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Abstract

Recent studies have tended towards incorporating Computation Intel-

ligence, which is a large umbrella for all Machine Learning and Meta-

heuristic approaches into wireless sensor network (WSN) applications

for enhanced and intuitive performance. Meta-heuristic optimisation

techniques are used for solving several WSN issues such as energy

minimisation, coverage, routing, scheduling and so on. This research

designs and develops highly intelligent WSNs that can provide the

core requirement of energy efficiency and reliability. To meet these

requirements, two major decisions were carried out at the sink node

or base station. The first decision involves the use of supervised and

unsupervised machine learning algorithms to achieve an accurate de-

cision at the sink node. This thesis presents a new hybrid approach

for event (fire) detection system using k -means clustering on aggre-

gated fire data to form two class labels (fire and non-fire). The result-

ing data outputs are trained and tested by the Feed Forward Neural

Network, Naive Bayes, and Decision Trees classifier. This hybrid ap-

proach was found to significantly improve fire detection performance

against the use of only the classifiers. The second decision employs

a metaheuristic approach to optimise the solution of WSNs cluster-

ing problem. Two metaheuristic-based protocols namely the Dynamic

Local Search Algorithm for Clustering Hierarchy (DLSACH) and Heuris-

tics Algorithm for Clustering Hierarchy (HACH) are proposed to achieve

an evenly balanced energy and minimise the net residual energy of

each sensor nodes. This thesis proved that the two protocols outper-

forms state-of-the-art protocols such as LEACH, TCAC and SEECH

in terms of network lifetime and maintains a favourable performance

even under different energy heterogeneity settings.



Contents

Contents iv

List of Figures viii

List of Tables x

Nomenclature xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Journal and Conference Publications . . . . . . . . . . . . . . . . 5

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Energy Efficiency Mechanisms for WSNs 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Applications of WSNs . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Requirements and Challenges of WSNs Design . . . . . . . 11

2.1.3 Energy Consumption in WSNs . . . . . . . . . . . . . . . . 14

2.2 Sleep Scheduling Mechanisms Overview . . . . . . . . . . . . . . . 15

2.3 Clustering Mechanisms Overview . . . . . . . . . . . . . . . . . . 18

2.3.1 Low Energy Adaptive Clustering Hierarchy (LEACH) . . . 18

2.3.2 Topology Controlled Adaptive Clustering (TCAC) . . . . . 20

2.3.3 Scalable Energy Efficient Clustering Hierarchy

(SEECH) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



CONTENTS

2.3.4 Other Clustering Approaches . . . . . . . . . . . . . . . . 25

2.4 Metaheuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Global Search Strategy . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Local Search Strategy . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Memetic Algorithm . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Clustering using Meta-Heuristic Algorithms . . . . . . . . . . . . 38

2.5.1 Clustering Using Genetic Algorithm . . . . . . . . . . . . . 39

2.5.2 Clustering using Particle Swarm Optimisation . . . . . . . 41

2.5.3 Clustering using Differential Evolution . . . . . . . . . . . 41

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Intelligent Machine Learning Mechanisms for WSNs 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Intelligent WSN-based Approach for Event Application . . . . . . 47

3.3 Supervised learning Algorithms . . . . . . . . . . . . . . . . . . . 48

3.3.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . 48

3.3.2 Naive Bayes Classifier . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Unsupervised Learning (Clustering) Algorithm . . . . . . . . . . . 51

3.4.1 Fixed-width clustering . . . . . . . . . . . . . . . . . . . . 51

3.4.2 k -means Clustering . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Proposed Machine Learning Approaches for WSNs 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Data Aggregation in Clustered-Based WSNs . . . . . . . . . . . . 57

4.4 Proposed Hybrid Learning Approach . . . . . . . . . . . . . . . . 59

4.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Proposed Dynamic Local Search-Based Algorithm 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Network and Radio Model . . . . . . . . . . . . . . . . . . . . . . 71

v



CONTENTS

5.3 Proposed Objective function . . . . . . . . . . . . . . . . . . . . . 72

5.4 The Proposed DLSACH protocol . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Proposed SSIN Mechanisms . . . . . . . . . . . . . . . . . 75

5.4.2 Proposed ILSACHS protocol . . . . . . . . . . . . . . . . . 77

5.5 Energy Consumption Computation . . . . . . . . . . . . . . . . . 80

5.5.1 Set-up Phase . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.2 Steady State Phase . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.1 Performance Measures . . . . . . . . . . . . . . . . . . . . 86

5.6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . 86

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Proposed Global-based Search Algorithm 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 The proposed HACH Protocol . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Clustering Operations using HEECHS protocol . . . . . . . . 94

6.2.2 Proposed Heuristic Crossover . . . . . . . . . . . . . . . . 96

6.2.3 Other Operators . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Stability Period and Network Lifetime . . . . . . . . . . . 101

6.3.2 Average Energy at First Node Dies (AEFND) . . . . . . . 103

6.3.3 WSNs Heterogeneity . . . . . . . . . . . . . . . . . . . . . 104

6.3.3.1 Full heterogeneity . . . . . . . . . . . . . . . . . 106

6.3.3.2 Partial heterogeneity . . . . . . . . . . . . . . . . 106

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusion and Recommended Future Work 109

7.1 Thesis Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Recommended Future Work . . . . . . . . . . . . . . . . . . . . . 110

References 112

MATLAB Source Codes 125

A Genetic Algorithm Operators . . . . . . . . . . . . . . . . . . . . 125

vi



CONTENTS

A.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Tournament Selection . . . . . . . . . . . . . . . . . . . . . 126

A.3 Heuristic Crossover . . . . . . . . . . . . . . . . . . . . . . 127

A.4 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B Proposed SSIN protocol . . . . . . . . . . . . . . . . . . . . . . . 130

C Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 135

E Proposed HACH protocol . . . . . . . . . . . . . . . . . . . . . . . 137

F Proposed DLSACH protocol . . . . . . . . . . . . . . . . . . . . . . 141

G Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 143

H Main Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

vii



List of Figures

2.1 The components of Sensor node . . . . . . . . . . . . . . . . . . . 9

2.2 Flowchart for genetic algorithm Kachitvichyanukul [2012] . . . . . 28

2.3 Flowchart for Particle Swarm Optimisation algorithm Kachitvichyanukul

[2012] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Flowchart for differential evolution Kachitvichyanukul [2012] . . . 32

4.1 Cluster based sensor network . . . . . . . . . . . . . . . . . . . . 58

4.2 Diagram of Feed Forward Neural Network . . . . . . . . . . . . . 59

4.3 Density Curves of CO, Temperature, Photoelectric and Ionization

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Diagram of Decision Tree . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Radio Energy Dissipation Model . . . . . . . . . . . . . . . . . . . 72

5.2 Covered Grid points in a 10× 8 Sensing field . . . . . . . . . . . . 75

5.3 Illustration of Nodes to Sleep on Coverage Area . . . . . . . . . . 76

5.4 Step Size division of Search Length . . . . . . . . . . . . . . . . . 79

5.5 The operational sequence of the proposed clustering protocols . . 83

5.6 Network Lifetime Comparison of DLSACH with LEACH, SEECH,

TCAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 One round of the clustering process . . . . . . . . . . . . . . . . . 94

6.2 Sensor nodes Topology and Random distribution . . . . . . . . . . 95

6.3 Binary representation of individuals in the population . . . . . . . 97

6.4 Lifetime evaluation of HACH, LEACH, SEECH and TCAC . . . . . 102

viii



LIST OF FIGURES

6.5 Average residual energy of nodes alive versus rounds (refer to

ExpR0M100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Round number versus numbers of heterogeneous sensors . . . . . . 105

6.7 Performance Comparison of different WSNs Heterogeneity Level

for (a.) FND, (b.) LND and (c.) IPL measures. . . . . . . . . . . 107

ix



List of Tables

4.1 Distribution table for the four sensor types . . . . . . . . . . . . . 63

4.2 Empirical Results for all Classifiers . . . . . . . . . . . . . . . . . 65

5.1 Communication Parameters with Specified Values . . . . . . . . . 85

5.2 Parameter values for each experiment . . . . . . . . . . . . . . . . 85

5.3 Comparison of LEACH, TCAC, SEECH and DLSACH for FND,LND

and IPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Performance Measures for Experiment III,IV and V . . . . . . . . 87

6.1 Parameter settings for Homogeneous WSNs Scenarios . . . . . . . 99

6.2 Parameter settings for Heterogeneous WSNs Scenarios . . . . . . 100

6.3 Performance comparison of LEACH, TCAC and SEECH with HACH 101

6.4 AEFND of proposed HACH protocol . . . . . . . . . . . . . . . . . 103

6.5 Performance Measures for different heterogeneous WSN Scenarios 105

x



Nomenclature

Acronyms

DLSACH Dynamic Local Search Algorithm for Clustering Hierarchy

HACH Heuristics Algorithm for Clustering Hierarchy

HEECHS Heuristic Enhance Evolutionary Algorithm for Cluster Head

Selection

SSIN Stochastic Selection of Inactive Node

CHs Cluster-heads

CI Computaional Intelligence

DE Differential Evolution

DT Decision Tree

FFNN Feed-Forward Neural Network

GA Genetic Algorithms

GD Gradient Descent

HEED Hybrid Energy Efficient Distributive

ILS Iterated Local Search

LDS Linear Distance-based Scheduling

LEACH Low Energy Adaptive Clustering Hierarchy

xi



Nomenclature

LEACH-C LEACH-Centralised

MA Memetic Algorithm

ML Maximum Likelihood

NBC Naive Bayes Classifier

NFDRS National Fire Danger Rating System

NN Neural Network

PSO Particle Swarm Optimisation

RS Randomized Scheduling

SA Simulated Annealing

SEECH Scalable Energy Efficient Clustering Hierarchy

TCAC Topology-Controlled Adaptive Clustering

TS Tabu Search

WSNs Wireless Sensor Networks

Symbols

Acceff Accumulated coverage effect

AvgECH Average energy of CHs

AvgENCH Average energy of non-CHs

Ceff Coverage effect

d0 Threshold distance

EAggreg Energy consumed in aggregating measured data

ECH Energy consumed by Cluster heads

Eelect Electronics Energy

xii



Nomenclature

EMem Energy consumed by Member nodes

ERes Residual Energy

ERx Energy consumed by the transceiver to receive a data message

ETotal Total energy consumed by a wireless node

ETx Energy consumed by the transceiver to send a data message

k Packets

kCP Control packets

L Number of Cluster heads

mp mutation probability

Maxeff Maximum coverage effect

R Risk penalty

Rs Sensing range

w1, w2 Weighting factors

xiii



Chapter 1

Introduction

1.1 Motivation

Recent progress in Micro-electromechanical Systems (MEMS) has enabled the

development of self-configurable and spatially distributed autonomous sensors

Naeimi et al. [2012]. These sensor nodes can be networked and deployed ran-

domly in remote and inaccessible areas, hence producing useful wireless sensor

networks (WSNs). In large areas, WSNs are used for gathering data from the

sensor field and transmitting data to a distant sink. The potential applications of

WSNs are environmental monitoring, target field imaging, weather monitoring,

security, battlefield surveillance, event detection etc. The event detection is a

newly discovered WSN functionality that offers extended capability of reporting

data that contain time and location of events, which is contrast to periodic moni-

toring that transfers data without any abnormal change of condition. The design

of in-network event detection methods for wireless sensor networks is not an easy

task, as there is a need to cope with various challenges and issues such as the

unreliability, heterogeneity, adaptability and most especially resource constraints

such as battery energy.

Energy efficiency and network lifetime are major issues that require consider-

ation in the design of protocols for WSNs. The field of WSNs embrace innovative

techniques that can eliminate energy inefficiencies that would shorten the network

lifetime. Energy constraint is a major problem in WSNs most especially when

1



1. Introduction

larger number of sensor nodes are deployed. The limited energy poses many chal-

lenges to the design and management of WSNs and necessitates energy-awareness

at all layers of the networking protocol stack. For example, at the network layer,

it is highly desirable to find methods for energy-efficient route discovery and relay-

ing of data from the sensor nodes to the base station (BS) so that the lifetime of

the network is maximized Abbasi and Younis [2007]. Most existing routing proto-

cols designed to tackle the above challenges are broadly classified into two classes,

namely flat and hierarchical. Flat protocols include the old-fashion Direct Trans-

mission (DT) and Minimum Transmission Energy (MTE), which cannot promise

a balanced distribution of the energy among sensors in a WSN. The drawback

with DT is that sensor nodes communicate directly with the sink and this causes

far away sensors to die first. In the MTE, far away sensors use a relay sensor for

data transmission to the BS and this causes the relay sensor to die first.

Therefore, designing energy-efficient clustering protocols becomes a major fac-

tor for lifetime extension of sensors. Generally, clustering protocols can outper-

form flat protocols in balancing energy consumption and network lifetime pro-

longation by adopting data aggregation mechanisms Abbasi and Younis [2007];

Heinzelman et al. [2002]. Theoretically, there are three types of nodes, namely the

cluster-head (CH), member node (MN) and sink node (SN). The member node

is responsible for sensing the raw data and employs TDMA scheduling to send

the raw data to the CH. The main role of the CH is to aggregate data received

from member nodes (MN) and thereby forwards the aggregated data to the sink

through single-hop or multi-hop. CH selection can either be done by the sensors

themselves, by the BS or can be pre-determined by the wireless network designer.

From a theoretical and practical point of view, WSNs can be classified into the

Homogeneous (WSNs with the same sensor node configuration e.g. Energy) and

the Heterogeneous (WSNs with dissimilar sensor node configuration).

Reliability is another key issue that needs to be considered for some critical or

event detection applications such as indoor fire detection, forest fire and pipeline

monitoring etc. Fast and accurate fire detection helps to minimise fire losses that

often results into loss of lives and damage to properties. Therefore, researchers

have been investigating new techniques that will help in fast and accurate fire

detection. For a system to decide accurately an abnormal condition such as fire,

2



1. Introduction

there maybe a requirement to combine several attributes based on large number

of sensor types (temperature, carbon monoxide (CO), smoke) which are spatially

distributed over a wide area Memon and Muntean [2012]. Data obtained from

a composite event are multidimensional in nature. One of the key measures of

enhancing accurate fire detection decisions is to perform data aggregation at in-

termediate nodes or at the cluster head. Data aggregation usually involves the

fusion of data from multiple sensors at intermediate nodes and transmission of

the aggregated data to the base station (sink). Data aggregation helps to remove

redundant and highly correlated data generated from neighbouring sensors at the

intermediate node before transmission to the base station Memon and Muntean

[2012]. Data aggregation techniques are also very effective in reducing communi-

cation overhead by collecting the most critical data from the sensors and making

it available to the sink in an energy efficient manner with minimum data latency.

Data latency is a crucial requirement in most event detection application such as

fire detection applications.

1.2 Research Objective

The main objective of this thesis is to analyse, investigate applicability and op-

timise computational intelligence methods for energy-efficient and intelligent op-

erations of wireless sensor networks (WSNs). Therefore, in order to achieve the

objectives, the research sub-objectives of this thesis are as follows:

1. Design a new protocol that is based on metaheuristic algorithms that can

equally and efficiently distribute the energy consumptions evenly among

sensor nodes and still achieve an extended network lifetime compared with

the state-of-the-art designs often offered as solutions for a clustered archi-

tecture in the literature.

2. Provide a comparative assessment of other state-of-the-art protocols with

the new design protocol for lifetime extension purpose using a simulated

environment.

3. Present a new hybrid approach based on machine learning algorithm that

3



1. Introduction

can efficiently extract patterns and detect trends that are hidden in com-

plex fire data sets. This objective aims at improving the detection accu-

racy of fire detection systems compared with the current state-of-the-art

approaches that has been used for the similar problem.

4. Provide a comparative study of state-of-the-art event detection techniques

in terms of their detection rate and accuracy.

1.3 Thesis Contributions

The contributions of this thesis are:

1. The design and implementation of an energy-efficient transmission protocol

for extending lifetime of wireless sensor networks.

2. The development of a sleep scheduling mechanism that is based on the

Boltzmann selection process in genetic algorithms for conserving the energy

of sensor nodes. The network coverage is analysed and put into considera-

tions in the selection of inactive nodes.

3. The design of new WSN clustering protocol that employs metaheuristic

approaches to distribute cluster head and energy loads evenly among sensor

for the purpose of prolonging WSNs lifetime.

4. Perform data aggregation on three multi-dimensional datasets obtained

from a real time fire scenario.

5. The proposal of new hybrid machine learning approaches for accurate event

detection using k -means and other classification models.

4



1. Introduction

1.4 Journal and Conference Publications

The following publications have resulted from various chapters of this thesis

1. Muyiwa O. Oladimeji, Mikdam Turkey, Mohammed Ghavami and San-

dra Dudley, ”A New Approach for Event Detection using k-means Cluster-

ing and Neural Networks”, IEEE International Joint Conference on Neural

Networks, IJCNN 2015, Killarney, Ireland, July 12-17, 2015, Pages 1-5.

DOI: 10.1109/IJCNN.2015.7280752

2. Muyiwa O. Oladimeji, Mikdam Turkey and Sandra Dudley, ”A Heuristic

Crossover Enhanced Evolutionary Algorithm for Clustering Wireless Sensor

Network ”, EvoApplications 2016, Porto, Portugal, March 30 –April 1, 2016,

Proceedings, Part I, Pages 1-16, 2016a. DOI: 10.1007/978-3-319-31204-017

3. Muyiwa O. Oladimeji, Mikdam Turkey and Sandra Dudley, ”Iterated

Local Search Algorithm for Clustering Wireless Sensor Networks”, IEEE

Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada,

July 24-29, 2016, Pages 3246-3253, 2016b. DOI: 10.1109/CEC.2016.7744200

4. Muyiwa O. Oladimeji, M. Turkey and S. Dudley, “HACH: Heuristic

Algorithm for Clustering Hierarchy Protocol in Wireless Sensor Networks”,

Applied Soft Computing Journal, Volume 55, Pages 452–461, 2017. DOI:

10.1016/j.asoc.2017.02.016

1.5 Thesis Organization

The rest of this thesis is organised as follows:

Chapter 2 reviews wireless sensor networks (WSNs) and these applications,

requirements, challenges and energy consumption. The chapter reviews the re-

cent sleep scheduling and clustering mechanisms for the design of energy-efficient

WSNs. As a subset of computational intelligence, a review on the different meta-

heuristic optimisation algorithms as presented in this chapter. Finally, the chap-

ter reviews optimisation of energy-efficient cluster-based WSNs using metaheuris-

tic approaches.

5



1. Introduction

Chapter 3 introduces the use of WSNs for monitoring or event detecting appli-

cations such as fire detection system. It discusses the problem of traditional fire

detection techniques and the introduction of WSNs into fire detection systems. It

discusses new trend of incorporating artificial intelligence-based techniques into

WSNs-based fire detection system for improved performance. Finally the chapter

reviews various AI-based techniques under the machine learning approaches for

fire detection applications.

Chapter 4 proposes a new hybrid approach to event detection that combines

data aggregation, k -means clustering and supervised machine learning approaches

such as feed forward neural network (FFNN), Näıve Bayes (NB), Decision Tree

(DT).

Chapter 5 presents a new local-based metaheuristic approach for energy opti-

misation in WSNs called Dynamic Local Search Algorithm for Clustering Hierar-

chy (DLSACH). Under the DLSACH algorithm, the Stochastic Selection of Inactive

Nodes (SSIN) and Iterated Local Search Algorithm for Cluster Head Selection

(ILSACHS) protocols are proposed and they work cooperatively to minimise the

energy consumption and extend the WSNs lifetime. The algorithms are evaluated

via simulation experiments and compared with some existing algorithms.

Chapter 6 propose the Heuristics Algorithm for Clustering Hierarchy (HACH).

It introduce the SSIN mechanism proposed in the previous chapter for sleep

scheduling operation and a novel heuristic crossover operator to combine two

different solutions to achieve an improved solution that enhances the distribution

of cluster head nodes and coordinates energy consumption in WSNs. It presents

the performance in terms of lifetime extension under various WSNs conditions.

Chapter 7 closes the thesis, reviewing the work undertaken and draws conclu-

sions about key parts of the work presented. Finally, future work is discussed.

6



Chapter 2

Energy Efficiency Mechanisms

for WSNs

This chapter presents a background on wireless sensor networks and the state-of-

the-art energy saving mechanisms in WSNs. It covers aspects of WSNs such as

components, applications, prominent challenges and energy consumption models.

A review on the design energy-efficient WSNs using all the different classifications

of sleeping and clustering techniques is discussed. Also, a review on the different

meta-heuristic optimisation algorithm, which are the subset of computational

intelligence. Lastly, this chapter presents a review on the design of cluster-based

energy efficient WSNs using meta-heuristic search strategies.

2.1 Introduction

Wireless Sensor Networks (WSNs) have grown to be a powerful technological

platform with vast and profound applications. They have transformed into an

important technology with many simple and complex applications such as envi-

ronment monitoring, surveillance systems and military operations. A WSN usu-

ally consists of tens to thousands of sensor nodes that communicate via wireless

medium for the purpose of sharing and processing data Yu et al. [2006]. Sensor

nodes are usually deployed randomly in a sensor field. They wirelessly commu-

nicate with each other to coordinate themselves in order to produce reliable and

7



2. Energy Efficiency Mechanisms for WSNs

precise information about the physical environment under their coverage.

Each of the sensor nodes act independently to collect and route data to other

sensors or the base station (BS). The base station is usually an intelligent device

with unlimited energy resources that is capable of connecting the sensor network

to an external communication infrastructure or internet for easy usage of the re-

ported data for decision making. It is also the point where aggregation, clustering

and routing tasks are implemented for a dense WSN (high node density). Usu-

ally, sensor nodes can be deployed stationary or mobile over large areas. Though

the sensor nodes can work autonomously, they work cooperatively to sense the

physical conditions of an environment. Sensor nodes can sense the environment,

communicate with neighbouring nodes, and in many cases perform basic com-

putations on the data being collected Akkaya and Younis [2005]; Zungeru et al.

[2012]. These attributes qualify WSNs to be an excellent choice for many appli-

cations Yu et al. [2006].

Sensors consist of four basic unit components: a sensing unit, a processing

unit, a communication unit, and a power unit as shown in Figure 2.1. The

sensing unit usually consists of sensor(s) and an analogue to digital converter bits

(ADC). In sensing applications (such as weather monitoring, tactical surveillance,

event detection etc), the sensor nodes sense or measure the physical condition of

a monitored area. The ADC digitises a continuous analogue signal sensed by

the sensors before sending it to the processing unit. This unit is made up of

the memory-enabled micro-controller/microprocessor which provides the sensor

nodes with intelligent control capabilities. The communication unit consists of

a short-range radio capable of transmitting and receiving signal over a channel.

The power unit is made up of a battery for supplying power that drive rest of the

built-on system components Al-Karaki and Kamal [2004]. However, one of the

issues that sensors have is the limited energy supply of the battery and so there

is need to employ energy conservation strategy in order to prolong the lifespan

of sensors.

Routing is a major process to be considered in order to minimise the energy

consumption in WSNs. Due to the limited transmission range of each node, it may

be necessary for sensors to use other nodes to forward packets to the BS. Routes

discovery and maintenance in WSNs is non-trivial due to the energy restrictions

8
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Figure 2.1: The components of Sensor node

and transmission range restrictions. To minimise energy consumption, routing

protocols proposed in the literature for WSNs employ some well-known routing

strategies such as clustering.

Clustering protocols in WSNs aim at grouping the sensors into clusters and

selecting a cluster head (CH) for each cluster. In order to realise an energy efficient

WSN, the CH can aggregate the data sent from the cluster members and send

them directly to the BS. A clustering protocol is mainly a two layer protocol. The

first layer deals with deciding the optimal CH set and the second layer protocol

is responsible for transmitting the data to the BS. The clustering protocol in

WSNs should not only facilitate data transmission, but also consider the sensor

nodes’ constraints. It should also meet the WSNs requirements including the

energy efficiency, the data delivery reliability, and the scalability requirements

(see section 2.1.2). Apart from clustering, the sleep scheduling mechanism is

another energy saving technique that preserves the lifespan of sensors by causing

sensor to sleep when not needed and awake or active intermittently. More details

on sleep scheduling is covered in section 2.2.

2.1.1 Applications of WSNs

WSNs are used for different applications ranging from military to civil application

such as medical, industry and home Puccinelli and Haenggi [2005]. The various

9
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applications can be categorised under the following sub-headings.

Environment Monitoring Systems

Environment monitoring systems are a crucial application that control and mon-

itor environment conditions such as light, pressure, humidity and temperature

Othman and Shazali [2012]. Applications have grown rapidly for monitoring pur-

poses such as indoor, greenhouse, agriculture, climate, habitat and forest moni-

toring. In Chang et al. [2012]; Lazarescu [2013]; Nie et al. [2014], several studies

have been focused on this application aspect. The major WSN requirements of

environment monitoring applications are scalability, coverage and energy ef-

ficiency. Apart from the previously mentioned requirements, there is need for

data reliability in the case of indoor monitoring applications such as fire detec-

tion and alarm systems because it involves property and the protection of life.

Monitored areas can span up to several square meters, so the number of nodes

deployed over an area can vary from hundreds to thousands. Hence, scalability

is a very important pre-requisite in the development of any protocols that can

support very large quantities of nodes and guarantee full coverage of the moni-

tored area Rault et al. [2014]. The protocols proposed in this thesis are applicable

for environment monitoring because they put into perspective the three essential

design requirements; which are lifetime extension, coverage and reliability.

Human Body Monitoring

Research interest in the aspect of wireless health care systems has grown rapidly

and contributed advantageously to increasing numbers of elderly people, ability

to place patients under continuous health monitoring and the rising cost of med-

ical services. The emergence of novel wireless human body monitoring system

such as wireless body sensor networks (WBSNs) have unlocked the potential to a

broad variety of assisted living applications such as biochemical/biophysical con-

trol, emotional recognition for social networking, activity monitoring for health

care, e-fitness, emergency detection, security, and highly interactive games Aiello

et al. [2011]. Lots of efforts has been geared toward WBSNs for human body

monitoring by researchers Baskaran [2012]; Gulcharan et al. [2014]; Kateretse

10
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et al. [2013]. Human body monitoring is conducted using WSNs which is usually

attached to the body surface and planted inside the human body tissue. Mod-

ern technologies have produced micro and intelligent medical sensors that can be

worn or implanted into the body. The sensors extract data from different parts

of the body systems and send it to a central device that performs aggregation

and analysis. These applications require high reliability due to the involvement

of human’s life Souil and Bouabdallah [2011]. Another very important require-

ment that ensures lengthen period of system operation is the network’s energy

efficiency Baskaran [2012]; Souil and Bouabdallah [2011].

Intelligent Buildings

Intelligent and automated buildings is a WSN application that address increasing

energy cost and aiding the green movement. Smart sensor nodes that can improve

safety and security, minimise energy consumption and operational costs have been

deployed for building automation applications. Using WSNs, Several literatures

in Dounis [2010]; Fortino et al. [2012]; Suryadevara et al. [2015] have proposed

several intelligent building management systems. In WSNs, different sensor types

that measure parameters such as pressure, temperature, smoke and light are em-

ployed for intelligent building management systems. At different level and home

appliances, this system may include servers, gateways, actuators, communication

and application software Jaafar and Watfa [2013]. Intelligent building manage-

ment systems require multi-hop communication approach for covering the whole

building. Another vital system requirement for this purpose is the WSNs energy

efficiency Jaafar and Watfa [2013]. Some hierarchical or data-centric protocol can

be used to satisfy these requirement Fortino et al. [2012].

2.1.2 Requirements and Challenges of WSNs Design

WSNs consist of a large number of sensor nodes that are made up of miniature

devices constrained in their stored energy capabilities. Therefore in order to

increase their usefulness, energy efficiency is a pivotal system requirement in

WSNs. WSNs should put into consideration the sensor nodes’ short transmission

range in the sending data to the sink. Data reliability is another core requirement

11
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that must be considered in WSNs design. Clustering facilitates local interaction

among sensor nodes in a coordinated manner which enables the WSNs to achieve

the utmost goals such as scalability and efficient usage of limited energy resource

Tubaishat and Madria [2003]. Scalability simply means the system ability to

work efficiently with improve performance as the network size increases Lee et al.

[1998]. Thousands of sensors are deployed in a large area of interest to compensate

for the limited transmission range of each sensor. The most preferable routing

scheme in WSNs is the one that can work efficiently with this large number

of sensor nodes and must be capable of adapting to an increasing network size.

Therefore, scalability is a another major requirement in the WSNs system design.

To measure the performance of any clustering protocol in terms of scalability,

the number of un-clustered is recorded as a performance metric. An increasing

quantity of un-clustered nodes indicates a degrading performance in terms of the

protocol scalability. WSNs researchers faces some challenges due to the unreliable

nature of wireless communication and the limited resources of sensor nodes. The

main challenges of the WSNs are listed as follows:

Limited Energy

Constrained energy supply poses a big challenge in the design of WSNs because

sensors are powered on battery which has limited energy capacity. When the

battery-energy of a sensor is depleted below a certain threshold, it becomes faulty

and unable to work properly which can negatively affect the overall network

performance. Due to the small size of sensors, batteries are usually designed in

small sizes. Therefore, the overall operation of sensors is limited by the available

battery energy. On the contrary, sensors need to continuously sense or collect,

transmit and receive data for a long period of time. To ensure that sensors

operate for long period of time, the battery energy must be managed efficiently.

Consequently, the routing protocols adopted by sensor networks should achieves

the energy efficiency requirement so as to minimise the energy consumption and

hence extend the network’s lifetime. Although, WSN applications faces different

issues but the common challenge is the limited energy. Energy consumption is

considered the main challenge for WSN operation. The sensor nodes are equipped

12
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with limited batteries. They are deployed in hostile or unsafe areas; making

recharging or replacing the battery unfeasible, hence the need to conserve battery

energy Raghunathan et al. [2002].

Every node operation consumes energy. Energy is consumed in sensing, pro-

cessing and communicating. Sources of energy consumption include:

� Idle: It reflects the time during which the node keeps listening to the

channel waiting to receive data. The idle process consumes energy which

can be considered as passive. The node could be designed to sleep during

passive time and wake-up to receive data. Designing node’s duty cycle to

sleep and wake-up at the right time is still a challenge.

� Data Aggregation: Sending data messages from all sensors to the base

station directly causes overheads due traffic congestion. Aggregating data

can reduce communication traffic. This is done by combining data messages

into one. Data aggregation requires the node to have sufficient memory,

processor capabilities and energy for processing.

� Communication: Most of the node’s energy is consumed during commu-

nication Halkes et al. [2005]. The consumed energy during communication is

affected exponentially by the distance between the communicating nodes;

the longer the communication distance between sensors the more energy

is consumed. In order to save energy, communication distance should be

minimised. Moreover, designing a suitable pattern for the antenna help

reducing energy waste. It was reported that the energy consumed for an

antenna pattern to reach all hosts is proportional to the area it covered

Sravan et al. [2007].

Short Transmission Range

Each sensor needs to transmit their data to the sink even though their trans-

mission range is limited. The sink is normally fixed and located far away from

the sensors. In addition, the link quality between the sensors nodes and the sink

need to be enhance in order to facilitate network throughout and data reliability.

13
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Clustering techniques that uses multi-hop communication approach is the best

strategy that can satisfies this requirement.

Coverage Problem

Coverage can be defined as the extent or degree to which each grid point of

network area is covered by a sensor node. The coverage problem is whether each

or every point in the target or area of interest falls within the sensing range of

the deployed sensors Sangwan and Singh [2015].

Scalability Issue

WSNs can consist of a large number of sensor nodes with high node density.

Designers find it a great challenge designing a scalable protocol that can work

efficiently at such a large network size.

Cluster and Route Optimisation Issues

In WSNs, there is a need to apply the best clusters that can route traffic in an

energy efficient manner such that the overall energy consumption is minimised

and the sensor lifetime is extended. The clusters formation and cluster head

selection among the sensors is regarded as an optimisation problem that can be

tackled using meta-heuristic algorithms (Refers to Section 2.4).

2.1.3 Energy Consumption in WSNs

As mentioned earlier, a wireless sensor node consists of: sensing unit, processing

unit, transceiver and power supply. The power supply provides energy to all other

sensor components. The sensed measurements are converted to a digital signal

by means of the analogue-to-digital converter (ADC) of the sensing unit. The

processing unit aggregates the digitised data into one single message to be sent

by the transceiver. The total energy consumed by a wireless sensor is the amount

of energy required to perform sensing, aggregation and transceiver operations.

Typical operations of the transceiver are: sleep, idle, transmit and receive. The
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total energy consumed is computed as:

ETotal = ESU + EAggreg + ESleep + EIdle + ETx + ERx (2.1)

Where:

� ETotal is the total energy consumed by a wireless node,

� ESU is the energy consumed by the sensing unit,

� EAggreg is the energy consumed in aggregating measured data,

� ETrans is the total energy consumed by the transceiver,

� ESleep is the energy consumed by the transceiver during sleep operation,

� EIdle is the energy consumed by the transceiver while in the idle state,

� ETx is the energy consumed by the transceiver to send a data message,

� ERx is the energy consumed by the transceiver to receive a data message.

Sensors spends most of its energy to transmit and receive packets whereas

the energy consumed during the idle, sleep states and sensing unit is negligible

(ESleep, EIdle and ESU is approximately zero). Equation 2.1 can be approximated

to:

ETotal = EAggreg + ETx + ERx (2.2)

2.2 Sleep Scheduling Mechanisms Overview

In WSN environments, sensor node sleep scheduling can be used as an energy

conservation method for network lifetime extension. This section present few

notable energy-efficient scheduling mechanisms in sensor networks.

Randomized Scheduling Scheme

In the randomized scheduling (RS) scheme, sleeping sensors are selected randomly

in a given cluster with a probability of p = βs < 1 (where βs is the average fraction

of sensors allowed to sleep). This scheme is very simple to implement. Each

sensor only needs to examine the data obtained from a biased random generator

to decide whether to turn into sleep mode or not. All sensors in the cluster have
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same sleep probability. The major drawback with this scheme is that more energy

is consumed if the sensors at cluster boundaries are kept active and this can also

leads to variation of energy consumptions by all sensors. This sleep scheduling

scheme is only suitable for single-hop cluster-based sensor networks with variable

transmission power Deng et al. [2005a].

Linear Distance-based Scheduling

A sleep-scheduling algorithm called Linear Distance-based Scheduling (LDS) scheme

for cluster-based high density sensor networks was proposed in Ramesh et al.

[2012]. The goal is to reduce energy consumption without affecting the coverage

capabilities of the sensors. This goal is satisfied by causing sensors that are far

away from the cluster head to become inactive with higher probabilities. Also,

experimental result shows that the LDS scheme is better than the RS in that the

sensing coverage of sensors at the border area are lower than the central area of

the cluster Deng et al. [2005b]. The idea behind this scheme is that more sensor

energy can be saved by allowing far away sensors to sleep for longer periods com-

pared with sensors that are closer to the cluster head. According to Deng et al.

[2005a], the probability p a sensor goes into sleep mode is given as:

p(x) =
2Rβs

4

2x

R2
=

3βsx

2R
, 0 ≤ x ≤ R (2.3)

Where R is the communication range between CH and all sensors at maximum

transmission power, βs is the fraction of sensors allowed to sleep (at < 2/3).

The sleep probability p of sensors is a function that is dependent on x, which is

the distance of a sensor from its respective cluster head and x is a value within

sensor’s communication range R. The LDS scheme works only with static clusters

(CHs remain the same throughout an operation once they are selected).The LDS

scheme lowers the variation of energy consumptions compared with the RS scheme

Deng et al. [2005a].

16



2. Energy Efficiency Mechanisms for WSNs

Balanced-energy Sleep Scheduling

This scheme employs the base station to extend the LDS scheme by evenly dis-

tributing the sensing and communication tasks among the non-head sensors so

that their energy consumption is similar regardless of their distance to the cluster-

head Le et al. [2008]. This scheme employs a sleep probability function p(x) so

that the total energy consumption of a sensor does not depend on x, the distance

between sensor and its CH. The main goal of this scheme is to use a sleep proba-

bility that provides balanced energy consumption for a larger portion of sensors

in a cluster thereby reducing the overall energy consumption. More details about

this scheme is provided in Deng et al. [2005a]

Other Sleep Scheduling Mechanisms

In Danratchadakorn and Pornavalai [2015], a coverage maximisation with sleep

scheduling protocol (CMSS) that ensures network areas are fully covered by se-

lected active sensors was presented. Each sensor exchanges information with its

neighbouring sensors and sets a waiting time. During sensor waiting times, a sen-

sor can receive a sleep message from neighbouring nodes. When a sensor receives

these messages, it updates its own neighbour and cell value table. If the minimum

value of the cell value table of a sensor equals to one, it silently becomes an active

node. Otherwise, it will wait for the waiting time to expire before it turns into an

inactive node. An energy preserving sleep scheduling (EPSS) strategy allows each

sensor to make decision regarding going into sleep mode based on their distance

from the cluster head and network density. This guarantees balanced energy con-

sumption in the cluster by taking into account the density of node deployment

and the network load while determining the sleep probability Singh and Lobiyal

[2013]. In Bulut and Korpeoglu [2011], a probabilistic and analytical method was

employed to approximate the overlapping sensing coverage between a node and

its neighbours. It also estimates when a node can be put into sleep without jeop-

ardizing expected coverage. The method is employed by the proposed scheduling

and routing scheme to diminish control message overhead while considering the

next mode (full-active, semi-active, inactive/sleeping) of sensor nodes.
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2.3 Clustering Mechanisms Overview

Clustering is a key mechanism in large multi-hop wireless sensor networks for

obtaining scalability, reducing energy consumption and increase in the network

lifetime to achieve improved network performance. In Abbasi and Younis [2007];

Tyagi and Kumar [2013]; Younis et al. [2006], Clustering techniques have been

studied extensively to improve the performance of WSNs. In this section, several

traditional clustering protocols were presented, which includes the Low Energy

Adaptive Clustering Hierarchy (LEACH), Topology Controlled Adaptive Cluster-

ing (TCAC), Scalable Energy Efficient Clustering Hierarchy (SEECH) and other

clustering approaches.

2.3.1 Low Energy Adaptive Clustering Hierarchy (LEACH)

LEACH is one of the most common cluster-based routing protocols in WSNs that

has been proven to be an effective approach to prolong the network’s lifetime

Heinzelman et al. [2002, 2000]; Tyagi and Kumar [2013]. The LEACH protocol

was published in a seminal paper by Heinzelman et al. [2002], and has been cited

in most research papers of similar research area. This is a completely distributed

approach that does not require a global information of the network. The basic

idea of LEACH has been an inspiration for many subsequent clustering protocols.

The main objective of LEACH is to equalise the energy load distribution among

the CHs. LEACH lifetime operations is made up of several rounds and each round

consists of two phases, namely the set-up phase and the steady-state phase. In

the set-up phase, the clusters are organised, while in the steady-state phase, data

is delivered to the BS. The steady-phase span through longer period compared

with the set-up phase in order to reduce overhead. For each, the node decide

whether to be the CH or not at the set-up phase. This CH decision is based on

the percentage allocation of CHs or the number of times the sensor has been a

CH. Cluster-heads can be chosen stochastically (randomly based). At the set-up

phase of each round, a stochastic threshold value T (n) is computed at each round

18



2. Energy Efficiency Mechanisms for WSNs

as defined below:

T (n) =


P

1−P×(rmod 1
P
)
, if ∀n ∈ G

0, Otherwise
(2.4)

Where n is a random number between 0 and 1, P is the desired CHs percentage,

r is the current round, and G is the set of nodes that have not been elected as

CHs in the last 1
P

rounds. During set-up phase, each sensor nodes will select a

random number n between 0 and 1. This random number n is compared with

T (n) and if it satisfies the condition n < T (n), the node becomes a CH. This

LEACH protocol ensures that every node becomes a CH exactly once within 1
P

rounds.

When a cluster head role is assigned to a node and this node announces its new

role to other nodes via an advertisement message. All the nodes decide which CH

to join based on the received signal strength of the advertisement message. Each

node responds to their respective CH via a membership message. Using equation

2.4, the CH role is decided in order to distribute the energy load among sensors.

During the steady-state phase, the sensors transmit data packets continuously to

the CHs. Each CH aggregate all the data received from all its member nodes

and this aggregated data is sent to the BS directly. To avoid inter-cluster and

intra-cluster collisions, LEACH employs Time Division Multiple Access (TDMA)

technique. After a time duration or round length, the WSNs begins another

round starting with the set-up phase where new CHs are elected.

The idea behind LEACH is that any node that has been appointed as CH in

a round can not be elected as CH again. This LEACH scheme enables each node

to share equally the extra energy load imposed by acting as the CH. However,

the drawback is that LEACH can not guarantee equal load-balancing in the sense

that sensors are elected as CHs based on probabilities without considering their

energy value while choosing T (n). In addition, selecting the CHs randomly does

not gives an even distribution of CHs over the WSNs Arboleda and Nasser [2006].

Another drawback is that LEACH assumes a single-hop communication with

the BS, which is unrealistic in many practical scenarios due to the restricted

communication range of sensors Saleem et al. [2011]; Zungeru et al. [2012]. An
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attempt to increase the transmission range can also cause sensors to consume

more energy for transmission.

2.3.2 Topology Controlled Adaptive Clustering (TCAC)

The TCAC protocol consists of three phases namely the periodical update, clus-

ter heads election and cluster formation Dahnil et al. [2012]. At every network

operation round, each sensor dynamically changes its transmission power level

Ptx. At the start of periodic update, each sensor successively broadcasts an up-

date message containing its ID, at each power level. Other sensors will send an

acknowledgement (Ack) after receiving the packets. Sensor’s degree is computed

based on the number of received Acks. The broadcasting sensors must perform

many transmissions to obtain a power level that is equivalent to the degree thresh-

old (Qmin). To preserve the network connectivity at a given number of sensors

n, the degree threshold Qmin is defined as:

Qmin = 5.1774 log n (2.5)

According to Xue and Kumar [2004], the relevance of Equation 2.5 is that as

each sensor is connected to more than 5.1774 log n nearest neighbour, the network

is asymptomatically connected with a probability approaching one as n increases.

For instance, if a sensor’s degree is less than the degree threshold Qmin, then the

sensor must increase its power level. Alternatively, if the sensor’s degree is greater

than the threshold, then the sensor must reduce its power level until Qmin is

achieved. This attainable power level by the broadcasting sensors is set as the base

power level. This information will be stored in the sensor’s cache for clustering

operations. The cluster heads are elected in the second phase of TCAC protocol

in three sequential steps. In Step 1, a sensor computes its probability (P (CCHi))

to become CH candidate based on its remaining energy Ei with respect to the

average energy Eavg of all sensors in the WSNs. LEACH protocol defines the

optimal number of cluster heads kopt that can achieve minimum energy dissipation

per round. A parameter kinitial that can obtain non-overlapped CHs is defined

in TCAC protocol and this parameter must satisfies the condition kinitial > kopt.
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The probability of a sensor to be elected as a CH candidate is computed as follows

P (CCHi) =
Ei

Eavg

(2.6)

And Eavg is calculated as follows

Eavg =
Etotal

kinitial
(2.7)

Each sensor generates a random number in the range of [0, 1] and if the number

is less than the calculated probability P (CCHi), it elects itself as a candidate CH.

Other sensors that are not elected will wait to receive membership message from

the newly elected CH. At the end of each round, all member sensors send their

residual energy to their respective CH, which aggregate the values and update

the rest of CHs in the network. Based on the received information, the CHs

compute Eavg value. The information is sent to all sensors in order to compute

the P (CCHi) for the next round of network operation. There is a higher chance

that sensors elected as CH in previous round may not be elected in the next round

due to higher energy spent for communication with the base station. In Step 2,

the candidate CHs obtained in Step 1 is compared against each other and the

condition below must be satisfies for CH election.

� The CH candidate with a higher energy is re-elected as a CH and the other

candidates becomes a member nodes.

� If the energy of two candidate CHs is the same, then the candidate CH with

higher degree is re-elected as the CH.

In Step 3, CHs set power level Ptx through Ack counts received from trans-

mission in order to update the sensor’s degree. If the sensor degree correspond

to the Qmin, the CH transmit a cluster head message CHMSG its new role. In

the cluster formation phase, the non-CHs respond back to CH with a request

message REQMSG containing its ID. Sensors that do not receive CHMSG across

the network send request message to CHs after the time has expires. CH rank

members based on the received signal strength of REQMSG and stored them

in a priority list in the structure (ID, Rank). At the top of priority list is the
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sensor with strongest signal strength. CH broadcast the priority list to all sensors

requesting to join its cluster. The two important facts can be deduce from the

priority list:

1. Sensors are aware about their closeness to the CH compare to other sensors

requesting to join the cluster,

2. Sensor may join cluster to fulfil the threshold degree of CH rather than

considering the closeness to CH. From the list, non-CH nodes compute the

degree of each CH and a sensor joins cluster that has a lower degree than

the Qmin.

In situation where the degree of all cluster heads are equal or greater than the

Qmin, the sensors compare ranks given by all CHs and join the cluster that placed

it in the best rank. After joining the cluster, member sensors adjust their trans-

mission power for efficient intra-communication with CHs.

2.3.3 Scalable Energy Efficient Clustering Hierarchy

(SEECH)

After sensor deployment in a network area, The SEECH protocol starts operation

at the start phase before the first round. Each sensor computes its distance from

the sink and the number of neighbouring sensors ni in a specific radius RNG

Tarhani et al. [2014]. This obtained data is shared with other sensors and each

sensor computes its degree degi as follow

degi =
ni

max(n1, n2, ..., nN)
(2.8)

Where nN is the overall number of sensors in the network. In SEECH protocol,

sensors with larger degrees are more suitable choices for cluster head. The merit

of this approach is that large number of member nodes is covered by small number

of CHs using low power communication. The CH selection starts by electing some

tentative CH using distributive method. In this method, each node i calculates
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pci which describes the chances of being a tentative CH as follows:

pci =


Eresi×degi

pc−tot
, ifEresi ≥ Eav(1− λ)

0, else
(2.9)

Where the Eresi denotes the residual or available energy of sensor i. λ is a

number in the range [0, 1] and is usually set to 0.9 in order not to reduce the

chances of low energy sensors. pc−tot is define as follows:

pc−tot =
Eav ×

∑
N degi

2KCHC

(2.10)

The pc−tot value assures that the number of tentative CHs will not be less

than the number of needed candidates (KCHC). In equation 2.10, Eav is the

average residual energy of the nodes in the current round which is calculated and

broadcasted by cluster heads in previous round and during cluster formation. In

each round, residual energy of nodes is in a small range; whereas, their degrees

might be completely different e.g. degree of a node might be multiple times of

another one. As a result, prioritizing the nodes by equation 2.9 is more heavily

dependent on node degrees rather than residual energy. When pci is computed,

each sensor generates a random number in the range [0, 1] and compares it with

pci . If the random number is less than the pci , the sensor consider itself as the

tentative cluster head. All tentative CHs inform other tentative CHs and sensors

by broadcasting a CH-CANDIDATE-MSG message using CDMA protocol. Each

sensor receive the message and estimate its distance from the transmitting node.

Prior to announcing its candidacy, each sensor counts the number of candi-

dates and if it is equal to KCHC , it will not introduce itself as a candidate to

the network and gives up the competition in order to maintain constant num-

ber of candidates. Each CH-CANDIDATE-MSG message which includes the ID,

residual energy of sender and distances smaller than RNG from all previously

introduced candidates in current round and corresponding IDs. The set of can-

didates and cluster heads is denoted by RCHC and RCH and KCH is the number

of needed cluster heads. To eliminate each candidate, all candidates are scored

once. The candidate with lowest score will be eliminated from the list. The same

procedure will be repeated ignoring distance from eliminated candidate. The pro-
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cess will continue till the number of remained candidates equals to the number of

needed cluster heads. The SEECH protocol can execute algorithm in two ways.

In the first method one candidate executes desired algorithm and announces fi-

nal cluster heads. In the second method all candidates separately execute the

algorithm and figure out their state themselves.

A sensor accepts the role of relay node only if it satisfies two conditions.

Firstly, the sensors that are closer to the sink minimise transmission cost. Proto-

cols must avoid selecting this sensor as cluster head. Secondly, since competence

of electing a CH is proportional to node degree (which is number between 0 and

1), 1-degree is utilised and defined as the relay sensors. The procedure of selecting

relay nodes is similar to selecting cluster heads. First of all, each node excluding

cluster heads, calculates its chance of becoming a tentative relay node, pri , as

follows:

pci =


Eresi×(1−degi)

pr−tot
, ifEresi ≥ Eav(1− λ)

0, else
(2.11)

Where

pr−tot =
Eav ×

∑
N(1− degi)

2KR

(2.12)

The pr−tot value assures that the number of tentative relay sensors will not be

less than the sufficient number of tentative relay sensors (KR). In Equation 2.11,

Eresi is included to protect low energy nodes. When pri is computed, each sensor

generates a random number and compares with pri. If the number is smaller

then the sensor becomes a tentative relay sensor. The relay sensor introduce

themselves to the network by broadcasting a RLY-MSG message which consist

of the node ID and residual energy. CHs also receive the message and decide the

closest relays based on the signal strength. After the lowest energy nodes has

been eliminated, the CHs chooses closest relay nodes among the tentatives and

informed the elected relay about their choice by sending CH-NEXTHOP-MSG

message.

Cluster formation process starts by CHs broadcasting a CHMSG message

with the spreading code and ID. Each normal sensor chooses the closest CH
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according to the signal strength. Afterwards the sensor informs the CH of its

decision by transmitting a JOIN-MSG message which consists of node ID and

cluster head ID, thereby forming clusters. CHs count their members based on the

number of received JOIN-MSG messages and employ TDMA to collect cluster

information. Therefore, each CH broadcast a SCHEDULE-MSG message with a

radius equivalent to the distance of farthest sensor member. Using the messages

CHs issue time-slots for each members to send its information. Also the average

residual energy of the network is informed to the nodes by these messages. Now

setup phase finishes and steady-state phase starts in accordance with determined

topology.

2.3.4 Other Clustering Approaches

Another variant of LEACH protocol was proposed in Heinzelman et al. [2002],

which is called LEACH-centralised (LEACH-C). Unlike LEACH, LEACH-C

employs the sink to perform the task of CH selection and formation. Each node

sends their location and energy level to the sink. The sink employs a simulated

annealing (SA) approach to determine the CH number and cluster configuration

based on the received information. The energy and distance between CHs and

non-CHs are considered for even load and cluster distribution. The sink optimises

global knowledge of the network to produce an improved network that requires

less energy. However, it assumes that the CHs can send aggregated data streams

directly to the sink which is a similar drawback to LEACH. A hybrid energy

efficient distributive (HEED) protocol was proposed in Younis and Fahmy

[2004]. CH selection is achieved by iteratively considering the residual energy

and the proximity to member nodes. In this protocol, the energy consumption

for communicating between the CHs and non-CHs is reduced considerably and

each CH communicates with the sink using multi-communication approach. How-

ever, more CHs are generated than the expected number and this results in an

unbalanced energy consumption. Also, HEED results into overhead since it does

several iteration to select CHs.

In Smaragdakis et al. [2004], a stable election protocol (SEP) was devel-

oped for the two level heterogeneous networks, which includes two types of nodes,
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normal and advanced nodes. In SEP election probabilities are weighted by the ini-

tial energy of a node relative to that of other nodes in the network. This prolongs

the time interval of FND that must be crucial reliable communication. Further

SEP is dynamic therefore it does not assume any prior distribution of the different

levels of energy in sensor nodes. Finally SEP is scalable as it does not require any

knowledge of the exact position of each node in the field. Disadvantage of SEP is

that it performs poorly in terms of stability for multi-level heterogeneous WSNs.

An energy-aware adaptive clustering protocol used in heterogeneous wireless sen-

sor networks named distributed energy-efficient clustering (DEEC) scheme

was proposed in Qing et al. [2006]. In DEEC, every sensor node independently

elects itself as a cluster-head based on its initial energy and residual energy. To

control the energy expenditure of nodes by means of adaptive approach, DEEC

use the average energy of the network as the reference energy. Thus, DEEC does

not require any global knowledge of energy at every election round. Unlike SEP

and LEACH, DEEC can perform well in multi-level heterogeneous wireless sensor

networks as shown in experimental results presented in Qing et al. [2006].

2.4 Metaheuristic Algorithms

Meta-heuristic approaches are widely employed as an efficient solution for many

optimisation problems. They are defined as a heuristic process that intelligently

combines diverse concepts in order to exploit and explore the search space, learn

strategies that are tailored for finding solution close to the optimal solution

El Emary and Ramakrishnan [2013]. The meta-heuristics algorithm is classi-

fied into two types based on the search strategy namely the global and local

meta-heuristic search. Here, a brief overview of widely known global search meta-

heuristics is presented: Genetic Algorithms (GA), Particle Swarm Optimisation

(PSO), Differential Evolution and the Local search metaheuristics: Simulated

annealing (SA), Iterated Local Search (ILS), Tabu search. Lastly, the Memetic

algorithm (MA) , which is a hybrid approach of the global and local search strat-

egy.
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2.4.1 Global Search Strategy

The global search strategies are also refers to as the population-based meta-

heuristics. Population-based approaches maintain and improve multiple candi-

date solutions, often using population characteristics to guide the search. The

global search provides the broad exploration mechanism. Algorithms under the

population based metaheuristics include Genetic Algorithm, Particle Swarm Op-

timisation and Differential Evolution.

Genetic Algorithms

Genetic algorithms have been in existence earlier than 1975, but it was intro-

duced to the broad research community in a seminal paper by Holland [1975].

The genetic algorithm concept is a metaheuristic that imitate the process of nat-

ural selection and the survival of fittest. In GA, solutions are represented as

chromosomes. Using a fitness function, the quality of this chromosomes are eval-

uated and eventually graded from the best to worst based on the obtained fitness

value. To produce high quality solution for optimisation and search problems,

the GA mimic three major natural selection operation of living organism such as

selection, crossover, and mutation. To drive the GA process towards survival of

the fittest, higher selection probability is assigned to chromosomes with better

fitness. The selection probabilities are computed by ranking the fitness values of

all chromosomes in a population relative to one another. The selection operator

is applied to a population pool in order to select parent chromosome pair with

the best fitness value. Afterwards, the crossover operator is applied to this pair,

thereby producing a new offspring. Since the process is continuously driven to-

wards the stronger (fitter) chromosomes, there is a likelihood that the fitness of

new chromosomes that might tends towards the same value after several gener-

ations. Invariable this cause decline in the population diversity, which leads to

population convergence. At this stage, the mutation operator can be applied to

the process and this introduce diversity into the population to stops convergence

Gen et al. [2008]; Goldberg [1989]. The flowchart of genetic algorithm is given in

Figure 2.2.

The population size and the maximum number of iterations are among the
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Figure 2.2: Flowchart for genetic algorithm Kachitvichyanukul [2012]

decisions that must be made for implementing a GA. The first decision made is the

selection techniques and probability assignment mechanism, which makes use of

the fitness values. The choices of appropriate selection techniques with probability

assignments mechanisms is a paramount for obtaining new population diversity

and solution improvement. Many selection techniques have been proposed in

literature but the two popularly used mechanisms are the tournament and roulette

wheel selection mechanisms. The crossover method and crossover probability is

the second decision set made for producing new chromosomes. At the early stage,

the simple crossover was employed but it tends to produce chromosomes that are

unfit for many complex optimisation problems and this has leads to discovery

of other preferable crossover which are one-point, two-point, uniform and so on.

The last decision set is the mutation method and mutation probability, which
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ensure population diversity by inserting new features into the chromosomes.

Particle Swarm Optimisation

Kennedy and Eberhart [1995] presented the PSO technique at the Congress on

Evolutionary Computation and this triggered the series of publications on the

successful application of PSO as a viable solution to complex optimisation prob-

lems. This population-based optimisation technique was inspired by the social

behaviour of bird flocking for conceptual visualisation of search process. PSO

is a metaheuristic as it makes few or no assumptions about the problem being

optimised and can search very large spaces of candidate solutions. However,

Figure 2.3: Flowchart for Particle Swarm Optimisation algorithm
Kachitvichyanukul [2012]

29



2. Energy Efficiency Mechanisms for WSNs

metaheuristics such as PSO do not guarantee an optimal solution is ever found.

In PSO, a single solution is referred to as the particle and population is seen as

the swarm. Each particle possess two features namely the position and velocity.

Each particle uses the velocity to move to a new position. Once the new position

is reached, the best position of each particle and the best position of the swarm

is updated. Based on the experiences of the particle, velocity of each particle is

then adjusted. The cycle continues until the stopping criterion is met as shown

in Figure 2.3.

With GA, the first procedure is to generate an initial swarm and each particle

in the swarm is initialised with a random position and velocity. The concept

of solution is represented in the same manner as the GA. The fitness of each

particle is evaluated using a defined fitness function. Every time a new particle is

produced, the fitness is calculated and compared with the previous best particle.

The personal and global best positions are updated to create a new swarm until

the stopping criterion is satisfies. The velocity is updated by using the personal

best, global best positions and old velocity. In another sense, the velocity is

updated using an individual particle experience (personal or self learning term),

swarm experience (group or social learning term) and old velocity. A weight is

assigned to each term. Their is no need for fitness ranking and this makes it to

undergoes less computational tasks than the GA. A simple arithmetic operation

of real numbers is require for the velocity and position updates.

Differential Evolution

DE was proposed the same year with PSO by Storn and Price [1995] as an

optimisation technique applied over continuous search space. The logic behind its

operation is very simple and shows good performance in terms of convergence. DE

converges at a slower rate towards the local optimum than the PSO but it has been

a favourable optimisation technique applied to some applications Onwubolu and

Davendra [2006]. In DE, the solution represented in a vector of D-dimensional.

The DE initialisation process starts by generating a random population size N of

D-dimensional vectors which contain real numbers. The solution representation

in DE is similar to GA and PSO. The DE algorithm uses a new mechanism for
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generating new solution that differs from GA and PSO. In DE, several solutions

is combine with the candidate solution to produce a new solution. DE algorithm

simultaneously employs three main operators namely mutation, crossover and

selection. These operators does not function exactly the same way as the one

described in GA. The major process in DE is the generation of a trial vector by

using a target or candidate vector from D-dimensional vectors of population size

N. This process is achieved by using the mutation and crossover operator, which

is summarised as follows:

1. Generate mutant vector by mutating three randomly selected vector.

2. Generate trial vector by applying a crossover on the mutant and target

vector.

The first procedure requires randomly selecting three vectors from a popu-

lation of vectors with the exception of target vector. The mutation operator is

applied on these three randomly selected vectors X1, X2, and X3 and combined

to obtain the mutant vector V as described in the Equation 2.13 below as:

V = X1 + F (X2 −X3) (2.13)

Where F is a multiplier which is the key parameter of the DE algorithm.

The concept of mutation operation used in DE is completely different from GA.

The second procedure is to generate a trial vector by using a crossover between

the target and mutant vector. The two popularly employed crossover methods

are the binomial and exponential crossover. The value of crossover probability

determines the trial vectors in the sense a higher value causes the trial vector to

be close to the mutant vector, whereas a small value causes the trial vector to

resemble the target vector. After the formation of trial vector for a given target

vector, both vectors are compared and one is selected. The selection criterion is

based on the best fitness value; which means if the trial vector fitness is better

than the target vector, the trial vector is selected. On the other hand, if the target

vector has a superior fitness than the trial vector, the target vector is selected

to be crossed over with the next round of mutant vector. This is a significant

difference in the sense that solution improvement may occurs when waiting for
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the entire population to finish the update. The flowchart for the DE algorithm

is presented in Figure 2.4.

Figure 2.4: Flowchart for differential evolution Kachitvichyanukul [2012]

As presented in Figure 2.4, the first step is the generation of solutions in a

population called vectors. The fitness of each vector is evaluated using a defined

fitness function. A trial vector is generated for each target vector in successive

order. The process coordinates the selection of either the target vector or the

trail vector based on their fitness value. Eventually, the vector that wins between

the trial and target vector moves to the next round and the one that loses is

discarded. The observations drawn from the DE process are that new solutions
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emerge only if the trial vectors has a better fitness. The overall average fitness

of the population improves or remain constant from iteration to iteration. Solu-

tion that has undergone improvement in previous round are readily available to

produce mutant vector for the next target vector. The DE differs from the GA

in the sense that solution improvement occurs after all the solutions has finished

their iterations.

In DE, every solution in a population are eligible to be use as a target vector

or one of the parents unlike GA where the parent solution are selected based on

fitness. The second parent is formed from at least three different vectors. In total,

four vectors are used to generate the trial vector; and this trial vector replaces the

target vector only if it has a higher fitness value otherwise it is discarded. This

replacement takes effect immediately without going through the entire population

to complete its iteration process. In the next round, this improved vector will then

be available for crossover operation with the next mutant vector. Other variation

of DE discussed in Price et al. [2006] lies in the formation process of mutant

vectors and the use of more than three vectors for mutant vector formation.

2.4.2 Local Search Strategy

The local search strategy can also be called a single solution approach. This

approach focus on modifying and improving a single candidate solution. The

improvement of an individual solution via a local search strategy implies an

exploitation mechanism. Popular algorithms under this approach includes the

Simulated annealing (SA), Iterated local search (ILS) and Tabu search (TS).

Simulated Annealing

Simulated annealing (SA) is a meta-heuristic approach is employed as an ap-

proximate method in global optimisation for exploiting a relatively large search

space. The logic behind its operations lies the process of metal annealing Tan

et al. [2011]. One major advantage of SA over gradient-based methods and other

deterministic search methods is ability to avoid being stuck at the local opti-

mal. A local optimal can be describe as dropping some bouncing balls over a

landscape, and the balls bounce until they loses energy and settle in some local
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minima location. Also, the balls can be allowed to bounce for a long time and

loses energy slowly till they settle in a global minima location. SA searches along

the Markov Chain until it converges under an ideal conditions.

In SA, the search is moves through a piecewise path. An acceptance probabil-

ity is evaluated for each move and it accepts a move only if there is improvement

of the fitness function (lower fitness value for minimisation problem or higher

fitness value for maximisation problem), but also keeps record of changes that

does not improve the fitness function. The acceptance probability p is computed

as:

p = exp [− 4E
kBT

], (2.14)

Where kB is the Boltzmann’s constant, T is the temperature for controlling the

annealing process and 4E is the energy change. The variation in fitness function

4f is proportional to the energy change 4E as shown below.

4E = γ4f, (2.15)

Where γ is a real constant that is simply taken to be γ = 1 and 4f = f2 −
f1 (f1 and f2 represent the old and new fitness function respectively). From

equation 2.14, it is clear that p → 0 as T → 0, which makes the SA approach

to implicitly behave like a hill-climbing method at extremely low temperature.

In search algorithm, the acceptance probability function takes in the variation

between the new old and new fitness function 4f and current temperature T ,

and produces a p value that decides whether to move to the new solution. The

annealing Equation 2.14 help the search process to move from a random solution

to one with a very good fitness function. This equation means that the acceptance

probability:

� is always > 1 when the new solution is better than the old one. p is usually

assumed to be 1 for a probability greater than 100%,

� gets smaller as the new solution gets more worse than the old one,

� gets smaller as the temperature decreases (if the new solution is worse than

the old one).
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The control of temperature variations is responsible for behaviour and effi-

ciency of the SA algorithm. There are several ways to control the temperature

decrease or cooling rate. Two popularly used annealing or cooling schedules are

the linear and geometric. Equation 2.16 is applicable to linear cooling schedule.

T = T0 − βt, (2.16)

Where T0 is the initial temperature, t is a pseudo time that replaces the iterations

and β is the cooling rate. β value is decided such that T → Tf when t → tf (or

maximum number of iterations), thereby resulting into β = (T0−Tf )/tf . On the

other hand, a geometric cooling schedule essentially decreases the temperature

by a cooling factor 0 < α < 1 so that T is replaced by αT or

T = T0α
t, t = 1, 2, ..., tf . (2.17)

The merit of geometric cooling schedule is that the maximum of iterations is

irrelevant as the T → 0 when t→∞ and this makes the method to be more widely

applied. The cooling process should be slow enough so that the system can attain

stability. In practice, αε [0.7, 0.99] is commonly applied. At a given temperature,

multiple evaluations of the fitness function are used. Very few evaluation might

cause pose an instability threat and the system might eventually converge into

its global optimum. On the other hand, Too many evaluations consumes lots

of time and converge slowly; the number of iterations increases exponentially

before it reach stability depending the problem size. Hence, there is a trade-off

between the number of evaluations and the solution quality. Evaluation can only

be perform at few temperature levels or few evaluations at many temperature

levels. The number of iterations can be either set at fixed or variable.

Iterated Local Search

Iterated local search (ILS) is the modification of hill climbing method for solving

discrete optimisation problem. This search method can get trapped in the local

optimal where no improving neighbours are available. ILS is a simple method

that starts its search from a solution and apply the local search with perturbation

operator to obtain the local optimal solution ŝ. This steps are iteratively repeated
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Algorithm 1 Pseudocode of the ILS method

Start
s← generate initial solution.
Repeat
s′ ← perturbation (s)
ŝ′ ← local search (s′);
ŝ← apply acceptance criterion (ŝ′, ŝ);

Until termination condition
End

until it satisfies its stopping criterion. Figure 1 shows the pseudo-code of ILS

approach. The initial solution should contain detailed information so that it

can serves as a starting point for local search. Most local search operators are

deterministic. The perturbation operator is component added to the local search

operators to make it non-deterministic and introduces exploration mechanism in

the search for solution. Perturbation operator does a global random search around

the regions of local optimum. An efficient use of the perturbation mechanism is

a major requirement is discussed in Xu et al. [2003]. The perturbation must be

strong enough to escape from spot of attraction, but less strong to use knowledge

from previous iterations. Less knowledge from previous iterations, makes the

ILS to be different from other restart strategy. The acceptance criterion is only

satisfies of there is improvement in the solution. Section 5.4.2 of Chapter 5

discussed more details on this local search operator.

Tabu Search

Tabu Search was developed by Fred Glover as a search that employ memory and

search history as a key component of the technique Glover [1995]. Previously, the

use of search history was not seen to be important as most algorithms are memo-

ryless or use the most current results. The goal of Tabu Search is to constrain an

embedded heuristic from revisiting an area in recently discovered search space.

The strategy maintain a short term memory that save recent changes to solutions

within the search space while denying future moves from undoing those changes.

An intermediate-memory can be introduced to allow more bias moves towards

viable areas of the search spaces, as well as longer-term memory structures that
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promote a general diversity in the search across the search space. The action of

memory and history in the search procedure introduces a high degree of freedom

and the mathematical analysis of the algorithm behaviour can be difficult to han-

dle. However, TS is considered to be one of the best meta heuristic techniques

use for optimisation problems.

TS can be seen as an deep local search procedure that efficiently employs the

use of search history to avoids the search twice for a local solution that has been

tried and recorded in the tabu lists. The search efficiency can be improved by

recording the all tried solutions in the tabu list over a large number of iterations

and this helps to save lots of computing time and resources. Wang and Nie [2010]

shows that use of tabu lists with integer programming can save the computing

time by at least two orders of magnitude for a given problem compared with tra-

ditional integer programming without tabu list. Several hybrid algorithms have

been proposed by combining Tabu Search with other meta heuristics algorithm.

In essence, TS can be considered as an intensive local search, and the appro-

priate use of search history avoids revisiting local solutions by recording recently

tried solutions in tabu lists. Over a large number of iterations, these tabu lists

could save a significant amount of computing time, leading to improvements in

search efficiency. For example, studies show that the use of tabu lists with inte-

ger programming can save computing effort by at least two orders of magnitude

for a given problem, as compared with standard integer programming Wang and

Nie [2010]. To provide solution for complex optimisation problems, several hybrid

algorithms have been developed by combining Tabu search with other metaheuris-

tics Glover et al. [1995].

2.4.3 Memetic Algorithm

This algorithm was inspired by both Darwinian principles of natural evolution

and Dawkins’ notion of a meme, the term ”Memetic Algorithm” (MA) was intro-

duced in a technical report by Moscato et al. [1989]. MA are a class of stochastic

global search heuristics in which Evolutionary Algorithms-based approaches are

combined with local search techniques to improve the quality of solutions cre-

ated by evolution Hart et al. [2005]. This serves as an extension of the global
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Algorithm 2 Pseudocode for Memetic Algorithm

Encode solution space
Set population size, maxgen, gen = 0
Set crossover rate, mutation rate
Initialise population
while (gen < maxgen) do

Apply any generic global search metaheuristic approach.
Apply any local search.

end while
Apply final local search to best chromosome.

metaheuristics that uses a local search strategy to prevents the likelihood of early

convergence Hart et al. [2005]. The pseudocode for Memetic Algorithms is shown

in Algorithm 2.

In a memetic algorithm the population is initialised at random at each indi-

vidual uses local search to improve its fitness. Individuals with higher fitness are

passed to the next generation. Selection phase of MA is similar to that of stan-

dard genetic algorithm. Using crossover operators, the selected parent pair are

mated together to obtain new individuals or offspring. The latter are enhanced

using a local search technique. The role of local search in MA is to locate the

local optimum more efficiently then the GA.

2.5 Clustering using Meta-Heuristic Algorithms

Clustering is a non-polynomial (NP hard problem that is ineffectively solved

by traditional techniques. Clustering in WSNs is seen as a NP-hard problem

due to dynamic nature of WSNs exhibits in the way clusters repetitively which

can very difficult to model through mathematical methods.Traditional clustering

algorithms suffer from non-uniformity in clusters and CH distribution Hou et al.

[2010] and they are expensive algorithms. Recently, computational intelligence

(CI) paradigms are used to cluster WSN. This subsection summarises the work

done by CI paradigms to cluster WSNs.
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2.5.1 Clustering Using Genetic Algorithm

In Park et al. [2012], authors proposed the use of GA to solve the optimising prob-

lem for selecting the best number of CHs. A 9-bit binary coded representation

for chromosomes was proposed, where the bits contains value ′1′ which represents

a CH and value ′0′ which represents an ordinary node. The fitness function was

defined as given in Equation 2.18.

Fitness = w ∗ (DT −Di) + (1− w) ∗ (N −Hi) (2.18)

Where DT is the total distance from all nodes to sink, Di is the total distances

from regular nodes to their cluster head, N is the total number of nodes, Hi is

the number of cluster heads, and w is preset weight. The results showed that the

cluster layout depends on the location of the BS (sink). More CHs are found to

be elected when the BS is close to the centre of the network.

Xu and Saadawi [2001] used the same model as presented in Park et al. [2012],

but with different mutation mechanism and sink location. It is shown that when

the CH reached about 25% of the overall nodes, a better fitness value is obtained.

However, the choice of CH was not based on remaining energy of nodes after

each round. This could lead to network failure or disconnection in the sense that

any node with low energy might be elected as a CH. After sometime, this can

cause the CH to die gradually and so that part of the network is disconnected. In

Van Dam and Langendoen [2003], authors improved the previous work of Park

et al. [2012], and Xu and Saadawi [2001] by adding the residual energy to the

fitness function calculation as shown in Equation 2.19.

Fitness = RE + SE + (w ∗ (DT −Di)) + ((1− w) ∗ (N −Hi)) (2.19)

RE is the total cluster heads’ energy, and SE total energy needed to send

data from cluster heads to sink. RE and SE are both added to Equation 2.18 in

Equation 2.19 to avoid selecting CHs with low energy. The results were compared

with LEACH showed proper distribution of clusters and significant improvement

in the network lifetime Van Dam and Langendoen [2003]. In Dong et al. [2005],

39



2. Energy Efficiency Mechanisms for WSNs

authors used GA to optimise the clustering problem based on minimising the en-

ergy consumption. In their model, the radio transmission technology was used in

their calculations. The Radio Energy Dissipation system of equations is presented

in Equation 2.20.

TExy = Ee + εsd
2
xy,d < d0

TExy = Ee + εld
4
xy,d < d0

d0 =

√
εs
εl

(2.20)

Where TExy is the total energy needed to transmit data from a sensor to its CH, d

is the distance between the sensor and its CH, d0 is the threshold distance. Given

that Electronics Energy Ee = 50, energy due to free space model εs = 10pj/m2

and energy due to multipath model εl = 0.0013pj/m4, communication distance

between sensor to its CH dx,y and can exist either as the free (d2x,y power loss) or

the multipath fading (d4x,y power loss).

The fitness calculation depends on the distance between nodes, CHs and sinks.

The GA’s outcome was the optimal Cluster Heads. The base station then iden-

tifies the cluster members and the transmission schedule. Each CH is assumed

to send directly to the sink. Although their algorithm performed better than

LEACH, the improvement was not significant. This is because of the complex-

ity of the fitness function. Lots of parameters were considered and each one is

assigned a weight that is updated at each generation.

In Misra and Banerjee [2002], authors proposed a GA to minimise the com-

munication distance. Moreover, a two-dimensional chromosome representation is

used. The chromosome mapped the actual sensor layout of the deployment area.

The gene’s value of zero indicate non-existing nodes, ’1’ indicates a sensor node,

and ’2’ indicate a CH. The algorithm used result of the LEACH as an initial

condition to GA algorithm. The fitness function used is as follows:

Fitness =
∑
i

∑
j

d2CH(i,j) +
∑
j

d2SN(i) (2.21)

where i is the number of CHs , j is the member number in cluster i, dCH is
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the distance between the sensor and its CH, and dSN is the distance between CH

and sink. The chromosome is divided into sectors, and crossover is performed

by exchanging sectors between parents to ensure that the genes move with their

neighbors. The results proved better performance than LEACH. However, the

transmitted data size and cluster size is not added to the fitness function.

2.5.2 Clustering using Particle Swarm Optimisation

In Biswas and Morris [2005], authors applied particle swarm optimisation (PSO)

to obtain the optimum cluster layout using a fitness function based on distance

calculations (see Equation 2.22). Residual energy calculations were not included.

Fitness =
∑
j=1

k
∑
i=1

nj(d
2
ij +

D2
j

nj

) (2.22)

where dij is the distance between node i and its cluster head j, Dj is the

distance from cluster head j to the base station, and nj is the number of nodes

in the cluster j. While varying inertia weight or the acceleration constant, the

authors administered PSO algorithm. Analysis of the results are discussed in

details in Biswas and Morris [2005]; Chachulski et al. [2007].

In Hou et al. [2010], authors proposed using an improved PSO algorithm to

solve the uneven clustering problem. 5% of the total nodes were chosen to be

the CH and each cluster has equal number of nodes. Their fitness was based

on the communication distance. The PSO dynamic inertia weight was modified

to include the particles’ diversity. The CHs resulted from the PSO algorithm is

then checked for their energy level. If their energy level falls below a threshold,

they are replaced by the nearest node whose energy is more than the threshold.

Compared with LEACH and improved LEACH, the proposed PSO algorithm

showed better results. However, the overall nodes remaining energy and lifetime

is not considered.

2.5.3 Clustering using Differential Evolution

Chakraborty et al. [2012] presented a differential evolution based routing algo-

rithm for more than a thousand relay nodes such that the energy consumed by
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the maximum energy-consuming relay node is minimised. However, the authors

don’t put into consideration the cluster formation. Inappropriate clustering may

lead to serious energy inefficiency of the relay nodes.

A DE based clustering algorithm was presented in Kuila and Jana [2014] and

this algorithm employs an efficient vector encoding scheme and an extra phase

called local improvement to improve the performance of clustering operations.

This paper derived a fitness function that takes care of energy consumption of

both gateways and the sensor nodes. This DE-based algorithm is shown to con-

verge faster than traditional DE and GA. However, the drawback is that it as-

sumes the gateways can directly communicate with the base station which may

not be realistic for a large area network.

2.6 Conclusion

Wireless sensors networks are composed of sensor nodes deployed randomly in

a sensing field and each sensor have the capability to collect and route data to

neighbouring sensor or sink. The vast applications of WSNs can be classified

into three categories namely the environmental monitoring system ( examples

are indoor, agriculture, habitat, forest monitoring etc), human body monitoring

and intelligent buildings. However, the design of WSNs are confronted with some

requirements and challenges such as short transmission range, coverage problem,

scalability issue, optimisation issue and limited energy. Several sleep scheduling

and clustering techniques have been proposed by researchers to tackle this lim-

ited energy issue. The field of computation intelligence have also contributed

to designing energy-efficient cluster-based WSNs by employing meta-heuristic

approaches. This approach employs two search strategy for providing better so-

lution for clustering problem, namely the global search (GA, PSO and DE), local

search (SA, ILS, TS etc) and Memetic Search strategy. In the next chapter, a

review of machine learning approaches that can applied to improve the accuracy

of event-based WSNs applications such as fire detection system will be discussed.
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Chapter 3

Intelligent Machine Learning

Mechanisms for WSNs

This chapter discusses about the use of WSNs for monitoring or event detection

applications such as fire detection system. Traditional fire detection techniques

have the problem of false alarms and delay in fire detection. Recently, the in-

troduction of wireless sensor network into fire detection systems has helped to

improve the Quality-of-Service. The study of WSN-based fire detection system

can be viewed from the operation of a single sensor node and the combination

of several sensors in a distributed manner. Also, recent studies have tended to-

wards incorporating artificial intelligence based techniques into wireless sensors

for enhanced and intuitive performance. Current Artificial Intelligence algorithm

uses two Machine learning approaches for its operation, which are namely the

Supervised and Unsupervised learning approach. Finally, this chapter takes a

critical study of the various AI-based techniques that can be used for the two

approaches.

3.1 Introduction

Due to the incessant losses of lives and damage done to property due to fire

mishap, people have come to realise that there is need for early detection of fire

in its early stage. This foundational step will help in decreasing fire loss, en-
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sure safety of life and property by applying the fire extinguishing procedures.

Therefore, researchers all over the globe have been trying out some new tech-

niques that will help in fast and accurate fire detection. Fire is a produced from

combustion process that has the potential of emanating into huge disaster by

randomly spreading out from its source especially when it is out of control. The

design of automatic fire system in other to detect fire in its premature stage works

on the rules and principle of how fires is generated and the status information or

alert sent to people for extinguishing actions. This is an ideal objective of fire

detection. The traditional fire detection has the flaws of generating false alarms

and the problem of reliability and adaptability.

Event detection is a newly discovered functionality of wireless sensor network

apart from periodic monitoring, which involves the transfer of data without any

observation of change. Event detection offers extended capability of when and

where events of interest occur. The design of in-network event detection methods

for wireless sensor networks is not an easy task, as there is need to cope with

various challenges and issues such as the unreliability, heterogeneity, adaptability

and resource constraints. This survey paper tackles the problem of time critical

event detection in wireless sensor networks by studying different fast, accurate

and intelligent methods using artificial intelligence (AI). The intelligent wireless

sensor networks employs machine learning algorithm using the supervised and

unsupervised approaches.

Wireless sensor network before (WSNs) are composed of large number of small,

cheap devices, called sensor nodes or motes, which are equipped with sensing,

processing, and communication capabilities. Low-power micro-processors, sensor

technology, and low-power RF design Borbash [2004] are the enabling technologies

that converge to make the wireless sensor network. They have recent contributed

to the development of various applications such as asset tracking, industrial au-

tomation, logistics, and health care Lewis et al. [2004]. Applications of WSNs

are synonymous to any typical organism in the way that they rely on sensor data

being collected from the physical world Lewis et al. [2004]. Data collection in

WSNs can broadly be seen from three perspectives, namely Chen and Varshney

[2004]:

1. Continuous data collection: Data is collected by each sensor node and
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transmitted individually to a central point (base station) periodically. This

method of data collection is simple but the only drawback is that WSNs

does not work well when the data collection rate is very high. Data con-

tinuously sent to the base station is prone to low data resolution, network

traffic, data latency, packet loss and high energy consumption.

2. Query-driven: Here, sensor nodes send query to the network for sensor

data, and the request database is reply to the sensor nodes. This type

of data collection is more efficient in terms of network traffic and energy

consumption because sensor nodes only respond to explicit data request

from neighbouring sensor Kasi et al. [2012]. However, applications that are

driven by implicit, complex or unknown pattern event cannot benefit in the

use of this type of data collection.

3. Event-driven: In this type of data collection, sensor nodes send data or

trigger an alarm only when an abnormal situation occurs. This helps to

saves considerable amount of data transmission and energy consumption

compared with continuous and query-driven data collection. This is suit-

able for application where implicit and complex data that exhibit unknown

patterns are sent across the WSNs.

In general, raw sensor data collected from sensors contain errors or missing

values due to sensor failures, transmission errors, biases and other measurement

errors. Therefore, there is need to pre-processed the corrupt or missing value

raw data collected from the sensor node and turn it into useful information.

Thereafter, appropriate decisions are made based on the useful information and

finally the correct action applied. Generally speaking, data processing occurs in

one of the following locations in WSNs:

� Base station: Here, raw data are gathered from different sensor nodes in a

network. And it also serves as the interface between wireless sensor network

and the outside world. The base station is usually equipped with stronger

computational energy and more network resources compared with a sensor

node. To accomplish the task of data processing, the base station has a

higher memory, processing capability and energy sources but suffers data
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transmission related problems such as such as network traffic, packet loss

and latency.

� In-network: Data pre-processing task is done by sensor node(s) rather than

the base station. So, only the useful data is sent through the network. This

helps to reduce the amount of traffic data in the network thereby solving

problem such as network congestion, latency and packet loss. Generally

speaking, in-network data processing can be conducted in two manners:

– Local: only one sensor node in the network does the data processing

task.

– Distributed: Data processing task are done by a group of sensors.

Consequently, sensor nodes should exchange some data.

The continuous data collection performs data processing task at the base

station. Although, traditional query and event data application does data pre-

processing at the base station, modern application is now tending towards in-

network data processing. By performing in-network processing at the sensor

nodes, decisions are made quickly without the need for instruction from the base

station Kasi et al. [2012]. Therefore, this survey paper is specifically interested

in event-driven data collection that involves local and distributive in-network

data processing. Event-driven data collection can synonymously be referred to

as event detection. Event detection is one of the main components in numerous

wireless sensor applications such as invasion of enemy forces, health monitoring,

and fire detection Tilak et al. [2002]. The remainder of this study is organised

as follows. Section 3.2 examines intelligent WSNs based on machine learning

approaches for event detection applications. Section 3.3 reviews the different

supervised machine learning algorithms for various fire detection applications.

Section 3.4 discusses two major unsupervised machine learning algorithms used

in recognition of hidden patterns in event data. Finally, a conclusion is presented

in Section 3.5.

46



3. Intelligent Machine Learning Mechanisms for WSNs

3.2 Intelligent WSN-based Approach for Event

Application

AI-based event detection techniques use artificial intelligence-based methods (also

known as machine learning (ML)) to detect events. AI-based techniques are gen-

erally classified into two classes, this is the supervised and unsupervised. Super-

vised Machine learning or classification techniques use labelled data for training,

while unsupervised learning or clustering techniques require no labelled data or

a priori knowledge. AI-based methods are also pattern matching approaches as

they look for data patterns or trend usually using a non-linear function. The

most important advantage of AI-based techniques is that they do not require

expert knowledge to set the parameters of approaches. Therefore, an AI-based

technique attunes its parameter by learning automatically from data. These tech-

niques are, in general, less computational intensive than model-based (especially

statistical) approaches Mitchell [2006]. Since events generally exhibit a pattern,

learning-based techniques appear to be quite promising for accurate event detec-

tion in WSNs as they can learn data pattern without human intervention. The

new trend in data driven decision making systems (e.g. event detection in WSNs)

is, therefore the use of AI-based approaches Mitchell [1999]. In choosing the right

machine learning algorithm for specific application, there is need to compare and

evaluate the following criteria:

� Speed: This refers to the computational costs involved in generating and

using the given classifier, as they need to be implemented on tiny resource

constraint sensor nodes.

� Accuracy: The accuracy of a classifier refers to the ability of a given classifier

to correctly predict the outputs of new or test data.

� Robustness: This is the ability of classifier to make correct predictions in

the presence of noisy data and missing values.

� Scalability: This refers to the ability to construct the classifier or predictor

efficiently given large amounts of data.
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� Interpretability: This refers to the level of understanding and insight that

is provided by the classifier or predictor.

3.3 Supervised learning Algorithms

Supervised learning techniques strongly rely on presence of labeled data and

require a training phase.

3.3.1 Artificial Neural Network

Artificial neural networks (ANN) are family of statistical learning algorithm that

works in a similar fashion with biological neural networks (central nervous systems

of animals in particular the brain), and are used to estimate functions that are

generally unknown and dependent on large input values. An artificial neural

network is an interconnected group of nodes called neurons, which computes

input values that are capable of doing machine learning, pattern recognition or

event detection. In Yu et al. [2005], a distributed neural network based event

detection approach was presented, which demonstrated forest fire detection in

WSNs. The in-network data processing was performed at both the sensor node

and cluster head. The sensor use threshold-base event detection approach and

the cluster head use neural network event detection for making reliable decision

of the forest fire. This approach can be simulated for both small and large scale

networks.

The Feed forward neural network (FFNN) is a type of ANN in which each layer

is fed by its nearest layer. There are no feedback connections to previous layers

Mesin et al. [2011]. FFNN is trained by using the back-propagation, an algorithm

that learns by iteratively processing a training set and comparing the predicted

output with the actual known target output. During the training process, the

weights are modified in a backward direction so as to minimise the mean square

error between the predicted and actual target value. This approach was use in Xue

[2010] to identifying road tunnel fire by selecting the temperature,smoke density

and the density of CO for road tunnel as BP neural network input variables. The
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computation complexity of a FFNN is written as:

OFFNN = O(m× n× p) (3.1)

Where m neurons is the number of features, n is the number of neurons in the

hidden layer, and p neurons in output layer.

3.3.2 Naive Bayes Classifier

A Näıve Bayes classifier is a simple probabilistic classifier that obtains the pos-

terior probability of each class Ci using Bayes rule. The Naive Bayes classifier

(NBC) makes the simplifying assumption that the attributes A, are independent

given the class, so the likelihood can be obtained by the product of the individual

conditional probabilities of each attribute given the class Zhang [2004]. Thus, the

posterior probability P (Ci|A1, ..., An) is given by:

P (Ci|A1, ..., An) =
P (Ci)P (Ai|Ci)...P (AnCi)

P (A)
(3.2)

Where

� P (Ci|A1, ..., An) is the probability of class Ci given the data attributes

A1, ..., An, otherwise refers to as the posterior probability.

� P (Ai|Ci)...(AnCi) is the probability of data attributes given that the class

Ci was true.

� P (Ci) is the probability of class Ci being true (regardless of the attribute

A). This is called the prior probability of P (Ci).

� P (A) is the probability of the attribute A (regardless of the class Ci).

The main focus is to calculate the posterior probability of P (Ci|A1, ..., An)

from the prior probability P (Ci) with P (A) and P (Ai|Ci)...(AnCi). After calcu-

lating the posterior probability for a number of different classes, you can select the

class with the highest probability. Here, the probability table is made once and
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then programmed into the sensor nodes. The computational complexity is cal-

culated for the search process only, which is more expensive. The computational

cost is written as:

ONaiveBayes = O(m× i× j) (3.3)

Where calculated using m (number of features), i is number of classes and j is

number of intervals. Taking into account the nature of the underlying probability

model, the Naive Bayes classifier can be trained very efficiently in a supervised

learning setting, working much better in many complex real-world situations,

especially in the computer-aided diagnosis than one might expect Gorunescu

[2011].

In theory, Bayesian classifiers have the minimum error rate when applied to

a large database in comparison to all other classifiers However, in practice this is

not always the case, owing to inaccuracies in the assumptions made for its use,

such as class-conditional independence, and the lack of available probability data.

As mentioned before, two important problems for the NBC are how to deal with

dependent and continuous attributes. In Abidha and Mathai [2013], NBC was in-

troduced to an entropy-functional-based online adaptive decision fusion (EADF)

framework as a new approach for computational vision-based fire and flame detec-

tion. The EADF was used to fuse a set of decisions made by sub-algorithm such

as slow moving video object detection, Smoke-colored region detection, wavelet-

transform-based region smoothness detection Shadow detection and elimination

and covariance-matrix-based classification using NBC. The merit of Naive Bayes

is that it requires a small number of training data to compute the means and

variances that is used for classification. However, independent variables are as-

sumed because only the variances for each labels is required and not the total

covariance matrix Akthar and Hahne [2012].

3.3.3 Decision Tree

This event detection schemes construct a decision tree for data classification in its

training phase by using a local search greedy algorithm. The tree should contain

the minimum required nodes or depth to reduce time and memory complexities
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Abidha and Mathai [2013]. The computational complexity of the algorithm is

given as

ODecisionTree = O(m× i× log i) (3.4)

Where m is the number of features and i is the number of training set. The

result presented in Bahrepour et al. [2010], shows better detection accuracies

for fire detection by decision tree classifier compared with neural network and

Bayes classifiers. Decision tree performs well with large datasets and even if its

assumptions are somewhat violated by the true model from which the data were

generated. Also, decision tree can handle both numerical and categorical data.

Decision-tree learners can create over-complex trees that do not generalise

well from the training data. There are concepts that are hard to learn because

decision trees do not express them easily, such as XOR, parity or multiplexer

problems. Also for data stored in categorical variables with different number of

levels, information gain in decision trees is biased in favour of those attributes

with more levels.

3.4 Unsupervised Learning (Clustering) Algo-

rithm

Unlike supervised learning techniques, unsupervised learning technique do not

require labelled data, training phase, and a priori knowledge about event patterns.

3.4.1 Fixed-width clustering

In Eik Loo et al. [2006] authors propose a fixed-width clustering technique for

intrusion detection. The idea of fixed width clustering is to cluster training data

into a dynamic number of clusters in the training phase. Then, based on the pop-

ulation of clusters, a decision is made on which cluster belongs to the intrusions.

After the training phase, the data which is closer to intrusion cluster is reported

as intrusion attacks. Another fixed-width clustering technique is proposed in

Rajasegarar et al. [2006]. The authors propose that single nodes cluster data
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and then in a sink (or cluster head) these clusters get merged together to detect

anomalous data. The approach is implemented in C++ on Great Duck Island

data (humidity, temperature and pressure sensor data) for detecting anomalous

data.

The advantages of using technique are mentioned below and among them are:

1. It is easily adaptable to incremental mode (i.e. after learning the clusters,

new points can be inserted into the system and tested for outliers).

2. It does not have to be supervised

3. It is suitable for anomaly detection from temporal data

4. The testing phase for clustering based techniques is fast since the number of

clusters against which every test instance needs to be compared is a small

constant [49].

The limitation of this technique is that in the presence of large data the re-

sult may be biased. Finding clusters of data objects in high dimensional space

is challenging, especially considering that such data can be sparse and highly

skewed. Most real-world databases contain outliers or missing, unknown, or erro-

neous data. Some clustering algorithms are sensitive to such data and may lead

to clusters of poor quality.

3.4.2 k-means Clustering

k -means clustering aims to divide a set of n observations (xj = x1, x2, ..., xn) into

k(≤) disjoint set so as to minimise the sum-of-squares criterion.

J =
k∑

j=1

n∑
i=1

||x(j)i − cj||2 (3.5)

Where ||x(j)i −cj||2 is a chosen distance measure between a data point x
(j)
i and the

cluster centre cj, is an indicator of the distance of n data observations from their

respective cluster centres. In general, the algorithm does not achieve a global

minimum of J over the assignments. The limitation of this algorithm is that
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the reachable minimum is not a proper local minimum because the algorithm

uses discrete assignment rather than a set of continuous parameters. However,

the algorithm is often used due to its ease of implementation Shi et al. [2010].

According to Jain [2010], the main k -means clustering algorithm steps are as

follows:

1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster

membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest cluster

centre.

3. Compute new cluster centres.

3.5 Conclusion

This chapter highlights the use of artificial intelligence with wireless sensor net-

work for prompt and effective fire detection. Different intelligent WSN-based

techniques were examined based on the supervised and the unsupervised learn-

ing algorithm. However, unsupervised learning approaches are still immature for

event detection in WSNs. The clustering technique is a challenging field of re-

search that has lots of potential for application that requires accurate and fast

detection of unknown events accurately and can also give semantic to event au-

tonomously. There are some parameters in supervised learning approaches (e.g.,

weights in artificial neural networks) that can be adaptive when (i.) the same

type of events need to be detected in another environment, or (ii) a set of different

events need to be detected in the same or another environment. Designing an

expert system which can make supervised event detection adaptive to aforemen-

tioned situations is another futures direction of this study. In the next chapter, a

hybrid approach that combine k -means with neural networks and other classifiers

in order to improve the detection rate of event detection applications is proposed.
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Chapter 4

Proposed Machine Learning

Approaches for WSNs

This chapter presents a new hybrid approach that involves the use of k -means

algorithm with neural networks, an efficient supervised learning algorithm that

extracts patterns and detects trends that are hidden in complex data. Previ-

ous research on event detection concentrates majorly on the use of feed forward

neural network and other classifiers such as naive Bayes and decision tree alone

for modern fire detection applications. In this approach presented here, k -means

combines with neural networks and other classifiers in order to improve the de-

tection rate of event detection applications. To demonstrate this approach, data

aggregation was performed on normalized multi-dimensional fire datasets in order

to remove redundant data. The aggregated data forms two clusters which repre-

sent the two class labels (actual outputs) with the aid of k -means clustering. The

resulting data outputs are trained by the Feed Forward Neural Network, Naive

Bayes, and Decision Trees. This approach was found to significantly improve fire

detection performance.

4.1 Introduction

There is a growing need for prompt and accurate fire detection in any extensive

indoor environment, and this can only be achieved by employing appropriate
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wireless sensor network (WSN) deployment. WSN ad-hoc networks are made

of tiny wireless nodes called sensor nodes that measure any event or exceptional

change in environmental conditions. The sensors organise themselves into a single

multi-hop or hierarchical network structures with several clusters and cluster

heads. Each sensor node is capable of sensing, processing, and transmitting data

to the base station Shen et al. [2001]. In composite event detection systems such

as fire alarms, the two foremost goals are speed and accuracy. One way to achieve

these goals is by performing data aggregation at central nodes. This helps reduce

energy consumption and redundancy.

A composite event is the combination of different observation of attributes.

For an event fire alarm application to make a decision of normal or abnormal

situation, there may be the need to combine several attributes based on large

number of sensor types (temperature, carbon monoxide (CO), smoke) which are

spatially distributed over a wide area Memon and Muntean [2012]. Data obtained

from a composite event are multidimensional in nature. One of the key measures

of enhancing accurate fire detection decisions is to perform data aggregation at

intermediate nodes or at the clustered head. Data aggregation usually involves

the fusion of data from multiple sensors at intermediate nodes and transmission

of the aggregated data to the base station (sink). Data aggregation helps to

remove redundant and highly correlated data generated from neighboring sensors

at the intermediate node before transmission to the base station Rajagopalan and

Varshney [2006]. Data aggregation techniques are also very effective in reducing

communication overhead by collecting the most critical data from the sensors and

making it available to the sink in an energy efficient manner with minimum data

latency. Data latency is a crucial requirement in most event detection application

such as fire detection applications.

The aggregated data at the clustered head are sent to the decision center

(base station) for a final decision using an appropriate machine learning algorithm

e.g. to detect the event status. This machine learning algorithm is divided into

supervised and unsupervised learning approaches. The former approach relies on

the presence of labeled data and a training phase whereas the latter approach

does not require labeled data, training and prior knowledge of the event patterns

Kotsiantis [2007]; Nagpal et al. [2013]. The accuracy of supervised learning is
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often negatively affected when many attributes depend on one another. Learning

large and complex models has increased difficulty with supervised learning than

with unsupervised learning.

This chapter present a new hybrid approach that involves the use of k -means

algorithm with neural networks , an efficient supervised learning algorithm that

extracts patterns and detects trends that are hidden in complex data. Previ-

ous research on event detection concentrates majorly on the use of feed forward

neural network and other classifiers such as Naive Bayes Classifier (NBC) and

Decision Tree (DT) alone for modern fire detection applications. The remainder

of this study is organised as follows. Section 4.2 briefly review contributions for

fire detection mechanism using WSN. Section 4.3 discusses on data aggregation

techniques in cluster-based WSNs. Section 4.4 proposes a new hybrid learning

approach that combines k -means with FFNN, NB and DT classifiers. Section 4.5

present an empirical results that depicts the performance of our system approach

using some test data. Finally, a conclusion is presented in Section 4.6.

4.2 Background

According to the National Fire Danger Rating System (NFDRS) for forest fire

detection, four sensor types (temperature, humidity, smoke and wind speed) were

used to generate a fire-likelihood index Yu et al. [2005]. The contribution of this

study is the function of a feed-forward neural network (FFNN) and data aggrega-

tion for reducing overhead communication. A system approach was proposed in

Zhiping et al. [2006] for forest fire detection using sensor nodes, gateway(s) and

task manager(s). The sensor types used were temperature and humidity. Data

obtained from different sensor nodes were fused together at the gateways. The

data analysis and decisions are taken at the task manager.

Early fire detection in open spaces such as forests and urban areas was pro-

posed using a sensor network approach Zervas et al. [2007]. For early fire detec-

tion, the authors used temperature sensor and maximum likelihood (ML) to fuse

sensor data. Their system architecture is made up of the sensing, computing and

localised alerting unit. According to previous works on fire detection using WSN,

it is found that accurate and early fire detection can be approached from two per-
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spectives Cestari et al. [2005]. Firstly, sensor data from several nodes of the same

sensor type can be aggregated into one. Secondly, an artificial intelligence (AI)

can be incorporated to recognise patterns in that data. Generally, the selection

of sensors is based on random process or assumption. Researcher have discovered

that the use of a single sensor type such as temperature sensor cannot guaran-

tee accurate fire detection and so, there is need to employ multi-sensor type fire

detectors that are capable of monitoring the environment against any changes in

the amount of carbon monoxide (CO),carbon dioxide (CO2) and oxidised gas.

The use of multi-sensor will help to provide more accurate fire detection decision

and discrimination between fire and noise Cestari et al. [2005]; James [1999].

In the proposed hybrid approach, four optimal sensor types were selected,

which are temperature, ionization, photoelectric and CO sensors. The flaming

fire and smoldering fire are detected by the ionization and photoelectric sensors

respectively. A two-storey building example is used. It is assumed that every

node in the WSN contains all the required sensors. At intermediate stages, data

aggregation was performed on the continuous data obtained from different sen-

sor points of the same type. Data aggregation helped to avoid communication

overhead between neighboring nodes. k -means clustering was subsequently per-

formed to divide the aggregated data of the selected optimal sensor into two

clusters. And finally, efficient and cheap detection algorithms such as the feed

forward neural network (FFNN), Näıve Bayes and Decision Tree are employed to

improve the performance accuracy significantly.

4.3 Data Aggregation in Clustered-Based WSNs

In some WSNs where sensor nodes are densely deployed, each sensor node senses

similar data from the physical environment due to closeness of sensor nodes. This

type of sensor network will result in transmitting redundant data and this has the

potentials to degrade the overall network. To solve this issue, there is a need to

perform some grouping of sensor nodes and also combining or compressing data

and transmitting only the compact data Maraiya et al. [2011].

In cluster-based WSN, sensors are grouped in clusters and in-network data

aggregation is done locally within the clusters. A cluster head plays the role
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of aggregator which aggregate data received from cluster members locally and

then transmits the result to base station (sink). In heterogeneous networks, the

clustered head or aggregator node has a higher energy capability compare with

the member sensor nodes within the same cluster network. A data aggregation

scheme is energy efficient if it maximises the functionality of the WSN in the sense

that sensor nodes should spend the same amount of energy in every data gathering

round. Figure 1 below shows a cluster-based sensor network organisation that

involves a long range transmissions or multi hopping through other cluster heads

to the sink or base station.

Figure 4.1: Cluster based sensor network

The performance measures of data aggregation in cluster base WSN for event

detection application are discussed below:

� Network lifetime: Network lifetime is defined as the number of data aggre-

gation rounds till certain percentage of the sensors die. In applications such

as fire detection where all sensor nodes are vital, the lifetime is define as

the number of rounds until the first sensor drains off its battery energy or

dies completely

� Data Accuracy: This is the evaluation of the ratio of the total number

of reading received at the base station to the actual total number of data

generated.
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� Latency: Latency is defined as the delay involved in data transmission,

routing and data aggregation. It can be measured as the time delay between

the data packets received at the sink and the data generated at the source

nodes.

4.4 Proposed Hybrid Learning Approach

In this hybrid approach, the k -means clustering algorithm is used to assign labels

to a set of features from four sensor types (temperature, ionization, photoelectric

and CO). k -means clustering was used to partitioned the data into two clusters

(i.e. K=2), and assigned labels to the data. The labeled data output is fed into

the classifier for training and testing purposes. The FFNN, Näıve Bayes and

Decision tree are used as classifier and the prediction accuracy was presented in

section 4.5. In this work, k -means clustering (refer to section 3.4.2 of Chapter

3) will be combined with FFNN, Näıve Bayes and Decision Tree classifier for

accurate fire event detection. The major work of the classifier is to accurately

predict the class (fire or non-fire) of each data instance based on the combination

of processed data obtained from the four sensor types.

Feed Forward Neural Network

Feed forward neural network (FFNN) is a type of the neural network, in which

each layer is fed by its back-layer Mehrotra et al. [1997]. FFNN consists of one

Figure 4.2: Diagram of Feed Forward Neural Network
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input layer, one or more hidden layers and one output layer. Figure 4.2 shows

the FFNN’s architecture. FFNN is trained by learning iteratively processing a

training set and comparing the predicted output with the known target output

using back-propagation algorithm. During the training process, the mean square

error between the predicted and actual target value is minimise by adjusting the

weights in a backward direction. One major challenge of FFNN is finding the

optimal weight and one of the ways of finding the weights is through gradient

descent (GD) approach Bahrepour et al. [2009].

Naive Bayes Classifier

In this proposed approach, the NBC model assumes that the presence (absence)

of a particular feature does not relate to the presence (absence) of any other

feature. According to equation 3.2, the posterior probability of class (fire and

non-fire or noise, which are represented in Figure 4.3 as Cluster 0 and Cluster 1

respectively) given by a feature is the product of probability of feature given that

the class is true and the probability of a class being true regardless of the features

divided by the probability of the feature regardless of the class. Considering each

feature, the posterior probability for each class is computed using Equation 3.2;

for example the posterior probability for each class considering temperature only

is computed as:

P (Fire|Temperature) =
P (Fire)P (Temperature|Fire)

P (Temperature)
(4.1)

P (Non− fire|Temperature) =
P (Non− fire)P (Temperature|Non− fire)

P (Temperature)
(4.2)

Considering all features, the posterior probabilities of each class are multiplied

together as shown below:

P (Fire|Temperature, CO, Ion, Photo) = P (Fire|Temperature)×

P (Fire|CO)× P (Fire|Ion)× P (Fire|Photo) (4.3)
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P (Non−fire|Temperature, CO, Ion, Photo) = P (Non−fire|Temperature)×

P (Non− fire|CO)× P (Non− fire|Ion)× P (Non− fire|Photo) (4.4)

After calculating the posterior probability for each of the two classes (fire and

non-fire) as shown in Equation 4.3 and 4.4, the one with highest probability is

selected. In the empirical results described in section 4.5, the naive model is

applied for sense data obtained from four sensor nodes or features (CO, tem-

perature, photoelectric and ionization) are assumed to be independent of each

other (i.e. they don’t give any information about each other) and typically the

distributions are assumed to be fixed. Based on these assumptions, the training

portion for the NBC consists of the means and standard deviations for each of

the input separately as shown in Table 4.1.

(a) Density Curves of CO
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(b) Density Curves of Temperature

(c) Density Curves of Photoelectric
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(d) Density Curves of Ionization

Figure 4.3: Density Curves of CO, Temperature, Photoelectric and Ionization
respectively.

Also, the symmetrical density curves for CO, Temperature, photoelectric and

ionization sensors are displayed in Figure 4.3, where the red and blue density

curves denotes a fire and non-fire event respectively. For the density curve of

temperature sensor data, it can be observed that the fire (cluster 0) area of the

overlapped section with the noise (cluster 1) curve is smaller than the other

sensors, whereas the area of overlapped section for the photoelectric sensor is

the largest. This shows that the temperature is the most contributing attribute

for fire prediction while the photoelectric sensor is the least contributor due to

Table 4.1: Distribution table for the four sensor types

Attributes
Cluster 0 Cluster 1

Mean
Standard
Deviation

Mean
Standard
Deviation

Temperature -1.271 0.388 0.614 0.502
CO 0.216 0.880 -0.104 1.038
Ion 1.113 0.817 -0.538 0.523
Photo -0.003 0.150 0.001 0.166
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the obvious overlap between the fire and noise density curves. In Table 4.1, the

photoelectric data attributes has the same approximate standard deviation of 0.2

for cluster 0 and cluster 1.

Decision tree

A decision tree is an inverted tree-like model because of its top root and bottom

branches structure. The goal of this model is to predict the value of a target

attribute called class or labels based on several input attributes of the datasets.

In Rapid Miner TM an attribute with label role is predicted by the Decision Tree

operator.

Figure 4.4: Diagram of Decision Tree

Note: In figure 4.4 above, the temperature, carbon monoxide and ionization sen-

sors are represented as TMP, CO, ION respectively.

Each interior node of tree is matched to input attributes. The number of

possible values of the input attribute is equal to the number of edges of nominal
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interior node. Disjoint ranges label is assigned to outgoing edges of numerical

attributes. Each leaf node describes the value of label attribute given the values

of the input attributes represented by the path from the root to the leaf. The

advantage of decision tree is that data representation is meaningful and easy to

interpret compared with other approaches Akthar and Hahne [2012].

4.5 Empirical Results

To evaluate the prediction accuracy of the hybrid combination of k -means cluster-

ing with FFNN, Naive Bayes and Decision trees against the use of the classifiers

alone, a set of data were obtained and a number of experiments were conducted.

To evaluate the performance of the hybrid approach, experiments are carried out

on six fire datasets obtained from NIST website (http://smokealarm.nist.gov/)

namely two soldering fire dataset, two flaming fire dataset and two nuisance re-

source dataset. This dataset are merged together and pre-processed into a total

of 1400 data instances with hundreds of attributes (based on sensor types and

range), all having same units. All data from the same sensor type were fused

together using the average operator. The aggregated data was grouped into two

clusters and finally passed to the classifier.

The goal of the classifier is to accurately separate the data and classify them

into their respective class, i.e., fire and non-fire (noise). The aggregated data

obtained from the four sensor nodes (CO, temperature, photoelectric and ion-

ization). After labelling, the data were passed to the classifiers. To perform a

cross validation, 1400 data instances were divided to a 1000 training data and

a 400 test data in order to ensure a fair comparison with the results presented

in Bahrepour et al. [2009]. All data were mixed at random and feed into the

Table 4.2: Empirical Results for all Classifiers

Hybrid
Approach

Predictive Accuracy (Percentage)
Fire (Cluster 0) Noise (Cluster 1)

FFNN 100.00% 99.79%
Naive Bayes 100.00% 99.26%
Decision Tree 98.26% 99.68%
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classifier. Each test was repeated ten times and the mean prediction accuracy

was recorded for each classifier type as shown in Table 4.2. Table 4.2 shows the

prediction accuracy of the classifiers can be improved by using this hybrid ap-

proach. The accuracy of FFNN and Naive Bayes classifier in predicting the fire

class is 100%, which is a significant improvement compared to 97.49% prediction

accuracy obtained in Bahrepour et al. [2009]. Although, the prediction accuracy

of the decision tree classifier is slightly lower than the other classifiers, neverthe-

less the prediction accuracy is still very good. The result shows that the three

classifiers can accurately predict fire and non-fire situations.

4.6 Conclusion

This chapter have proposed and demonstrated the use of data aggregation to

combine multidimensional data obtained from sensor nodes to reduce the data

complexity and communication overhead. The hybrid combination of k -means

clustering and the three popular classification approaches such as the FFNN,

Naive Bayes and decision tree has enable us to generate a better fire prediction

accuracy against the use of only the classifiers. The next chapter proposes a

dynamic local-based algorithm that employs iterated local search operator with

perturbation operator to obtain a better solution to solve energy optimisation

problem in WSNs.
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Chapter 5

Proposed Dynamic Local

Search-Based Algorithm

In this chapter, a new clustering protocol employing an iterated local search (ILS)

to solve cluster head selection problem is proposed. ILS uses a perturbation op-

erator to change an initial random solution to produce a new point in the vicinity

of the solution. Using a combination operator, this new point is mated with the

random solution producing a new solution. A move from the current solution to

the new solution is considered acceptable only for higher fitness value. If a move

is rejected after a predetermined search length, the change rate of the current so-

lution is increased in order to explore a wider search space for quality solutions.

In each round, this search process continues until good solution that ensures bal-

anced energy consumption is obtained for the network. Furthermore, a sleep

scheduling scheme inspired by the Boltzmann Selection process in genetic algo-

rithms is proposed. This mechanism stochastically considers coverage effect in

the selection of nodes that are required to go into sleep mode in order to conserve

energy of sensor nodes. The proposed mechanism of inactive node and cluster

head selection protocols are performed sequentially at every round and they form

part of the main algorithm proposed, namely the Dynamic Local Search-Based

Algorithm for Clustering Hierarchy (DLSACH). The ultimate goal of the DLSACH

protocol is to extends the network lifetime of wireless sensor networks by reducing

and balancing the energy consumption among sensor nodes during communica-

67



5. Proposed Dynamic Local Search-Based Algorithm

tion processes. The proposed DLSACH protocol shows an improved performance

compared to state-of-the-art protocols such as LEACH, TCAC and SEECH in

terms of improved network lifetime for wireless sensor networks deployment.

5.1 Introduction

Recent progress in wireless communications and micro-electronics have contributed

to the development of sensor nodes that are agile, autonomous, self- aware and

self-configurable. These sensor nodes are densely deployed through-out a spatial

region in order to sense particular event or abnormal environmental conditions

such as moisture, motion, heat, smoke, pressure etc in the form of data Oladimeji

et al. [2016]. These sensors, when in large numbers, can be networked and de-

ployed in remote and hostile environments enabling sustained wireless sensor net-

work (WSN) connectivity. Hitherto WSNs have been used in many military and

civil applications, for example, in target field imaging, event detection, weather

monitoring, tactile and security observation scenarios Naeimi et al. [2012]. Never-

theless, sensor node distribution and network longevity are constrained by energy

supply and bandwidth requirements. These noted constraints mixed with the

common deployment of large numbers of sensor nodes must be considered when

a WSN network topology is to be deployed. The design of energy efficient scheme

is a major challenge especially in the domain of routing, which is one of the key

functions of the WSNs Chakraborty et al. [2011]. Therefore, inventive techniques

which reduce or eliminate energy inadequacies that would normally shorten the

lifetime of the network are necessary. This chapter present a method which bal-

ances energy consumption among sensor nodes to prolong WSN lifetime. Energy

resourcefulness is uniquely obtained using two described mechanisms; firstly, clus-

ter head (CH) selection using a generic algorithm (GA) is employed that ensures

appropriately distributed nodes with higher energies will be selected as CHs. Sec-

ondly, a Boltzmann inspired selection mechanism was utilised to select nodes to

send into sleep mode without causing an adverse effect on the coverage.

The commonest routing protocols deployed to address the challenges discussed

above are generally categorised into two classes, namely flat and hierarchical.

Flat protocols comprise the well-known Direct Transmission (DT) and Minimum
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Transmission Energy (MTE), which do not provide balanced sensor energy distri-

butions in a WSN. The disadvantage of the MTE is that a remote sensor normally

employs a relay sensor when transmitting data to/from the sink and this results

in the relay sensor being the first node to die. In the DT protocol, the sink

communicates directly with sensors and this results in the death of the remote

sensor first. Consequently when creating WSNs, energy-efficient clustering pro-

tocols act as a pivotal factor for sensor lifetime extension. Generally, clustering

protocols can perform better than flat protocols in terms of balancing energy

consumption and network lifetime prolongation by employing data aggregation

mechanisms Abbasi and Younis [2007]; Heinzelman et al. [2002]. In WSNs, there

are three types of nodes considered: the cluster-head (CH),ember node (MN) and

sink node (SN). The member node manages sensing of the raw data and utilises

Time Domain Multiple Access (TDMA) scheduling to send the raw data to the

CH. The CH must aggregate data received from MNs and forward the aggregated

data to the SN through single-hop or multi-hop. CH selection can be carried out

by the sensors individually, by the SN or can be pre-implemented by the wireless

network designer. Here, CH selection is performed by the SN due to the fact that

the SN has sufficient energy and can perform multifaceted calculations.

In this thesis, the CH selection issue is viewed as an optimisation issue where

the methods have employed a meta-heuristic local search strategy that involve the

use of iterated local search operator combined with perturbation and combina-

tion operators to solve. These operators are applied on a set of random solutions

in order to obtain the best solution within the search space. The quality of the

solutions are accessed using a defined objective function. In this chapter, a Dy-

namic Local Search-Based Algorithm for Clustering Hierarchy (DLSACH) protocol

was developed for clustering WSNs. This protocol performs two major opera-

tions; (1.) the use of an iterated local search algorithm for cluster head selection

(ILSACHS) protocol to select the best cluster configuration and (2.) the proposed

Stochastic Selection of Inactive Nodes (SSIN) mechanism in order to send some

nodes that have negligible effect on the WSNs coverage to sleep or inactive mode.

In the proposed ILSACHS protocol, the sink performs the CH selection task

on active nodes using the iterated local search with perturbation operator. The

action of perturbation operator resembles the traditional mutation operator, and
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is applied to a random solution at a specific change rate in order to generate a

perturbed point in the neighbouring area of the random solution Oladimeji et al.

[2016]. The perturbed point is mated with a random solution and a new solution

is produced using the combination operator. The fitness of the new solution is

evaluated by the objective function. A move to the new solution from the current

solution is accepted if the fitness value of the new solution is greater than the

current solution, otherwise the move is rejected. The total number of search

lengths for a good solution is divided into four step sizes. In the case where a

move to a new solution is rejected after the last attempt of each step size division,

the change rate is increased to explore wider search space.

At each network operation round, the search continues until a move to a new

solution is accepted. This new solution is applied to the WSNs and is expected to

contain distributed CHs that balances energy consumption across the networks.

The SSIN, a mechanism that mimics the Boltzmann selection process in genetic

algorithm (GA) was employed to reduce the number of active nodes at the be-

ginning of each network operation round by sending some nodes to sleep or into

inactive mode to conserve energy and prolong network lifetime with minor effects

on coverage. Both mechanism works collaboratively to maximise network lifetime

by balancing the energy consumption among sensor nodes during communication

processes. The balance in energy consumption is achieved by selecting spatially

distributed nodes with higher energy as CHs and also sending some nodes to sleep

mode without causing an adverse effect on the coverage. The proposed DLSACH

protocol is a more energy efficient protocol compared with other protocols.

The remainder of this study is organised as follows. Section 5.2 describes the

network and energy dissipation model underlying the proposed protocol. Sec-

tion 5.3 describes the objective function for the proposed protocol. Section 5.4

describes the proposed sleep scheduling mechanism, clustering algorithm and en-

ergy consumption computation. Section 5.6 discusses the experimental settings,

performance measures, result and discussion. Finally, a conclusion is presented

in Section 5.7.
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5.2 Network and Radio Model

In this work, important network and radio model assumptions are adopted for

the proposed algorithms and presented as follows:

� The data sink is a stationary and resource-rich device that is placed far

away from the sensing field.

� All sensors are stationary after deployment and average energy is constant

in either homogeneous or heterogeneous environment.

� All sensors have GPS or other location determination devices attached to

them.

� Nodes are able to perform in inactive mode or a low power sleeping mode.

� Nodes that are close to each other have correlated data.

� The communication channel considered is assumed symmetric (i.e. the

energy needed to transmit data from sensor node s1 to sensor node s2 is

equal to the energy required to transmit a message from node s2 to node

s1 for a particular signal to noise ratio (SNR)).

To ensure just comparison with previous protocols Heinzelman et al. [2002];

Liu et al. [2011]; Vijayvargiya and Shrivastava [2012], this thesis employed a sim-

ple radio energy dissipation model whereby the transmitter loses energy ETx(k, d)

to manage the radio electronics and the power amplifier, and the receiver dissi-

pates energy ERx(k) when managing the radio electronics, as shown in Figure

5.1. To transmit a k-bit message a distance d, the radio spends:

ETx(k, d) =

kEelect + εmpkd
4, if d > d0

kEelect + εfskd
2, if d < d0

(5.1)

And to receive k-bit message, the radio uses:

ERx(k) = kEelect (5.2)
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Figure 5.1: Radio Energy Dissipation Model

Where εfs is the free space model of transmitter amplifier, εmp is the multipath

model of the transmitter amplifier, threshold distance d0=
√
εfs/εmp and the elec-

tronics energy Eelect depends on factors such as the digital coding, modulation,

filtering, and spreading of the signal effect. Depending on the communication

distance (d) between the transmitter and receiver, either the free space (d2 power

loss) or the multipath fading (d4 power loss) channel models were used for all

experiments. To use the free space (fs) model, the power-amplifier is fine-tuned

such that the communication distance (d) is less than a threshold distance (d0);

else, the multipath (mp) model is used. εmp or εfs depends on the distance to

the receiver and the acceptable bit-error rate.

5.3 Proposed Objective function

To solve the CH selection problem, objective functions are developed because CH

selection is considered an optimisation problem. These objective functions return

fitness values which are employed to assess the quality of a candidate solution. An

objective function is found by taking into account parameters such as the total

sensor node energy and the Risk penalty R. The sensor node energy parameter

is considered to ensure that nodes with greater energy are given higher priority

in the CH selection process.
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The Risk penalty, R for the CH selection is defined as:

R =


Lower − L, if L < Lower

L− Upper, if L > Upper

0, otherwise

(5.3)

Based on several iterative tests, the percentage of CHs number (L) to the total

number of sensor nodes (n) in the field proves to always give an optimal result

between the Lower limit of 4% and Upper limit of 6%. Restrictions are imposed

on the number of CHs using the parameter R.

Subsequently, the objective function is computed using:

F (X) = w1 ∗
AvgENCH

AvgECH
+ w2 ∗R (5.4)

Where w1 and w2 are the weighting factors. The average energy of non-CHs,

AvgENCH is the energy summation of all member nodes divided by the total

number of member nodes (n− L) as given below:

AvgENCH =

∑
iεNCH Ei

n− L
(5.5)

Also, the average energy of CHs, AvgECH is the energy summation of all

CH nodes divided by the total number of CHs (L) as given below:

AvgECH =

∑
iεCH Ei

L
(5.6)

In equation 5.4, the ratio
AvgENCH

AvgECH
is given a higher weighting factor

(w1=0.9) than the Risk penalty, R (w2=0.1) because of its importance. (Note:

CH and NCH represent the set of all CHs and non-CHs respectively).

5.4 The Proposed DLSACH protocol

In this protocol, the sleep scheduling, clustering and energy consumption com-

putations are performed in succession. We propose the stochastic selection of

inactive node (SSIN), a sleep scheduling scheme is used to put some sensor nodes
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Algorithm 3 DLSACH Protocol

Let AliveNodes be the total number of sensor nodes
Compute the network total coverage.
while (AliveNodes > 0) do

Use algorithm SSIN to select inactive nodes. (See Algorithm 4)
Put selected nodes into sleep mode.
Apply the proposed iterated local search algorithm for CHs selection. (See

Algorithm 5)
Compute the energy values of ECH , EMem and ERes. (refer to Section

2.1.3)
Find out the number of dead nodes (node with energy equal or less than

0).
Update AliveNodes

end while

into sleep mode without harming the functionality of WSNs in terms of network

coverage. The sleeping scheduling is performed at the beginning of every round

during network operations. In the clustering process, the proposed ILSACHS pro-

tocol works in such a way that a local solution with a known fitness value is

obtained from a set of random solutions.The perturbation operator mutate the

selected local solution at a specified mutation rate in order to obtain a point.

Using the combination operator, this point is mated with the local solution to

produce a new local solution. The fitness value of the new local solution is ob-

tained by evaluating the objective functions and compared with the previous

solution. If the fitness value of the new solution is greater than the previous

one, a move to the new local solution is accepted otherwise the new solution is

discarded. The cycle continues until the moves reach the local optimal solution

within the specified search length. In the case where no moves are accepted

after a certain search length, the mutation rate of the perturbation operator is

increased according to defined step sizes to widen the search length. At each

network operation round, the final solution obtained in this protocol is expected

to minimise the energy consumption due to well distributed CHs in the network.

The energy consumption computation is performed at each network operation

round as it moves from the set-up to steady state phase. At the setup phase,

the sink transmits control packets to receive node information in terms of the
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nodes ID, location and energy. The residual energy of each sensor is computed

at the end of each round of the steady state of network operation. The value of

the residual energy computed in the current round is used for the next round as

a parameter for sleep scheduling and cluster head selection process. This cycles

continues until all nodes are dead; as shown in Algorithm 3.

5.4.1 Proposed SSIN Mechanisms

In this section, the estimation of coverage by setting up a matrix that com-

putes the number of nodes covering the area within each grid point is discussed.

Furthermore, SSIN protocol that uses the energy values and coverage effect in

deciding which nodes to send into sleep mode is presented.

Coverage Estimation and Matrix Setup

Coverage is estimated by dividing the sensing field into uniform grid areas. The

number of sensors that cover each point on the grid is computed by calculating

the euclidean distance between each grid point and the individual sensor’s point

using their coordinates. If the euclidean distance between the two points is within

the sensing range Rs; the point is taken to be covered by the sensor. As shown

in Figure 5.2, some points can be covered by one or more sensors.
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Figure 5.2: Covered Grid points in a 10× 8 Sensing field
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Inactive Node Selection

Conclusions as to which nodes to send into inactive mode at the beginning of each

network operation round is made by the SSIN. The sleeping nodes candidate list

evolves through the inspection of which nodes have residual energy less than the

computed average energy. This selection process is tantamount to the Boltzmann

selection process whereby a method is adopted to control the selection pressure

Dumitrescu et al. [2000]. The temperature parameter is varied in the Boltzmann

selection process to effectively control the selection pressure. The maximum cov-

erage effect, Maxeff is employed in the sleep scheduling mechanism to regulate

the effect of putting sensors to sleep and is defined as:

Maxeff = 2× π ×R2
s (5.7)

Here, Rs is the range over which a sensor node senses (taking the coverage

area as a circle with radius Rs), (pi × R2
s) is the coverage of one node and the

value ′2′ represents coverage of two nodes.

The coverage effect Ceff as shown in Figure 5.3, is the effect of putting a node

to sleep based on coverage. The total coverage effect is computed by summoning

a matrix called the Coverage Matrix. This matrix captures node coverage areas

that overlap permitting the identification of nodes that can be placed into sleep

mode without harming coverage as there will be other nodes covering the selected

Figure 5.3: Illustration of Nodes to Sleep on Coverage Area
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Algorithm 4 Proposed SSIN protocol

Acceff = 0;
Compute the residual energy, ERes of each node. (refer to section 2.1.3)
Compute the average energy of all nodes, EAvg.
Generate a candidate list for nodes with ERes < EAvg.
Compute Maxeff . (refer to equation 5.7)
while (Acceff < Maxeff ) do

Compute probability, P of adding nodes to the sleeping list. (See equation
5.8)

if (rand() < P ) then
Create list of sleeping node from the candidate list.
Compute the coverage effect, Ceff .
Acceff = Acceff + Ceff

end if
end while

node’s area. The accumulated Coverage effect Acceff is defined as the total effect

on the coverage as a result of allowing some nodes to sleep. The SSIN mechanism

presented here has been created to ensure the Acceff value is expected to be less

than the Maxeff for optimum coverage (Acceff<Maxeff ). The probability that

a node will be added to the sleeping node list can be computed using:

P = e(−Ceff/Maxeff )/(1−(Acceff/Maxeff ))
2

(5.8)

A randomly generated number is compared with the computed probability,

P . A candidate list of inactive nodes is created if the random number is less than

the probability, P . The accumulated frequency Acceff is computed by adding

its current value to coverage effect Ceff value. The operations of SSIN continues

until the Acceff is greater than the maximum acceptable coverage effect, Maxeff

as shown in Algorithm 4.

5.4.2 Proposed ILSACHS protocol

Clustering is an efficient way in which a WSN can balance its load, save energy

and enhance the network lifetime. It is the grouping of sensor nodes into clusters

and CH selection for all the clusters. The CH plays a vital role of gathering data
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Algorithm 5 Proposed ILSACHS protocol

i← 0, searchlength = 100;
Generate a initial solution, s∗.
Compute the fitness value, F (s∗).
while (i <= searchlength) do

Mutate s∗ to obtain a point s′ using the perturbation operator (See Section
5.4.2 for details).

Combine the solution s∗ with the point s′ to obtain a new solution s∗′.
(refer to Algorithm 8)

Compute the fitness value, F (s∗′).
if (F (s∗′) < F (s∗)) then

Replace solution s∗ with the new solution s∗′.
else

i = i+ 1
end if

end while

from its associated nodes and forwarding the aggregated data to the sink for pro-

cessing. In the proposed ILSACHS protocol, the perturbation operator is used to

generate a new starting point for further local searches for the local optimal solu-

tion Zhang and Sun [2006]. One of the major contributions of this thesis is that

the mutation rate of the perturbation operator changes dynamically according to

a predetermined step size in order to search outside the local optimum. Using the

combination operator, the local optimal solution is mated with the local solution

in the same neighboring area, and a new solution is produced (See Algorithm 5).

Iterated Local Search with Perturbation Operator

In the proposed ILSACHS protocol, the iterated local Search algorithm improves

a solution in the search space by starting from an initial random solution s∗εS∗,

and iteratively explores the search space for a local optimal solution. The fitness

value F (s∗) of the solution s∗ is accessed using the proposed objective function in

Equation 5.4. At the first step, the local solution s∗ is mutated by a perturbation

operator to generate an intermediate solution or point s′. The current solution s∗

is combined with point s′, and a new solution s∗′ (See Section 5.4.2) is produced

with fitness value F (s∗′). If the fitness value F (s∗′ is greater than F (s∗), a move
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from solution s∗ to s∗′ is accepted i.e. s∗′ replaces s∗. If the condition is not

satisfied, solution s∗′ is discarded i.e. the current solution s∗ remains unchanged.

In the case where local search failed to move to a new solution after some

consecutive number of search attempts within the predetermined search length,

the mutation rate of the perturbation operator is increased. This action of per-

turbation operators is similar to the term kickers used in special purpose local

searches for intensification or diversification. It allows the search to escape from

the attraction area of a local minimum Shen et al. [2001]. The search length is

defined as the total number of search attempts for iterated local search operator.

As shown in Figure 5.4, the search length is divided into four step sizes which

denotes the number of search attempts before the mutation rate is increased to

widen the search area.

Figure 5.4: Step Size division of Search Length

Combination Operator

The point s′ obtained by the perturbation operator is combined with the local

solution s∗ in order to obtain a new solution using a combination operator that

uses heuristic crossover. The pioneer of this heuristic crossover operator is Lixin

Tang Lixin [1999], and proposed to utilise parents’ implicit information to produce

offspring. In the canonical crossover approach, parents mate to produce pairs of

offspring that tend to substitute their parents with no guarantee that an offspring

produced would be better than either of its mating parent Hasan et al. [2007].

The heuristic combination approach uses a special crossover that has a knowledge

of a problem to combine two candidate solutions to produce an improved solution.

The solution produced by this heuristic combination operator represents CH

configurations that are well distributed across the sensing field and favors those
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Algorithm 6 Proposed Combination Operator

Select the two solutions s∗′ and s∗.
Compute and store the CH position in solution s∗′ and s∗ into set ra and rb
respectively.
Compute the threshold distance, T (refer to Section 5.4.2)
Compute the union set ra,b. (refer to Section 5.4.2)
Obtain the first cluster position ra,b(1) in the set ra,b.
Create a new set rnew and transfer the ra,b(1) to it.
Compute the distance, D between CH positions in the sets ra and rb.
while (D < T ) do

if (Energy in CHa,b node is less than rnew node ) then
Discard the cluster head node. (i.e. do not add to rnew set)

end if
Replace the cluster head node in the rnew set

end while
Add to the cluster head node in the set ra,b into the rnew set.

with higher energy. The proposed heuristic crossover prohibits the selection of

two CHs within the same region and higher priority is given to a CH with higher

energy. The local solution s∗′ and perturb point s∗ are selected from the iterative

local search process and the CH position in the two solutions is computed and

stored into the set ra and rb respectively. A threshold distance T is defined

between two neighboring CH positions as; T =

√
(xmax−xmin)2+(ymax−ymin)2

n×0.04 , where

the (xmin, ymin) and (xmax, ymax) are minimum and maximum xy-coordinates of

the sensor fields respectively, (n×0.04) represent 4% of the total number of sensor

nodes. The union of ra and rb is represented by ra,b = ra ∪ rb. By default, the

first CH position ra,b(1) in the set ra,b is transferred to a newly created set rnew

. Each subsequent CH position in the ra,b is compared with the rnew array set in

order to make certain decisions which is based on distance between the CHs and

their residual energy.

5.5 Energy Consumption Computation

In this thesis, the energy consumption for all the proposed algorithm is performed

at the sink which is usually a device with unlimited energy. Energy is consumed
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in each round of WSNs operations, and this operation phase is divided into the

set-up and steady phase.

5.5.1 Set-up Phase

The set-up phase involves the transmission and reception of control packets kCP

from the sink to all nodes to initialise inter- and intra-communications. In set-up

phase, the optimum number of clusters is found and clusters are created as shown

in Figure 5.5. In first round, the sink sends a short message to wake up and to

request the IDs, positions and energy levels of all sensor nodes in the sensor field.

Based on the feedback information from sensor nodes, the sink uses the proposed

clustering protocols to find the optimum number of CHs and their locations based

on minimization of the dissipated energy on communication process as shown by

shaded block in Figure 5.5. Also, the sink assigns members nodes for each CH.

Once CHs are selected and members of CH are assigned, the sink sends a short

message to inform each CH by IDs of its member nodes then send a short message

that contains CH’s ID to all member nodes to inform each member node the CH

to join. Based on a short message received from the sink, each CH creates the

TDMA schedule by assigning slots to its member nodes and informs these nodes

by this schedule. The TDMA schedule is used to avoid intra-cluster collisions and

reduce energy consumption between data messages in the cluster and enables each

member of the radio equipment off when not in use. The details of the proposed

clustering protocol is shown in 5.5.

Similar to Equation 5.2, the energy ERx(kCP ) is spent by each sensor to receive

the control packets from the sink. All sensors report their IDs, positions and

energy levels back to the sink and the transmitted energy ETx(kCP , d) consumed

for the task is similar to Equation 5.1. The control packet received from all sensor

nodes is processed by sink to make the following vital decisions; which nodes to

keep active, CH selection, and the associated CH membership. Also, considered

the energy ERx(kCP ) dissipated in receiving the membership status information

from the sink. Elected CHs are required to transmit a TDMA schedules to their

respective members and the energy dissipated to perform the task is computed
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using:

ETx(chi)(kCP , di−toMem) =
∑
i=1

chi × ETx(kCP , di−toMem) (5.9)

Additionally, each member node also spends energy ERx(kCP ) to receive TDMA

schedule from the CHs

5.5.2 Steady State Phase

During the steady state phase, the active sensor nodes begin sending data packets

(k). Each node sends the sensed data to its CH according to the TDMA schedule

received. The CH node receiver must always be ready to receive packets from its

nodes within its cluster. Data aggregation is performed on all received data at

the CHs and all data are converted into a single data stream. This aggregated

data stream is transmitted from the CHs to the sink. This process consumed

some amount of energy by the sensor node transceiver as Equation 5.12. The

total amount of energy spent by all member nodes to transmit to their respective

CHs is computed using:

ETx(mi)(k) =

p∑
i=1

mi × ETx(k, d) (5.10)

Assume number of members p, thenmi = 1, 2, 3..., p and ETx(k, d) is the transmis-

sion energy that depends on the packets (k) and distance between each member

and respective CH. And the total amount of energy dissipated by all CHs for

receiving data packets from their member nodes is given as:

ERx(mi)(k) =

p∑
i=1

mi × ERx(k) (5.11)

Where ERx(k) is the energy required for each CH to receive data packets from its

members. Also, the energy dissipated by the CHs to aggregate the data received

from all its members and itself can be calculated using:

EDA(mi+1)(k) = kEDA ∗ (

p∑
i=1

mi + 1) (5.12)
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Figure 5.5: The operational sequence of the proposed clustering protocols
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Where kEDA is the energy required for CHs to aggregate (k) amount of data

packets received from the members and CH itself. Finally, the amount of energy

spent by the CHs node for transmitting data packets to the sink is computed

using:

ETx(chi)(k, di−toSink) =

q∑
i=1

chi × ETx(k, di−toSink) (5.13)

Assume number of cluster-heads (q) in the overall network, then chi = 1, 2, 3..., q

and ETx(k, di−toSink) is the transmission energy that depends on the packets (k)

and distance between each CH and the sink (di−toSink). Thus, the total energy

consumed by all the CHs can be computed using:

ECHs =

2 ∗ ERx(kCP ) + ETx(kCP , di−toSink) + ETx(chi)(kCP , di−toMem)

+ ERx(m1)(k) + EDA(mi+1)(k) + ETx(chi)(k, di−toSink) (5.14)

And the energy dissipated by all the member nodes is computed as:

EMem = ETx(kCP , di−toSink) + ETx(kCP , di−toCH)

+ 3 ∗ ERx(kCP ) + ETx(mi)(k) (5.15)

Therefore, the overall energy dissipated by all nodes is represented by ETOTAL =

ECHs + EMem. Also, note that the residual energy of each node (either a CH or

member node) at each round is updated by subtracting the energy consumption

from the current residual energy.

5.6 Performance Evaluation

This work evaluate the protocols from an energy efficiency perspective by exam-

ining the number of alive nodes versus rounds. The graphed results helps us to

evaluate the lifetime of the sensor nodes using the proposed algorithm. The sim-

ulation models and programs are developed using the MATLAB tool. From my

point of view the proposed technique is scalable and may lead to energy efficiency
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improvement in different network sizes. To assess this claim the performance of

DLSACH is compared to three other protocols LEACH, TCAC and SEECH in five

experiments; first three experiments are homogeneous networks and last two ex-

periments are heterogeneous networks. Table 5.2 describes the parameter values

for each experiment in details. The common communication parameters used for

all the experiments presented in Table 5.2 are listed in Table 5.1.

Table 5.1: Communication Parameters with Specified Values

Parameter Value
Electronics Energy, Eelect 50nJ/bit
Multipath Loss, εmp 0.0013pJ/bit/m4

Free space Loss, εfs 10pJ/bit/m2

Aggregation Energy, EDA 5nJ/bit/signal
Threshold Distance, d0 87m
Control Packet size, kCP 50
Packets size, k 400

Table 5.2: Parameter values for each experiment

Experiments
Parameter Settings

Sink
Coordinates (m)

Number
of

Sensors

Initial
Energy (J)

Experiment I (50,175) 100 0.5
Experiment II (50,200) 400 0.5
Experiment III (50,50) 100 0.5

Experiment IV (50,50) 100
µ=0.5 (All Nodes)
σ=0.05

Experiment V (50,50) 100
µ=0.5 (75 Nodes)
σ=0.05
0.5J (25 Nodes)

Note: µ and σ represent the mean and standard deviation of the sensor node

energy distribution in Experiment IV & V.
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5.6.1 Performance Measures

There are many metrics used to evaluate the performance of the clustering pro-

tocols Lixin [1999]. These measures are used in this thesis to evaluate the per-

formance of DLSACH protocol:

1. First Dead Node (FDN): This is the number of rounds at which the first

node dies (FND). It can also be referred to as the operational lifetime or

stability period of the network. Therefore, larger FND value signifies longer

WSN stability periods.

2. Last Dead Node (LDN): This is the number of rounds from the start of

network operation until the last node dies (LND).

3. Instability Period Length (IPL): The round difference between the

round at which the last node dies and the first node dies (i.e. IPL=LND-

FND).

4. Average Energy at first node dies (AEFND): This is a new perfor-

mance measure proposed in this work to evaluate the average energy of all

sensor nodes when the first node dies.

Clearly, the longer the stability period and the shorten the instability period are,

the better the reliability of the clustering process of the WSN.

5.6.2 Results and Discussion

The average value of performance measures are obtained from 100 simulation

runs and presented in this section for analysis. For each simulation run, new

sensor node are distributed in a sensor field area. The proposed DLSACH protocol

is compared with LEACH, TCAC and SEECH for a small and large scale network

of 100 and 400 sensor nodes respectively and is shown in Figure 5.6, which depicts

the number of alive nodes during simulation time versus the number of rounds.

Also, the FND, LND and IPL values belonging to the graphs in Figure 5.6 are

presented in Table 5.4. The FND values presented in Table 5.4 shows that the

DLSACH protocol maintains the network operational lifetime of 46, 141 and 348
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more than the SEECH, TCAC and LEACH respectively for Experiment I (100

nodes). In Experiment II, the FND value of DLSACH is higher compared with the

other three protocols. This result of the experimentation shows that the energy

of the sensor nodes is balanced and extend for a longer period. When the FND

time is reached, most of the nodes begin to die due to insufficient energy and this

is represented by a sharp decline in the slope of TCAC, SEECH and DLSACH as

shown in Figure 5.6. Also, figure 5.6 indicates a late decline in line graph for the

proposed DLSACH protocol, which means that the round at which the first node

dies is longer than the other three protocols.

For Experiment II, the instability period for the proposed DLSACH is 50, 49 and

Table 5.3: Comparison of LEACH, TCAC, SEECH and DLSACH for FND,LND
and IPL

Experiment Protocol
Performance Measure

(Round)
FND LND IPL

Experiment I
(100 Nodes)

LEACH
TCAC
SEECH
DLSACH

726
933
1028
1074

1209
1006
1099
1166

483
73
71
92

Experiment II
(400 Nodes)

LEACH
TCAC
SEECH
DLSACH

685
948
1016
1206

1274
1071
1140
1280

589
123
124
74

Experiment III
(1000 Nodes)

LEACH
TCAC
SEECH
DLSACH

672
725
1587
183

2014
1664
2202
674

1342
939
615
491

Table 5.4: Performance Measures for Experiment III,IV and V

Performance
Measures

Experiments
Experiment III Experiment IV Experiment V

FND 1354 1246 1241
LND 1445 1336 1331
IPL 91 90 90

AEFND 0.014949 0.014518 0.016568
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515 less than the SEECH, TCAC and LEACH. This low value reveals that the

proposed protocol performs better in dense network. The results of three experi-

ments which consist of one homogeneous (Experiment III) and two heterogeneous

(Experiment IV & V) sensor networks is presented in Table 5.4. Experiment III

has a higher FND values of 1354 than Experiment IV & V, which are 1246 and

1241 respectively. This shows that the higher the complexity of the problem, the

lower the FND value. Two interesting points from experiment I & II is that sen-
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Figure 5.6: Network Lifetime Comparison of DLSACH with LEACH, SEECH,
TCAC
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sors were able to keep the instability period almost constant for all the last three

experiments and also keep the AEFND value very low number; which means al-

most all the sensor’s initial energy were used till the death of first node. However,

the proposed DLSACH protocol shows a very poor performance at large network

size of 1000 sensors as seen in Experiment III result compared to other protocols.

It can therefore be deduced that the proposed DLSACH protocol decreases en-

ergy consumption and optimises energy balancing, thus increasing the network

lifetime with the exception of dense and large network size. At each round, the

proposed DLSACH protocol conserves energy by selectively allowing some nodes

to become inactive before network operation. Also, it uses an Iterated Local

Search Algorithm to select the best CHs configuration ensuring that CHs are

well distributed around the sensor field.

5.7 Conclusion

In this chapter, Dynamic Local Search-Based Algorithm for Clustering Hierarchy

(DLSACH) protocol was proposed for energy management in wireless sensor net-

works. The two major operations in this protocol include sending some nodes into

sleep mode and the cluster head selection. The Iterated Local Search Algorithm

for Cluster Head Selection (ILSACHS), a mechanism that employs iterative local

search with perturbation operator is proposed for solving cluster head selection

problem. The perturbation operator mutates a random solution to produces a

point within the local optimum. This point is combined with the selected random

solution to produce a new solution using a heuristic based combination operator.

A move to the new solution is accepted only at a higher fitness value, otherwise

the move is discarded. After a complete search process, the new solution that

guarantees optimally distributed cluster heads is applied to the network. A new

mechanism called the Stochastic Selection of Inactive Node (SSIN) that is inspired

by Boltzmann selection process is proposed to stochastically select which nodes

to send into sleep mode without adversely affecting coverage. The two proposed

mechanisms work collaboratively to reduce and balance energy consumption by

selecting well distributed nodes with higher energy as cluster heads in order to

prolong network lifetime. Results shows that the network lifetime of DLSACH

89



5. Proposed Dynamic Local Search-Based Algorithm

protocol is more than SEECH, TCAC and LEACH protocol for network sizes of

100 and 400 number of sensors. Also, the proposed DLSACH protocol shows good

performance for heterogeneous sensor networks in terms of energy consumption

and stability periods. However, DLSACH protocol cannot perform well under a

large network size (1000 number of sensors) compared with other protocols. A

dynamic global-based search strategies that employs a novel heuristic crossover

to obtain a better solution that efficiently use the energy supply constraints of

battery-powered sensors to prolong its network lifetime is proposed in the next

chapter.
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Chapter 6

Proposed Global-based Search

Algorithm

This chapter proposes a novel Heuristic Algorithm for Clustering Hierarchy (HACH),

which sequentially performs selection of inactive nodes and cluster head nodes

at every round. Inactive node selection employs a stochastic sleep scheduling

mechanism to determine the selection of nodes that can be put into sleep mode

without adversely affecting network coverage. Also, the clustering algorithm uses

a novel heuristic crossover operator to combine two different solutions to achieve

an improved solution that enhances the distribution of cluster head nodes and

coordinates energy consumption in WSNs. The proposed algorithm is evaluated

via simulation experiments and compared with some existing algorithms. HACH

protocol shows improved performance in terms of extended lifetime and maintains

favourable performances even under different energy heterogeneity settings.

6.1 Introduction

The problem of CH selection can be considered as an optimisation issue where the

methods have employed GA to solve. This chapter define an objective function

that evaluates the discrete solution and propose an innovative heuristic crossover

which is enhanced by the knowledge of problem in view. This thesis present a

new Heuristic Algorithm for Clustering Hierarchy (HACH) protocol that simulta-
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neously performs sleeping scheduling and clustering of sensor nodes upon each

round. For sleep scheduling operation, this chapter present the stochastic selec-

tion of inactive nodes (SSIN). A protocol that imitates the Boltzmann selection

process in GA was used to decrease the number of active nodes in each round by

putting some nodes to sleep or into inactive mode so that energy could be con-

served and network lifetime increased without harming coverage. Furthermore,

the Heuristic-Crossover Enhanced Evolutionary Algorithm is developed for Clus-

ter Head Selection (HEECHS) protocol for the clustering operation. HEECHS uses

the known information around the problem to develop a useful heuristic crossover

that combines genetic material in a unique way to produce improved CH config-

uration. This method described has some parallels with optimisation algorithms

known as Memetic Algorithms (MAs). This algorithm is a type of stochastic

global search heuristics in which Evolutionary Algorithm-based techniques are

mixed with a local search technique to improve the quality of the solutions pro-

posed by evolution Hart et al. [2005]. Sleep scheduling and clustering algorithms

work together to optimise network lifetime by harmonising energy consumption

amongst sensor nodes during the communication times. Energy consumption

optimisation is performed by selecting spatially distributed nodes with higher

energy as CHs and additionally placing certain nodes into sleep mode without

harming coverage. The HACH protocol proposed performs very well compared to

protocols that use GA because it integrates knowledge of the problem into GA

crossover operator.

The rest of this chapter is organised as follows. In Section 6.2, the proposed

algorithm under three pivotal operational phases, those being the sleep schedul-

ing mechanism, clustering algorithm and the energy consumption calculation is

discussed. Section 6.3 presents the performance evaluation in terms of the stabil-

ity period and network lifetime, average energy at first node dies (AEFND) and

heterogeneity measure. Finally, Section 6.4 provided the conclusion.

6.2 The proposed HACH Protocol

There are three consecutive operations within the proposed protocol: sleep schedul-

ing, clustering and network operations. The network and radio assumption dis-
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Algorithm 7 HACH Protocol

Let AliveNodes be the total number of sensor nodes
Compute the network total coverage.
while (AliveNodes > 0) do

Use algorithm SSIN to select inactive nodes. (See Algorithm 4)
Put selected nodes into sleep mode.
Apply the proposed HEECHS algorithm for CHs configuration. (See Algo-

rithm 8)
Compute the energy values of ECH , EMem and ERes. (refer to Section

2.1.3)
Find out the number of dead node (node with energy equal or less than 0).
Update AliveNodes

end while

cussed in section 5.2 of chapter 5 is applicable to this protocol. The sink transmits

control packets at the initial set-up phase so that it can receive node information

in terms of the nodes ID, location and energy. During sleep scheduling operations,

the SSIN protocol proposed dynamically selects the nodes to send to sleep by gen-

erating an initial candidate list. This list is populated with nodes that have lower

energies than the average energy of all nodes. Employing a stochastic process, a

small number of nodes are subsequently placed into sleep mode without harming

coverage (See Section 5.4.1 for details). CH selection employing HEECHS is then

completed on the remaining active nodes. At the end of each round, the energy

consumed by CHs (ECH), member nodes (EMem) and residual energy (ERes) of

each sensor are computed (refer to section 5.5 for details). The residual energy

obtained is used as a parameter to make inactive node and CH selection decision

at the beginning of the next round. Sensor dies when the residual energy is equal

or less than zero and the number of sensors alive is updated at the end of every

round. The network cycle continues until the number of nodes alive is equal to

zero.

The proposed HEECHS protocol operates at the network layer of WSNs lay-

ered model presented in Charfi et al. [2009], which is similar to the Open System

Interconnection (OSI) network model. After nodes deployment, the sink trans-

mits and receives control packets containing the coordinates and energy value

of all nodes. Using the obtained sensor coordinates, the sink computes the Eu-
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clidean distances between two adjacent nodes and each node to the sink. These

Euclidean distances and energy values are both used in establishing the cluster-

based network topology for the purpose of packet routing.

Here, clustering can be considered as an optimisation problem which can

best accomplished using GA. Tournament selection, mutation operator and the

heuristic crossover are the genetic operators used in this approach. The most

suitable CH configuration which guarantees balanced energy consumption across

the network topology is selected at every network operation round. The residual

energy of each node is calculated at the end of each round. This computed value

is then employed to calculate the average energy for the next round. This cycle

subsequently repeats until all network nodes are dead, as shown in Algorithm 7.

6.2.1 Clustering Operations using HEECHS protocol

The clustering operation is divided into stages: CH selection, cluster formation,

data aggregation and data communication. As shown in Figure 6.1, the setup

state starts by the CH selection stage and proceeds by cluster formation. The

setup state is followed by the data transmission state, which is subdivided into

data aggregation and data transmission phases. During the setup state, a sink-

assisted clustering algorithm that performs CH selection and membership associ-

ation is applied to the active nodes in the network. During network initialization,

sensors send their energy and location information to the sink in order to imple-

ment the proposed algorithm. The HEECHS protocol favours the selection of a CH

Figure 6.1: One round of the clustering process
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that has higher energy and is far from neighbouring CH. As illustrated in Figure

6.2, an energy efficient sensor node distribution is constructed by the proposed

HACH protocol at every network operation round. Sensors are assigned to the

closest CH thereby forming a single cluster. A TDMA schedule is assigned for

each cluster to schedule packet transmission to that CH by the member nodes.

All the information about clusters and TDMA schedule packets is broadcast to

the entire network. Based on the time slot in the TDMA schedule packets, each

node in a cluster send sensed data to their respective CH.

Figure 6.2: Sensor nodes Topology and Random distribution

At each round, the sink performs a re-clustering procedure to form a new

cluster-based topology that preserves the WSNs coverage and energy efficiency

characteristics by rotating the CH role among sensors with scalability of hun-

dreds to thousands. Scalability implies that there is a need for balanced energy

consumption among the sensor nodes during communication through an efficient

clustering algorithm Mamun [2012]. The CH loses energy faster than the member

nodes; hence the need for re-clustering or rotating the CH role among sensors in

order to balance the energy consumption. Re-clustering is performed at the end

of a round, which is the total time span for a processes involved in the setup and
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steady data transmission state. The time-length of each round must be carefully

decided because a large time length drains CHs energy and a short time-length

result into overhead caused by frequent re-clustering Pal et al. [2013]. The round

time-length of the proposed algorithm adjust itself dynamically based on the

number of active nodes in the WSNs.

In this work, the HEECHS protocol proposed is developed for the CH selec-

tion task using a heuristic-based GA. It runs through a number of tasks, simi-

lar to conventional GAs, such as population strings creation, string evaluation,

best string selection and finally reproduction to create a new population. The

unique, but significant difference is that the HEECHS protocol employs a problem-

dependent knowledge-based heuristic crossover to find the best CH configuration

with the optimum number of appropriately distributed CH nodes. In the pro-

posed HEECHS, the genetic process of finding the best solution is performed using

an energy unlimited sink device that can handle high execution time complexity

and computation. The individuals within population P (t) are coded by 0-1 bi-

nary representation where ’0’ denotes a member node and ’1’ denotes a CH node

as shown in figure 6.3.

Each individual with length Ns in a population size ps is evaluated by com-

puting the fitness value using Equation 5.4. Individuals with the best fitness

value are selected from two randomly selected parent pairs, P (x) and P (y). This

process continues until the mating pool is filled. The heuristic crossover proposed

here is subsequently applied to the individuals in the pool and a new population

P (t+ 1) is produced. Again, each individual fitness value in this new population

is computed using Equation 5.4 and the entire cycle continues until the stopping

criterion is achieved. The stopping criterion is realized when the populations

average fitness undergoes no further changes.

6.2.2 Proposed Heuristic Crossover

The principal operator used in the HEECHS protocol to produce new solutions is

the heuristic crossover. This is a problem-dependent crossover that utilises knowl-

edge of a problem to fuse two potential resolutions, producing a new solution.

According to Lixin Tang Lixin [1999], a heuristic crossover is an operator that
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Figure 6.3: Binary representation of individuals in the population

makes use of parents’ inherent information to produce an offspring. In the canon-

ical approach, individuals in a population are selected and two parent individuals

are combined using the crossover operator to produce a pair of offspring that

will replace its parents. Correspondingly, there is no assurance that an offspring

would be superior to its parents in the canonical approach Hasan et al. [2007].

Contrarily, the heuristic crossover operator generates only one offspring from two

or more parents and it is certain that the offspring would be of higher quality

than the parents. As shown in Algorithm 8, the proposed heuristic crossover

generates a single solution with CHs that are spatially distributed in the sensor

field and selects nodes with higher energy to be the CH.

The CH genes position in each individual of selected parent pair is computed.

An array that holds the genes position in both parent pairs is expressed by CH1

and CH2. Also, the threshold distance between any two adjacent CH position

is defined as

√
(xmax−xmin)2+(ymax−ymin)2

n×0.04 , where the (xmin, ymin) and (xmax, ymax)

coordinates represent the minimum and maximum xy points in the sensing field,

(n × 0.04) indicates 4% of all sensor nodes. A set CHall is generated from the
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Algorithm 8 Proposed Heuristic Crossover

Select two individuals from the parent population.
Compute and keep the CH position in each individual in CH1 and CH2.
Compute the threshold distance, T (refer to Section 5.4.2)
Compute the union set CHall = CH1 ∪ CH2

Obtain the first CH position CHall(1) in the CHall set.
Generate a new set CHnew and transfer the CHall(1) to it.
Compute the distance, D between CH positions in the sets CH1 and CH2.
while (D < T ) do

if (CHall node energy < CHnew node energy) then
Discard the CH node. (i.e. do not add to CHnew set)

end if
Replace the CH in the CHnew set

end while
Add to the CH in the set CHall into the CHnew set.

union of CH1 and CH2 (refer to Algorithm 8). The first CH position in the union

set CHall is moved into a new set CHnew by default. As shown in Algorithm 8,

the decision to move successive CH positions from the CHall to CHnew is based

on spatial distance between CHs and residual energy.

6.2.3 Other Operators

The efficacy of a genetic algorithm relies upon maintaining a balance between

the concept of exploration and exploitation. Exploration is provided by crossover

and mutation while selection enables exploitation Brunda et al. [2012]; Halke and

Kulkarni [2012]. The rest of the operators used in the proposed HEECHS protocol

are discussed below:

� The Tournament selection operator is a method of selecting an indi-

vidual from a population of individuals in a genetic algorithm. Tournament

selection involves selecting individuals with the best fitness from group of

individuals randomly chosen from the current population. The selection

pressure depends on the tournament size of the operator. In order to re-

duce the selection pressure, I used a tournament size of two for the proposed

algorithm and this process continues until the mating pool is full.
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� The Mutation operator is a genetic operator used to maintain genetic

diversity from one generation of a population of genetic algorithm chromo-

somes to the next. Mutation changes an individual (parent) with a muta-

tion probability (mp) to produces one individual (offspring) with new fitness

value. The mutation probability indicate the number of bits in a genetic

sequence that will changed from its original state. In the proposed algo-

rithm, mutation operator with probability mp=0.1 is applied each selected

individual to obtain new individual with better fitness.

The parent and child individuals in the initial population pool produced in

the previous step are arranged in ascending order based on their fitness value.

Subsequently, individuals with minimum fitness values are selected and they form

next generation’s population. The stopping criterion is achieved when there is

no further change in the fitness value of the population.

6.3 Performance Evaluation

The performance of clustering protocols can be evaluated using different types of

metrics Lixin [1999]. In this work, a MATLAB simulation model was developed

to test the performance of proposed HACH protocol in terms of lifetime evaluation

of sensor nodes. The experimental conditions for all of the trials investigated are

presented in Tables 6.1 and 6.2. In each simulation run, the sensors under test

are randomly redistributed in an (x, y) grid with origin (0, 0) and a deployment

Table 6.1: Parameter settings for Homogeneous WSNs Scenarios

Experiment
Parameter

Number
of

Sensors

Sink
Coordinates (m)

Deployment
Area (m2)

Initial
Energy (J)

ExpR0M100 100 (50,175) 100×100
µ=0.5
σM=0

ExpR0M400 400 (50,200) 100×100
µ=0.5
σM=0

ExpR0M1000 1000 (50,350) 200×200
µ=1.0
σM=0
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Table 6.2: Parameter settings for Heterogeneous WSNs Scenarios

Experiments
Parameter

Number
of

Heterogeneous
Nodes (R)

Number
of

Homogeneous
Nodes (M)

Sink
Coordinates (m)

Deployment
Area
(m2)

Initial
Energy
(J)

ExpR25M0 25

0 (50, 175) 100×100
µ=0.5
σR=0.05

ExpR50M0 50
ExpR75M0 75
ExpR100M0 100
ExpR25M75 25 75

(50, 175) 100×100
µ=0.5
σR=0.05
σM=0

ExpR50M50 50 50
ExpR75M25 75 25

area of 100×100 m2 or in the case of 1000 nodes over 200×200 m2. Each trial

has only one sink that is placed at a location outside the sensor deployment area

with coordinates provided in Tables 6.1 and 6.2; the number of CHs is dynamic.

After clustering, the estimated maximum distances between a member node

and a CH were found to be 39.20m, 29.43m and 26.17m for 100, 400 and 1000

sensor trials respectively. Also, the estimated maximum distance between a CH

and the sink node were 126.55m, 141.82m and 303.42m for the 100, 400 and

1000 sensor trials respectively. The proposed HACH protocol is considered scal-

able in sense that it improves its energy efficiency as the network size increases.

To demonstrate this fact, the performance of the proposed protocol was com-

pared with SEECH, TCAC and SEECH protocols using experiments ExpR0M100,

ExpR0M400, ExpR0M1000 which represent 100, 400 and 1000 homogeneous sensor

nodes respectively and zero heterogeneous nodes in terms of initial energy value

(refer to Table 6.1). Also, Table 6.2 presents experiment ExpR25M0, ExpR50M0,

ExpR75M0, ExpR100M0 which has 25, 50, 75, 100 heterogeneous sensor nodes re-

spectively and no homogeneous nodes. Lastly, more experiments that mixed het-

erogeneous nodes with homogeneous nodes are conducted, namely experiments

ExpR25M75, ExpR50M50, ExpR75M25. The communication parameters used for all

the experiments presented in Table 6.1 and 6.2 is shown in Table 5.1 of Section

5.

In addition to the simulation parameters in Table 5.1, the GA parameters are

set as population size, ps=100 and mutation rate, pm= 0.05. R and M signify the
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number of heterogeneous and homogeneous sensor nodes respectively. In Table

6.1 and 6.2, µ represents the sensor nodes mean energy, σR and σM represent the

standard deviation of heterogeneous and homogeneous sensor nodes respectively.

For all experiments in Table 6.2, the mean initial energy E0 used is 0.5J.

6.3.1 Stability Period and Network Lifetime

The stability period length (SPL) is the time range from the start of network

operation until when the first node dies (FND) whereas the instability period

(IPL) is the timespan from the FND until the last node dies (LND). The WSN

lifetime is the time range from the start of network operation until the last node

dies, which exclude energy unlimited sink devices. Immediately after the last

sensor dies, the WSNs will stop its operation because the sink has lost its connec-

tivity from the sensors. Alternatively, the WSNs lifetime can be defined as the

combination of stability and the instability period. A reliable clustering process

is characterised by a long SPL and a short IPL. Experimental results shown in

Figure 6.4 depict the number of nodes that are alive after each round.

The performance of the proposed protocol is compared with other protocols

Table 6.3: Performance comparison of LEACH, TCAC and SEECH with HACH

Experiment Protocol
Performance Measure

(Round)
FND LND IPL

ExpR0M100

(100 Nodes)

LEACH
TCAC
SEECH
HACH

726
933
1028
1064

1209
1006
1099
1167

483
73
71
103

ExpR0M400

(400 Nodes)

LEACH
TCAC
SEECH
HACH

685
948
1016
1235

1274
1071
1140
1307

589
123
124
72

ExpR0M1000

(1000 Nodes)

LEACH
TCAC
SEECH
HACH

672
725
1587
1789

2014
1664
2202
2010

1342
939
615
221
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in terms of the FND, LND, and IPL measures as seen on the graphs presented

in Figure 6.4. Table 6.3 shows that the proposed HACH protocol maintains the

network operational lifetime of 338, 131 and 36 more than the LEACH, TCAC

and SEECH respectively for Experiment ExpR0M100. For a medium density WSN

scenario ExpR0M400, HACH shows a longer lifetime of 1235 rounds compared with

LEACH, TCAC and SEECH which have a lower value of 685, 948 and 1016

respectively. The most fascinating result is that under the most dense WSNs
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Figure 6.4: Lifetime evaluation of HACH, LEACH, SEECH and TCAC
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(ExpR0M1000) containing 1000 sensors, the proposed algorithm gives extremely

high value of 1789 rounds compared with 672, 725 and 1587 round of LEACH,

TCAC and SEECH respectively. This shows that as the network size increases,

the performance of HACH algorithm continues to improve.

Also, for Experiments ExpR0M400 and ExpR0M1000 as shown in Figure 6.3, it

was deduced that HACH has a very low IPL values for larger network sizes apart

from Experiment ExpR0M100 which has 30 rounds more than the TCAC protocol.

This means that HACH works very well in larger and denser network size. It is

also noteworthy that the FND obtained in the proposed proposed HACH protocol

for ExpR25M0 (See Table 6.5) is 54 rounds more than LEACH protocol (refer to

ExpR0M100 in Table 6.1); which means that are protocol can still perform with

fewer nodes than the LEACH protocol.

6.3.2 Average Energy at First Node Dies (AEFND)

The AEFND is defined as the sum of all current or residual energy values of

the sensor nodes divided by the number of nodes at the round when the first

node dies. Many nodes begin to die when the first node dies and during the

instability periods because of the depleted energy supply. In the HACH protocol,

energies of some nodes are balance until the FND time and this is indicated on the

graphs of Figure 6.4 by a sharp decline in the number of nodes that are alive for

HACH, SEECH and TCAC protocol. One of the performance goals for an energy

efficient protocol is to keep the AEFND to a very low value and the proposed

HACH protocol kept the AEFND to a very low value of approximately zero for all

experiments as shown in Table 6.4 and 6.5. For example, Experiment ExpR0M100

has an AEFND of 0.0232J at FND time of 1064 as shown in Figure 6.5.

Table 6.4: AEFND of proposed HACH protocol

Experiments
ExpR0M100 ExpR0M400 ExpR0M1000

AEFND 0.0232 0.0164 0.0650
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Figure 6.5: Average residual energy of nodes alive versus rounds (refer to
ExpR0M100)

This proves the fact that sensors were able to manage the energy usage until

the FND time. The low AEFND values in Table 6.5 means that the proposed

protocol can efficiently manage energy consumption under heterogeneous WSN

environments. Therefore, the proposed HACH protocol reduces the energy con-

sumed and enhances energy balance across the nodes in the sensor field thereby

extending the network lifespan.

6.3.3 WSNs Heterogeneity

After a certain number of rounds when the sensor networks lifetime has been

depleted, new nodes are introduced to re-energise the sensor network. These

new nodes are equipped with a higher constant energy value and nodes that are

already in use have lower random energy, resulting in energy heterogeneity Kour

and Sharma [2010]. As shown in Figure 6.6, the FND value decreases from 1064

for ExpR0M100 (refer to Table 6.3) to FND of 780 in ExpR25M0 (refer to Table 6.5).

Despite the increase in the ratio value of heterogeneous to homogeneous sensors

from 25 to 100; which introduces more complexities in terms of energy imbalance,

the HACH protocol was still able to balance the energy consumption and maintain

a constant FND value.

This phenomenon of starting a network operation with unbalanced energy
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Table 6.5: Performance Measures for different heterogeneous WSN Scenarios

Experiment
Performance Measures

FND LND IPL AEFND
ExpR25M0 780 937 157 0.040608
ExpR25M75 975 1126 151 0.033479
ExpR50M0 863 1010 147 0.033479
ExpR50M50 976 1061 147 0.030858
ExpR75M0 920 1059 139 0.033468
ExpR75M25 972 1123 151 0.030196
ExpR100M0 971 1110 139 0.033168

distribution in a sensor networks is called WSNs heterogeneity. In this chapter,

the experiments that falls under the three level of energy heterogeneity are as

follows:

� One-Quarter Level: Experiment ExpR25M0 and ExpR25M75.

� Half Level: Experiment ExpR50M0 and ExpR50M50.

� Three-Quarter Level: Experiment ExpR75M0 and ExpR75M25.
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Figure 6.6: Round number versus numbers of heterogeneous sensors
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Each level has experiments with Full and Partial heterogeneity. Also, it can be

observed in Table 6.5 that adding some energy-homogeneous sensor nodes to a set

of energy-heterogeneous or energy depleted sensors extends the lifetime by a con-

siderable amount, for example experiments ExpR25M75, ExpR50M50 and ExpR75M25

has a FND round of 195, 113 and 52 greater than experiments ExpR25M0, ExpR50M0

and ExpR75M0 respectively. The performance of each experiment is compared with

ExpR100M0, and their percentage value is shown on top of each bar as shown in

figure 6.7.

6.3.3.1 Full heterogeneity

Full heterogeneity refers to a scenario whereby all the sensor nodes in a sensing

field have random energy values and zero number of constant energy value. Also,

this term is used to describe a situation where all sensors in a WSN have different

initial energy value. For example in Table 6.2, experiments ExpR25M0, ExpR50M0,

ExpR75M0, ExpR100M0 are conducted using 25, 50, 75 and 100 number of sensor

nodes with random energy values and 0 constant energy values for all the exper-

iments. The bar charts presented in figure 6.7 show that performance improves

from one-quarter to the three-quarter full heterogeneity level when compared with

ExpR100M0. In figure 6.7a, FND percentages of increasing order of 80.33%, 84.41%

and 94.75% were obtained. Also, the LND percentage is in ascending order of

84.41%, 90.99%, 95.41% as shown in figure 6.7b. Additionally the IPL percent-

age is in decreasing order of 112.95%, 105.76%, 100.0%; meaning the performance

increased as the number of heterogeneous nodes increased. Also, in figure 6.7c,

ExpR50M0 was able to obtain 105.76% which is the same value as the half-level

ExpR50M50.

6.3.3.2 Partial heterogeneity

This is the WSN scenario that describes the ratio combination of sensor nodes

with random and constant energy values. In Table 6.5, ExpR25M75, ExpR50M50

and ExpR75M25 use 25, 50, 75 sensor nodes with random energy and 75, 50, 25

sensor nodes with constant energy respectively. In figure 6.7a, the FND time

for ExpR25M75, ExpR50M50, and ExpR75M25 is 100.41%, 100.52% and 100.11% re-

106



6. Proposed Global-based Search Algorithm

Heterogeneity Level

One-Quarter Half Three-Quarter

R
o
u
n
d
N
u
m
b
e
r

0

200

400

600

800

1000

1200
Full Heterogeneity
Partial Heterogeneity

FND= 721 for Exp R100M0

100.11%
94.75%

80.33%

100.41%

88.88%

100.52%

(a) FND

Heterogeneity Level

One-Quarter Half Three-Quarter

R
o
u
n
d
N
u
m
b
e
r

0

200

400

600

800

1000

1200

1400
Full Heterogeneity

Partial Heterogeneity

90.99%
95.59%

84.41%

101.44%

LND= 1110 for Exp R100M0

101.17%
95.41%

(b) LND

Heterogeneity Level
One-Quarter Half Three-Quarter

R
ou

nd
 N

um
be

r

0

50

100

150

200

Full Heterogeneity
Half Heterogeneity

112.95%
108.63%

105.76%105.76% 108.63%

100.00%

IPL= 139 for Exp R100M0

(c) IPL

Figure 6.7: Performance Comparison of different WSNs Heterogeneity Level for
(a.) FND, (b.) LND and (c.) IPL measures.

107



6. Proposed Global-based Search Algorithm

spectively when compared with ExpR100M0; showing that there is no significant

improvement as the ratio of heterogeneous to homogeneous nodes increases. In

figure 6.7, ExpR50M50 produces the most improved FND of 0.52% more than the

ExpR100M0 and percentage reduction of LND by 4.41%.

6.4 Conclusion

This chapter proposed a new HACH algorithm. The algorithm reduces and balances

energy consumption by selecting distributed nodes with high energy as cluster

heads to prolong network lifetime. Sequentially, this is achieved by two major op-

erations such as sleep scheduling and cluster head selection operations. The SSIN

sleep scheduling mechanism inspired by Boltzmann selection process was pro-

posed to decide which nodes to send into sleep mode with negligible effect on the

coverage. Subsequently, a genetic algorithm-based technique called the HEECHS

protocol that would distribute cluster heads evenly within a sensor field to ensure

that energy consumption is balanced across the networks is proposed. To guaran-

tee an efficient cluster head selection process, an objective function is designed to

evaluate the quality of solutions. Simulation results of the first three experiments

shows that the proposed HACH algorithm outperforms the SEECH, TCAC and

LEACH. This protocol shows a very good performance at large network com-

pared with DLSACH protocol. Also, further experiments demonstrated that the

proposed protocols can perform even better under different heterogeneity levels

of wireless sensor network settings and still maintain acceptable performances.
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Chapter 7

Conclusion and Recommended
Future Work

In this chapter, the concluding remarks and the recommended future work origi-

nating from this research work is presented.

7.1 Thesis Conclusion

WSNs has become an essential component for military and civil applications such

as environmental monitoring, target field imaging, weather monitoring, security,

battlefield surveillance, event detection etc. Some of the major challenges faced

by WSNs are reliability, heterogeneity, scalability and constraint energy supply.

The first part of this thesis presented a data aggregation mechanism employed

on a multi-dimensional fire data extracted from the sensors in order to remove

redundant data. k -means clustering was applied on the aggregated data to form

two clusters which represent the two class labels (fire and non-fire). The resulting

data outputs are trained by classifiers such as the FFNN, Naive Bayes, and Deci-

sion Trees. This hybrid approach of using k-means clustering with classifiers has

generated a better fire prediction accuracy against the use of only the classifiers.

Another serious issue with WSNs is energy inefficiency, most especially in

large network size. There is need to employ innovative techniques that can elim-

inate energy inefficiencies which can shorten network lifetime. In the second

part of this thesis, the CH selection is seen as an optimisation issue that can be

109



solved using meta-heuristic and GA approaches. The DLSACH and HACH protocols

were proposed for energy management in wireless sensor networks. An objective

function that access the quality of a potential solution was defined for both algo-

rithms. These algorithms perform three sequential operations: sleep scheduling,

clustering and energy consumption computation. For the sleep scheduling oper-

ation, a SSIN mechanism inspired by Boltzmann selection process was proposed

to stochastically select some nodes to send into sleep mode without causing an

adverse effect on coverage.

The ILSACHS mechanism was proposed for clustering operation of the DLSACH

algorithm. This mechanism employs iterative local search with perturbation op-

erator for cluster head selection. The perturbation operator assists the search

process to escape from a local optimum. In addition, it search wider spaces for

solution until a quality solution with the better fitness is obtained and no further

move is acceptable. After a complete search process, the new solution that guar-

antees optimally distributed cluster heads is applied to the network. The cluster-

ing phase of the HACH algorithm employs the proposed HEECHS protocol that uses

a problem-dependent heuristic crossover to produce a better cluster head config-

uration that balance energy consumption and enhances well distributed cluster

heads. Results shows that the network lifetime of DLSACH and HACH protocol is

more than other protocols such as the SEECH, TCAC and LEACH protocol for

100 and 400 number of sensors. The DLSACH protocols shows a poor performance

at large network of 1000 sensors with a FND and LND of 183 and 674 rounds

respectively. Fortunately, the HACH protocol shows tremendous improvement at

the same size with FND and LND of 1789 and 2010 rounds respectively.

7.2 Recommended Future Work

The following ideas are recommended to be used for the future:

� Some applications may deploy large number of heterogeneous sensor nodes.

Therefore, there is need to test the performance of our approaches under

more stringent or complex scenarios such as larger number of sensors with

different battery energy value.
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� A new Memetic-based clustering algorithm that can combine the proposed

genetic algorithm with local search operator in order to improve the search

strategy towards a better solution that can minimise the energy consump-

tion and extend the lifetime.

� In addition, a new niching method can be introduced into the new algorithm

to minimise the effect of genetic drift caused by selection operator and also

prevent the search from being trapped in the local optimum.

� Different crossover operator types such as uniform, one-point and two-point

crossover should be tested in the new algorithm. After several tests, the

crossover that produces the best solution should be employed.

� Tabu Search approach that uses memory and search history can be intro-

duced into the implementation of this new algorithm to avoids double search

for a local solution that has been tried and recorded in the tabu lists.

111



References

Abbasi, A. A. and Younis, M. [2007], ‘A survey on clustering algorithms for

wireless sensor networks’, Computer communications 30(14), 2826–2841. 2,

18, 69

Abidha, T. and Mathai, P. P. [2013], ‘Reducing false alarms in vision based

fire detection with nb classifier in eadf framework’, International Journal of

Scientific and Research Publications 3(8). 50, 51

Aiello, F., Bellifemine, F. L., Fortino, G., Galzarano, S. and Gravina, R. [2011],

‘An agent-based signal processing in-node environment for real-time human

activity monitoring based on wireless body sensor networks’, Eng. Appl. of AI

24(7), 1147–1161.

URL: http://dx.doi.org/10.1016/j.engappai.2011.06.007 10

Akkaya, K. and Younis, M. F. [2005], ‘A survey on routing protocols for wireless

sensor networks’, Ad Hoc Networks 3(3), 325–349.

URL: http://dx.doi.org/10.1016/j.adhoc.2003.09.010 8

Akthar, F. and Hahne, C. [2012], ‘Rapidminer 5 operator reference’, Rapid-I

GmbH . 50, 65

Al-Karaki, J. N. and Kamal, A. E. [2004], ‘Routing techniques in wireless sensor

networks: a survey’, IEEE wireless communications 11(6), 6–28. 8

Arboleda, L. M. and Nasser, N. [2006], Comparison of clustering algorithms and

protocols for wireless sensor networks, in ‘2006 Canadian Conference on Elec-

trical and Computer Engineering’, IEEE, pp. 1787–1792. 19

112



REFERENCES

Bahrepour, M., Meratnia, N. and Havinga, P. J. M. [2009], Use of AI techniques

for residential fire detection in wireless sensor networks, in ‘Proceedings of the

Workshops of the 5th IFIP Conference on Artificial Intelligence Applications

& Innovations (AIAI-2009), Thessaloniki, Greece, April 23-25, 2009’, pp. 311–

321.

URL: http://ceur-ws.org/Vol-475/AIAEP/33-pp-311-321-409.pdf 60, 65, 66

Bahrepour, M., Meratnia, N., Poel, M., Taghikhaki, Z. and Havinga, P. J. [2010],

Distributed event detection in wireless sensor networks for disaster manage-

ment, in ‘Intelligent Networking and Collaborative Systems (INCOS), 2010

2nd International Conference on’, IEEE, pp. 507–512. 51

Baskaran, K. [2012], ‘A survey on futuristic health care system: Wbans’, Procedia

Engineering 30, 889–896. 10, 11

Biswas, S. and Morris, R. [2005], ‘Exor: opportunistic multi-hop routing for wire-

less networks’, ACM SIGCOMM Computer Communication Review 35(4), 133–

144. 41

Borbash, S. A. [2004], Design considerations in wireless sensor networks, PhD

thesis, University of Maryland. 44

Brunda, J., Manjunath, B., Savitha, B. and Ullas, P. [2012], ‘Energy aware thresh-

old based efficient clustering (eatec) for wireless sensor networks’, Energy 2(4).

98

Bulut, E. and Korpeoglu, I. [2011], ‘Sleep scheduling with expected common

coverage in wireless sensor networks’, Wireless Networks 17(1), 19–40. 17

Cestari, L. A., Worrell, C. and Milke, J. A. [2005], ‘Advanced fire detection algo-

rithms using data from the home smoke detector project’, Fire Safety Journal

40(1), 1–28. 57

Chachulski, S., Jennings, M., Katti, S. and Katabi, D. [2007], Trading structure

for randomness in wireless opportunistic routing, Vol. 37, ACM. 41

Chakraborty, A., Mitra, S. K. and Naskar, M. K. [2011], ‘Energy efficient routing

in wireless sensor networks: A genetic approach’, CoRR abs/1105.2090 . 68

113



REFERENCES

Chakraborty, U. K., Das, S. K. and Abbott, T. E. [2012], Energy-efficient rout-

ing in hierarchical wireless sensor networks using differential-evolution-based

memetic algorithm, in ‘2012 IEEE Congress on Evolutionary Computation’,

IEEE, pp. 1–8. 41

Chang, W.-D., Lin, T.-S., Jiang, J.-A., Liu, C.-W., Chen, C.-P., Lai, D.-W., Lu,

H.-C., Yen, C.-W. and Yen, P.-L. [2012], ‘An implementation of a wsn-based

medical monitoring system: A pilot study of the blood pressure monitoring

of hemodialysis patients’, Engineering in Agriculture, Environment and Food

5(3), 83–89. 10

Charfi, W., Masmoudi, M. and Derbel, F. [2009], A layered model for wireless

sensor networks, in ‘Systems, Signals and Devices, 2009. SSD’09. 6th Interna-

tional Multi-Conference on’, IEEE, pp. 1–5. 93

Chen, D. and Varshney, P. K. [2004], Qos support in wireless sensor networks: A

survey., in ‘International conference on wireless networks’, Vol. 233, pp. 1–7.

44

Dahnil, D. P., Singh, Y. P. and Ho, C. K. [2012], ‘Topology-controlled adaptive

clustering for uniformity and increased lifetime in wireless sensor networks’,

IET Wireless Sensor Systems 2(4), 318–327. 20

Danratchadakorn, C. and Pornavalai, C. [2015], Coverage maximization with

sleep scheduling for wireless sensor networks, in ‘Electrical Engineering/Elec-

tronics, Computer, Telecommunications and Information Technology (ECTI-

CON), 2015 12th International Conference on’, IEEE, pp. 1–6. 17

Deng, J., Han, Y. S., Heinzelman, W. B. and Varshney, P. K. [2005a], ‘Balanced-

energy sleep scheduling scheme for high-density cluster-based sensor networks’,

Computer communications 28(14), 1631–1642. 16, 17

Deng, J., Han, Y. S., Heinzelman, W. B. and Varshney, P. K. [2005b], ‘Scheduling

sleeping nodes in high density cluster-based sensor networks’, Mobile Networks

and Applications 10(6), 825–835. 16

114



REFERENCES

Dong, Q., Banerjee, S., Adler, M. and Misra, A. [2005], Minimum energy re-

liable paths using unreliable wireless links, in ‘Proceedings of the 6th ACM

international symposium on Mobile ad hoc networking and computing’, ACM,

pp. 449–459. 39

Dounis, A. I. [2010], ‘Artificial intelligence for energy conservation in buildings’,

Advances in Building Energy Research 4(1), 267–299. 11

Dumitrescu, D., Lazzerini, B., Jain, L. and Dumitrescu, A. [2000], Evolution-

ary Computation, International Series on Computational Intelligence, Taylor

& Francis. 76

Eik Loo, C., Yong Ng, M., Leckie, C. and Palaniswami, M. [2006], ‘Intrusion

detection for routing attacks in sensor networks’, International Journal of Dis-

tributed Sensor Networks 2(4), 313–332. 51

El Emary, I. M. and Ramakrishnan, S. [2013], Wireless Sensor Networks: From

Theory to Applications, CRC Press. 26

Fortino, G., Guerrieri, A., O’Hare, G. M. and Ruzzelli, A. [2012], ‘A flexible build-

ing management framework based on wireless sensor and actuator networks’,

Journal of Network and Computer Applications 35(6), 1934–1952. 11

Gen, M., Cheng, R. and Lin, L. [2008], Network models and optimization: Mul-

tiobjective genetic algorithm approach, Springer Science & Business Media. 27

Glover, F. [1995], Tabu search fundamentals and uses, Graduate School of Busi-

ness, University of Colorado Boulder. 36

Glover, F., Kelly, J. P. and Laguna, M. [1995], ‘Genetic algorithms and

tabu search: hybrids for optimization’, Computers & Operations Research

22(1), 111–134. 37

Goldberg, D. E. [1989], ‘Genetic algorithms in search, optimization and machine

learning’. 27

Gorunescu, F. [2011], Data Mining: Concepts, models and techniques, Vol. 12,

Springer Science & Business Media. 50

115



REFERENCES

Gulcharan, N. F. B. I., Daud, H., Nor, N. M., Ibrahim, T. and Shamsudin,

M. Z. [2014], ‘Investigation of stability and reliability of the patient’s wireless

temperature monitoring device’, Procedia Computer Science 40, 151–159. 10

Halke, R. and Kulkarni, V. [2012], ‘En-leach routing protocol for wireless sen-

sor network’, International Journal of Engineering Research and Applications

2(4), 2099–2102. 98

Halkes, G. P., van Dam, T. and Langendoen, K. [2005], ‘Comparing energy-saving

mac protocols for wireless sensor networks’, Mobile Networks and Applications

10(5), 783–791. 13

Hart, W. E., Krasnogor, N. and Smith, J. E. [2005], Recent advances in memetic

algorithms, Vol. 166, Springer Science & Business Media. 37, 38, 92

Hasan, B. S., Khamees, M., Mahmoud, A. S. H. et al. [2007], A heuristic genetic

algorithm for the single source shortest path problem, in ‘Computer Systems

and Applications, 2007. AICCSA’07. IEEE/ACS International Conference on’,

pp. 187–194. 79, 97

Heinzelman, W. B., Chandrakasan, A. P. and Balakrishnan, H. [2002], ‘An

application-specific protocol architecture for wireless microsensor networks’,

Wireless Communications, IEEE Transactions on 1(4), 660–670. 2, 18, 25, 69,

71

Heinzelman, W. R., Chandrakasan, A. and Balakrishnan, H. [2000], Energy-

efficient communication protocol for wireless microsensor networks, in ‘System

sciences, 2000. Proceedings of the 33rd annual Hawaii international conference

on’, IEEE, pp. 10–pp. 18

Holland, J. H. [1975], Adaptation in natural and artificial systems: an introduc-

tory analysis with applications to biology, control, and artificial intelligence., U

Michigan Press. 27

Hou, J., Fan, X., Wang, W., Jie, J. and Wang, Y. [2010], Clustering strategy of

wireless sensor networks based on improved discrete particle swarm optimiza-

116



REFERENCES

tion, in ‘2010 Sixth International Conference on Natural Computation’, Vol. 7,

IEEE, pp. 3866–3870. 38, 41

Jaafar, K. and Watfa, M. K. [2013], Sensor networks in future smart rotating

buildings, in ‘2013 IEEE 10th Consumer Communications and Networking

Conference (CCNC)’, IEEE, pp. 962–967. 11

Jain, A. K. [2010], ‘Data clustering: 50 years beyond k-means’, Pattern Recogni-

tion Letters 31(8), 651–666.

URL: http://dx.doi.org/10.1016/j.patrec.2009.09.011 53

James, A. [1999], ‘Using multiple sensors for discriminating fire detection’, J. FL.

USA pp. 150–164. 57

Kachitvichyanukul, V. [2012], ‘Comparison of three evolutionary algorithms: Ga,

pso, and de’, Industrial Engineering and Management Systems 11(3), 215–223.

viii, 28, 29, 32

Kasi, M. K., Hinze, A., Legg, C. and Jones, S. [2012], Sepsen: semantic event

processing at the sensor nodes for energy efficient wireless sensor networks, in

‘Proceedings of the 6th ACM International Conference on Distributed Event-

Based Systems’, ACM, pp. 119–122. 45, 46

Kateretse, C., Lee, G.-W. and Huh, E.-N. [2013], ‘A practical traffic schedul-

ing scheme for differentiated services of healthcare systems on wireless sensor

networks’, Wireless personal communications 71(2), 909–927. 10

Kennedy, J. and Eberhart, R. [1995], Particle swarm optimization, in ‘Neural Net-

works, 1995. Proceedings., IEEE International Conference on’, Vol. 4, IEEE,

pp. 1942–1948. 29

Kotsiantis, S. B. [2007], ‘Supervised machine learning: A review of classification

techniques’, Informatica (Slovenia) 31(3), 249–268.

URL: http://www.informatica.si/index.php/informatica/article/view/148 55

Kour, H. and Sharma, A. K. [2010], ‘Hybrid energy efficient distributed protocol

for heterogeneous wireless sensor network’, International Journal of Computer

Applications 4(6), 1–5. 104

117



REFERENCES

Kuila, P. and Jana, P. K. [2014], ‘A novel differential evolution based clustering

algorithm for wireless sensor networks’, Applied soft computing 25, 414–425.

42

Lazarescu, M. T. [2013], ‘Design of a WSN platform for long-term environmental

monitoring for iot applications’, IEEE J. Emerg. Sel. Topics Circuits Syst.

3(1), 45–54.

URL: http://dx.doi.org/10.1109/JETCAS.2013.2243032 10

Le, H., Hoang, D. and Poliah, R. [2008], S-web: an efficient and self-organizing

wireless sensor network model, in ‘International Conference on Network-Based

Information Systems’, Springer, pp. 179–188. 17

Lee, L. C., Nwana, H. S., Ndumu, D. T. and De Wilde, P. [1998], ‘The stability,

scalability and performance of multi-agent systems’, BT Technology Journal

16(3), 94–103. 12

Lewis, F. L. et al. [2004], ‘Wireless sensor networks’, Smart environments: tech-

nologies, protocols, and applications pp. 11–46. 44

Liu, J.-L., Ravishankar, C. V. et al. [2011], ‘Leach-ga: Genetic algorithm-based

energy-efficient adaptive clustering protocol for wireless sensor networks’, In-

ternational Journal of Machine Learning and Computing 1(1), 79–85. 71

Lixin, T. [1999], ‘Improved genetic algorithms for tsp’, JOURNAL OF NORTH-

EASTERN UNIVERSITY (NATURAL SCIENCE) p. 01. 79, 86, 96, 99

Mamun, Q. [2012], ‘A qualitative comparison of different logical topologies for

wireless sensor networks’, Sensors 12(11), 14887–14913. 95

Maraiya, K., Kant, K. and Gupta, N. [2011], ‘Efficient cluster head selection

scheme for data aggregation in wireless sensor network’, International Journal

of Computer Applications 23(9), 10–18. 57

Mehrotra, K., Mohan, C. K. and Ranka, S. [1997], Elements of artificial neural

networks, MIT press. 59

118



REFERENCES

Memon, I. and Muntean, T. [2012], Cluster-based energy-efficient composite event

detection for wireless sensor networks, in ‘Sixth International Conference on

Sensor Technologies and Applications’, pp. 241–247. 3, 55

Mesin, L., Orione, F. and Pasero, E. G. A. [2011], Nonlinear Adaptive Filtering

to ForecastAir Pollution, InTech Open Access. 48

Misra, A. and Banerjee, S. [2002], Mrpc: Maximizing network lifetime for reliable

routing in wireless environments, in ‘Wireless Communications and Networking

Conference, 2002. WCNC2002. 2002 IEEE’, Vol. 2, IEEE, pp. 800–806. 40

Mitchell, T. M. [1999], ‘Machine learning and data mining’, Communications of

the ACM 42(11), 30–36. 47

Mitchell, T. M. [2006], The discipline of machine learning, Vol. 9, Carnegie Mellon

University, School of Computer Science, Machine Learning Department. 47

Moscato, P. et al. [1989], ‘On evolution, search, optimization, genetic algorithms

and martial arts: Towards memetic algorithms’, Caltech concurrent computa-

tion program, C3P Report 826, 1989. 37

Naeimi, S., Ghafghazi, H., Chow, C.-O. and Ishii, H. [2012], ‘A survey on the

taxonomy of cluster-based routing protocols for homogeneous wireless sensor

networks’, Sensors 12(6), 7350–7409. 1, 68

Nagpal, A., Jatain, A. and Gaur, D. [2013], Review based on data clustering

algorithms, in ‘Information & Communication Technologies (ICT), 2013 IEEE

Conference on’, IEEE, pp. 298–303. 55

Nie, W., Liu, Y., Li, C. and Xu, J. [2014], ‘A gas monitoring and control system

in a coal and gas outburst laboratory’, Journal of Sensors 2014. 10

Oladimeji, M. O., Turkey, M. and Dudley, S. [2016], A heuristic crossover en-

hanced evolutionary algorithm for clustering wireless sensor network, in ‘Ap-

plications of Evolutionary Computation - 19th European Conference, EvoAp-

plications 2016, Porto, Portugal, March 30 - April 1, 2016, Proceedings, Part

119



REFERENCES

I’, pp. 251–266.

URL: http://dx.doi.org/10.1007/978-3-319-31204-01768, 70

Onwubolu, G. and Davendra, D. [2006], ‘Scheduling flow shops using differential

evolution algorithm’, European Journal of Operational Research 171(2), 674–

692. 30

Othman, M. F. and Shazali, K. [2012], ‘Wireless sensor network applications: A

study in environment monitoring system’, Procedia Engineering 41, 1204–1210.

10

Pal, V., Singh, G. and Yadav, R. [2013], ‘Analyzing the effect of variable round

time for clustering approach in wireless sensor networks’, Lecture Notes on

Software Engineering 1(1), 31. 96

Park, S., Lee, W. and Cho, D.-h. [2012], Fair clustering for energy efficiency

in a cooperative wireless sensor network, in ‘Vehicular Technology Conference

(VTC Spring), 2012 IEEE 75th’, IEEE, pp. 1–5. 39

Price, K., Storn, R. M. and Lampinen, J. A. [2006], Differential evolution: a

practical approach to global optimization, Springer Science & Business Media.

33

Puccinelli, D. and Haenggi, M. [2005], ‘Wireless sensor networks: applications

and challenges of ubiquitous sensing’, IEEE Circuits and systems magazine

5(3), 19–31. 9

Qing, L., Zhu, Q. and Wang, M. [2006], ‘Design of a distributed energy-efficient

clustering algorithm for heterogeneous wireless sensor networks’, Computer

communications 29(12), 2230–2237. 26

Raghunathan, V., Schurgers, C., Park, S. and Srivastava, M. B. [2002],

‘Energy-aware wireless microsensor networks’, IEEE Signal processing mag-

azine 19(2), 40–50. 13

120



REFERENCES

Rajagopalan, R. and Varshney, P. K. [2006], ‘Data-aggregation techniques in

sensor networks: A survey’, IEEE Communications Surveys and Tutorials 8(1-

4), 48–63.

URL: http://dx.doi.org/10.1109/COMST.2006.283821 55

Rajasegarar, S., Leckie, C., Palaniswami, M. and Bezdek, J. C. [2006], Distributed

anomaly detection in wireless sensor networks, in ‘2006 10th IEEE Singapore

International Conference on Communication Systems’, IEEE, pp. 1–5. 51

Ramesh, M. V., Kamalanathan, K., Rangan, P. V. et al. [2012], Energy compari-

son of balanced and progressive sensor networks, in ‘2012 21st Annual Wireless

and Optical Communications Conference (WOCC)’, IEEE, pp. 93–98. 16

Rault, T., Bouabdallah, A. and Challal, Y. [2014], ‘Energy efficiency in wireless

sensor networks: A top-down survey’, Computer Networks 67, 104–122.

URL: http://dx.doi.org/10.1016/j.comnet.2014.03.027 10

Saleem, M., Di Caro, G. A. and Farooq, M. [2011], ‘Swarm intelligence based

routing protocol for wireless sensor networks: Survey and future directions’,

Information Sciences 181(20), 4597–4624. 19

Sangwan, A. and Singh, R. P. [2015], ‘Survey on coverage problems in wireless

sensor networks’, Wireless Personal Communications 80(4), 1475–1500. 14

Shen, C., Srisathapornphat, C. and Jaikaeo, C. [2001], ‘Sensor information net-

working architecture and applications’, IEEE Personal Commun. 8(4), 52–59.

URL: http://dx.doi.org/10.1109/98.944004 55, 79

Shi, N., Liu, X. and Guan, Y. [2010], Research on k-means clustering algorithm:

An improved k-means clustering algorithm, in ‘Third International Symposium

on Intelligent Information Technology and Security Informatics, IITSI 2010,

Jinggangshan, China, April 2-4, 2010’, pp. 63–67.

URL: http://dx.doi.org/10.1109/IITSI.2010.74 53

Singh, B. and Lobiyal, D. [2013], Energy preserving sleep scheduling for cluster-

based wireless sensor networks, in ‘Contemporary Computing (IC3), 2013 Sixth

International Conference on’, IEEE. 17

121



REFERENCES

Smaragdakis, G., Bestavros, A. and Matta, I. [2004], Sep: A stable election

protocol for clustered heterogeneous wireless sensor networks, Technical report,

Boston University Computer Science Department. 25

Souil, M. and Bouabdallah, A. [2011], On qos provisioning in context-aware wire-

less sensor networks for healthcare, in ‘Computer Communications and Net-

works (ICCCN), 2011 Proceedings of 20th International Conference on’, IEEE,

pp. 1–6. 11

Sravan, A., Kundu, S. and Pal, A. [2007], Low power sensor node for a wireless

sensor network, in ‘20th International Conference on VLSI Design held jointly

with 6th International Conference on Embedded Systems (VLSID’07)’, IEEE,

pp. 445–450. 13

Storn, R. and Price, K. [1995], Differential evolution-a simple and efficient adap-

tive scheme for global optimization over continuous spaces, Vol. 3, ICSI Berke-

ley. 30

Suryadevara, N. K., Mukhopadhyay, S. C., Kelly, S. D. T. and Gill, S. P. S. [2015],

‘Wsn-based smart sensors and actuator for power management in intelligent

buildings’, IEEE/ASME Transactions On Mechatronics 20(2), 564–571. 11

Tan, Z., Liu, Y. and Zhang, Z. [2011], Performance requirements on energy effi-

ciency in wsns, in ‘Computer Research and Development (ICCRD), 2011 3rd

International Conference on’, Vol. 3, IEEE, pp. 159–162. 33

Tarhani, M., Kavian, Y. S. and Siavoshi, S. [2014], ‘Seech: Scalable energy effi-

cient clustering hierarchy protocol in wireless sensor networks’, Sensors Jour-

nal, IEEE 14(11), 3944–3954. 22

Tilak, S., Abu-Ghazaleh, N. B. and Heinzelman, W. [2002], ‘A taxonomy of

wireless micro-sensor network models’, ACM SIGMOBILE Mobile Computing

and Communications Review 6(2), 28–36. 46

Tubaishat, M. and Madria, S. [2003], ‘Sensor networks: an overview’, IEEE po-

tentials 22(2), 20–23. 12

122



REFERENCES

Tyagi, S. and Kumar, N. [2013], ‘A systematic review on clustering and routing

techniques based upon leach protocol for wireless sensor networks’, Journal of

Network and Computer Applications 36(2), 623–645. 18

Van Dam, T. and Langendoen, K. [2003], An adaptive energy-efficient mac pro-

tocol for wireless sensor networks, in ‘Proceedings of the 1st international con-

ference on Embedded networked sensor systems’, ACM, pp. 171–180. 39

Vijayvargiya, K. G. and Shrivastava, V. [2012], ‘An amend implementation on

leach protocol based on energy hierarchy’, International Journal of Current

Engineering and Technology 2(4), 427–431. 71

Wang, S. and Nie, J. [2010], ‘Energy efficiency optimization of cooperative com-

munication in wireless sensor networks’, EURASIP Journal on Wireless Com-

munications and Networking 2010(1), 1. 37

Xu, S. and Saadawi, T. [2001], ‘Does the ieee 802.11 mac protocol work well

in multihop wireless ad hoc networks?’, IEEE communications Magazine

39(6), 130–137. 39

Xu, Y., Bien, S., Mori, Y., Heidemann, J. and Estrin, D. [2003], ‘Topology control

protocols to conserve energy in wireless ad hoc networks’, Center for Embedded

Network Sensing . 36

Xue, C. J. [2010], The road tunnel fire detection of multi-parameters based on bp

neural network, in ‘Informatics in Control, Automation and Robotics (CAR),

2010 2nd International Asia Conference on’, Vol. 3, IEEE, pp. 246–249. 48

Xue, F. and Kumar, P. R. [2004], ‘The number of neighbors needed for connec-

tivity of wireless networks’, Wireless networks 10(2), 169–181. 20

Younis, O. and Fahmy, S. [2004], ‘Heed: a hybrid, energy-efficient, distributed

clustering approach for ad hoc sensor networks’, Mobile Computing, IEEE

Transactions on 3(4), 366–379. 25

Younis, O., Krunz, M. and Ramasubramanian, S. [2006], ‘Node clustering in wire-

less sensor networks: recent developments and deployment challenges’, IEEE

network 20(3), 20–25. 18

123



REFERENCES

Yu, L., Wang, N. and Meng, X. [2005], Real-time forest fire detection with wire-

less sensor networks, in ‘Wireless Communications, Networking and Mobile

Computing, 2005. Proceedings. 2005 International Conference on’. 48, 56

Yu, Y., Prasanna, V. K. and Krishnamachari, B. [2006], Information Processing

and Routing in Wireless Sensor Networks, World Scientific.

URL: http://www.worldscientific.com/worldscibooks/10.1142/6288 7, 8

Zervas, E., Sekkas, O., Hadjiefthymiades, S. and Anagnostopoulos, C. [2007], Fire

detection in the urban rural interface through fusion techniques, in ‘IEEE 4th

International Conference on Mobile Adhoc and Sensor Systems, MASS 2007,

8-11 October 2007, Pisa, Italy’, pp. 1–6.

URL: http://dx.doi.org/10.1109/MOBHOC.2007.4428704 56

Zhang, H. [2004], The optimality of naive bayes, in ‘Proceedings of the Seven-

teenth International Florida Artificial Intelligence Research Society Conference,

Miami Beach, Florida, USA’, pp. 562–567.

URL: http://www.aaai.org/Library/FLAIRS/2004/flairs04-097.php 49

Zhang, Q. and Sun, J. [2006], Iterated local search with guided mutation, in ‘Evo-

lutionary Computation, 2006. CEC 2006. IEEE Congress on’, IEEE, pp. 924–

929. 78

Zhiping, L., Huibin, Q. et al. [2006], ‘The design of wireless sensor networks for

forest fire monitoring system’, School of Electronics and Information, Hangzhou

Dianzi University, White Paper . 56

Zungeru, A. M., Ang, L. and Seng, K. P. [2012], ‘Classical and swarm intelligence

based routing protocols for wireless sensor networks: A survey and comparison’,

J. Network and Computer Applications 35(5), 1508–1536.

URL: http://dx.doi.org/10.1016/j.jnca.2012.03.004 8, 19

124



MATLAB Source Codes

A Genetic Algorithm Operators

A.1 Initialization

% Function that randomly c r e a t e an i nd i v i dua l with l ength n argument

.

f unc t i on X = RandomIndividual (n)% n i s the number o f s enso r node

X = [ ] ; % Create an empty i nd i v i dua l s e t X

f o r i =1:1 :n % f o r each senso r node in an i nd i v i dua l s e t X

i f ( rand>0.95) % generate a random number and compare with

0 .95

X( i ) = 1 ; % 1 r ep r e s en t a CH node

e l s e

X( i ) = 0 ; % 0 r ep r e s en t a non−CH node

end

end

end
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A.2 Tournament Selection

% func t i on that s e l e c t i n d i v i d u a l s from a populat ion , pop us ing a

% tournament s i z e , tn

func t i on [ s1 , s2 ] = se l e c t tournament (pop , tn )

pops i z e = length ( pop ) ; % populat ion s i z e

s1 = round ( rand * ( pops ize −1) )+1; % generate a random point s1

% with in the populat ion s i z e .

f 1 = pop ( s1 ) . F i tne s s ; % obta in the f i t n e s s va lue f1 o f the

% ind i v i dua l at the random point s1

f o r i= 2 : 1 : tn % loop through the populat ion

s = round ( rand * ( pops ize −1) )+1; % generate a random point s

whi l e ( s1 == s ) % I f po int s1 and s are the same

s = round ( rand * ( pops ize −1) )+1; % generate new random

point s

end

f = pop ( s ) . F i tne s s ; % obta in the f i t n e s s va lue f o f the

% ind i v i dua l at the random point s

i f ( f<f 1 ) % I f f i s l e s s than f1 then ,

f 1 = f ; % as s i gn f i t n e s s va lue f to f1

s1 = s ; % as s i gn i nd i v i dua l s to s1

end

end

s2 = round ( rand * ( pops ize −1) )+1; % generate a random point s2

whi l e ( s1 == s2 ) % I f po int s1 and s2 are the same
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s2 = round ( rand * ( pops ize −1) )+1; % generate new random

point s2

end

f2 = pop ( s2 ) . F i tne s s ; % obta in the f i t n e s s va lue f2 o f the

% ind i v i dua l at the random point s2

f o r i= 2 : 1 : tn

s = round ( rand * ( pops ize −1) )+1; % generate a new random

point s

whi l e ( s2 == s | | s1 == s ) % i f s i s the same with s2 or s1

s = round ( rand * ( pops ize −1) )+1; % generate another

po int s

end

f = pop ( s ) . F i tne s s ; % Obtain f i t n e s s va lue f

i f ( f<f 2 ) % i f the f i s l e s s than f2 then ,

f 2 = f ; % as s i gn f to f2 , and

s2 = s ; % as s i gn s to s2

end

end

end

A.3 Heuristic Crossover

% func t i on that perform h e u r i s t i c c r o s s ov e r to mate two i nd i v i d u a l s

% X1 and X2 . The th i rd argument n i s the number o f s en so r s .

f unc t i on C = Crossover Heur (X1 , X2 , n)

g l oba l SDist2 S2 xm ym; % g l oba l v a r i a b l e s
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Ch1 = f i nd (X1 == 1) ; % an array Ch1 that conta in s CH po in t s o f

X1

Ch2 = f i nd (X2 == 1) ; % an array Ch2 that conta in s CH po in t s o f

X2

NewCh = [ ] ; % c r ea t e an empty s e t NewCh

T = sqr t (xmˆ2 + ymˆ2) / (n * 0 . 05 ) ; % compute the th r e sho ld

d i s t anc e

C = ze ro s (1 , n ) ; % an array C (1 row and n columns ) o f ze ro

e lements

AllCh = union (Ch1 , Ch2) ; % union o f Ch1 and Ch2

i f ( isempty (AllCh ) ) % i f AllCh i s empty

return ; %return to prev ious operat i on

end

NewCh(1) = AllCh (1) ; % Assign the f i r s t CH point o f AllCh to

% the new empty s e t NewCh

AllCh (1) = [ ] ; % Remove the f i r s t element in AllCh

whi le (˜ isempty (AllCh ) ) % i f AllCh i s not empty

M = SDist2 (AllCh (1 ) , NewCh(1) ) ; % Compute the euc l i d ean

d i s t anc e

% between the CH po s i t i o n o f AllCh (1 ) and NewCh(1)

I = 1 ;

f o r i = 2 : 1 : l ength (NewCh)

i f (M > SDist2 (AllCh (1) , NewCh( i ) ) ) % i f M i s g r e a t e r

than

% euc l i d ean d i s t anc e between AllCh (1) and NewCh( i )
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M = SDist2 (AllCh (1 ) , NewCh( i ) ) ; % Re−compute M

between

% AllCh (1) and NewCh( i )

I = i ;

end

end

i f (M < T) % i f the value o f M i s l e s s than thr e sho ld

d i s t anc e T

i f ( S2 (NewCh( I ) ) .E < S2 (AllCh (1 ) ) .E) % i f the energy o f

the

% CH in NewCh i s l e s s than energy o f CH in AllCh (1)

NewCh( I ) = AllCh (1) ; % r ep l a c e NewCh( I ) with AllCh

(1)

end

e l s e

NewCh = [NewCh AllCh (1) ] ; % add AllCh (1) to the e lements

in

% NewCh and s to r ed in NewCh again

end

AllCh (1) = [ ] ; % remove the AllCh (1 ) from the array AllCh

end

C(NewCh) = 1 ; % i n s e r t '1 ' (CH) in to C accord ing on the NewCh

po in t e r

end
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A.4 Mutation

% func t i on that mutate the i nd i v i dua l X o f l ength n with a

p r obab i l i t y mp

func t i on C = Mutation (X, mp, n)

C = X; % as s i gn X to C

i f ( rand < mp) % i f random number i s l e s s than mp

f o r i =1:1 :n

i f ( rand<0.005) % i f random number i s l e s s than 0 .005

C( i ) = (C( i )==0) ; % f l i p 0 to 1 or 1 to 0

end

end

end

end

B Proposed SSIN protocol

Coverage

% Compute the Coverage us ing the po int covered C, maximum x and y

% f i e l d as arguments

func t i on c = Coverage (C, xm, ym)

s = 0 ; % i n i t i a l i s e s=0

f o r x = 1 : 1 :xm

f o r y = 1 : 1 :ym

i f (C(x , y ) > 0) % point covered C i s g r e a t e r 0
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s = s + 1 ; % add po int to s v a r i ab l e

end

end

end

c = s / (xm * ym) ; % compute the c , g iven as the t o t a l number o f

% po in t s covered d iv ided by the g r id area

end

Send Nodes To Sleep

% func t i on that send nodes to s l e e p mode us ing argument n only

func t i on SL = SendNodesToSleep (n)

g l oba l Rs C A SumE S1 xm ym; % g l oba l v a r i a b l e s

AvgE = SumE / n ; % Compute the average energy

CL = [ ] ; % c r ea t e an empty coverage l i s t CL

f o r i = 1 : 1 : n

i f ( S1 ( i ) .E < AvgE ) % i f each sensor ' s energy i s l e s s than

AvgE

CL = [CL i ] ; % add the senso r to coverage l i s t CL

end

end

AA = A(CL) ; % area covered by the senso r i n s i d e the CL

CC = C; % t o t a l po int covered by a l l s en s o r s

SL = [ ] ; % c r ea t e an empty s l e e p i n g l i s t SL

AccEff = 0 ; % i n i t i a l i s e the accumulated coverage e f f e c t to be 0
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MaxPoints = 2 * pi * Rs ˆ 2 ; %c i r c u l a r s en s ing area covered by

% two s en so r s

whi l e (˜ isempty (AA) && AccEff < MaxPoints ) % whi le the AA i s not

% empty and AccEff i s l e s s than MaxPoints

[ ˜ , I ] = min (AA) ; % f i nd the s enso r that covered the

% sma l l e s t area

% func t i on that update the coverage matrix

[CC, EE] = UpdateCoverageMatrix ( S1 (CL( I ) ) , CC, xm, ym) ;

% compute p r o b a i l i t y P us ing exponent i a l f unc t i on o f

% coverage e f f e c t ,maximum acceptab l e coverage e f f e c t and

% accumulated coverage e f f e c t

P = exp ( − (EE/MaxPoints ) / (1 − ( AccEff /MaxPoints ) ) ˆ2 ) ;

i f ( rand ( ) < P) % i f a random value i s l e s s than P

SL = [ SL CL( I ) ] ; % add the senso r in the CL to SL

AccEff = AccEff + EE; % increment the AccEff by EE

end

CL( I ) = [ ] ; % remove the senso r from the CL

AA( I ) = [ ] ; % remove the senso r from the area covered AA

end

end
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Update Coverage Matrix

% func t i on that update the coverage matrix o f us ing senso r in

% coverage l i s t , po in t s covered , xy−maximum xm and ym

func t i on [C1 , e f f e c t ] = UpdateCoverageMatrix ( S , C, xm, ym)

g l oba l Rs ; % g l oba l v a r i ab l e

x1 = round (S . xd − Rs) ; % d i f f e r e n c e between the s en so r s x

% coord inate and sen s ing rad iu s Rs

i f ( x1 <= 0) % i f x1 i s l e s s than or equal to zero

x1 = 1 ; % as s i gn 1 to x1

end

x2 = round (S . xd + Rs) ; % add s en so r s x coord inate p lus Rs

i f ( x2 > xm) % i f x2 i s g r e a t e r than xm

x2 = xm; % as s i gn xm to x2

end

y1 = round (S . yd − Rs) ; % d i f f e r e n c e between the s en so r s y

% coord inate and sen s ing rad iu s Rs

i f ( y1 <= 0) % i f y1 i s l e s s than or equal to zero

y1 = 1 ; % as s i gn 1 to y1

end

y2 = round (S . yd + Rs) ; % add s en so r s y coord inate p lus Rs

i f ( y2 > ym) % i f y2 i s g r e a t e r than ym

y2 = ym; % as s i gn ym to y2

end

e f f e c t = 0 ; %i n i t i a l i s e e f f e c t to be zero

C1 = C; % as s i gn covered po int C to C1

f o r x = x1 : 1 : x2
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f o r y = y1 : 1 : y2

% euc l i d ean d i s t anc e o f po in t s covered to s en so r s

% i s l e s s than or equal to s en s ing rad iu s Rs

i f ( s q r t ( ( x −S . xd ) ˆ2 + (y − S . yd ) ˆ2) <= Rs) % i f

C1(x , y ) = max(0 ,C1(x , y ) − 1) ; % maximum covered

po in t s

i f (C1(x , y ) == 0) % i f the covered po int i s ze ro

e f f e c t = e f f e c t + 1 ; % in c r e a s e e f f e c t by one

end

end

end

end

end

C Members

% func t i on that obta in member s en so r s from d i s t anc e SDist ,

% i nd i v i dua l X and number o f a c t i v e s en so r s n arguments

func t i on M= Members ( SDist ,X, n)

i f (n==1) % i f n i s equal to one

M = 0 ;

re turn ; % return the value M=0

end

i f (n==0) % i f n i s equal to zero

M = [ ] ;

r e turn ; % return an empty s e t M

end % CH−−>Cluster−head
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CH = f ind (X == 1) ; % as s i gn the po int at which X=1 to be CH

f o r i = 1 : 1 : n

M( i ) = 0 ; % as s i gn zero to po int i

i f (X( i ) == 0) % i f s enso r at po int i i s equal to zero

m = In f ; I = 0 ; % m i s i n f i n i t e s im a l and I i s ze ro

f o r j = 1 : 1 : l ength (CH) % loop through each CH point

i f ( SDist ( i ,CH( j ) ) < m) % i f euc l i d ean d i s t anc e

between

% senso r po int i and CH point j i s l e s s than m

m = SDist ( i ,CH( j ) ) ; % update m

I = CH( j ) ; % update CH point

end

end

M( i ) = I ; %as s i gn CH to each senso r

end

end

end

D Objective Function

% func t i on that computes the f i t n e s s va lue s F us ing argument m and n

func t i on F = Object iveFunct ion (m, n)

g l oba l S2 SumE; % g l oba l v a r i ab l e

i f (n==1) % i f the number o f s en so r s i s equal to one

F = 1 ; % as s i gn one to the F i tne s s F

return ; % ex i t the func t i on

end
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CHs = f i nd (m == 0) ; % f i nd the CHs point

L = length (CHs) ; % length o f CH

i f (L == 0) % i f L i s equal to zero

F = In f ; % F i s i n f i n i t e s im a l

re turn ; % ex i t the func t i on

end

CHESum = 0 ; % i n i t i a l i s e c l u s t e r head sum CHESum

fo r i = 1 : 1 : L

CHESum = CHESum + S2 (CHs( i ) ) .E ; % Compute CHESum

end

Lower = n * 0 . 0 1 ; % s e t lower l im i t to be 1 percent o f a l l

s en s o r s

Upper = n * 0 . 0 3 ; % s e t upper l im i t to be 3 percent o f a l l

s en s o r s

P = 0 ; % i n i t i a l i s e Penalty r i s k to be zero

i f (L < Lower ) % i f L i s l e s s than lower l im i t Lower

P = (Lower − L) / n ; % compute P to be (Lower−L) /n

e l s e

i f (L > Upper ) % i f L i s g r e a t e r than upper l im i t Upper

P = (L − Upper ) / n ; % compute P to be (L−Upper ) /n

end

end

%Compute the F i tne s s va lue with weight ing f a c t o r s o f 0 . 7 and 0 .3

F = 0 .7 * ( (SumE−CHESum) /(n−L) ) / (CHESum/L) + 0 .3 * P;
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i f ( i s i n f (F) | | i snan (F) ) % i f l o g i c a l array F i s equal to one

F = 1000 ;

end

end

E Proposed HACH protocol

% func t i on that performs h e u r i s t i c a l g o r i t h f o r c l u s t e r i n g h i e ra r chy

func t i on X=HACH(n)

g l oba l pops i z e STATISTICS r SDist2 ; % g l oba l v a r i a b l e s

STATISTICS .GARounds( r+1) = 0 ; % obta ins s t a t i s t i c s f o r round

count

i f (n == 0) % i f number o f s enso r i s ze ro

X= [ ] ; % empty i nd i v i dua l

re turn ; % ex i t the func t i on

end

i f (n == 1) % i f number o f s enso r i s ze ro

X=1; % one i nd i v i dua l

re turn ;

end

Counter = 0 ; % se t counter

S = 0 ; % i n i t i a l i s e S to be zero

MinF = In f ; % i n f i n i t e s im a l

MinX = 0 ; % zero

MaxF = −I n f ; % negat ive i n f i n i t e s im a l

MaxX = 0 ; % zero
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f o r i =1:1 : pops i z e

pop ( i ) . Rep=RandomIndividual (n) ; % generate random ind i v i dua l

pop ( i ) .M = Members ( SDist2 , pop ( i ) . Rep , n ) ; % CH membership

pop ( i ) . F i tne s s = Object iveFunct ion ( pop ( i ) .M, n) ; % obta in

% f i t n e s s o f i nd i v i dua l at po int i

S = S + pop ( i ) . F i tne s s ; % update sum of f i t n e s s va lue S

i f ( MinF > pop ( i ) . F i tne s s ) % MinF > i n d i v i dua l f i t n e s s

% Assign the i nd i v i dua l and i t s f i t n e s s to MinF and MinX

MinF = pop ( i ) . F i tne s s ;

MinX = pop ( i ) . Rep ;

end

i f (MaxF < pop ( i ) . F i tne s s ) % MaxF < i n d i v i dua l f i t n e s s

% Assign the i nd i v i dua l and i t s f i t n e s s to MaxF and MaxX

MaxF = pop ( i ) . F i tne s s ;

MaxX = pop ( i ) . Rep ;

end

end

FitAvg1 = S / pops i z e ; %compute the average f i t n e s s FitAvg2

FitAvg2 = 0 ; % i n i t i a l i s e FitAvg2 to be zero

F i tD i f f = abs ( FitAvg2 − FitAvg1 ) ; % abso lu t e va lue o f d i f f e r e n c e

% of FitAvg2 and FitAvg1

whi l e (1 )

% i n i t i a l i s e MinI , MaxI , MaxX, S to be zero .

MinI = 0 ;

MaxI = 0 ;
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MaxX = 0 ;

S = 0 ;

MaxF = −I n f ; % negat ive i n f i n i t y

i = 1 ; % as s i gn one to i

whi l e ( i <= pops i ze )

% s e l e c t two po in t s us ing tournament s e l e c t i o n operator

[ p1 , p2 ] = se l e c t tournament (pop , 2 ) ;

i f ( rand < 0 . 8 ) %rand <0.80

% obta in new ind i v i dua l pop2 ( i ) by us ing h e u r i s t i c

% c ro s s ov e r on i nd i v i dua l at po int p1 and p2

pop2 ( i ) . Rep = Crossover Heur ( pop ( p1 ) . Rep , pop ( p2 ) .

Rep , n) ;

% Mutate the new ind i v i dua l

pop2 ( i ) . Rep = Mutation ( pop2 ( i ) . Rep , 0 . 1 , n ) ;

pop2 ( i ) .M = Members ( SDist2 , pop2 ( i ) . Rep , n) ;

pop2 ( i ) . F i tne s s = NewFitness ( pop2 ( i ) .M, n) ; % F i tne s s

% o f new i nd i v i dua l

i f ( MinF > pop2 ( i ) . F i tne s s ) % MinF > Fi tne s s

% as s i gn the i nd i v i dua l and i t s F i tne s s to MinX and

% MinF

MinF = pop2 ( i ) . F i tne s s ;

MinX = pop2 ( i ) . Rep ;

MinI = i ; % obta in the po int i o f i nd i v i dua l in

% the populat ion pop2

end

i f (MaxF < pop2 ( i ) . F i tne s s ) % MaxF < Fi tne s s

% as s i gn the i nd i v i dua l and i t s F i tne s s to MaxX and

% MaxF

MaxF = pop2 ( i ) . F i tne s s ;

MaxX = pop2 ( i ) . Rep ;
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MaxI = i ;

end

S = S + pop2 ( i ) . F i tne s s ; % add f i t n e s s to S

i = i + 1 ; % in c r e a s e the po int i by 1

e l s e % No c ro s s ov e r

pop2 ( i ) = pop ( p1 ) ; % as s i gn i nd i v i dua l pop ( p1 ) to

pop2 ( i )

pop2 ( i +1) = pop ( p2 ) ; % as s i gn i nd i v i dua l pop ( p2 ) to

% next i nd i v i dua l to pop2 ( i )

% update Sum of f i t n e s s

S = S + pop2 ( i ) . F i tne s s + pop2 ( i +1) . F i tne s s ;

i = i + 2 ; % update i

end

end

% El i t i sm : pas s ing the bes t (min ) i nd i v i dua l to the next

% genera t i on Without S e l e c t i o n ! !

i f (MinI == 0)

pop2 (MaxI) . Rep = MinX ; % best minimum

pop2 (MaxI) . F i tne s s = MinF ; % f i t n e s s o f the best minimum

end

pop = pop2 ; % as s i gn pop2 to pop

% update FitAvg2 , FitAvg1 and F i tD i f f

FitAvg2 = FitAvg1 ;

FitAvg1 = S / pops i z e ;

F i tD i f f = abs ( FitAvg2 − FitAvg1 ) ;

Counter = Counter + 1 ; % in c r e a s e counter by 1
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FDif f=MaxF−MinF ; % d i f f e r e n c e between MaxF and MinF

% i f F i tD i f f < 0.00005 and Counter > 10) or Counter > 100)

i f ( ( F i tD i f f < 0.00005 && Counter > 10) | | Counter > 100)

break ;

end

end

STATISTICS .GARounds( r+1) = Counter ;

X = MinX ; % best i nd i v i dua l

end

F Proposed DLSACH protocol

% func t i on that produces th best i nd i v i dua l us ing the dynamic l o c a l

% search a lgor i thm

func t i on X= DLSACH(n)

g l oba l SDist2 ; % g l oba l v a r i ab l e

X1=RandomIndividual (n) ; % c r ea t e a random ind i v i dua l X1

M = Members ( SDist2 , X1 , n ) ;

FitX1= NewFitness (M, n) ; % Obtain the f i t n e s s va lue FitX1

counter=0; % i n i t i a l i s e counter to be zero

MaxTrails=100; % Maximum number o f t r i a l s

whi l e ( counter<=MaxTrails ) % counter l e s s than or equal to

% MaxTrials
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ntimes=round ( StepS ize ( counter , MaxTrails ) *n) ; % Number o f

% b i t s to f l i p

R=X1 ; % as s i gn i nd i v i dua l X1 to R

f o r i =1: ntimes

P=s e t d i f f ( round ( rand (1) *n) ,0 ) ; % generate random point o f

% b i t to f l i p

R(P)= (R(P)==0) ; % f l i p b i t 0 to 1 or 1 to 0

end

Y=Crossover Heur (X1 , R, n) ; % produce i nd i v i dua l Y by us ing

% h e u r i s t i c c r o s s ov e r on i nd i v i dua l X1 and R

M = Members ( SDist2 , Y, n ) ;

FitY=NewFitness (M, n) ; % Compute the f i t n e s s FitY

i f ( FitY<FitX1 ) % FitY i s l e s s than FitX1

% Assign Y and FitY to X1 and FitX1 r e s p e c t i v e l y

X1=Y;

FitX1=FitY ;

counter=0; % r e s e t counter=0

e l s e

counter=counter + 1 ; % in c r e a s e counter by one

end

end

X=X1 ; % Best i nd i v i dua l

end
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Step Size

% func t i on that produces number o f b i t s to f l i p us ing counter and

% maximum of t r i a l s , MaxTrials arguments

func t i on ntimes = StepS ize ( counter , MaxTrials )

range=counter /MaxTrials ;

i f ( range<=0.5) % <= 1/2 o f MaxTrial

t imes =0.02; %2 percent

e l s e i f ( range <=0.75) % <= 3/4 o f MaxTrial

t imes =0.03; %3 percent

e l s e i f ( range <=0.875) % <= 7/8 o f MaxTrial

t imes =0.04; %4 percent

e l s e

t imes =0.05; %5 percent

end

ntimes=times ;

end

G Energy Consumption

% funt i on that computes the energy consumption

func t i on EnergyConsumption (m, n)

g l oba l S2 SDist2 BSDist2 k k CP EDA ; % g l oba l v a r i a b l e s

f o r i = 1 : 1 : n

% Energy consumed by the member nodes

143



APPENDIX

i f (m( i ) ˜= 0)

E( i ) = TXEnergy(k , SDist2 ( i ,m( i ) ) ) + 3 * RXEnergy(k CP) +

. . .

TXEnergy(k CP , BSDist2 ( i ) ) ;

e l s e

M = f ind (m == i ) ;

MM = length (M) ;

T = 0 ;

f o r j =1:1 :MM %TX TDMA to members

T = T + TXEnergy(k CP , SDist2 ( i ,M( j ) ) ) ;

end

% Energy consumed by the CHs

E( i ) = 2 * RXEnergy(k CP) + MM *RXEnergy(k ) + T + . . .

TXEnergy(k , BSDist2 ( i ) ) + TXEnergy(k CP , BSDist2 ( i ) ) +

. . .

k*EDA*(MM+1) ;

end

S2 ( i ) .E = S2 ( i ) .E − E( i ) ; % Sensor r e s i d u a l energy

end

end

H Main Code

g l oba l do ETX ERX EDA Efs Emp k k CP pops i ze s ink S1 S2 Eo . . .

SDist SDist2 BSDist BSDist2 DistAvg STATISTICS r SumE C Rs A B . . .

TotalCoverage xm ym; % g l oba l v a r i a b l e s

% load ( ' Experiment I . mat ' ) ; % load f i l e s
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% Common Parameters

xm=100; % maximum y value o f the s enso r f i e l d

ym=100; % maximum x value o f the s enso r f i e l d

Rs = 7 ; % sens ing rad iu s

s ink . x= 50 ; % s ink x−co rd ina t e

s ink . y= 175 ; % s ink y−co rd ina t e

n=75; %The nuber o f s en so r s

pops i z e =100; % populat ion s i z e

Eo=0.5;

%mu = 0 . 5 ; %0.5; % Min Energy f o r a l l s en so r nodes .

%sigma = 0 . 0 5 ; %0.5; % Max Energy f o r a l l s en so r nodes .

ETX=50*0.000000001; % Transmiss ion energy

ERX=50*0.000000001; % Reception energy

%Transmit Ampl i f i e r types

Efs =10*0.000000000001; % f r e e−space l o s s

Emp=0.0013*0.000000000001; % mult ipath fad ing

EDA=5*0.000000001; %Data Aggregat ion Energy

k = 4000 ; % Number o f packets

k CP = 50 ; % Number o f c on t r o l packets

rmax=5000; % Maximum number o f rounds

do=sq r t ( Efs /Emp) ; % do computation

% Creat ion o f the Homogeneous Wire l e s s Sensor Network

f o r i =1:1 :n

S1 ( i ) . xd=rand (1 , 1 ) *xm; % X coo rd ina t e s f o r s enso r nodes

S1 ( i ) . yd=rand (1 , 1 ) *ym; % Y coo rd ina t e s f o r s enso r nodes

S1 ( i ) .E=Eo ; % as s i gn i n i t i a l energy to each senso r
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S1 ( i ) . Overlapped = [ ] ;

%i n i t i a l l y the re are no c l u s t e r heads only nodes

f i g u r e (1 ) ;

p l o t ( S1 ( i ) . xd , S1 ( i ) . yd , ' o ' ) ; % p lo t s en so r s

hold on ;

end

p lo t ( s ink . x , s ink . y , '+ ' ) ; % p lo t s ink

% % Creat ion o f the Fu l l Heterogeneous Wire l e s s Sensor Network

% f o r i =1:1 :n

% % X and Y coo rd ina t e s f o r s enso r nodes

% S1 ( i ) . xd=rand (1 , 1 ) *xm;

% S1 ( i ) . yd=rand (1 , 1 ) *ym;

% Eo=normrnd (mu, sigma ) ;

% S1 ( i ) .E=Eo ; %* ( rand + 0 .05 ) ;

% S1 ( i ) . Overlapped = [ ] ;

% end

%

% % Creat ion o f the Pa r t i a l Heterogeneous Wire l e s s Sensor Network

% f o r i =1:1 :n

% % X and Y coo rd ina t e s f o r s enso r nodes

% S1 ( i ) . xd=rand (1 , 1 ) *xm;

% S1 ( i ) . yd=rand (1 , 1 ) *ym;

% temp rnd0=i ;

% Er=Eo ;

% % Randomm Elec t i on o f Normal Nodes

% i f ( temp rnd0<mdiv*n+1)

% Er=normrnd (mu, sigma ) ;

% S1 ( i ) .E=Er ;
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% S1 ( i ) . Overlapped = [ ] ;

% end

% % Randomm Elec t i on o f Advanced Nodes

% i f ( temp rnd0>=mdiv*n+1)

% S1 ( i ) .E=Eo ;

% S1 ( i ) . Overlapped = [ ] ;

% end

% end

A = ze ro s (1 , n ) ; % Area covered by the Sensor only A( i )

B = ze ro s (1 , n) ; % Area with in a senso r range covered by others , B( i )

f o r x = 1 : 1 :xm

f o r y = 1 : 1 :ym

C(x , y ) = 0 ; % I n i t i a l i s e po int covered C to be 0

I = [ ] ; % c r ea t e an empty s e t I

f o r i = 1 : 1 : n

% i f the euc l i d ean d i s t anc e between po int (x , y ) and each

% node coord inate i s l e s s than the s en s ing rad iu s

i f ( s q r t ( ( x −S1 ( i ) . xd ) ˆ2 + (y − S1 ( i ) . yd ) ˆ2) <= Rs)

C(x , y ) = C(x , y ) + 1 ; % in c r e a s e C by 1

I = [ I i ] ; % add senso r to the array I

end

end

i f ( ˜ isempty ( I ) ) % i f I i s not empty

i f ( l ength ( I ) == 1) % i f I conta in s one element

A( I ) = A( I ) + 1 ; % area covered by one senso r

% incrementa l

e l s e

B( I ) = B( I ) + 1 ; % area covered by other s en so r s
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% with in the senso r range incrementa l

end

end

end

end

% func t i on f o r computing the Total coverage

TotalCoverage = Coverage (C,xm,ym) ;

DistSum = 0 ; % I n i t i a l i s e sum of d i s t an c e s between adjacent

% sen so r s to be zero

BSDistSum = 0 ; % I n i t i a l i s e sum of d i s t an c e s between s en so r s

% and s ink

SumE = 0 ;

f o r i =1:1 :n

f o r j=i +1:1 :n

SDist ( i , j ) = sq r t ( ( S1 ( i ) . xd−(S1 ( j ) . xd ) ) ˆ2 + . . .

( S1 ( i ) . yd−(S1 ( j ) . yd ) ) ˆ2) ; % Compute the euc l i d ean d i s t anc e

% between adjacent s en so r s

SDist ( j , i ) = SDist ( i , j ) ; % e . g d i s t anc e between A−B = B−A

DistSum = DistSum + SDist ( i , j ) ; % compute DistSum

end

SDist ( i , i ) = In f ; % i n f i n i t e s im a l d i s t anc e between senso r and

% i t s e l f

BSDist ( i ) = sq r t ( ( S1 ( i ) . xd−( s ink . x ) ) ˆ2 + . . .

( S1 ( i ) . yd−( s ink . y ) ) ˆ2) ; % Compute the euc l i d ean d i s t anc e between

% each senso r and the s ink

BSDistSum = BSDistSum + BSDist ( i ) ; % compute BSDistSum

SumE = SumE + S1 ( i ) .E ; % compute o f a l l the i n i t i a l energy o f

% a l l s en s o r s
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end

DistAvg = DistSum / ( ( ( n−1)*n) /2) ; % Compute the average d i s t anc e

% DistAvg

%%

dead=0; % i n i t i a l i s e counter dead s en so r s

a l l d e ad =0;

a l l i v e = n ; % number o f a l i v e s en so r s

f o r r =0:1 : rmax

deadSIndx = [ ] ; % c r ea t an empty array , deadSIndx

SL = SendNodesToSleep (n) ; % func t i on that dec ide nodes to s l e e p

AL = 1 : 1 : n ; % c r ea t e an a c t i v e l i s t AL = 1 , 2 , 3 , . . . , n

AL(SL) = [ ] ; % remove s l e e p i n g s en so r s from the a c t i v e l i s t AL

S2 = S1 (AL) ; % update s en so r s and s to r ed in to new va r i ab l e S2 .

SDist2 = SDist ; % as s i gn SDist to SDist2

% remove euc l i d ean d i s t an c e s o f a ad jacent s l e e p i n g nodes

SDist2 (SL , : ) = [ ] ;

SDist2 ( : , SL) = [ ] ;

BSDist2 = BSDist ; % as s i gn BSDist to BSDist2

BSDist2 (SL) = [ ] ; % remove euc l i d ean d i s t an c e s o f s l e e p i n g

% nodes and s ink

n2 = length ( S2 ) ; % update the number o f a c t i v e s en so r s n2

X = HACH(n2 ) ; % func t i on that perform our HACH algor i thm
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% X = DLSACH(n2 ) ; % func t i on f o r DLSACH algor i thm

m = Members ( SDist2 ,X, n2 ) ;

L = length ( f i nd (m == 0) ) ; % Number o f CHs

F = Object iveFunct ion (m, n2 ) ; % F i tne s s va lue o f the best

% ind i v i dua l

% Obtain S t a t i s t i c s f o r the Coverage and S l e ep ing Nodes

STATISTICS . Coverage ( r+1) = UpdateCoverage ( TotalCoverage , SL) ;

STATISTICS . SleepingNodes ( r+1)=length (SL) ;

EnergyConsumption (m, n2 ) ; % func t i on that computes the energy

% consumption

S1 (AL) = S2 ; % Update S1

SumE = 0 ;

f o r i =1:1 :n

i f ( S1 ( i ) .E<=0) % check i f any node i s dead

dead=dead+1; % add dead node to array l i s t dead

deadSIndx = [ deadSIndx i ] ; % obta in the po int o f the

dead node

e l s e

SumE = SumE + S1 ( i ) .E ; % Update the sum of energy SumE

end

end

% Update the coverage matrix only i f s enso r i s not a l i v e

f o r i = 1 : 1 : l ength ( deadSIndx )

[C, aaa ] = UpdateCoverageMatrix ( S1 ( deadSIndx ( i ) ) ,C,xm,ym) ;

end
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% i f the array l i s t deadSIndx i s not empty

i f (˜ isempty ( deadSIndx ) )

TotalCoverage = Coverage (C,xm,ym) ; % Update the t o t a l

coverage

end

S1 ( deadSIndx ) = [ ] ; % Remove dead senso r from the senso r S1

n = length ( S1 ) ; % obta in new number o f s en so r s n

% Obtain the S t a t i s t i c o f dead senso r DEAD1, a l i v e s enso r

% ALLIVE1 and average energy EAvg

STATISTICS .DEAD1( r+1)=dead ;

STATISTICS .ALLIVE1( r+1)=a l l i v e −dead ;

STATISTICS .EAvg( r+1) = SumE / n ;

i f ( isempty ( S1 ) ) % i f S1 i s empty then

break ; % terminate

end

end
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