
C H A P T E R

3

1

 1.1 What Is Java?

 1.2 Versions of Java

 1.3 Java Architecture

 1.4 Editions of Java

 1.5 The Java Spring Framework

 1.6 Advantages and Disadvantages of Java

 1.7 Java Certificates

 1.8 Summary

 1.9 Chapter Review Questions

 1.1 What Is Java?

 Java is a high-level, object-oriented, general-purpose programming language

that was originally developed by James Gosling, a Canadian computer scien-

tist, at what was then Sun Microsystems, in the U.S. state of California in 1991.

Sun Microsystems was later acquired by Oracle Corporation, also in California,

in 2010. Java was a byproduct of Sun ’ s “Green” project, and it was originally

designed as a platform-independent language for programming household

electronic appliances. However, Java was too advanced for such applications.

Gosling designed Java syntax based on the C and C++ languages, but with fewer

low-level facilities. Java was named after the popular Indonesian Java coffee.

 Introductioon to Java
 “Experience is simply the name we give our mistakes.”

 —Oscar Wilde

CO
PYRIG

HTED
 M

ATERIA
L

4 Chapter 1 ■ Introduction to Java

Java fi rst appeared in 1995, through the HotJava and Netscape web browsers,

as a plug-in called Java Applets, which could add dynamic content and interac-

tions to static, pale web pages. Java soon became popular with all the major web

browsers incorporating the ability to run Java applets. You ’ ve probably seen the

famous Java logo, a cup of hot coffee, along with the Java mascot, Duke. Today,

after decades of effect, Java has been developed into a fully functional, multi-

purpose, and powerful language suitable for both individual and enterprise

users. Java is different from JavaScript, which is a script language that runs

only within a web browser.

 The Java language has fi ve main principles; it was designed to be all of the

following:

■ Simple, object-oriented, and familiar

■ Robust and secure

■ Architecture-neutral and portable

■ High-performance

■ Interpreted, threaded, and dynamic

 The main advantage of Java is its platform independence; that is, programs

written in the language can be “write once, run anywhere” (WORA). This

independence is achieved through the concept of the Java Virtual Machine

(JVM), illustrated in Figure 1.1 . With conventional programming languages

like C/C++, to run on different operating systems such as Windows, Mac, and

Linux, the C/C++ source fi le needs to be compiled separately on each operating

system. Because each executable fi le runs in its native operating system, the exe-

cutable fi les compiled in one operating system cannot run in another operating

system. Java works differently. The Java source code (a .java fi le) is compiled

into Java bytecode (a .class fi le). The bytecode fi les are not executable fi les and

cannot run directly in the operating system. Instead, they run in the JVM, which

handles the differences between operating systems and presents an identical

environment for Java programs to run in. JVM is a novel idea that makes Java

platform-independent. The drawback of the JVM is that Java programs run much

more slowly than the corresponding C programs; but for most applications, this

difference is not noticeable.

 Java is one of the most popular programming languages, especially for net-

working applications. According to Oracle, worldwide there are an estimated

9 million Java developers and about 3 billion devices that run Java.

 Chapter 1 ■ Introduction to Java 5

 1.2 Versions of Java

 Java has had many versions; at the writing of this book, the current version is

Java 11; by the time you read this, it will be Java 12. Alpha and Beta were the

initial releases of the Java Development Kit (JDK) in 1995. JDK 1.0 was the fi rst

Windows

Compiler

Mac

Compiler

Linux

Compiler

Executable File

C/C++ Source File

Executable FileEXE File

Windows Mac

Compiler

Linux

Bytecode File (.class)

Java Source File (.java)

JVM

 Figure 1.1 : The conventional compilation process of the C/C++ programming language on
different platforms (top) and the Java compilation process on different platforms (bottom)

6 Chapter 1 ■ Introduction to Java

offi cial version, released in 1996. Java JDK version 1.2 and newer are generally

called Java 2. The collection of Java 2 languages, libraries, and tools is referred

to as the Java 2 platform, or Java 2 Standard Edition (J2SE). Similarly, there are

Java 5, Java 6, Java 7, and Java 8. The latest Java releases are Java 9 (July 2017),

Java 10 (March 2018), Java 11 (September 2018), and Java 12 (March 2019). See

Table 1.1 for details.

 For Java releases after Java SE 8, Oracle has designated a long-term-support

(LTS) release every three years, and in between are non-LTS releases, also called

feature releases , every six months. Java SE 9, Java SE 10, and Java 12 are all non-LTSs
releases, and Java SE 8 and Java SE 11 are LTS releases. Java end of life (EOL)

occurs when the Java release is no longer publicly supported by Oracle. For the

non-LTS releases, the EOL is the date of the next new release, and all the public

support will be superseded. But for the LTS releases, the EOL is much longer,

and customers will continue to get public support even after the new releases.

That is why the widely used Java SE 8 has a much longer EOL than other

releases. The next planned LTS release will be Java SE 17. This book is focused

on the application of Java; the Java example codes used in this book will not be

affected by the future Java releases.

 Table 1.1 : Java Version History

VERSION CODE NAME RELEASE DATE END OF LIFE

JDK Alpha and Beta 1995 Prior to 2008

JDK 1.0 Oak January 1996 Prior to 2008

JDK 1.1 February 1997 Prior to 2008

J2SE 1.2 Playground December 1998 Prior to 2008

J2SE 1.3 Kestrel May 2000 Prior to 2008

J2SE 1.4 Merlin February 2002 August 2008

J2SE 5.0 Tiger September 2004 November 2009

Java SE 6 Mustang December 2006 February 2013

Java SE 7 Dolphin July 2011 April 2015

Java SE 8 (LTS) March 2014 January 2019

Java SE 9 September 2017 March 2018

Java SE 10 March 2018 September 2018

Java SE 11 (LTS) September 2018

Java SE 12 March 2019

 Chapter 1 ■ Introduction to Java 7

 For more information about Java releases and support road map, please visit

the following:

https://www.oracle.com/technetwork/java/java-se-support-roadmap.html

https://en.wikipedia.org/wiki/Java_version_history

 Each Java release is distributed as two different packages.

 The Java Runtime Environment (JRE) is for running Java programs and is

intended for end users. The JRE consists of the JVM and runtime libraries.

You can use the JRE when you don ’ t need to compile the Java program.

 The Java Development Kit (JDK) is for software developers to compile, debug,

and document Java programs. You will need to use the JDK in this book,

as you will need to compile your Java programs.

 1.3 Java Architecture

 Figure 1.2 shows the relationship between the JDK, JRE, and JVM in the Java

architecture. The JDK includes the JRE and Java development tools, and the

JRE includes the JVM and library classes, as well as other fi les. Inside the JVM,

there is a just-in-time (JIT) compiler, which compiles Java bytecode to native

machine code during the execution of a Java program, that is, at run time. JIT

improves the performance of Java applications.

JDK

JDK = JRE + Development Tools
JRE = JVM + Library Classes + Other Files

JRE

JVM

Just In Time
Compiler (JIT)

Library Classes

e.g. rt.jar
 jce.jar
 jsse.jar e.g. java

 javac
 jar
 javadoc
 javaw

Development
Tools

Other Files

 Figure 1.2 : The relationship between the JDK, JRE, and JVM in Java architecture

8 Chapter 1 ■ Introduction to Java

 Figure 1.3 shows a more detailed version of Java architecture; this was

 re-created from the original Oracle Java architecture diagram found here:

https://www.oracle.com/technetwork/java/javase/tech/index.html

 1.4 Editions of Java

 There are four Java platform editions.

 Java Card for smartcards

 Java ME (Micro Edition) for mobile devices

 Java SE (Standard Edition) for standard personal computers

 Java EE (Enterprise Edition) for large distributed enterprise or Internet

environments

 Java SE is what most people use for Java programming. This edition comes

with the complete Java Class Library, which includes the basic types and objects,

networking, security, databases, and the classic Swing graphical user interface

(GUI) toolkit. Most versions also include the modern JavaFX toolkit, which is

intended to replace the Swing GUI toolkit; however, starting with Java SE 11,

the JavaFX toolkit is no longer included in the Java SDK and is redesigned as

a separate, stand-alone library. This book will be mainly focused on Java SE.

JDK

Java Language

Tools and Tools APIs
(java, javac, javadoc, jar...)

Deployment
(Java Web Start, Applet/Plug-in)

User Interface Toolkits
(JavaFX, Swing, AWT...)

Integration Libraries
(JDBC, RMI...)

Other Base Libraries
(Beans, Security, JNI, Date and Time,

Input/Output, Networking...)

Language and Util Base Libraries
(Math, Collections, Versioning...)

Java Virtual Machine
(Java HotSpot Client and Server VM)

JRE

 A conceptual diagram of the Java architecture

 Chapter 1 ■ Introduction to Java 9

 1.5 The Java Spring Framework

 Java Spring is the most popular development framework for creating Java

enterprise applications. Java Spring is an open source framework. Initially written

by Rod Johnson, it was released under the Apache 2.0 license in June 2003. One

of the main advantages of the Spring framework is its layered architecture, which

allows developers to select which of its components to use. Figure 1.4 shows the

home page of the Java Spring Framework (https://spring.io/) . Figure 1.5 shows

the Guides page for the Framework (https://spring.io/guides).

 Figure 1.4 : The home page of the Java Spring Framework

 Figure 1.5 : The Guides page in the Java Spring Framework

10 Chapter 10 ■ Introduction to Java

 There are also several good Java Spring framework tutorials online.

https://www.tutorialspoint.com/spring/spring _ overview.htm

https://howtodoinjava.com/spring-5-tutorial/

https://java2blog.com/introduction-to-spring-framework/

 1.6 Advantages and Disadvantages of Java

 I ’ ve already noted some of Java ’ s advantages, but it also has a few disadvantages

that may affect your choice of a development language. This section provides a

quick summary of both. Many items are the topics of chapters or sections later

in this book.

 1.6.1 Advantages
 These are the advantages:

Free Cost Java is free to use, even for commercial applications, although

you do need to pay for security and certain updates.

Simplicity Java is much easier to learn and to use than other program-

ming languages. Java also uses automatic memory allocation and garbage

collection.

Platform Independence Once compiled, Java programs can run on any

operating system, thanks to the JVM.

Object Orientation Java is a fully object-oriented programming language

that allows you to create reusable Java modules (classes). Chapter 3 intro-

duces Java ’ s object orientation.

Security Java is designed to be secure and safe. See Chapter 9 for information

about security.

Multithreading With Java, you can easily develop multithreaded programs

that run several tasks simultaneously. Chapter 3 also introduces multi-

threaded programming.

Networking Java provides a range of functions to make it easier to develop

networking applications. Chapter 5 covers developing networking apps.

Mobile Development With Java, you can develop mobile applications,

called apps , on Android systems. Chapter 6 covers developing apps for

mobile devices.

Enterprise Development With Java, you can develop many enterprise

applications, such as web servers and other application servers.

 Chapter 1 ■ Introduction to Java 11

 1.6.2 Disadvantages
 These are the disadvantages:

Performance Java is much slower than other natively compiled languages,

such as C or C++, because of the use of the JVM. Java also takes more

memory space and has limited options for latency critical tuning.

GUI Development Generally speaking, it is not easy to develop GUI pro-

grams with Java, and the look and feel of the Java Swing toolkit is very

different from native Windows, Mac, and Linux applications, although

there are signifi cant improvements in the JavaFX GUI toolkit. Chapter 4

shows how to overcome the diffi culties and develop GUI apps using Java

Swing and JavaFX.

 1.7 Java Certification

 Oracle offers a range of Java certifi cates, which can be generally divided into

two levels, Associate and Professional, as shown in Figure 1.6 (https://educa-

tion.oracle.com/pls/web_prod-plq-dad/ou_product_category.getPageCert?p_ _

cat_id=267). You can start by applying for Java Foundations Certifi ed Junior

Associate, then move on to Oracle Certifi ed Associate, and fi nally become an

Oracle Certifi ed Professional. Different Java versions require their own certif-

icates. For example, there are separate certifi cations for Java SE 7 Programmer

and Java SE 8 Programmer. Certifi cates for newer Java versions will continue

to be introduced.

 Figure 1.6 : The Oracle Java Certification path

12 Chapter 1 ■ Introduction to Java

 1.8 Summary

 This chapter introduced the Java programming language, including its history,

versions, and the four Java platform editions. It also introduced the popular Java

Spring Framework for enterprise Java application development, summarized

Java ’ s advantages and disadvantages, and fi nally provided information about

Java certifi cation.

 1.9 Chapter Review Questions

 Q1.1. What is Java? Explain the difference between a Java source file

and Java bytecode.

 Q1.2. What is HotJava, and what is JavaScript?

 Q1.3. What is platform independence?

 Q1.4. Which Java versions are still supported?

 Q1.5. Use a diagram to describe the Java architecture.

 Q1.6. What are the JDK, JRE, JVM, and JIT?

 Q1.7. What are the four Java platform editions?

 Q1.8. What is the Java Spring Framework?

 Q1.9. What are the advantages and disadvantages of Java?

 Q1.10. What Java certifications are available?

