain.

We first discuss the ionic system CdS (Figure 2.2.9). In Section 2.2.2, we

found that the buckled chain was lower in energy than the linear chain. For both

the linear and buckled chains, as we have two atoms in the unit cell, there are

six phonon modes, three acoustic and three optical. The transverse acoustic (TA)

modes (shown in blue in the figures) consist of perpendicular displacements of

the chain, and remain at low frequencies throughout the Brillouin zone (BZ). The



longitudinal acoustic (LA) mode has linear dispersion close to the Γ point, the

slope  of  which  is  the  speed  of  sound  (as  in  bulk).  For  the  linear  chain,  the

transverse  optical  (TO)  modes  are  imaginary,  indicating  that  the  system  is

unstable  with  reference  to  a  distortion  along  these  modes.  As  these  modes

consist of out-of-phase motion of the two atoms in the unit cell perpendicular to

the chain, this distortion corresponds to the buckling of the chain,  i.e. a phase

transition to the lower energy buckled configuration. The TA modes in this case

are  degenerate,  as  expected  for  a  linear  chain.  The  longitudinal  optical  (LO)

mode remains relatively dispersionless at approximately 500cm -1. For the ground

state  buckled  system  (Figure  2.2.9  (a)),  the  dispersion  becomes  more

complicated. The TA and TO modes are no longer degenerate, and the TO mode

corresponding  to  a  'wagging'  motion  of  the  ions  softens  to  lower  frequency

(ranging  from just  above  0 cm-1 to  56 cm-1 over  the  BZ).  The  LO mode also

softens slightly. It is worth noting that the calculated Γ point frequencies of the

optical  modes  (218 and 466 cm-1)  are  in  reasonable  agreement  with  Raman

measurements  on CdS nanowires  (301 and 598 cm-1),75 when one  takes  into

account the red shift due to confinement, as our system is the limiting case of

one atom thick  wires.  One of  the TA modes,  however,  in  this  case becomes

imaginary,  which  indicates  that  the  system  is  unstable.  We  show  how  this

instability is resolved in the following example of the ZnO chain.

Figure 2.2.10. Phonon dispersion of the (a) buckled and (b) linear ZnO chain.



The results for the ZnO chain display common features to those of CdS,

apart from some important distinctions. We remind the reader that the ground

state for this system is the buckled chain (Figure 2.2.2 d) with a four atom unit

cell. For the linear chain (Figure 2.2.2.b), the modes observed are similar to those

of the linear CdS chain, except for an increase in frequency of the LO and LA

modes, reflecting the stronger Zn-O interaction, real TO modes (that range from

~170 to 120 cm-1 across the BZ), and lower frequency TA modes. The TA modes

remain  close  to  zero  up  to  qx=0.6  (2pi/a),  which  may be  an  artefact  of  the

calculation (these modes are low frequency sound waves, and it is possible that

their low frequency is within the numerical error of our simulation). The fact that

all modes are real indicates that the linear chain is stable, in contrast to the CdS

case. The lower energy structure, i.e. the four-atom unit cell buckled chain, is

therefore arrived at by a first order phase transition, in which an energetic barrier

must be overcome. We will discuss phase transitions in more detail in Section

2.2.5 For the buckled chain (Figure 2.2.10 (a)),  we see folding of the phonon

bands due to the increased unit cell size, resulting in a doubling in the number of

bands, and a splitting of the transverse modes.



Figure 2.2.11. Phonon dispersion of the (a) linear, (b) dimerised, and (c) buckled

Si chain.

The case of the Si chain is somewhat more complicated. The linear chain is

unstable with respect to a Peierl's distortion (see Section 2.2.5), meaning it can

dimerise  (Figure 2.2.2 (b)),  but  the ground state  consists  of  a  buckled chain

(Figure 2.2.2 (c)).  The instability of  the linear chain is reflected in its phonon

dispersion (Figure 2.2.11 (a)). As the unit cell consists of a single Si atom, there

are only three modes, all of which are acoustic. The LA mode becomes imaginary

away from the Γ point, corresponding to the dimerising distortion. The TA mode

at the edge of the BZ (shown in green) is also imaginary and corresponds to a

buckling distortion. For the dimerised case (Figure 2.2.11 (b)), the dispersion is

similar to that of the CdS linear chain, as one would expect (as both are linear

and unstable). In this case, there are optical modes, as the unit cell consists of

two atoms. The (degenerate) TO modes are imaginary, reflecting the fact that

the buckling distortion is energetically preferred by the system. For the buckled



chain (Figure 2.2.11 (c)), the TO modes are no longer imaginary, but one of them

(the 'wagging'  mode)  becomes mixed in  with  the TA modes.  The oscillations

visible in these modes’ dispersion is a result of the insufficiently large size of

supercell we could afford using modern supercomputers. The higher-frequency

LO and TO modes are well separated at Γ, but mix as  qx varies across the BZ.

Interestingly, at the zone boundary the modes become degenerate, reflecting

the  fact  that  the  unit  cell  consists  of  one  species,  meaning  that  the  mode

distortions in different directions become equivalent when the phase between

the unit cells is exactly opposite (which is the case at the zone boundary).

The effect of quantum confinement on the phonon modes in 1D systems

has  been  extensively  studied  in  the  literature,  from which  we  provide  some

examples. Using Raman spectroscopy, the resulting shift and broadening of the

optical modes due to confinement have been observed for example in nanowires

of Si,76-78 GaAs,79,80 CdS,75 SiC,81 and GaN.82 Other experimental techniques have

also been used to study the confinement of phonon modes, including optical

absorption in CdTe nanowires83 and inelastic transitions between nanostructures

as a probe in InAs nanowires.84 Such modes were used to explain the low thermal

conductivity,  and  conversely  high  Seebeck  coefficient  of  Si  nanowires,85,86 by

illustrating that confinement leads to surface scattering of optical  modes, but

efficient transmission of acoustic modes due to the wire diameter being less than

the wave length of the phonon mode. 

Theoretical studies on the dynamical properties of 1D systems have also

been reported. The confinement-induced shift and broadening of optical modes

were shown to be strongly affected by the surface structure by Richter  et al.87

Thonhauser and Mahan88 used a ball-and-spring model to study phonon modes in

a  hexagonally  cross-sectioned  Si  nanowire,  demonstrating  that  the  mode

boundary  conditions  consisted  of  zero  stress  on  surface  atoms  for  acoustic



modes,  and zero  displacement (or  'clamped'  boundary  conditions)  for  optical

modes.  Their  optical  eigenmodes are  shown in  Figure  2.2.12.  A tight-binding

approach has been used to determine the electronic and phonon properties, and

hence the electron-phonon interaction and transport properties, of Si nanowires89

and field effect transistors based on such nanowires.90 The mobilities determined

in this way were in good agreement with experiment. Atomistic calculations of

phonon frequencies, and molecular dynamical simulations of their transport has

been performed on Si nanowires by Donadio et al.,91 which confirmed the strong

effect of the surface structure and wire diameter on the confined phonons. 



Figure 2.2.12. Optical eigenmodes in a Si nanowire as viewed along the [111]

direction.

Finally, Mizuno et al.92 have provided an extensive theoretical study of the

possible  confined  modes  in  nanowires  with  square  and  rectangular  cross

sections. An example of a calculated phonon dispersion (of a Si nanowire)88 is

given in Figure 2.2.13.



Figure 2.2.13. Phonon dispersion of a hexagonally cross-sectioned Si nanowire.

2.5 Structure and phase transitions in one dimension

The stability of a 1D system is no less surprising than the stability of graphene

sheets, which have been the subject of intense research in recent years. One

would naively expect thin nanowires to be quite brittle, but it has been shown, by

experiment and molecular dynamics simulations, to often not be the case. The

mechanical  properties  of  nanowires  are  quite  different  to  those  of  the

corresponding bulk systems, mainly due to the proportional increase in surface

area  as  size  is  reduced.  Depending  on  the  orientation  and  thickness  of  the

nanowire, its yield strength can vary widely, but remain significantly higher than

that of bulk. This effect is related to energetic barriers to slippage, which occur



due to the stacking of the wire along the axis, as opposed to on the surface.

Conversely,  the  Young’s  modulus  is  typically  less  sensitive  to  the  wire

dimensions, but some MD modelling indicates that it can vary for Au nanowires

of a particular orientation. For a detailed review of the mechanical properties of

nanowires see reference 93.  

In  the  1930s  Peierls  pointed  out  that  a  1D  metallic  chain  would  be

unstable with respect to band gap formation. Considering a linear chain of atoms

of separation  a , with one electron per atom, according to the Kronig-Penny

model considered above, the system will have one half-filled band which would

show metallic behaviour. If the atomic spacing were to change so that each atom

became simultaneously closer to one neighbour and further from the other, i.e. if

the  symmetry  were  to  spontaneously  break  as  the  system  dimerises,  the

increase in elastic energy due to the stretching of one bond may be offset by the

energy gain in the formation of a covalent bond of σ  character. In this case,

the effective lattice spacing is doubled, and the band structure will now contain

an energy gap, with a fully occupied valence band. The internal energy of the

chain, which includes the thermal energy due to atomic vibrations, will of course

depend on the temperature. Below a critical temperature, such lattice distortions

will  be favourable,  while  at  higher  temperatures metallic  conductivity  will  be

observed. 

Different  synthesis  procedures  lead  to  different  1D  structures,  such  as

wires,  tubes,  ribbons  etc.  that  typically  retain  bulk-like  atomic arrangements.

Once the nanostructure is of sufficiently small diameter (<5-10 nm), however,

the  bulk-like  characteristics  are  no  longer  realised.  Determining  the  exact

configuration at such sizes is challenging experimentally, leaving theory as the

only viable approach at present. 



The configuration of a nanowire, even with a given number of atoms, can

present a great challenge for structural determination, where large progress is

expected from applying global optimisation methods, which, however, has not

been realised. The absolute majority of the current modelling is done based on

carving a model system from bulk or on construction of new architectures from

small  predefined  nanostructures,  usually  obtained  using  global  optimisation

techniques.  In  some  cases,  novel  atomic  configurations  can  result  from

numerical  experiments  termed  uniaxial  tensile  loading  followed by  simulated

annealing,  where  a  bulk  cut  is  strained  in  the  extended  direction  and  then

allowed to relax. For an extended discussion of techniques involved in structure

prediction and applied studies see preceding section 2.1.

2.6 Charge and heat transport in ideal systems

The calculation of transport properties in solids is well established, with a variety

of  approaches  available  differing  in  complexity  and  accuracy.  In  a  metal  or

semiconductor,  electrons  (holes)  occupy  only  a  fraction  of  the  available

conduction  (valence)  states,  which  is  a  necessary  condition  for  energy  and

momentum transfer.  Typically, when treating electron (or hole) carrier transport,

the effective mass approximation is applied (see references  94 and  95, whose

arguments we follow below),  within a one-particle  picture,  where interactions

between carriers are considered negligible and the motion is described either

semi-classically,  via  the  Newton’s  law,  or  quantum-mechanically,  using  the

Schrödinger equation. Within this approximation, the effect of the periodic crystal

potential is such that the carrier moves as if it were a free particle, but with a

different mass m=m¿me , termed the effective mass. As m * arises from the

periodic potential, it can be derived from the crystal band structure. 



In  section  2.2,  we  treated  electrons  as  Bloch  waves  with  well-defined

quantum numbers  q⃗  (wave  numbers).  Such a  description  implies  that  the

electrons delocalise over the entire space. When considering transport, it is often

more convenient to describe electrons as particles with well-defined positions

and/or  velocities/(quasi-)momenta  (subject,  however,  to  the  Heisenberg

uncertainty  principle),  which  can  be  achieved  by  representing  electrons  as

packets (groups) of Bloch waves, moving with a group velocity

v⃗=∇ q⃗ω ( q⃗ )=
1
ℏ
∇ q⃗E ( q⃗ ) ,

(2.2.1

2)

where  E(q⃗ ) ,  is  the  q⃗ -space  structure  (dispersion)  for  the  particular

conduction band.  Given an applied electric field,  E⃗ ,  the work done on the

particle of charge −e  is given by

δE=−e E⃗ ∙ v⃗ δt ,
(2.2.1

3)
From equation (2.2.12) we can derive

δE=ℏ v⃗ ∙ δ q⃗ ,
(2.2.1

4)
and combining (2.2.13) and (2.2.14) we find

ℏ ´⃗q=−e E⃗ .
(2.2.1

5)

Taking  the  time  derivative  of  Equation  (2.2.12),  for  each  component  i  (

¿ x , y , z )

v́ i=
1
ℏ∑

j

∂2E
∂q i∂q j

q́ j ,
(2.2.1

6)
from which, taking Equation (2.2.15), we derive



´⃗v=
1
ℏ2∑

j

∂2E
∂q i ∂q j

(−e E⃗) ,
(2.2.1

7)
Equation  (2.2.16) is  analogous  to the classical  Newton's  equation,  with  mass

given by the tensor:

( 1
m¿ )

ij

=
1
ℏ2 ∑

j

∂2E
∂qi∂q j

,
(2.2.1

8)
which is symmetric and can therefore be transformed to principle axes.

At  equilibrium, there is  no net  displacement  r⃗  of  carriers.  One then

considers the case when there is an applied field  E⃗ , which accelerates the

particle subject to occasional scattering processes that in turn slow it down (if

such scattering processes were not present, the acceleration due to E⃗  would

result in an infinite velocity and hence infinite current). Thus naturally emerge

two time scales: over one, the particles accelerate between collisions, and over

the other, subject to many collisions the particles move with an average constant

velocity  –  see  below.  The  slowing  down,  or  drag  will  be  proportional  to  the

particle velocity and inversely proportional  to the average time  τ  between

collisions.  Such  a drag  force  is  also  proportional  to  the particle  mass,  which

affects  the  acceleration  between  the  collisions  and  therefore  the  average

velocity. The appropriate Newton's equation (over the longer time scale) is:

m¿ d
2 r⃗
d t2

+
m¿

τ
d r⃗
dt

=−e E⃗ ,
(2.2.1

9)

where  τ  is  termed  the  scattering  relaxation  time.  As  the  particle  is

accelerated,  the velocity and hence the drag increase until  a steady state  is

achieved, in which the drag term counters precisely the applied field so that on

average the particles move with a drift velocity given by



v⃗d=−e E⃗
τ
m¿ ,

(2.2.2

0)

from which the current density  J⃗=−ne v⃗d  ( n  is the charge carrier density)

and,  hence,  the conductivity  σ  can  be  determined (from  J⃗=σ E⃗ ,  and a

scalar conductivity is defined as one of the principal values of tensor  σ ). A

more useful property, however, to calculate is the mobility μ , defined as the

constant (tensor) of proportionality between v⃗d  and E⃗  (i.e. v⃗d=μ E⃗ ), as it

is independent of the carrier density, which can vary widely in semiconductors

with temperature or doping level. We then have:

μ=e
τ
m¿ ,

(2.2.2

1)
As shown above,  m* can be derived from the crystal band structure (it

could also be taken from experiment, or used as a parameter to be fitted to other

experimental  results).  The  complications  to  determining  μ  come from the

property τ . 

The  simplest  approach  is  to  treat  τ  as  a  constant,  derived

phenomenologically,  e.g.  from measurements  of  resistivities,  which,  however,

limits the predictability of the model. As we consider transport in the periodic

system,  scattering  occurs  from  breaks  in  periodicity,  i.e.  lattice  vibrations,

defects,  and  surfaces/interfaces.  Each  of  these  scattering  processes  has  a

characteristic  rate  τ i ,  the  reciprocal  of  which  is  the  scattering  rate  Ri ,



which, according to Matthiessen’s rule, can be summed together to determine a

total scattering rate R .  Different approaches can be taken to calculate these

scattering rates, with the most accurate being the determination of appropriate

wave  functions  and  applying  Fermi's  Golden  Rule,  including  the  relevant

scattering potential (e.g. electron-phonon, electron-electron, screened Coulomb,

etc.). 

The  mobility  was  introduced  in  order  to  characterise  the  transport

properties  of  an  average single  carrier,  which in turn  are  determined by the

statistical  properties  of  scatterers.  For  example,  the concentration of  charged

impurities  in  a  system can  be  considered  as  constant  over  a  wide  range of

temperatures  above  a  certain  threshold,  whereas  the  number  of  acoustic

vibrations  is  strongly  dependent  on  temperature  (following  Bose-Einstein

statistics).  The  effect  of  temperature  on  the  mobility  then  consists  of  two

contributions:  the  number  of  scattering  centres  themselves,  and  the  energy-

dependent scattering of the carriers (which will be reflected in the form of the

wave  functions  and  scattering  potential  used  in  Fermi’s  Golden  Rule).  Such

temperature effects are of a more fundamental  nature than those that occur

purely based on the variation of carrier density.

Heat transfer involves the redistribution of thermal energy from one region

of  the  system  to  a  neighbouring  region,  in  which  the  population  (energy

distribution)  of  local  electronic  states  and/or  phonon  modes  is  modified.   In

contrast  to  charge  transport,  therefore,  two  mechanisms  contribute  to  heat

transport:  electronic  heat  transport  and  heat  transport  by  phonons.  The

electronic contribution dominates in metals and degenerate semiconductors. For

a temperature gradient, ∇T , we have



J⃗ th=−κ∇T ,
(2.2.2

2)

where J⃗ th  is the total thermal current (i.e. the net thermal energy transported

across unit area in unit time), κ  is the thermal conductivity, and the negative

sign  indicates  transport  from  high  to  low  T.  Apart  from  mutual  scattering

between the two types of particles involved, the two different contributions can

be determined separately and summed together,  i.e. κ=κ e+κp ,  where  κe

and κ p  are the thermal conductivities associated with electrons and phonons,

respectively.

As the thermal energy in the system is determined by the internal energy

with contributions from the potential, vibrational and charge carrier terms, a key

property to consider is the specific heat capacity  cv=∂U /∂T , where  U  is

the internal energy. Using the chain rule we have ∇U=cv∇T   , which, from Eq.

(2.2.22) and the fact that thermal currents relate to changes in U as a function of

position, indicates that cv will appear in an expression for κ . For electrons,

we have

κe=
1
3
v2 τ cv ,

(2.2.2

3)

where v  is the average (drift) velocity.

For phonons, the situation is somewhat more complicated. Phonons, which

are  the quanta  of  harmonic  lattice  vibrational  modes,  are  derived  under the

harmonic  approximation,  while  thermal  transport  effects  are  anharmonic  in



nature. Similar to how we treated electrons above, we can build a picture of

phonon Bloch wave packets propagating through the system, redistributing the

thermal  energy  by  scattering  mechanisms,  in  which  the  initial  packet  can

annihilate (reducing the phonon population at the source) while a new phonon

packet(s)  is  created  (increasing  the  local  –  sink  –  phonon  population).  We

therefore,  as  a  first  approximation,  consider  phonons  as  particles  that  can

interact with each other, with a drift velocity v ph  and average scattering times

τ ph ,  which  are  primarily  determined  by  interactions  with  other  phonons,

electrons, or defects. The heat capacity in this case can be obtained within the

usual  quasiharmonic  approximation.  This  description  yields  an  analogous

expression for κ p  to that given in Eq. (2.2.23) for κe . The relevant τ  can

be calculated in a similar fashion to that discussed previously for the charge

carriers.  Such  calculations  are  key  to  determining  the  highly  significant

thermoelectric properties of materials.96

Transport  in  1D  systems  is  different  from what  we  know  for  the  bulk

systems as

(i) the underlying one-particle spectra, both electron and phonon, have

essential 1D features from effects such as quantum confinement,

symmetry breaking (see sections 2.2.3-  2.2.5),  etc.  with  a direct

impact  on  the  carrier  concentrations  on  one  hand  and  on  the

relaxation times on the other;
(ii) the  surface  to  bulk  ratio  becomes  significant  and,  for  example,

surface states could be either dominant  scatterers or  conduction

channels, which would determine the values of the relaxation time,



but would also require consideration of the current inhomogeneity

in the dimensions normal to the wire axis;
(iii) the  current  may  display  intrinsic  quantum properties  if  the  wire

dimensions are such that the length of  the wire is  less than the

mean free path of  the charge carriers,  so that  scattering events

become unlikely and a ballistic transport occurs.

Next, we will consider a few example studies of realistic 1D systems, for

which  both  theory  and  modelling  have  been  successfully  applied.  All  three

factors peculiar to 1D may combine or remain hidden but invariably at least one

would play an important role.

The electron mobility in a Si nanowire has been modelled as affected by

fluctuations in the electron waves due to the surface roughness and by electron-

phonon scattering via differing intra- and intervalley mechanisms by Jin  et al.97

The  electron  wave  functions  were  calculated  by  self-consistently  solving  the

Schrödinger and Poisson equations, with 1D effects leading to electron energy

subband formation.  The surface effects  introduced in  the model  included the

Coulomb potential due to charge fluctuations and surface polarisation, and the

resultant non-parabolicity of the energy subbands. Fermi’s Golden Rule is used to

calculate the scattering rates from the different scattering mechanisms (surface

roughness, Coulomb, and phonon) and a Kubo-Greenwood formulism is used to

determine the mobility. In Fig 2.2.14, the resulting mobility as a function of wire

diameter d and effective electric field Eeff perpendicular to the wire axis is shown,

highlighting the different contributions from the different scattering mechanisms.

As expected, the surface effects dominate for smaller d.



Figure 2.2.14. Calculated mobility as a function of wire diameter and effective

field  perpendicular  to  wire  axis,  highlighting  the  different  contributions  from

surface roughness, Coulomb, and phonon scattering.

In Ref. 98, Zou and Balandin calculate the heat conduction due to phonon

transport  in  a Si  nanowire.  The conductivity  is  assumed to  be dominated by

acoustic phonon transport. The effect of confinement on the phonon frequencies

and  scattering  due  to  phonon-phonon  interactions  (including  three-phonon

Umklapp,  or  flip-over processes and phonon mass differences),  boundary ( i.e.

surface)  effects,  and  electron-phonon interactions  are  included in  the  model.

They found that confinement significantly softened the acoustic mode dispersion,

while  boundary  scattering,  which  dominated  over  a  wide  range  of  phonon

frequencies, led to approximately an order of magnitude reduction in the thermal

conductivity,  relative  to  bulk.  Even  without  boundary  scattering,  they  found

significant reductions in the thermal conductivity, indicating the important role of

quantum confinement in the transport properties.

When determining the scattering of electrons by phonons (or vice versa),

the  interaction  Hamiltonian  is  characterised  by  parameters  known  as

deformation  potentials  (relating  the  degree  to  which  the  electronic  energies

change due to the interaction), which depend on the strain introduced by the

ionic motion within the phonon mode. As a result, different phonons (LA, TA, LO,



TO) have different deformation potentials associated with them. Calculations of

electronic structure as a function of strain introduced by phonons can be used to

determine  the  deformation  potentials,  which  are  material  specific.  Murphy-

Armando  et  al.99 have  calculated  how  the  electron-phonon  interaction  in  Si

changes  for  the  case  of  1D  nanowires,  in  comparison  to  bulk.  Using  first-

principles  methods  to  determine  the  electronic  structure,  they  derived  the

deformation  potentials  for  different  wire  thicknesses  and  orientations,

considering  termination  in  the  confinement  directions  by  H  atoms  and  by

hydroxyls.  It  was  found  that,  although  the  surface  structure  and  chemistry

strongly modified the band structure, they had little effect on the deformation

potentials. The reduced dimensionality of the wire, however, was found to alter

the  deformation  potentials  fundamentally,  leading  to  them  being  strongly

dependent on the strain direction. In addition, the orientation of the wire affected

the deformation potentials, with [110] wires being more anisotropic than [100]

and bulk, resulting in suppression of breathing mode scattering and increased

electron mobility.



Figure 2.2.15. A computational transmission model for a molecular wire. 

In reference to point (iii) above, an extreme example is provided by so-

called 1D molecular wires, in which, for very short lengths (< 5 nm), electron

transport occurs mainly by quantum tunnelling effects, while at longer lengths by

a thermally induced 'hopping'. An example is shown in Figure 2.2.15. We do not

discuss in detail the transport in such systems, as it is debatable as to whether

they truly are 1D (as opposed to 0D nanostructures).  For a recent review on

calculations of electron transport in such systems, see reference 100 and further

discussion in this book.

2.7 Defect states

Similar to extended 3D systems, the structure in 1D can order at different length

scales. Irrespective of a long-range order, or “crystallinity”, any extended solid

system  with  homogeneous  distribution  of  atoms  (characterised  by  constant



linear density) is expected to exhibit some form of a short range order,  with

atoms distributed around any given centre in a pattern, which would be repeated

throughout  the  system.  Breaking  such  a  pattern  gives  rise  to  point  defects,

intrinsic  in  the  form  of  vacancies,  interstitial  atoms,  and  antisites  (arsenic

occupying for example a gallium site in GaAs); extrinsic, or impurities occupying

regular  or  interstitial  sites  (e.g. silicon  at  a  gallium site  in  GaAs);  and  their

complexes. Following the same entropic or free energy arguments exploited in

the  theory  of  phase  stability,  finite  concentrations  of  intrinsic  defects  are

unavoidable  in  any  given  macroscopic  sample,  whereas  impurities  would  be

introduced during synthesis as the source material is practically never absolutely

pure.  Importantly,  however,  both  intrinsic  and  extrinsic  defects  could  be

introduced  into  the  system  of  interest  intentionally  to  modify  physical  and

chemical  properties  of  the  material,  e.g. its  optical  spectra,  resistivity  or

(photo-)catalytic  activity.  By  disrupting  the  atomic  structure,  point  defects

introduce localised electron and vibrational states and act as scatterers for free

charge carriers and phonons.

Modelling of defect states in nanowires is still in its infancy and we refer

the interested reader to two recent publications for pertinent examples and a

more detailed review of the topic.101-104

2.8 Conclusions

In  conclusion  we  would  like  to  point  the  interested  reader  to  the  follow  up

chapters in this book,  where a number of  topics,  which we only touched are

discussed in depth. There remain in this field many open questions and problems

to attack by new researchers, of which an especially curious one is: why do one

dimensional systems exist, can be made and persist for macroscopic times, at

all? Accurate predictive modelling of nonequilibrium processes in such complex



systems  is  only  beginning  to  be  developed  and  promises  novel  exciting

discoveries.
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