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Purpose – This research aims to develop an approach to assess the reliability of integrated 8 

construction supply chain via an integrated model of Building Information Modelling (BIM) 9 

and Lean Supply Chain (LSC). It reflects the synergistic workflow between BIM and LSC as a 10 

novel approach to improve reliability of the construction projects. 11 

Design/methodology/approach –This research evaluated reliability of the BIM-LSC approach 12 

through a combination of entropy theory, Set Pair Analysis (SPA), and Markov Chain (EESM). 13 

An exploratory survey was conducted to collect data from 316 industry professionals 14 

experienced in BIM and LSC. Subsequently, multiple cycles of calculations were performed 15 

with indirect data inputs. Finally, a reliability evaluation index was established for the BIM-16 

LSC approach and potential applications were identified.  17 

Findings –The results show that the EESM model of BIM-LSC developed in this study can 18 

handle not only supply chain reliability evaluation at a given state, but also the prediction of 19 

reliability in supply chain state transitions due to changing project conditions. This is 20 

particularly relevant to the current environment of the construction project, which are 21 

characterized by an increasing level of complexity in terms of labor, technology, and resources 22 

interactions. 23 



Research limitations/implications - Future research could consider the accuracy and validity 24 

of the proposed model in real-life scenarios with sparing efforts by considering both 25 

quantitative and qualitative data across the entire lifecycle of the projects. 26 

Practical implications –This research offers a model to evaluate reliability of the BIM-LSC 27 

approach. The accuracy of BIM supply chain reliability analysis and prediction under an 28 

uncertain environment is improved. 29 

Originality/value –The BIM-LSC reliability evaluation and prediction presented in this study 30 

provides a decent theoretical foundation to enhance understanding of the BIM-LSC in the 31 

construction project context. 32 

Keywords: Building Information Modeling, Lean Supply Chain, Reliability Evaluation, Set 33 

Pair Analysis, Markov Chain. 34 

Article Type: Research Paper. 35 

1 Introduction 36 

The rapid development and transformation of the global economy, with deepened business 37 

service specialization in parallel with pervasive and geographically-dispersed collaborations, 38 

have posed unprecedented challenges to supply chain managements (SCM) across industry 39 

sectors (Klimov and Merkuryev 2008). In the construction industry, supply chain integration 40 

can be especially difficult due to its high fragmentation (Shi et al. 2016). Furthermore, 41 

challenges are exacerbated by the uniqueness in the specificity of project delivery methods and 42 

an unwillingness of project participants to cooperatively share information due to the temporary 43 

nature of construction projects that can lead to difficulties in establishing trust and cooperation 44 

(Cheng et al. 2010).  45 



Recently, emerging approaches including Building Information Modeling (BIM), Lean 46 

Construction and Green Building methods are reshaping the global business environment of the 47 

construction industry (Zuo et al. 2017, Zuo and Zhao 2014, Ding et al. 2015). Best practices in 48 

adoption and implementation of these applications have shed light on the strategies to reduce 49 

waste, improve productivity, promote performance and maximize added value and profitability 50 

through a project’s life cycle (Ahuja, Sawhney and Arif 2017). The integrated BIM-Lean 51 

Supply Chain (BIM-LSC) concept is gradually gaining recognition by the industry (Dave et al. 52 

2013, Sacks et al. 2010). As a synergistic convergence of technological advancement and 53 

business process improvement, BIM-LSC has been applied to holistically and strategically 54 

address socioeconomic and environmental sustainability goals (usually defined as the triple-55 

bottom-line) and help accomplish green project outcomes (Fernández-Solís and Mutis 2010, 56 

Ahuja et al. 2017, Wu and Issa 2015, Ahuja et al. 2014). 57 

To elaborate on BIM-LSC interaction, BIM serves as the technological and 58 

communication platform for related project life-cycle information to be generated, exchanged, 59 

managed and shared among project stakeholders with stipulated roles and responsibilities, 60 

under specific contractual protocols (Hjelseth et al. 2010). By eliminating information silos and 61 

avoiding communication gaps, BIM offers a reliable, flexible and functional foundation to more 62 

streamlined business processes and efficient project execution, which can eventually lead to 63 

waste reduction, time and budget savings, improved profitability and client satisfaction (Azhar 64 

2011, Bryde, Broquetas and Volm 2013). Nevertheless, to fully exploit the benefits of BIM, 65 

human behaviors play an essential role rather than technology (Smith and Tardif 2009, 66 

Fernández-Solís and Mutis 2010). In addition, originated from the automobile and 67 
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manufacturing industry, lean principles can provide project teams with the desired mechanism 68 

to deploy, manage, monitor successful BIM project platform execution, and drive more efficient 69 

utilization of resources and energy to achieve sustainability performance and goals (Sacks et al. 70 

2010, Ahuja et al. 2017, Khodeir and Othman 2016, Ahuja et al. 2014). In this paper, BIM-LSC 71 

refers to the synergistic use of BIM technology and Lean principles in the construction supply 72 

chain in order to enhance information-driven collaboration capabilities of project teams so that 73 

business process performance can be improved in delivering capital projects.  74 

BIM-SLC has gained wide attention. These include general discussion and 75 

documentation of the BIM-Lean interaction evidence (e.g. Sacks et al. 2010), detailed analysis 76 

and delineation of the interactive matrix and dynamics (e.g. Bin, Bo-sheng and You-qun 2011), 77 

and identification of enablers, methods, tools and strategies to facilitate its integration and 78 

measuring its maturity (e.g. Dave et al. 2013). Nevertheless, despite the plethora of available 79 

tools, the evaluation of reliability as a major success factor in SCM has not been investigated 80 

in the context of BIM-LSC. Time, budget and quality are typical constraints in project 81 

management (Ford and Bhargav 2006). Therefore, this paper defines BIM-LSC reliability 82 

as “the ability to deliver a capital project with a specified time, budget and quality 83 

conditions, under the influence of a variety of uncertainty factors, to deliver green 84 

outcomes using the lean production process and BIM technology”. In line with the temporal 85 

nature of construction projects, project-based BIM-LSC faces challenges of instability, 86 

fragmentation, and the disjointedness between project design and construction as inherent 87 

characteristics of construction projects. At the same time, BIM-LSC focuses on multi-stage 88 

production and multi-stakeholder. The nature of this phenomenon emphasizes the need for high 89 



reliability in supply chain interaction to reduce uncertainty. As the supply chain hierarchy in 90 

contemporary construction projects becomes increasingly complex, uncertainty factors can 91 

severely and adversely affect the normal operation of the supply chain, which necessitates better 92 

understanding, evaluation, and prediction of its reliability (Mahnam et al. 2009).  93 

Research on BIM and Lean adoption and implementation in the construction supply 94 

chain has been proliferating. Existing studies have largely dealt with lean construction and BIM 95 

separately. There is no accurate approach to assess the reliability of integrated construction 96 

supply chain via an integrated model of BIM and LSC. The core operation and success of lean 97 

construction depend on the process efficiency of information integration. Therefore, the 98 

implementation of lean construction without an appropriate platform like BIM can lead to the 99 

loss of technical advantages on the effective sharing of information. This study focuses on the 100 

synergy of both BIM and Lean, without reliance on qualitative interaction measurement (e.g. 101 

qualitative methods), which can provide greater precision in the evaluation and prediction of 102 

reliability measures to guide future BIM-LSC management. This research aims to fill in this 103 

gap by applying the appropriate theory of BIM-LSC and propose an integrated evaluation 104 

approach to achieve the accurate analysis of BIM-LSC Reliability.  105 

2 Literature Review 106 

The literature review focuses on the reliability evaluation of BIM-LSC. The basic 107 

connotation of BIM-LSC was firstly studied, the evaluation indicator was discussed, and the 108 

previous reliability evaluation models were reviewed. The scope is shown in Figure 1. 109 

<<           Insert Figure 1             >> 110 



Fig. 1. Scope of Literature Review 111 

2.1 BIM and Lean Supply Chain 112 

Among a wide range of supply chain studies, Pryke (2009) defined the supply chain as the focus 113 

of more effective ways of creating value for clients and as a vehicle for innovation and 114 

continuous improvement. Current research on the construction industry’s SCM can be roughly 115 

divided into two categories: 1) project-centered SCM research and 2) enterprise-centered SCM 116 

research. This study focuses on the first category. The application of supply chain into BIM and 117 

lean projects supports the information interoperability of BIM and lean workflow (Dave 2013). 118 

Previous studies on BIM-LSC have focused on new business processes that are driven by 119 

rapid BIM adoption and implementation, and the desired transition of contractual relationship 120 

and partnership among project stakeholders. Due to the dynamic interaction and synergistic 121 

convergence of BIM and Lean (Sacks et al. 2010), BIM-LSC features the unprecedented use of 122 

information technology and critical needs for the project information management (Dave et al. 123 

2013). Thus, BIM-LSC is data-intensive and information-centric (Tommelein, Ballard and 124 

Kaminsky 2008). The integration of these concepts has been studied extensively. For example, 125 

the process of prefabrication housing production from manufacturing and logistics to the on-126 

site assembly by integrating the BIM platform with lean construction has been simulated. 127 

Furthermore, Irizarry et al. (2013) combined BIM technology with geographic information 128 

system (GIS) to construct a visualization model of the material supply chain to perform model-129 

based material takeoff. Using the reinforced concrete supply chain as a case study, Aram et al. 130 

(2012, 2013) demonstrated that BIM technology could significantly improve construction 131 

supply chain efficiency via automation and fluency of its information exchange. Yu, Lv and 132 



Zhang (2016) proposed a roadmap of applying BIM technology for improved construction 133 

SCM and established a BIM-based SCM information system framework. Wen, Wang and XIa 134 

(2009) proposed to build a lean construction supply chain model with modular thinking to 135 

improve the transparency of information in the supply chain. Further, Dave et al. (2013) 136 

acknowledged that high synergistic effect between BIM technology and Lean, and proposed a 137 

systematic strategy to adopt BIM-LSC to ensure that information is effectively synergized 138 

throughout the project lifecycle. 139 

Previous studies indicate that BIM-LSC plays an important role in the construction 140 

industry. The characteristics and key attributes of each project phase are scrutinized in terms of 141 

early design, design and detail, construction, fit-out and handover, and facilities maintenance 142 

(Koseoglu et al. 2018, Machado et al. 2016).  143 

<<           Insert Figure 2             >> 144 

Fig. 2. BIM and Lean Workflow 145 

Note: This workflow is in line with Table 1. 146 

2.2 Project-based BIM-LSC Reliability Evaluation Index System 147 

Supply chain reliability provides a theoretical background to quantify supply chain risks and 148 

uncertainties (Ha et al. 2018). Thomas (2002) first introduced the engineering reliability theory 149 

in SCM and defined the supply chain reliability as “the ability to complete a given task at a 150 

specified time and other conditions”. Liu and Luo (2007) considered the supply chain 151 

operations reference model and defined supply chain reliability from the enterprise perspective 152 

as the ability of the supply chain to achieve normal operations for a period. Mu (2010) 153 

approached the problem from a complexity theory position and defined reliability as the 154 



likelihood of meeting customer needs at the time, quantity, and quality required by the end 155 

customer. Similar studies on the scope of reliability and reliability evaluation include Zhao and 156 

Yang (2007) and Zhang (2012). Therefore, this paper defined the reliability in BIM and lean 157 

background as “the ability to deliver a capital project with a specified time, budget and quality 158 

conditions, under the influence of a variety of uncertainty factors, to deliver green outcomes 159 

using the lean production process and BIM technology”. 160 

Currently, there are limited studies that have assessed the reliability of BIM and Lean 161 

integrated supply chains, so the relevant reliability evaluation index system needs to be 162 

developed. The UK Construction industry research and information association (CIRIA) links 163 

organizations with common interests and facilitates a range of collaborative activities that help 164 

improve the industry. CIRIA published the CIRIA C725 Lean and BIM Guidebook (Dave et al. 165 

2013): Implementing lean in construction: lean construction and BIM. This guide was 166 

submitted to the British government and represented accurate and authoritative information on 167 

the joint application of Lean and BIM. It was the first of its kind and compiled both academic 168 

and professional knowledge incorporated in its development, and it articulated the main tools 169 

and techniques that are applied in Lean and BIM projects. 170 

 To establish a comprehensive and responsive index system to evaluate the reliability of 171 

BIM-LSC situation, Lean and BIM workflow is divided into five stages (See Fig.2) throughout 172 

the entire life cycle of the project according to the CIRIA C725 Lean and BIM Guide. It consists 173 

of the primary indicators that are subdivided into the secondary indicators (see Table 1).  174 

Table 1. Proposed BIM-LSC Reliability Evaluation Index System 175 

<<           Insert Table 1             >> 176 



2.3 Supply Chain Reliability Evaluation and Prediction model 177 

Supply chain reliability has attracted substantial research attention in the broader supply chain 178 

management domain. In the investigation of reliability evaluation and prediction methods, Qian 179 

et al. (2015) used the basic theory of Markov process to dynamically analyze the reliability of 180 

supply chain in manufacturing enterprises and highlight the change of supply chain failure rate 181 

and reliability. Yuxiong and Gengfeng (2017) carried out the reliability evaluation of 182 

distributed integrated energy system based on a Markov chain Monte Carlo simulation. In the 183 

case of certainty and randomness of logistics supply capacity, Wu and Lu (2014) used the 184 

differential method and Markov theory respectively to establish the logistics enterprise 185 

reliability measurement model, where the discrete time Markov chain was used to represent the 186 

time schedule of task completion under random conditions. Deng et al. (2016) established the 187 

triangular fuzzy analytic hierarchy process to evaluate supply chain reliability based on 188 

triangular fuzzy numbers, this model overcomes the shortcomings of traditional weight 189 

calculation. Further, Wu et al. (2015) used the SPA theory and the fuzzy logic theory to evaluate 190 

the reliability of a solid rocket motor design scheme and provided a new solution for the 191 

uncertainty and fuzziness in the reliability assessment. Lin and Mu (2006) discussed the 192 

stability of order-based supply chain systems based on SPA from the perspective of the 193 

relationship between the various aspects of the supply chain and provided theoretical guidance 194 

on supply chain management. In the field of aviation maintenance safety assessment, Zhang et 195 

al. (2016) combined SPA theory with Markov chain and described the safety level of aviation 196 

maintenance and predict its safety dynamics trends. 197 



However, the method to calculate the reliability in an uncertain environment is limited. 198 

This limitation hinders the promotion of BIM and lean approach in the construction industry. 199 

2.4 Knowledge Gap 200 

The synergies of BIM and Lean has gained an increasingly level of recognition. However, there 201 

are very limited studies on BIM-LSC reliability evaluation and prediction. These existing 202 

studies predominantly focused on the static assessment of reliability status at a certain period 203 

of time to identify safety levels, with less focuses on future reliability states and its dynamic 204 

trends (Peng et al. 2017, Zhang et al. 2016). Little attention has been paid to the measurement 205 

roles of information (entropy) in the reliability evaluation (Short and Wehner 2010). 206 

Information is a key measurement indicator for the degree of systematic ordering, and entropy 207 

is a measurement of the degree of system disorder. BIM-LSC, as a highly integrated information 208 

chain, can significantly benefit from the use the entropy method to measure the amount of BIM 209 

information provided by the BIM-LSC indicators. This assists in targeting the evaluation of 210 

BIM-LSC reliability and provides the precise prediction. Meanwhile, current methods 211 

experience difficulties in the quantitative analysis and prediction of the stability of BIM supply 212 

chain under uncertain environment. In order to predict the reliability of the supply chain, it is 213 

necessary to consider the orderly state transfer between nodes in the supply chain. 214 

This research attempts to address this gap. Motivated by this imperative need to measure 215 

and respond to BIM-LSC reliability, this research reviewed and identified key reliability 216 

indicators for BIM-LSC, and adopted an integrated approach to develop a BIM-LSC reliability 217 

evaluation model. The proposed model relied on the entropy method to determine the weighting 218 

factor of the reliability indicators, and SPA to describe the degrees of connection between 219 



indicators in BIM-LSC. Finally, the Markov chain process was employed to predict reliability 220 

transitions when the status of individual indicators and their dynamics had changed. To 221 

demonstrate the potential application of the proposed model, a multi-cycle calculation was 222 

performed with indirect data inputs through an exploratory survey. 223 

3 Methodology 224 

The integrated approach proposed by Zhang and Wu (2007) and Zhang et al. (2016) was 225 

employed in this study to develop the reliability evaluation and prediction model. In this 226 

framework, the innovative quantitative analysis methods combining entropy weight method, 227 

SPA, and Markov chain prediction were used to evaluate and predict the reliability of BIM 228 

supply chain under uncertain environment. Firstly, the entropy weight method and SPA method 229 

were used to explore the key factors and influence mechanism of the reliability of BIM-LSC 230 

and assess the reliability of BIM supply chain under uncertain environment. The premises of 231 

SPA method is to grasp the weight of the influencing factors. Due to the complexity of the 232 

supply chain system, the method with higher subjectivity (e.g. AHP) has a significant deviation 233 

from the weight of the influencing factors. Therefore, using the entropy method with extremely 234 

high adaptability and objectivity to obtain the index weight has certain advantages over the 235 

method using AHP. Then, the Markov chain prediction method was used to propose the short-236 

term prediction method of BIM supply chain reliability uncertain environment based on the 237 

impact analysis. Finally, a possible application of the proposed model was demonstrated 238 

through multiple cycles of calculation with indirect data inputs through an expert survey 239 

conducted among industry professionals that have BIM and Lean project experience, due to the 240 

lack of sufficient empirical BIM-LSC data.  241 



The following steps were implemented to establish the Expert survey, Entropy method, 242 

SPA theory, and Markov chain (EESM) model comprising in Figure 3. 243 

<<           Insert Figure 3             >> 244 

Fig. 3. EESM model 245 

3.1 Expert Survey to Scale the Project-Based BIM-LSC Reliability Evaluation 246 

Index 247 

To test the model, the first step was to apply the entropy method for reliability indicators’ 248 

weight coefficients calculation. The initial values of the five sets and a total of 17 BIM-LSC 249 

Reliability evaluation indicators were assigned. As stated, there is currently a lack of first-hand 250 

BIM-Lean project information. This research used an alternative approach by collecting subject 251 

matter experts’ perception values of these indicators using a survey questionnaire to capture the 252 

“BIM-LSC Reliability Impact Factor”, and conducted a comprehensive online and offline 253 

(paper-based) survey with a convenient sample to industry professional, project managers or 254 

consultants who have at least three years of experience in BIM-based projects. For each of these 255 

17 indicators, the participants were requested to rate each factor’s impact on BIM-LSC 256 

reliability on a 5-point Likert-type scale, where “1” was for No impact, “2” for Minor impact, 257 

“3” for Neutral, “4” for Moderate impact and “5” for Major impact. A total of 600 online/offline 258 

questionnaires were distributed and 338 completed questionnaires were collected, with a 259 

response rate at 56.3%. Prior to data analysis, data screening was implemented to inspect data 260 

for errors that involves checking raw data and identifying outliers. Eventually, a total of 316 261 

valid datasets were obtained (see Appendix I). The mean values of the Likert scale impact factor 262 



ratings were then assigned to the 17 indicators as their initial values for the weight coefficient 263 

calculation with the entropy method. 264 

3.2 Entropy Method to Calculate the Index Weight of Project-Based BIM-LSC 265 

Entropy method is an objective weighting method. In this research, it was used to calculate the 266 

information entropy of the indicators based upon the influence of the degree of relative change 267 

of indicators on the overall index system. The value of the information entropy of each indicator 268 

was then directly associated with the indicator’s weight coefficient (Lu and Kang 2009). The 269 

entropy method revealed the degree of orderliness and effects of information delivered via the 270 

indicator. Therefore, it has a certain degree of objectivity to determine the weight coefficient of 271 

each indicator using the evaluation matrix that is composed of normalized values of all 272 

indicators in the index system. 273 

While for BIM-LSC, BIM is a process/platform for creating and managing the project 274 

information– before, during and after lean construction principals have been applied. BIM-LSC 275 

face challenges in the disorder of system information in information integration management 276 

to evaluate the reliability. Entropy is the appropriate method to quantitatively measure the 277 

disorder of system information. To a degree, entropy offers a useful proxy to measure the 278 

information between BIM and Lean construction, which integrates through the core connection 279 

of information extraction and measurement. 280 

3.3 SPA to Determine the Degrees of Connection as Expression of the Reliability 281 

Levels 282 

SPA theory could deal with various uncertain information such as inaccuracy, inconsistency 283 

and incompleteness, discover the hidden information and reveal potential laws (Jiang et al. 284 



2003). Therefore, it is sensible that this paper adopted SPA to analyze the reliability of the 285 

supply chain under the uncertain environment. Meanwhile, this paper simulated the supply 286 

chain with Markov chain and simulated the supply chain service process with Markov chain 287 

node state transition, which fully reflected the dynamics of the supply chain and made the 288 

prediction closer to reality. The combination of the two methods solved the dilemma of 289 

quantitative analysis of previous research methods and improved the accuracy of BIM supply 290 

chain reliability analysis and prediction under uncertain environment. 291 

The basic concepts of the SPA are the set-pair and connection degree. The so-called set-292 

pair represents a pair that consists of two mutually related sets. Based on the analysis of specific 293 

characteristics, the relationship between the two sets can be classified and described in a 294 

quantitative way and has the following expression of connection degree. 295 

Given two sets v and u , the set pair is expressed as ),( uvH = . Equation (1) calculates 296 

the connection degree of the two sets:  297 

μ = 𝑆𝑆
𝑁𝑁

+ 𝐹𝐹
𝑁𝑁

𝑖𝑖 + 𝑃𝑃
𝑁𝑁

𝑗𝑗 = 𝑎𝑎 + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑗𝑗, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 = 1             (1)  298 

3.4 Markov Chain Model to Build States Transition Probability Matrix  299 

The supply chain is an extremely complex system with fuzzy and rough information, which has 300 

significant uncertainties (Ebrahimy et al. 2011). Meanwhile, the supply chain is composed of 301 

many enterprise nodes. The operation of the supply chain requires enterprise nodes to update 302 

their status constantly and orderly so that the supply chain has obvious dynamics (Towill 2003, 303 

Towill 1982). The status of the supply service is either reliable or unreliable, while it may shift 304 

during a certain period. Moreover, the status of the service provided in each period is only 305 

related to the status of each operation link of the supply service in that time and is independent 306 



on the supply service before the period. The randomness and aftereffect less match the 307 

requirement of the Markov chain. Therefore, this paper adopted Markov chain to simulate the 308 

supply chain and realizes the dynamic prediction of the reliability of the supply chain. It is more 309 

dynamic and more realistic than the general static methods used in the previous studies. 310 

System reliability depends on the reliability of the subsystems that make up the system 311 

and the organization of the system itself. The characteristics of reliability in this paper are as 312 

follows: 313 

Reliability = The probability that the system will complete the supply task on time 314 

  = 1 - The probability that the system will not complete the supply task on time 315 

  = 1 - (Failure Rate - Maintenance rate × Failure Rate) 316 

Each supply operation link is independent of each other from the perspective of reliability, 317 

that is, the problems in each operation link of the supply service are mainly caused by the 318 

operation failure of the link itself, and are not affected by other operation links, nor affect other 319 

operation links. However, any problem in one of the operations will affect the overall supply 320 

service. Therefore, it is possible to study the state transition of each operation link of the supply 321 

service from the supply operation flow, so as to predict the reliability of the supply service and 322 

its operation links. 323 

Given E is the probability space, and {C (n), n ≥ 0} is an integer random sequence defined 324 

in the probabilistic space. If m ≥ 1, C (t1), C (t2), ... , C (tm) corresponding to C (n) for t1, t2, ..., 325 

tm (where t1 < t2 <... < tm) (tm) meet the conditions: 326 

P�C(tm)��C(tm − 1), C(tm − 2), … , C(t1)� = P�C(tm)�|C(tm − 1)          (2) 327 

Where {C (n), n ≥ 0} is named Markov Chain. 328 



The Markov chain shows that the observed value of {C (n), n ≥ 0} at tm time is only related 329 

to the value of time tm-1, regardless of the observed value at earlier time, and P (C (tm) | C (tm-330 

1)) is the conditional probability, also known as state transition probability. 331 

3.5 A New Approach for BIM-Lean Supply Chain Reliability 332 

The following provided details of the new quantitative integrated approach for reliability 333 

evaluation and prediction of project-based BIM-LSC. 334 

3.5.1 Weight Calculation of Evaluation Indicators Based on the Entropy Method 335 

According to Su and Yang (2009) and Benedetto et al. (2015), the following four steps were 336 

carried out to determine the indicators’ weights in the BIM-LSC reliability index system.  337 

Suppose there are m units and n indicators to be evaluated, through the formation of the 338 

evaluation matrix and the standardization of the evaluation matrix, the entropy of the system 339 

can be defined as 𝐻𝐻𝑡𝑡 , and the weight coefficients 𝑊𝑊  of indicators could be calculated as 340 

Formula (3) 341 

W = (𝜔𝜔𝑡𝑡)1×𝑛𝑛 , 𝜔𝜔𝑡𝑡 = (1 − 𝐻𝐻𝑡𝑡)/(𝑛𝑛 − ∑ 𝐻𝐻𝑡𝑡
𝑛𝑛
𝑡𝑡=1 )𝑤𝑤𝑖𝑖𝑤𝑤ℎ ∑ 𝜔𝜔𝑡𝑡

𝑛𝑛
𝑡𝑡=1 = 1          (3) 342 

3.5.2 SPA-based Reliability Evaluation Model 343 

Based on the practical characteristics of the BIM-LSC Reliability, this research assigned each 344 

indicator with three possible reliability levels, including reliable (S), quasi-reliable (G) and 345 

unreliable (U), in the order of descending reliability. Specifically, when applied to reliability 346 

evaluation, reliable (S) means acceptable reliability, while quasi-reliable (G) means acceptable 347 

reliability with precaution and unreliable (U) means unacceptable reliability with a need for 348 

rectification measures. S, G, and U should also satisfy the Equation (4): 349 



S + G + U = 1                               (4) 350 

Where N is the total number of characteristics of a set pair; S is the number of identity 351 

characteristics; P is the number of contrary characteristics of two sets; F = N – S – P, is the 352 

number of the characteristics of these two sets that are neither identity nor contrary. The ratio 353 

S
N

(or 𝑎𝑎 ) is the identity degree of two sets; F
N

(𝑖𝑖 or b ) is the discrepancy degree of two sets, 354 

and P
N

 (or 𝑐𝑐 ) is the contrary degree of two sets. Meanwhile, j is the coefficient of the contrary 355 

degree and is specified as 1. As the coefficient of the discrepancy degree, 𝑖𝑖 is an uncertain 356 

value between -1 and 1, i.e. 𝑖𝑖 ∈ [-1, 1], in terms of various circumstances. The uncertainty of 357 

the discrepancy degree of two sets is eliminated when 𝑖𝑖 is specified as -1 or 1 and will increase 358 

when 𝑖𝑖 is approaching zero. 359 

In the process of reliability evaluation of the BIM-LSC, this research defined the 360 

indicator’s actual states as E, while the ideal states as U. Then, sets E and U will form the pairs 361 

𝐻𝐻 = {𝐸𝐸, 𝑈𝑈} , which was then used with SPA method to determine the identity degree, 362 

discrepancy degree and contrary degree. 363 

To determine the overall reliability of BIM-LSC, the compound connection degrees of the 364 

collection of indicators was calculated as shown in the equation below: 365 

                     ji
cjbia
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k
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k ⋅+⋅+=
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∑∑∑
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µ

                (5) 366 

Where, 367 

k k k
k S k G k U

a b i c jω ω ω
∈ ∈ ∈

= = ⋅ = ⋅∑ ∑ ∑, ,                 (6) 368 

It should be noted that kω  refers to the weight of reliability index, which is generated by 369 

Equation (10). Let 𝑖𝑖 = 0, j = -1, then the reliability Connection Degree μ ∈ [-1, 1]. According 370 

to the average principle, the values of μ represent corresponding reliability levels. In other 371 



words, -1 ≤ μ ≤ -0.333 designates as unreliable or U, while -0.333 < μ < 0.333 designates as 372 

quasi-reliable or G, and 0.333 ≤ μ ≤1 designates as reliable or S. 373 

To further explain the system dynamics of BIM-LSC and elaborate on the possible 374 

reliability level variation of each indicator within the established reliability index system, Table 375 

2 summarized the possible set pair potentials conditioned on comparisons of the sizes of 376 

indicators with the specific reliability levels, i.e. S, G or U, as suggested by Zhang (2012) and 377 

Zhang et al. (2016). The primary comparison was made between the sizes of S indicators and 378 

U indicators. Specifically, if the size of S indicators > size of U indicators, the set pair potential 379 

is considered to be “Direct”; otherwise, if the size of S indicators = size of U indicators, the set 380 

pair potential is “Balanced”; and finally, if the size of S indicators < size of U indicators, the 381 

set pair potential is “Inverse”. Under each of the three primary set pair potential groups, two 382 

additional secondary comparisons were made between the sizes of S and G indicators, and the 383 

sizes of U and G indicators, respectively, which yielded further granularity of set pair potentials, 384 

as shown in Table 3. As a result, a total of 13 different set pair situation scenarios were recorded, 385 

which corresponded with a particular outcome of the BIM-LSC reliability. Based on these 386 

evaluation results, the project team can take the corresponding preventive measures to reduce 387 

and avoid the risk of potential BIM-LSC failures. 388 

Table 2. Set Pair Situation and Corresponding BIM-LSC Reliability 389 

<<           Insert Table 2             >> 390 



3.5.3 Markov Chain-based Reliability Prediction Model 391 

From a system dynamics point of view, the Markov Chain explains the reliability changes of a 392 

system (i.e. BIM-LSC in this case) which are caused by the reliability changes of individual 393 

indicators in the system during the entire cycle. There are three cases of system reliability in 394 

each cycle: S, G, and U. Each state has a certain probability of transformation between cycles. 395 

Fundamentally, the reliability evaluation of BIM-LSC System, based on Markov Chain, is to 396 

obtain the probability of system reliability state transition between the operating cycles, or the 397 

specific project phases in this context. Let matrix P represent the state transition probability 398 

matrix of the system, 399 

P = �
𝑝𝑝11 𝑝𝑝12 𝑝𝑝13
𝑝𝑝21 𝑝𝑝22 𝑝𝑝23
𝑝𝑝31 𝑝𝑝32 𝑝𝑝33

�                             (7) 400 

Where, 11p  is the probability that all the indicators belonging to S in the previous cycle of 401 

the system still belong to S after conversion to the next cycle, 402 

𝑝𝑝11 = 𝑆𝑆−𝑆𝑆
𝑆𝑆′ ; 𝑝𝑝12 = 𝑆𝑆−𝐺𝐺

𝑆𝑆′ ; 𝑝𝑝13 = 𝑆𝑆−𝑈𝑈
𝑆𝑆′                        (8) 403 

𝑝𝑝11 +  𝑝𝑝12 + 𝑝𝑝13 = 1, 𝑝𝑝21 +  𝑝𝑝22 + 𝑝𝑝23 = 1, 𝑝𝑝31 + 𝑝𝑝32 + 𝑝𝑝33 = 1      (9) 404 

Where, 405 

S-S means that the sum of the weights of indicators that belong to S in the previous cycle 406 

still belong to S after conversion to the next cycle; 407 

S-G means that the sum of the weights of indicators that belong to S in the previous cycle, 408 

but belong to G after conversion to the next cycle; 409 

S-U means that the sum of the weights of indicators that belong to S in the previous cycle, 410 

but belong to U after conversion to the next cycle; 411 

S' means that the sum of the weights of indicators that belong to S in the previous cycle. 412 



Usually, as proved by the ergodicity of the Markov Chain, a system conforming to the law 413 

of Chapman–Kolmogorov equation will become stable with the progressive increase of the 414 

change period (n). Therefore, the state reliability evaluation value at time t will eventually reach 415 

a steady state after a change of multiple cycles. Considering the normalization conditions of the 416 

connection degree, the following equations can be used to obtain the BIM-LSC reliability 417 

evaluation steady-state prediction: 418 

( ) ( ) ·
0,,

1





=−⋅
=++

PIcba
cba

            (10) 419 

Solving the equation will yield the prediction of the BIM-LSC reliability estimates of 420 

steady-state: 421 

       [ ], 0,1 , 1a bi cj i jµ = + + ∈ = −     (11) 422 

4 Result 423 

The major innovation of the proposed reliability evaluation and prediction model resides in its 424 

ability in leveraging quantitative measures to not only evaluate the BIM-LSC reliability at a 425 

given state based on dynamics of the collection of reliability indicators, but also to predict the 426 

transition of such reliability when the states of the dynamic indicators change. Due to the lack 427 

of empirical project data on BIM-LSC reliability, empirical validation of the proposed model 428 

was not feasible. Instead, to demonstrate its application, a multi-cycle calculation was 429 

performed with indirect data inputs through the exploratory survey conducted among 430 

professionals with substantial project experience in both BIM and lean practices in China. The 431 

following provides the results of the calculation based on the hypothetical reliability scenarios. 432 



4.1 Initial Values of Reliability Indicators 433 

Using Equations (1 and 3), the calculations were performed using MATLAB software and 434 

summarized in Table 3 below. It should be noted that larger entropy weight coefficient values 435 

represent greater impacts on BIM-LSC Reliability.  436 

Table 3. Entropy Weight Calculated for Each Reliability Evaluation Indicator 437 

<<           Insert Table 3             >> 438 

4.2 BIM-LSC Reliability Evaluation 439 

Based on the results of the entropy weight coefficient calculation, a Markov Chain simulation 440 

was run with four (4) cycles to define the S, G, and U sets that each indicator at each cycle 441 

belongs to, as shown in Table 4. For determining the appropriate number of simulation cycles, 442 

the research followed the recommendation made by Zhang (2012) and Zhang et al. (2016), 443 

which suggested extra cycles (more than 4) would not significantly improve the simulation 444 

results. 445 

Table 4. Summary of BIM-LSC Reliability Evaluation Simulation Cycles 446 

<<           Insert Table 4             >> 447 

The next step was to calculate the reliability evaluation connection degree of the BIM-LSC 448 

in Cycle 1 using Equations (1, 4, and 5). The calculation results are: 449 

𝑎𝑎 = 0.519753, 𝑏𝑏 = 0.18, 𝑐𝑐 = 0.3 450 

The same process was repeated for Cycles 2, 3, and 4, and the reliability evaluation 451 

connection degrees were obtained and shown below: 452 

𝜇𝜇1 = 0.52 + 0.18𝑖𝑖 + 0.3𝑗𝑗,  𝜇𝜇2 = 0.24 + 0.58𝑖𝑖 + 0.18𝑗𝑗,  453 



𝜇𝜇3 = 0.60 + 0.28𝑖𝑖 + 0.12𝑗𝑗,  𝜇𝜇4 = 0.41 + 0.35𝑖𝑖 + 0.24𝑗𝑗. 454 

Taking 𝜇𝜇1 as an example, the above calculation results show that the identity degree of the 455 

set pair H including 17 evaluation indicators in Cycle 1 is 0.52, the discrepancy degree is 0.18, 456 

and the contrary degree is 0.3. According to the situations in table 2, the results indicated that 457 

in Cycle 1, the BIM-LSC reliability is Reliable, in Cycle 2 is Quasi-Reliable, in Cycle 3 is 458 

Reliable and in Cycle 4 is Reliable. The overall evaluation results suggested that the BIM-LSC 459 

reliability is between Reliable and Quasi-Reliable, and it fluctuated slightly in the process of 460 

dynamic transfer. 461 

4.3 BIM-LSC Reliability Prediction 462 

To predict the supply chain reliability connection degree, a State Transition Probability Matrix 463 

was calculated. From Cycle 1 to Cycle 2, some of the indicators that originally belong to S were 464 

converted into S, G, U sets. Then these indicators were synthesized to calculate the sum of 465 

weights of these converted indicators: 466 

• S to S: 0.054847 + 0.055751 + 0.063074 = 0.173672; 467 

• S to G: 0.058478 + 0.051284 + 0.054241 + 0.058365 = 0.222368; 468 

• S to U: 0.057057 + 0.066656 = 0.123713. 469 

Assuming the State Transition Matrix from Cycle 1 to Cycle 2 to be 𝑃𝑃12, and according 470 

to Equations (7-9), the following values were calculated:  471 

𝑝𝑝11 =
0.174
0.52

= 0.335, 𝑝𝑝12 =
0.222
0.52

= 0.428, 𝑝𝑝13 =
0.124
0.52

= 0.237 472 

Accordingly, the values of the remaining items in 𝑃𝑃12 can be determined as shown below: 473 
















=

010
326.0332.0343.0
237.0428.0335.0

12P  474 



Similarly, assuming the State Transition Matrix from Cycle2 to Cycle 3 to be 𝑃𝑃23, and the 475 

Cycle3 to Cycle 4 to be 𝑃𝑃34, the matrices can be calculated as follows: 476 
















=

0032.0968.0
094.0093.0813.0
257.0743.00

23P
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=

055.045.0
1925.03795.0428.0
302.0296.0401.0

34P

 477 

Assuming that the weights of the State Transition Probability matrices of the respective 478 

periods are the same, according to 𝑃𝑃12, 𝑃𝑃23,𝑃𝑃34, the average state transition probability matrix 479 

should be:  480 

P = 𝑃𝑃� = 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒 (𝑃𝑃12, 𝑃𝑃23, 𝑃𝑃34) 481 
















=

0527.0473.0
204.0268.0528.0
265.049.0245.0

P  482 

Then, by applying P in Equation (10), where: 483 
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 484 

The equation is fixed to: a =  0.431, b =  0.468, c =  0.201. Therefore, after the 485 

BIM-LSC reaches the stable state after Cycle 4, the following equation is valid: 486 

𝜇𝜇 = 0.431 + 0.468𝑖𝑖 + 0.201𝑗𝑗 487 

According to Table 2, the predicted reliability status falls under Scenario 5, where S > U, 488 

S < G, and G > U, which suggests that the reliability of the BIM-LSC was quasi-reliable with 489 

minimal direct potential, and the overall reliability level tended to weaken. This indicates the 490 

importance for the project management team to focus their attention on controlling reliability, 491 



via measures such as the Set-Based Design, that can be realized through Lean and BIM-based 492 

procurement strategies to improve the overall supply chain reliability. 493 

4.4 Semi-structure Interview 494 

From the direct result of calculation, the result of Entropy weight provides an approach to 495 

improve the reliability of BIM-LSC. As “Set based design”, “Use Lean and BIM-based 496 

procurement”, “Asset tagging”, “Integrating FM system with BIM”, “Keep the maintenance 497 

model updated” had the highest weights in Table 3, project managers can start with these five 498 

links to improve the reliability of the supply chain efficiently. 499 

In order to further analyze the results of EESM model calculation, the purposive sampling 500 

was employed to collect information on BIM-LSC reliability again. Thirty-four professionals 501 

with more than eight years of BIM experience were selected, and ten professionals participated 502 

in semi-structured interviews (see Appendix IV). Purposive sampling is a type of non-503 

probability sampling that is most effective when one needs to study a certain cultural domain 504 

with knowledgeable experts within (Guarte and Barrios 2006, Warnecke et al. 1997). Each 505 

interview lasts about one hour. The interview outline is as follows: 506 

1) What do you think of the current situation of BIM-LSC in the construction industry? 507 

2) What do you think are the reasons for the quasi-reliable BIM-LSC? 508 

3) What measures do you think can help improve the reliability of BIM-LSC? 509 

The results of the interviews are sorted according to the questions, as shown in the Table 510 

5. 511 

Table 5. Results of semi-structured interviews 512 

<<           Insert Table 5             >> 513 



5 Discussion 514 

As for reliability evaluation and prediction, Cao and Li (2008) employed the Back-Propagation 515 

Neural network model to evaluate the reliability of the supply chain members where only 18 516 

sample data were collected. Pan et al. (2011) adopted “SIMPROCESS” computer simulation 517 

software to explore the behavior of the construction supply chain in dynamic situation, but there 518 

is no innovation in the math calculation method. Liu et al. (2009) applied Markov chain theory 519 

to study the information flow response time distribution of south-to-north water diversion 520 

supply chain in China, which did not consider the reliability characteristic. This paper collected 521 

316 valid questionnaires and proposed EESM to evaluate the reliability of the supply chain in 522 

an uncertain environment. To calculate the index weight of supply chain reliability, Deng et al. 523 

(2016) established the Triangular fuzzy analytic hierarchy process, which overcomes the 524 

shortcomings of traditional weight calculation. While in EESM, the more objective entropy 525 

method was applied to determine the weighting factor of the reliability indicators and SPA was 526 

applied to describe the degrees of connection between indicators in BIM-LSC. The EESM 527 

model for reliability evaluation and prediction can enhance BIM-LSC management, leading to 528 

an improved project performance. Unlike previous research that has typically focused on 529 

performing static reliability assessment of supply chains (during a certain period of time with a 530 

specific set of project conditions), this research has responded to the need to consider 531 

uncertainty factors in complex business environments, where the reliability status of the supply 532 

chain may change dynamically. 533 

The demonstrated calculations of EESM model provide evidences of the practicality of the 534 

proposed approach and this proposed a platform for future research to build upon in 535 



implementing an integrated approach for BIM-LSC reliability evaluation and prediction. Based 536 

on these results, it is possible to perform the calculation to be replicated with ease, and the 537 

interpreted results support the potential to uncover relatively complex dynamics among 538 

reliability indicators via quantitative information. This integrated BIM-LSC reliability 539 

evaluation and prediction approach offers an alternative method that could provide greater 540 

confidence to project teams in BIM-LSC management, especially when traditional models 541 

struggle to accurately respond uncertainty factors and unforeseen project conditions. 542 

The result calculated the reliability of BIM-LSC was quasi-reliable. By purposive 543 

sampling, the development of BIM-LSC is closely related to the promotion of BIM technology. 544 

This is in parallel with the study of Aziz and Arayici (2018) that the application of BIM in 545 

large-scale construction project enabled to gain lean efficiencies. In addition, lean concepts as 546 

new management thinking have suggested a better maintenance process by improving the 547 

reliability of delivery workflows. These results are generally in line with the literature (Wenchi 548 

et al. 2014, Mahalingam et al. 2015). 549 

Nevertheless, as an exploratory work, there are limitations that may affect the accuracy 550 

and validity of the proposed model in real-world scenarios and are recommended to be 551 

addressed in future research. Firstly, due to the absence of an existing index system with clearly 552 

defined indicators for BIM-LSC reliability evaluation, this research adopted the BIM-Lean 553 

workflow functions from the authoritative CIRIA C725 Lean and BIM Guide and relied solely 554 

on the five primary and 17 secondary indicators. Although these indicators are supported by 555 

both industry and academic literature, it is inevitably limited for use in developing a specific 556 

reliability evaluation index system using this approach. This is due to the generalist nature of 557 



the indicators (both primary and secondary) and the lack of specificity when applied to describe 558 

the BIM-LSC performance in a given project context. Secondly, although the relationship 559 

between BIM-LSC has been well-observed by construction project teams, limited information 560 

is available on supply chain reliability during the project delivery process. In addition, 561 

representative supply chain performance data should be collected for reliability evaluation and 562 

prediction purposes. This research validated and evaluated the proposed model using project 563 

information to a limited extent. Therefore, future research opportunities exist to validate the 564 

relationships between conventional KPIs and supply chain reliability and to improve the 565 

potential application of the proposed model. 566 

6 Conclusions  567 

The research on BIM-LSC reliability evaluation and prediction presented in this paper provides 568 

a strong theoretical foundation to enhanced understanding of the BIM-LSC in a construction 569 

project context. By proposing the EESM model, this study adopted 17 indicators from CIRIA 570 

C725 Lean and BIM Guidebook and obtained 316 valid questionnaires to calculate the 571 

reliability in an uncertain environment. The calculation suggested that the overall reliability 572 

level of BIM-LSC tended to weaken. 573 

The three major contributions of the research are: 1) elaborating the workflow of BIM-574 

LSC and provided the guidelines for implementation; 2) supporting the critical role of reliability 575 

to BIM-LSC performance and the development of an index system for its reliability evaluation 576 

and prediction; and 3) justifying in the application of the entropy method, SPA theory and 577 

Markov Chain process to be integrated in the evaluation and prediction of BIM-LSC reliability. 578 

The results indicate that the proposed BIM-LSC model can handle not only supply chain 579 



reliability evaluation at a given state, but also the prediction of reliability in supply chain state 580 

transitions due to changing project conditions. This is particularly relevant in current project 581 

environments that are characterized by the increased complexity of labor, technology and 582 

resources interactions.  583 

Future research opportunities exist to: 1) further develop the accuracy of BIM-LSC 584 

reliability evaluation index system by triangulating both quantitative (e.g. surveys 585 

questionnaires) and qualitative (e.g. content analysis of project management documentation) 586 

data; and 2) empirically test the refined BIM-LSC reliability model in real-world settings (e.g. 587 

capital project case studies) across the entire lifecycle to validate and possibly strengthen its 588 

predictive power. 589 
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