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Abstract

This paper deals with the cluster analysis of selected countries based on COVID-
19 new deaths per million data. We implement a statistical procedure that combines
a rank-size exploration and a k-means approach for clustering. Specifically, we first
carry out a best-fit exercise on a suitable polynomial rank-size law at an individ-
ual country level; then, we cluster the considered countries by adopting a k-means
clustering procedure based on the calibrated best-fit parameters. The investigated
countries are selected considering those with a high value for the Healthcare Access
and Quality Index to make a consistent analysis and reduce biases from the data
collection phase. Interesting results emerge from the meaningful interpretation of
the parameters of the best-fit curves; in particular, we show some relevant properties
of the considered countries when dealing with the days with the highest number of
new daily deaths per million and waves. Moreover, the exploration of the obtained
clusters allows explaining some common countries’ features.
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1 Introduction

The spatio-temporal patterns of COVID-19 represent one of the most relevant themes
for statistical research nowadays, given the crucial relevance of the pandemic disease in
contexts of society such as economics and, of course, health.
This pandemic has heterogeneous implications on countries and regional realities. The
most common example we can mention is given by the different applications of the so-
called non-pharmaceutical interventions in the preliminary phases (see, e.g. Flaxman
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et al. 2020, Tian et al. 2021). These differences must be included in the premise of an
effective exploration of COVID-19 repercussions.
Some authors deal with forecasting exercises of the future evolution of deaths and infec-
tions dynamics (see, e.g., Bertozzi et al. 2020, Moein et al. 2021, Nabi 2020, Tang et al.
2021, Prasanth et al. 2021). In this respect, Ioannidis et al. (2020)’s authors state that
the reliability of the predictions related to COVID-19 is debatable for several reasons,
including the relevant sensitivity of the estimates on the employed methodology.
This paper takes the opposite perspective – hence, overcoming the criticism raised by
Ioannidis et al. (2020) – presenting a lookback of the spatio-temporal data related to
COVID-19. It is worth mentioning some relevant contributions on the matter. Bartolucci
& Farcomeni (2021) propose the study of the cases of COVID-19 infections in the Ital-
ian regions by employing a model based on latent variables and estimating it through a
Markov chain Monte Carlo (MCMC) algorithm. Still, in the context of MCMC, Lee et al.
(2021) discuss the propagation of COVID-19 in Scotland by adopting a Bayesian-type
framework. In Schneble et al. (2021), the registered death counts related to COVID-19
are modelled to monitor the dynamic behaviour of the infections on a small-area level
in Germany.
Differently from the studies above, we consider a selection of countries and deal with the
exploration of their daily data about COVID-19 new deaths per million. We combine
a rank-size best-fit exercise – being the size, the considered variable – and a cluster
analysis of k-means type. So, it is shown that a rank-size law of third-degree polynomial
type provides high-quality goodness-of-fit parameters. The calibrated parameters feed
the k-means cluster analysis based on a Euclidean distance, with k = 3 (the reasons for
this choice are presented in Section 2). In this paper, we do not intend to propose a new
method for clustering COVID-19 data in terms of countries as Zubair et al. (2020) have
done; instead, we want to consider a statistical clustering technique well known in the
literature and widely used in the context of even operations research, and apply it to a
novel, relevant problem, with highly informative results. To assure data reliability and to
reduce possible sources of biases in the data collection, countries are selected by taking
those with a high value of the Healthcare Access and Quality Index (HAQ hereafter, see
Barber et al. 2017). Moreover, to avoid distortions in the best-fit procedure, we have
removed the outliers at a country level during the data pre-treatment phase. The results
interpretation is grounded on the meaningfulness of the calibrated parameters in terms
of the polynomial curve shape; the analysis of the obtained clusters allows highlighting
regularities and deviations of the considered countries.

Other contributions present a cluster analysis of the data related to COVID-19 and
are summarised in Table 1. For instance, James & Menzies (2020), and Rios et al. (2021)
respectively employ k-means and hierarchical to analyze public policies along the time
(former) and to make forecasting of pandemic waves (latter). In these studies, the time is
considered because of the purposes of the researches. Similarly, Li et al. (2021) run health
parameters-based classification of the patients in Wuhan covering the beginning of the
pandemic spread. Hutagalung et al. (2021) perform a cluster analysis via k-means taking
k = 3 to group South-East Asian countries. In this case, the time is not considered to
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get a more global view of the country’s conditions during the pandemic. Similar works
can by Abdullah et al. (2021) cover a broader set of countries or in Kumar (2020)’s
research, where Indian territories are classified in terms of similar infection propagation,
to pursue optimal monitoring strategies. On a different note, certain studies include
additional features for investigating the pandemic. For example, Siddiqui et al. (2020)
consider the relationship between temperature in Chinese areas and the spreading of the
disease to cluster China’s territories. A similar exercise is done by Vadyala et al. (2021)
where humidity is also considered but for exploring Louisiana’s pandemic related data.
Kiaghadi et al. (2020) consider a larger number of variables. The authors included in the
clustering elements like “Access to Medical Services and Sociodemographic, Behavioral,
and Lifestyle Factors” to determine the most vulnerable areas to COVID-19 in Harris
County, Texas. Rizvi et al. (2021) clustered 79 countries using socio-economic factors,
disease prevalence and health system indicators considering COVID-19 confirmed cases
and COVID-19 death cases. Zubair et al. (2020) propose a methodological work where
a k-means variation is introduced for the case of COVID-19 data.
Our work aligns with Tuli et al. (2020) for the early steps the authors take, even if they
do not explore clusters but focus on forecasting. Tuli et al. (2020) find estimation of new
cases distributions. Among others, Weibull and Gaussian distributions on COVID-19 are
used. With the modelled distributions, the authors can perform forecasts. We are close
to the work by Machado & Lopes (2020) as well. The authors model the infected cases in
more than 70 countries and visualize the results via a clustering approach. Machado &
Lopes (2020) use daily log changes to create empirical distributions, and then they test
multiple families of distributions to model the data. Then, with estimated distributions’
parameters, the clusters are found.

Paper Clustering Method COVID-19 Data

James & Menzies (2020) k-means COVID-19 cases and deaths in multiple countries.
Rios et al. (2021) hierarchical COVID-19 cases and deaths in multiple countries.
Zubair et al. (2020) k-means COVID-19 cases, deaths and recovery in multiple countries.
Siddiqui et al. (2020) k-means COVID-19 confirmed, suspected and death cases in China.
Hutagalung et al. (2021) k-means COVID-19 cases and deaths in multiple countries (South-East Asia).
Vadyala et al. (2021) k-means COVID-19 cases in Louisana state, USA.
Zhang & Lin (2021) k-means COVID-19 new cases in USA.
Abdullah et al. (2021) k-means COVID-19 confirmed, death, and recovered cases in Indonesia.
Kiaghadi et al. (2020) k-means COVID-19 confirmed cases in Texas, USA.
Machado & Lopes (2020) hierarchical COVID-19 cases in in multiple countries.
Kumar (2020) hierarchical COVID-19 cases, deaths and recovery in India.
Li et al. (2021) k-means COVID-19 cases in China.
Rizvi et al. (2021) k-means COVID-19 cases and deaths in multiple countries.

Table 1: Sample of recent studies related to our work for the methods employed and for
the data used.

Moreover, some papers treat COVID-19 by adopting a rank-size analysis approach.
For example, Kennedy & Yam (2020) use Zipf’s law to detect COVID-19 data inconsis-
tencies, while Jiang & de Rijke (2021) employ power-law relationships to explore USA
populations, deaths and infections. Vasconcelos et al. (2021) “analyze the rank-frequency
distribution of preprints servers, ordered by the number of COVID-19 preprints they
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host” and Small & Sousa (2021) apply rank-size distributions to model the spatio-
temporal evolution of COVID-19 in USA and China, but not directly with data regarding
deaths or new cases.
More in general, the usage of rank-size laws is typically driven by robust compliance of
the data to theoretical models – see, e.g., the work of Ficcadenti et al. 2019 for text anal-
ysis or Ficcadenti & Cerqueti 2017 for earthquakes cost evaluations based on rank-size
law – namely, when the best fit is appropriate, the goodness of fit must result excellent.
It is the case in this paper, as presented in the section devoted to the results. In studying
other researches attempting to model similar information related to COVID-19, one can
notice, for example, Table 1 by Tuli et al. (2020) where the R2s are lower than those
usually obtained with rank-size best fits. In addition, Machado & Lopes (2020) write
in section “Regression models for describing the spread of COVID-19”, that “a single
model with a limited number of parameters is not able to fit well the time series [...]
for all countries”. So, even if they have found some goodness of fit comparable to those
expected for rank-size compliance (e.g., they report an R2 = 0.99 for Italian and Chinese
data), the issue of identifying a model that works well for all the countries remain open.
It also involves some consideration around over-fitting the data with many parameters
and the increasing computational complexity in fitting and then clustering. Therefore,
another advantage of the approach proposed in the present study is the rank-size re-
lationships’ capacity to create a unified environment where comparisons are possible.
Namely, we can fit each country’s data and compare the results, ensuring that the best
fit capacity does not affect the clustering activity.
The rank-size approach has the advantage (in this case) of allowing the analysis without
data’s temporal feature. Namely, in sorting the observations of new deaths per million
and ranking them, the dates in which the causalities occurred are no longer relevant to
reach conclusions regarding the countries. In this way, the issues presented by Middel-
burg & Rosendaal (2020) and Zarikas et al. (2020) do not affect our analysis. Zarikas
et al. (2020) “compare the time series of COVID-19 regarding active cases or similar
variables” to model the evolution of the pandemic. In our work, we do not make cluster-
ing based on different types of time evolution (e.g., strong, medium, mild etc.), but our
ranking uses the number of new deaths per million in a certain time period. Further-
more, Zarikas et al. (2020) concern solely the first wave while the present paper mixes
different waves to capture information on the phenomenon as a whole. Besides, the
study is advancing a unique combination of rank-size and clustering analysis to evaluate
past realizations of COVID-19 patterns. This is novel in the literature to the best of our
knowledge.
The rest of the paper is organised as follows. Section 2 describes the considered dataset
and presents the methodologies employed for the analysis. Section 3 contains the em-
pirical results, along with a discussion of them.
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2 Data and methods

The time series of daily new deaths per million by country has been downloaded from
Roser et al. (2020). The data source collects a comprehensive set of variables describing
many features related to COVID-19, and it has been employed in several authoritative
studies (see, e.g. those from Zhao et al. 2020, Hasell et al. 2020, Berg et al. 2020). Each
country has a specific reference period, depending on the registered beginning of the
pandemic propagation. All the investigated periods ends on April 18th, 2021 – when
data have been retrieved – while the starting points are reported in the last column of
Table 2.

Countries are rather heterogeneous in terms of health care standards. This might
create different reporting best practices, especially at the beginning of the pandemic (see
for example McDonell 2020). To overcome this potential bias and obtain a more reliable
dataset, we have chosen countries with a high level of HAQ, presented by Barber et al.
(2017). Such an indicator is listed for 195 countries. Despite the index published in 2017,
the most recent levels are reported for 2015 when Andorra had the highest level with
94.6, and the Central African Republic had the minimum with 28.6. So, we have chosen
to keep the 39 countries appearing in the last 20th percentile of the HAQ distribution in
2015; see the first two columns of Table 2 for the details. The same table contains the
main descriptive statistics of the considered data at a country level for a more detailed
overview.

We have preprocessed the dataset to make the best fit more effective and avoid
distortions. First, we have removed the outliers in each analyzed series by applying an
interquartile method. Namely, for each series, we have calculated the 75th (Q3) and
25th (Q1) percentiles; then, we eliminated all the observations being outside the range
[Q1− 1.5× (Q3−Q1), Q3 + 1.5× (Q3−Q1)]. In doing so, we have faced the so-called
king and vice-roy and queen and harem effect, i.e. the deviations due to outliers at low
and high ranks in the rank-size analysis (see, e.g. Ausloos 2014, Cerqueti & Ausloos
2015, Ficcadenti et al. 2020). The country data presents tails on the right side only so
that the eliminated observations always sit on the right side of the upper limit. Second,
we have removed Andorra, Iceland, New Zealand, and Singapore from the investigated
sample since they are not relevant in a rank-size context. Indeed, such countries luckily
had just a few days in which deaths were experienced, so they present zero new deaths
in most of the days in the period under analysis. Therefore, we have obtained N = 35
countries after this preprocessing phase.

The rank-size analysis is implemented at an individual country level. Each country’s
new daily deaths per million (size) represent the (daily) sizes. The ranks are associated
with the daily sizes in decreasing order. Specifically, we have given rank one to the
day with the highest level of new deaths per million and the highest rank to the day
associated with the smallest number of new daily deaths – possibly, zero.
After many trials of different functional forms such as the Zipf-Mandelbrot by (see
Mandelbrot 1961, 1953) and the Universal Law by (see Ausloos & Cerqueti 2016), we
have used for each country the following third-degree polynomial relationship which, as
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Locations Care quality index Daily deaths per million stats
Country HAQ Min Max µ m σ Skew Kurt starting date

0 Andorra 94.6 0.0 77.66 4.05 0.00 9.39 3.19 13.71 2020-03-22
1 Australia 89.8 0.0 2.31 0.09 0.00 0.21 4.95 37.01 2020-03-01
2 Austria 88.2 0.0 24.20 2.73 1.33 3.66 2.01 4.67 2020-03-12
3 Belgium 87.9 0.0 42.80 5.10 2.85 6.50 2.24 6.16 2020-03-11
4 Canada 87.6 0.0 6.46 1.54 0.99 1.47 1.00 0.17 2020-03-09
5 Croatia 81.6 0.0 22.41 4.04 1.22 5.22 1.42 1.11 2020-03-19
6 Cyprus 85.3 0.0 9.13 0.87 0.00 1.58 2.46 6.99 2020-03-22
7 Czechia 84.8 0.0 27.55 6.76 2.15 7.35 0.63 -0.95 2020-03-22
8 Denmark 85.7 0.0 10.36 1.06 0.34 1.50 2.21 5.80 2020-03-14
9 Estonia 81.4 0.0 12.82 2.12 0.75 2.97 1.40 1.05 2020-03-25
10 Finland 89.6 0.0 7.76 0.41 0.00 0.74 4.00 27.54 2020-03-21
11 France 87.9 0.0 21.10 3.46 2.22 4.06 1.75 3.38 2020-02-15
12 Germany 86.4 0.0 20.70 2.35 0.81 3.35 2.05 4.45 2020-03-09
13 Greece 87.0 0.0 11.61 2.25 0.58 2.89 1.27 0.46 2020-03-11
14 Hungary 79.6 0.0 32.19 6.52 1.45 7.94 1.18 0.56 2020-03-15
15 Iceland 93.6 0.0 14.65 0.22 0.00 1.13 7.85 79.29 2020-03-21
16 Ireland 88.4 0.0 44.55 2.43 0.91 4.13 4.12 29.18 2020-03-11
17 Israel 85.5 0.0 11.67 1.85 1.27 1.86 1.83 4.37 2020-03-20
18 Italy 88.7 0.0 16.42 4.57 4.18 4.14 0.53 -0.82 2020-02-21
19 Japan 89.0 0.0 1.96 0.18 0.08 0.23 2.38 9.57 2020-02-13
20 Kuwait 82.0 0.0 3.28 0.89 0.70 0.67 0.86 0.33 2020-04-04
21 Lebanon 80.0 0.0 51.42 2.51 1.03 3.99 5.24 55.34 2020-03-10
22 Luxembourg 89.3 0.0 46.33 3.14 0.00 5.79 3.28 14.76 2020-03-14
23 Malta 85.1 0.0 15.85 2.48 1.13 3.15 1.23 0.91 2020-04-08
24 Montenegro 80.7 0.0 28.66 5.80 3.18 5.99 0.98 0.38 2020-03-23
25 Netherlands 89.5 0.0 13.66 2.45 1.63 2.52 1.29 1.45 2020-03-06
26 New Zealand 86.2 0.0 0.83 0.01 0.00 0.07 6.96 58.30 2020-03-29
27 Norway 90.5 0.0 4.98 0.33 0.00 0.65 3.18 12.64 2020-03-14
28 Poland 79.6 0.0 25.26 4.07 0.77 5.30 1.30 0.69 2020-03-12
29 Portugal 84.5 0.0 29.72 4.18 1.42 6.13 2.37 5.55 2020-03-17
30 Qatar 85.2 0.0 3.47 0.34 0.00 0.54 2.58 8.59 2020-03-28
31 Saudi Arabia 79.4 0.0 1.67 0.50 0.34 0.39 0.79 -0.47 2020-03-24
32 Singapore 86.3 0.0 0.34 0.01 0.00 0.05 4.08 17.55 2020-03-21
33 Slovenia 87.4 0.0 31.75 4.99 1.44 7.09 1.52 1.33 2020-03-14
34 South Korea 85.8 0.0 0.78 0.08 0.04 0.11 2.51 7.73 2020-02-20
35 Spain 89.6 0.0 34.71 4.10 2.11 5.25 1.64 3.36 2020-03-03
36 Sweden 90.5 0.0 46.93 3.43 0.50 6.33 3.44 15.33 2020-03-10
37 Switzerland 91.8 0.0 19.76 2.99 0.92 4.34 1.87 3.00 2020-03-05
38 United Kingdom 84.6 0.0 26.90 4.59 2.22 5.48 1.55 2.05 2020-03-06
39 United States 81.3 0.0 13.52 4.13 3.28 2.95 1.10 0.73 2020-02-29

Table 2: Level of the last twentieth percentile of the HAQ index and the statistical
summary of the number of daily deaths per million.
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we will see, gives satisfactory best fit outcomes:

z = a+ b · r + c · r2 + d · r3, (1)

where z is the size, r represents the rank related to size z and a, b, c and d are real parame-
ters to be calibrated. To implement the best fit procedure, we have used the Scikit-learn
Python’s library (Pedregosa et al. 2011) which leads to a parameters’ estimation “by
adding higher-order polynomial terms of existing data features as new features in the
dataset” as reported by Bisong (2019).

Once the best fit procedure is performed, each country i = 1, . . . , N remains associ-
ated to four calibrated parameters, collected in a vector xi = (âi, b̂i, ĉi, d̂i).

Such parameters have been used in the countries’ clustering procedure by adopting
the “k-means++” Scikit-learn Python algorithm (see contributions from Pedregosa et al.
2011, Arthur & Vassilvitskii 2006). Anyway, the effect of random initialization have been
tested, and they did not impact the results. To implement the k-means++ procedure,
the parameters have been standardized over the considered countries. We set k = 3
after inspecting different possibilities via the Silhouette, Calinski, Davies and Dunn
coefficients. The results of the evaluation are reported in Table 3, as it is possible to
note, they straightforwardly suggest k = 3 as the best option. Indeed, obtaining adjacent
neighbourhoods of clusters representing different countries’ structures and regimes is
preferred. So, taking k = 3 means selecting the condition where the distance between
clusters is the minimum. Hence, the groups are close to each other, and the variance
in the clusters is maximum, ensuring more comprehensive clusters’ perimeters, namely
a higher probability of capturing the countries behaving similarly, falling in the same
clusters’ area.
The proposed clustering algorithm selects the three clusters’ centroids that minimize the
within-clusters sum-of-squares criterion:

N∑
i=1

min
µ(J)∈R4:J=0,1,2

(||xi − µ(J)||2) (2)

where ||x− µ|| is the Euclidean distance between the four-dimensional vectors x and µ.
Let us denote the centroids coming from the optimization procedure in (2) by

µ̄(0), µ̄(1), µ̄(2); they are associated to clusters labelled with “0”, “1” and “2”, respec-
tively. Such optimized centroids lead to a classification of countries 1, . . . , N , by stating
that i ∈ J if and only if ||xi − µ̄(J)|| is the minimum value of the Euclidean distances
between xi and the centroids µ̄(0), µ̄(1), µ̄(2), for i = 1, . . . , N and J = 0, 1, 2.
To summarise the proposed procedure, we report in pseudo-code what de-
scribed above in Algorithm 1.
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Algorithm 1 Summary of the rank-size analysis and k-means clustering.

1: Select the countries and their new daily deaths per millions series; ▷ in our case
they are 35

2: for i = [1, . . . , N ] do ▷ where N is the number of countries
3: Eliminate the outliers by using the interquartile methods;
4: Sort in descending order the series of new daily deaths per millions and assign

ranks;
5: Run a third degree polynomial regression to estimate Eq. (1)’s parameters;
6: Save the results;
7: end for
8: Determine the optimal number of clusters k; ▷ in our case k = 3, see Table 3
9: Place the initial clusters’ centroids according to the “k-means++” variant, see Arthur

& Vassilvitskii (2006);
10: repeat
11: for i = [1, . . . , N ] do
12: find the xi’s nearest centroid using the minimum Euclidean distance:

minµj∈R4:j=[0,1,2](||xi − µj ||2); ▷ note that xi is the ith quadruple of parameters

13: assign the ith data point to the cluster having the closest centroid;
14: end for
15: Update the centroids with the average of the values belonging to the respective

clusters;
16: until Convergence of centroids reach steady points or until a fixed number of itera-

tions is reached.

Clusters # k 2 3 4 5

Silhouette 0.4725 0.4245 0.4563 0.4362
Calinski 41.8432 36.0943 41.4165 44.1670
Davies 0.7532 0.8654 0.6857 0.5328
Dunn 0.1232 0.0596 0.0827 0.1272

Table 3: Evaluation of the best k for the k-means cluster analysis. The reference for
the indexes used are listed here in the same order they appear in the table Rousseeuw
(1987), Davies & Bouldin (1979), Dunn (1974), Caliński & Harabasz (1974)

3 Results

The results of the best fit for Eq. (1) are reported in the first six columns of Table
4. The R2 and the RSME are outstanding, proving the ability of Eq. (1) to represent
the rank-size relationship. The interpretation of the calibrated parameters â, b̂, ĉ and
d̂ leads to relevant comments related to the considered countries. The parameter â is
the intercept of the best fit curve with the y-axis. Hence, such a parameter is positively
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influenced by the highest level of new daily deaths per million experienced by the coun-
tries. We observe the maximum value of â held by Hungary and the minimum one by
Australia.
Differently, b̂ is associated with the slope of the decay; thus, not unexpectedly, it is
always negative in our case. In particular, at low ranks, a high value of the absolute
value of b̂ stands for a steep curve, while b̂ close to zero means that the curve is rather
flat. The difference between such cases is the distance between the sizes at the low
ranks, which is large for the steep cases and small for the flat ones. We observe that
countries experiencing a single pandemic wave with low daily deaths have similar values.
This explains why such countries have parameter b̂ much closer to zero – see the case of
Australia in Figure 1; on the contrary, the maximum value of the absolute value of b̂ is
scored by Slovenia.
The concavity is driven by ĉ, that is positive or negative according to a convex or concave
shape of the curve at low ranks, respectively. In our case, such a calibrated parameter
is always positive, except for Czechia and Italy. Therefore, for all the other countries,
decrements of the low-rank sizes decrease as the rank grows. This means that the highest
number of daily deaths per million form a peak in the overall distribution. The flatter
shape of the concave curve at low ranks for Italy and Czechia points to more homoge-
neous values of the daily deaths per million at low ranks. Such behaviours are amplified
as the absolute value of ĉ increases. We notice that Slovenia scores the maximum value
of such a parameter in this respect.
Concluding, an easy computation gives that rank r = − ĉ

3·d̂
represents the unique inflec-

tion point of the best fit curve, where a change of concavity is observed. This quantity
is reported in column “Inflection point” of Table 4. The highest value of the rank as-
sociated with the inflection point is scored by Czechia, while the lowest is by Slovenia.
Such values further confirm the aforementioned logic, with Czechia having experienced
a more recent and prolonged critical situation than Slovenia (see Figure 1).
The standardised parameters â, b̂, ĉ and d̂ are employed to feed the clustering algo-
rithm. The resulting clusters are reported in the column “Clusters” in Table 4 which,
jointly with Figures 1, 2 and 3, further informs about the features captured in fitting
the data with Eq. (1). The cluster identified with the colour blue and the number “0”
mainly contains countries with a relatively low number of deaths per million; Australia,
Japan and South Korea obtain the lowest losses. This is further confirmed by sorting
the results by â. It is relevant to point out that the same countries appear with the
lowest values of the calibrated parameter b̂. Such a finding makes sense because when
a series of deaths gets a shock, it takes time to get back to zero, so this is reflected in
a more gentle decay registered in the rank-size relationship. Interestingly, the cluster
indicated in orange and identified by the number “1” is characterised by low values of b̂
and d̂, but high values of ĉ. For example, the countries with the lowest b̂ are Slovenia,
Hungary, Poland, Croatia and Belgium. The highest ĉ are reported by Poland, Croatia,
Luxembourg, Belgium and Slovenia. The lowest d̂s are scored by Slovenia, Belgium,
Luxembourg, Portugal and Croatia. Despite the outlier removal procedure, these rel-
atively small countries suffered losses with high daily peaks. Finally, the green cluster
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identified with the number “2” has countries sitting in the middle of the distribution
when values are sorted by b̂. Similarly, when they are ordered by ĉ except for Czechia
and Italy, which present the lowest values of ĉ even if they belong to cluster number 2.
To justify such a result, we look at the “Inflection point” column in Table 4. Indeed, for
Czechia and Italy, the inflection point falls at low ranks, and from Figure 1 we can see
that the quoted countries have experienced lengthened periods of high new deaths per
million. Montenegro and United States also show similar patterns having long periods
of high levels of new daily death per million. However, for them, such a condition is
quite evident over the investigated period; therefore, the situation does not allow for a
change in concavity to happen early in the rank, even if Montenegro and United States
belong to the same cluster of Czechia and Italy.

Moving on to an example, Figure 4 contains a comparison of Italy and the UK. It
allows concluding that Italy’s change in the concavity at middle ranks lead the country
to be in Cluster 2, on the other hand, the UK’s number of days with high deaths per
million presented at low ranks makes the country more suitable for Cluster 1.

4 Conclusions

This paper aims at providing a unified framework at a country level of the number of
deaths for COVID-19 by moving from the daily data and through different waves. To
this aim, we implement a rank-size analysis via a four-parameter third-degree polynomial
on the series of COVID-19 new deaths per million registered in 35 countries. The
statistical soundness of the results allows the identification of different regimes in the
data. Specifically, it is possible to make comparisons between countries by using a rank-
size approach because the best fit of Eq. (1) are statistically good in all the considered
areas (see Table 4). We have provided a reasonable interpretation of the four estimated
parameters in Eq. (1), hence capturing insightful information regarding the COVID-
19 severity in the countries. In this respect, the clustering activity is grounded on the
parameters calibrated from the best-fit exercise, and we group countries according to
the phenomenon’s features captured by such rank-size function’s parameters. The main
determinants are given by days with picks of deaths, the steadiness of casualties number,
endured COVID-19 waves and other elements that affect the shape of the ranked data.
In Figure 3 a visual representation of the cluster profiles is reported, and in Table 4
the clusters are summarized. The clustering exercise leads to relevant information for
policymakers. Indeed, Government and supra-national health institutions might carry
out common strategies for contrasting the diffusion of COVID-19 and reducing its fatality
rate. That can be done by investigating the similarities and divergences among countries
described by the clustering procedure’s results. Furthermore, countries’ policymakers
monitoring their own conditions and those of interrelated countries, for example, because
of import/export relationships, may benefit from the clusterisation to detect risks and
define actions points. Namely, at a given point in time, the cluster to which a country
belongs and the ones of its partners/competitors provide proxies to evaluate the exposure
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to the pandemic, suggesting actions like stock up on essential resources for preserving
economic interests or evaluating countries’ common features. This is relevant, especially
in the case of pandemics, because countries ahead experiencing waves can be seen as flags
for interrelated countries (e.g., countries strongly connected via single transportation
systems) not yet in the same situation; or because knowing that other countries are
in the same cluster provides a view on their managerial abilities and infrastructures
conditions. Moreover, the rank-size best-fit curve can effectively describe the pattern of
the pandemic in that it provides a clear illustration of the ratios between the consecutive
ordered ranked data. Thus, a clustering procedure rank-size based is able to distinguish
the countries where the pandemic maintains a generally stable number of fatalities from
those with remarkable high peaks of fatalities. So, a policymaker can gain several insights
into the effects of countries’ policies on the pandemic evolution.

It is important to notice that the rank-size approach allows for evaluations of the
overall phenomenon without referring to specific periods and time ranges. In doing so,
the proposed approach is free from biases associated with the time inconsistency of the
data at country levels. Hence, we do not need here to implement time-based normalising
procedures, which would demand an additional transformation of the data as reported
by Zarikas et al. (2020), Middelburg & Rosendaal (2020).
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Country â b̂ ĉ d̂ R2 RSME Clusters Inflection Point Max Rank

0 Australia 0.07989 -0.00142 0.00001 -1.000000e-08 0.89 0.01 0 205.51 328.0
1 Austria 7.71274 -0.06628 0.00020 -2.000000e-07 0.99 0.25 2 324.46 370.0
2 Belgium 14.71732 -0.14039 0.00051 -6.600000e-07 0.99 0.41 1 259.22 373.0
3 Canada 5.05506 -0.03312 0.00008 -7.000000e-08 1.00 0.07 0 383.40 403.0
4 Croatia 15.38722 -0.14446 0.00046 -4.900000e-07 1.00 0.24 1 311.59 377.0
5 Cyprus 2.74948 -0.03370 0.00013 -1.600000e-07 0.92 0.22 0 266.48 355.0
6 Czechia 22.19969 -0.09063 -0.00010 5.000000e-07 0.98 1.12 2 67.33 393.0
7 Denmark 2.96188 -0.03126 0.00012 -1.500000e-07 0.99 0.08 0 255.95 361.0
8 Estonia 8.98464 -0.08503 0.00026 -2.500000e-07 0.99 0.20 2 340.76 376.0
9 Finland 1.32399 -0.01447 0.00005 -6.000000e-08 0.99 0.04 0 290.43 361.0
10 France 10.77632 -0.07676 0.00020 -1.900000e-07 0.98 0.40 2 353.08 411.0
11 Germany 6.72854 -0.06306 0.00020 -2.200000e-07 1.00 0.10 2 307.50 370.0
12 Greece 9.41917 -0.08441 0.00025 -2.500000e-07 1.00 0.13 2 336.68 392.0
13 Hungary 24.11789 -0.17821 0.00040 -2.500000e-07 0.98 0.91 1 531.04 389.0
14 Ireland 5.81396 -0.06108 0.00023 -3.000000e-07 0.98 0.21 2 258.42 359.0
15 Israel 5.22539 -0.04165 0.00014 -1.800000e-07 0.99 0.11 0 259.90 377.0
16 Italy 13.09504 -0.04930 -0.00000 1.000000e-07 0.99 0.48 2 2.78 423.0
17 Japan 0.56195 -0.00512 0.00002 -2.000000e-08 1.00 0.01 0 288.22 401.0
18 Kuwait 2.10195 -0.01331 0.00004 -6.000000e-08 0.98 0.07 0 232.29 361.0
19 Lebanon 8.66072 -0.08967 0.00032 -3.800000e-07 0.98 0.29 2 280.91 372.0
20 Luxembourg 11.25358 -0.12697 0.00047 -5.500000e-07 0.99 0.36 1 279.46 374.0
21 Malta 10.49816 -0.08532 0.00022 -1.700000e-07 0.96 0.59 2 425.74 375.0
22 Montenegro 19.16544 -0.11586 0.00021 -9.000000e-08 0.99 0.56 2 739.01 389.0
23 Netherlands 7.95225 -0.05571 0.00015 -1.400000e-07 0.99 0.21 2 339.69 400.0
24 Norway 0.95166 -0.01289 0.00006 -8.000000e-08 0.97 0.04 0 243.20 358.0
25 Poland 18.07872 -0.15548 0.00044 -3.900000e-07 0.99 0.43 1 368.18 399.0
26 Portugal 11.46477 -0.11435 0.00041 -4.900000e-07 0.98 0.37 1 274.74 366.0
27 Qatar 0.78369 -0.00656 0.00001 -0.000000e+00 0.90 0.08 0 1005.22 339.0
28 Saudi Arabia 1.42653 -0.00809 0.00002 -1.000000e-08 0.99 0.03 0 493.72 391.0
29 Slovenia 18.51710 -0.20607 0.00076 -9.400000e-07 0.99 0.38 1 272.28 368.0
30 South Korea 0.19842 -0.00168 0.00001 -1.000000e-08 0.98 0.01 0 269.90 385.0
31 Spain 15.86274 -0.12499 0.00032 -2.800000e-07 0.99 0.36 1 390.35 402.0
32 Sweden 10.45896 -0.10913 0.00037 -4.200000e-07 1.00 0.11 1 297.29 373.0
33 Switzerland 9.27636 -0.09700 0.00035 -4.100000e-07 1.00 0.15 1 278.21 372.0
34 United Kingdom 15.66925 -0.12922 0.00038 -3.800000e-07 0.99 0.41 1 327.88 391.0
35 United States 10.15715 -0.07638 0.00029 -4.100000e-07 1.00 0.15 2 235.39 394.0

Table 4: Estimated parameters and clusters per each country. The last two columns
respectively represent the rank at which the best fit of Eq. (1) presents a change in
concavity and the maximum rank obtained for that country, namely the length of the
series.
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Figure 1: Time series of the daily new deaths per million occurred in each considered
country. The colours represent the clusters, and the size of the dots show the level of
new daily deaths.
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Figure 2: Histograms of the estimated parameters divided by the resulting clusters, five
bins per colour, are searched. On the y-axes, there are the relative frequencies that sum
to one per cluster.
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Figure 3: The 3 curves are obtained by plugging into Eq. (1), â, b̂, ĉ, and d̂ corresponding
to the centroid of the clusters {0,1,2}.
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Figure 4: The cases of the United Kingdom and Italy are reported here with their best
fits (red lines) obtained through Eq. (1) and the countries’ respective parameters â, b̂,
ĉ, and d̂ from Table 4. The colours of the dots correspond to the different clusters, 1 for
the UK and 2 for Italy.

Country â b̂ ĉ d̂ R2 RSME
Italy 13.09504 -0.04930 -0.00000 1.000000e-07 0.99 0.48
United Kingdom 15.66925 -0.12922 0.00038 -3.800000e-07 0.99 0.41
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