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HIGHLIGHTS

o The Design of Experiments methodology and statistical analysis is introduced.

e Design of experiments is a valuable tool for the design and development of lithium-ion batteries.

e Critical review of Design of Experiments applied to different aspects of lithium-ion batteries.

e Ageing, capacity, formulation, active material synthesis, electrode and cell production, thermal design, charging and parameterisation are covered.
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The statistical design of experiments methodology (DoE) has been a valuable tool since its conception for the
understanding of the relationship between factors and responses. Although it has been employed successfully in
different research fields and industries for years, its application to the evaluation of lithium-ion batteries (LIBs) is

gletcit;?::ﬁ on just getting recognition. LIBs are one of the most promising technologies for a complete transition to sustainable
Ml:)delling energies, are the main technology behind electric vehicles and are fundamental for the continual development of
Formulation portable electronic devices. This paper presents a critical literature review of the available DoE works applied to

the manufacturing and characterisation of LIBs. An overview of DoE and the most important available designs
are first presented, followed by a general introduction of the statistical analysis required for the interpretation of
the results including regression models. Several aspects of the LIBs such as ageing, capacity, electrode formu-
lation, active material synthesis, thermal design, charging and parameterisation are discussed based on the main
objective of the respective DoE studies found in the literature. A case study is presented to visualise the practical
application of DoE to the LIBs field. Perspectives and future outlook are given to highlight opportunities and
potential areas of research in the application of traditional and modern designs to the LIB’s field. This critical
review contributes to a better understanding of the DoE methodology with a focus on LIBs or LIBs related aspects
which will lead to faster developments in the field.

1. Introduction

The search for more sustainable alternatives to fossil fuel energy
resources and the information era has led to the development of lithium-
ion batteries (LIBs). LIBs are helping in the substitution of oil powered
cars by electric vehicles (EVs) [1], and are aiding in the transition to
renewable energy sources by serving as energy storage devices [2].
Additionally, the demand for portable electronic devices such as mobile
phones, laptops, tablets, digital cameras, wearables and drones, has
resulted in a considerable growth in LIBs production [3]. However,

battery performance and cost still need to be improved to facilitate a
complete transition towards electrification.

LIBs performance is mainly described by their energy density, power
density, capacity, lifetime and charging time, characteristics that are a
function of electrochemical properties (e.g. current and ion density,
coulombic efficiency, ohmic resistance, polarization and reaction losses)
and physical electrode properties (e.g. thickness, mass loading, porosity,
adhesion, conductivity) [1]. The electrochemical and physical proper-
ties, and finally, the performance of the battery is the result of the
interaction of battery components (anode, cathode, binder, separator
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and electrolyte solution) [1] and the electrodes structures created in the
several manufacturing process steps [4]. In order to optimise the per-
formance, quality and cost of the manufactured LIBs it is first necessary
to understand how the different components and manufacturing pro-
cesses interact and their impact on battery characteristics.

The understanding of the relationship between the manipulated
variables and the output variables is essentially done by experimenta-
tion, frequently by trial-and-error through a best-guess approach, or in a
few cases by a one-factor-at-a-time approach. In the context of LIBs
manufacture and performance, the manipulated variables are, for
instance, the types and amounts of materials in the electrode formula-
tion, the thickness and porosity of the electrode, charge and discharge
temperatures, and equipment operating parameters, whereas the output
variables can include the battery’s energy density, discharge capacity
and temperature rise.

In recent years, the combination of experiments and modelling has
shown to be a promising alternative to only experimental work [5].
Some researchers have focused on reducing the number of experiments
required to understand the relationship between battery performance
and the manufacturing process by using models at different scales [6,7].
Schmidt et al. [4], for instance, combined a process chain simulation
consisting of the coating, drying and calendering processes, and a ho-
mogenized cell model to identify the most relevant process parameters
and their impact on battery performance.

Nevertheless, accurate experimental data underpins all modelling
work for either its development, testing, validation or parameterisation.
To reduce the time and efforts associated with experimentation, the
statistical Design of Experiments (DoE), is a valuable tool to obtain the
maximum amount of relevant data at the minimum economic cost and
time. DoE has successfully been used in different areas and industries,
such as the pharmaceutical [8,9], agricultural [10,11], energy and
bioenergy [12], fuel cells [13], microencapsulation [14], analytical
chemistry [15] and chemical and biochemical processes [12,16]. In the
battery field, however, DoE seems to be just gaining recognition as
shown in the number of published papers through time (Fig. 1).

This paper presents a review of DoE works applied to LIBs within the
academic literature. The paper is organised as follows: first, an intro-
duction to DoE is provided, covering the aspects of design methodology,
available experimental designs and the statistical tools used for the
analysis of the collected data. The article then presents and discusses a
collection of works where DoE has been applied specifically to the LIBs
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Fig. 1. Number of publications applying DoE to lithium-ion batteries (retrieved

from Scopus and Web of Science entering keywords experimental design, DoE,
multivariate analysis, lithium-ion batteries).
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field. The works have been classified in the following categories
depending on the main objective of the DoE: battery ageing, energy
capacity, formulation, active material synthesis, electrode and cell
production, thermal design, charging, other applications, optimisation
studies and model parameterisation. A DoE case study is presented to
illustrate a practical example of the application of DoE and how the
experimental effort is reduced compared when traditional methods are
employed. Perspectives and future outlook are given highlighting po-
tential areas of research. General conclusions are presented at the end.
The paper contributes to a better understanding of the DoE methodology
applied to the LIBs field and clarifies a few of its misconceptions.

2. DoE methodology

DoE can be defined as the branch of statistics involved in the plan-
ning, the collection and analysis of experimental data to ensure valid
and objective engineering conclusions are attained [17]. DoE deals with
the understanding of the effect of independent or input variables (fac-
tors) on the dependent or output variable (response) [11]. DoE is built
on concepts of randomisation, blocking, replication, factorial approach
and analysis of variance first introduced by Fisher [10,18]. The study
areas in which DoE is often applied in engineering are comparative,
screening, modelling, optimisation, robust design and formulation
(Fig. 2) [11,19].

DoE involves a series of methodical steps (Fig. 3) [20]. First, the
problem as well as the objectives of the experimental study are stated.
The problem can be classified in one of the study areas shown in Fig. 2.
The response(s), as well as the factors and their suitable levels (settings
of the process parameters) are chosen based on the objective of the
experimental study. Several factors (>4) at only 2 levels are normally
considered for screening studies, whereas 2 or 3 factors with 3 or more
levels are common for optimisation or robust parameter design. Next, an
experimental design is selected, which is the category comprising the
series of experiments that are undertaken considering the number of
factors, levels, replicates, blocks, randomisation and the consideration
of an (empirical) model.

The next step is performing the experiments as dictated by the
experimental design. In most cases, particularly in screening, it is useful
to run a few preliminary experiments to ensure that a suitable range of
the factors has been chosen.

Once the data has been collected, it is processed using statistical
methods. The statistical analysis commonly involves the analysis of
variance (ANOVA), as well as the use of graphical methods (e.g., Pareto
charts, histograms, normal or half normal probability plots and mean
plots). In this step, a model, usually empirical, can be used to interpret
the results and to represent the relationship between the factors and the
response (Section 4.1). Finally, the evidence given by the statistical
analysis provides a basis to arrive to objective conclusions.

3. Experimental designs

It is beyond the scope of this paper to discuss in detail the different
experimental design methods. Further details are provided in a number
of publications and educational texts, for example [11,21,22]. However,
for completeness, a summary of the main experimental designs is pro-
vided below.

3.1. Factorial

This type of designs involves either the testing of all possible com-
binations of two or more factors and their levels (full factorial) or the
testing of only a subset of the full factorial (fractional factorial design).
The number of experiments (N) for a full factorial is given by N = Lk,
where L is the number of levels and k the number of factors. For a
fractional factorial it is N = L*?, where p generates the confounding
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Formulation
to determine the effect of the
proportions of ingredients in a
mixture on the response

Robust design
to determine the levels of the
factors to make a process
insensitive (minimise
variability) to uncontrollable
or difficult to control factors
(noise)

Comparative
to determine the effect of a
single factor in the process
response

DoE
study areas

Optimisation
to determine the level of each
factor that minimises or
maximises the response

Screening/

characterisation
to identify and ranked the
important and unimportant
factors

Modelling
to obtain a mathematical
function that represents the
process with high predictive
power and accuracy

Fig. 2. DoE study areas and their objectives.

pattern of the design [17].

Full factorials are rarely used when the number of factors or levels is
relatively large (L > 3, k > 5). Common factorial designs are the 2% and
the 3%, The former is mainly employed in screening (see Section 3.2),
whereas the latter when a quadratic function between response and
factors is suspected. Nevertheless, 3 are common only when the number
of factors is relatively low, and if quadratic or higher interactions are
expected, response surface methodology (RSM) provides with better
designs.

An example of a factorial DoE applied to LIBs is given by Rangappa
and Rajoo [23] (see Table 7) who used a full 3% design for the identifi-
cation of the main factors in battery temperature rise.

3.2. Screening

As previously mentioned, 2 designs are primarily used for screening
purposes. A special type of 2k fractional factorials are the saturated
designs in which up to k = N—1 factors can be studied in N runs. An
example of a saturated design used for screening is the Plackett-Burman
in which N is a multiple of 4 [24]. Despite their effectiveness in finding
main factors, the use of Plackett-Burman designs has not been reported
in the LIBs field.

Screening designs have been mentioned for the study of vehicle-to-
grid (V2G) and grid-to-vehicle (G2V) strategies on battery degradation
[25], and for the analysis of impurities on lithium extraction (24 design)

[26]. A limited collection of papers reported the use of screening designs
for the identification of main factors as a preliminary research step.
Some works identified the main factors by orthogonal arrays (OAs) with
more than two levels (e.g., [27-30]) which may not be economical.

3.3. Response surface methodology

After the work of Fisher [10], a wider application of DoE in industry
came with the RSM proposed by Box and Wilson [18,31,32]. The
methodology focuses primarily on process optimisation but is also used
for robust product and process design. RSM acquires its name from the
graphical representation of the surface created from the values of the
factors and the resulting value of the response. For the case of two
variables, the surfaces are a 3D plot with its associated contour plot (see
for instance Fig. 6). RSM studies are recommended after screening de-
signs in order to perform targeted experiments only on the main factors.

The relationship between factors and response is expressed by a
mathematical model, normally a second-order polynomial (Section 4). If
the model is deemed to represent the relationship between factors and
levels, it can then be used to determine the settings to optimise the
response.

Although there are different RSM designs (central composite, Box-
Behnken, the small composite design, equiradial designs, hybrid
design) [11], the most popular and widely used in industry are the Box-
Wilson central composite design (CCD) and the Box-Behnken design
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(BBD) [31,33].

In CCD, a factorial constitutes the basis of the design to which axial
runs and centre runs are added resulting in factors with five levels. The
number of centre runs (c), are required to provide stability in the vari-
ance of the predicted response. The total number of experiments for a
CCDisN =k? + 2k +c.

The BBD, conversely, consists of three evenly spaced levels and the
number of experiments is N = 2k(k —1) + c, for k > 2. The designs are
formed by the combination of 2* factorials with incomplete block de-
signs [32].

A detailed application of RSM to electrode formulation is discussed
by Lv et al. [34] (see Table 4).

3.4. Taguchi

The popularization of DoE in industry came with Taguchi’s work on
what was termed robust parameter design (RPD). RPD is a methodology
and philosophy to determine the best settings of the controllable factors
to make the process insensitive to noise factors in order to reduce pro-
cess or product variation [11,32]. The product or process is, in this
sense, optimised. Noise factors are defined as the variables that cannot
be controlled in the actual process but that can be controlled or simu-
lated in the experiments. Taguchi promoted the use of fractional facto-
rial designs in the form of OAs (a class of orthogonal main effects
designs) consisting of a N x k matrix [35]. The nomenclature used to
define the Taguchi designs is Ly (LX), or simply Ly.

In Taguchi designs an OA of the control variables (factors) is crossed
with an OA containing the noise variables. The signal-to-noise ratio
(S/N) is used as a measure of the variability of the response with respect
to the target value due to the noise factors. Three common S/N re-
lationships can be specified depending on the objective of the RPD
experiment: nominal-the-best, larger-the-better and smaller-the-better
(Table 1).

Nevertheless, it has been shown that Taguchi designs can lead to a
large number of experiments, are in most cases unable to identify
parameter interactions, and moreover, the use of the S/N as the response
does not allow to distinguish between the factors that affect the mean
and the factors that affect the variance [32,36].

Most of the studies found in this review, discussed further in Section

Table 1
Typical signal-to-noise ratio (S/N) relationships and their applicability.”
Signal-to-noise Objective Equation
ratio type
Nominal-the- To achieve a specific value of the 2
best response, e.g., electrode thickness §/N = —10log (?)
Larger-the- Maximise the response, e.g., coating ~ S/N =
better adhesion 1\?2
=)
_10log | 2/
Olog n

Smaller-the- Minimise the response, e.g.,
better electrode defects

S/N = —1010g(2yi2)

n

2 ¥ = sample mean, 6> = population variance, y; = i element of the response,
n = number of data points.

5, are of the Taguchi type.

3.5. Mixture

Mixture designs are a special type of designs in which the factors (x)
are the compounds in a mixture and the levels their proportions, related
according to Egs. (1) and (2), where q is the number of components.
[37]:

0<x <1, i=12q (€8]

q

> ox=1 2
i=1

In mixture designs it is commonly assumed that the response is only a
function of the proportions and not of the amount of the total mixture.
Graphically, for two components, the factor space is a line, for three
components is a triangle and for four components it is a tetrahedron. The
common types of mixture designs are the simplex lattice, simplex
centroid, simplex axial and extreme vertices design [21,38].

In the simplex lattice, there are m 41 equally spaced proportions (Eq.
(3)) in the range from 0 to 1, and all mixtures with these proportions for
each compound are evaluated (see for instance Fig. 4a). These designs
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Fig. 4. Mixture designs for formulations comprising active material (AM), conductive additives (CA) and binder (B): (a) {3,3} simplex lattice with 10 points; (b)

simplex centroid ¢ = 4 with 15 points.

are labelled as a {q, m} simplex lattice, where m is the degree of the
lattice. The number of experiments in a simplex lattice is (%)
12

'xi = 077777 o
mm

71 i:1727'"7q (3)

In the simplex centroid design, the experimental points are in the
centroid points, the vertices and the overall centroid (centre point of the
triangle, for ¢ = 3). The total number of experimental points is 27 —1
(Fig. 4b).

In simplex axial designs, the experimental points are on the axial of
the components. The axial is defined as the line extending from the base
pointx; =0, x; = qu, to the vertexx; =1,x; =0, forallj #i[21]. The
total number of points in a simplex axial is given by 3q + 1, corre-
sponding to g vertex points, q centroid of constraint planes, g axial
points and the overall centroid.

In the extreme vertices design, a reduced design space of the simplex
is created due to linear constraints or upper and lower bounds on the
proportions. The number of runs depends on whether axial points and
overall centroid point are added.

D-optimal
(determinant-optimal)

Design that minimises the
variance of the regression
coefficients of a specified model,
e.i., it maximises the
determinant of the information
matrix (X'X)

G-optimal
(global-optimal)

I-optimal
(integrated-design)

Design in which the model fitted
from the experimental data
minimises the maximum
prediction variance over the
design space

Optimal designs

Design with the smallest average
prediction (integrated) variance

Recently, Rynne et al. [39] optimised a specific electrode formula-
tion by a constrained mixture designed [21,40]. The research consisted
in testing the proportions of active material (AM), conductive additives
(CA) and polymer binder (B), and their effect on discharge/charge ca-
pacities. The analysis showed that the AM should be maximised while
keeping a small fraction of CAs and minimum B content.

3.6. Optimal designs

The previous designs are also called traditional or classic designs
[17,19]. Optimum designs, on the other hand, are an umbrella term for
designs created based on specific objective optimality criteria. Because
of their complexity, computer algorithms are often needed for the
implementation of optimum designs, and are therefore also termed as
computer-generated designs [41,42]. There are various types of optimal
designs, but frequent ones are D-optimal, G-optimal, I-optimal, A-
optimal and V-optimal, each with different features (Fig. 5) [43,44].

Optimal designs are primarily used when dealing with non-standard
models, a restricted number of experiments or restricted experimental

V-optimal
(global-optimal)

Design that minimises the
average prediction variance over
a set of interest points in the
design space

A-optimal
(average-design)

Design that minimises the
average variances of the
regression coefficients, e.i.
tr[(X'X) ']

Fig. 5. Common optimal designs and their main characteristic [11,44,45].
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Fig. 6. Response surfaces and corresponding contour plots showing: (a) a maximum discharge capacity [34]; (b) a generic rising ridge system.

regions [32,45]. Few papers reported optimal designs, and these were
mainly D-optimal. Only Rynne et al. [39] reported I-optimal in their
formulation study.

4. Statistical analysis
4.1. Regression model

One of the goals of DoE is to obtain a mathematical model that
represents the relationship between the response and the factors. For a
process represented by a k number of x factors, the response y is given by
Eq. (4) where ¢ is the random error.

Yy =f(x1, %2, x) + € ()]

If the expected response, E(y), is a function of the xi factors (Eq. (5)),
then the surface represented by Eq. (6) is the response surface [11].

E(y) =f(x1,x1, "'xk) %)

7 =f(x,x, xx) (6)

In DoE, an empirical model in the form of a polynomial is used to fit
the experimental data. The simplest model to represent the response is
the linear function (Eq. (7)), also called the main effects model since it
only contains the effects of the x; factors. f, is the average value of the
response.

k
y=pH+ Zﬂixi+€ @
=1

More complex relationships can be studied by including an interac-
tion term to the main effects model. For instance, a model with two-way
interactions (x;Xj4) can be expressed as in Eq. (8).

k k=1 k
y=bot Y Bt D > P te ®
i=1

=1 j=it1

If curvature is shown or expected in the system, then higher order
polynomials may be used. The higher order-order polynomial can also
include higher interaction products (e.g., three-way) but for most DoE
studies, normally up to the second-order model is considered (Eq. (9)).

k k—1
y=F5+ Z Bixi+
i=1 1

i=

k k
Z Biyxix; + Z i +e 9
Jj=i+1 i=1

The coefficients f;, ff; and f; in Egs. (7)-(9) are the first order, the
interaction and the quadratic coefficients, respectively. The $ parame-
ters are estimated from fitting of the experimental data by the method of

least-squares.

Egs. (7)-(9) can be expressed in matrix notation according to:
y=Xp+e (10)

A special matrix resulting from a given experimental design and
model is the hat matrix (H) defined as:

H=XXX)"X an
The fitted regression model is given by:

y =Hy (12)

where ¥ is the least-squares estimate of E(y), or:

y= X0 = Hy 13)

9 in Eq. (13) is the least-square estimator of p defined by Eq. (14) ac-
cording to the least-square analysis [32,45].
0=(XX) "Xy a4

The difference between the observed values (y;) and the fitted values
(7)) is the residual, ;. The vector of residuals is therefore:

e=y—-y (15)
The covariance matrix of 8 is defined as:
Cov(®) = A(XX)™ (16)

where X X is called the design information matrix.

It is noteworthy that for mixture designs, the polynomials repre-
senting the response surface are different due to the constraint given by
Eq. (2). The second-order canonical mixture (or second-order Scheffé
model) and the special cubic models are given by Egs. (17)-(18)
[21,44]. Other models can be found in the review of Cornell [21].

9 q
n= Bxi+ .Y By
i=1

i<j

a7

(18)

q q q
n= Zﬁ',-x,- + Z Zﬂ,-jx,-xjx + Z Z zﬂ,‘jkxixjxk
i=1

i<j i<j<j

4.2. Model diagnostics

The first step in the model diagnostics is to look at residual plots in
the form of residual vs predictions, residual histogram, normal proba-
bility plot of residuals, among others [17,46]. Numerical indicators for
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model testing basically involve ANOVA, that is an analysis of the total
variability in the response. The analysis starts with the computation of
the regression sum of squares (SSg), the residual sum of squares (SSg)
and their contribution to the total sum of squares (SSt) according to Egs.

((19)-(21)).

2
R 1 n
SST—yyn<Zy,-> = SSg+SSg 19)
i=1

2
PO 1 n
i=1

SSp=yy—0Xy 21

The regression (MSg) and residual (MSg) mean squares are then
computed according to Egs. (22) and (23), respectively, which are in
turn used to determine the F-value (F-statistics test, Eq. (24)).

MSp = % (22)
SSe
MSy = ——F— 2
S n—k—1 @3
M,
F —value = Miz 24)

If F-value > F,xn_k_1, then the null hypothesis (Hy : p; = $, = ...
= f, = 0) isrejected and the model equals noise. Values of F, x »_x_1 can
be obtained from tables in statistics books, where « is the level of sta-
tistical significance.

It is also customary to use P-value criteria to reject the null hy-
pothesis when the P-value < «. Calculation methods of the P-value are
not straightforward, and it is normally done by statistical software (e.g.,
SAS, Design Expert, Minitab, R, MATLAB and JMP). « is generally set
between 0.05 and 0.1; the latter value is preferred in screening designs.

The coefficient of determination (R%) computed from Eq. (25) is
commonly used to explain the data variation that the regressed model
can explain is. The closer R? to 1 the better the model is in representing
the data. However, because the addition of terms in the model increases
R? regardless of their statistical significance, the adjusted R? (Rﬁdj) (Eq.
(26)), is a preferred representation of the data variation explained by the
model. Unnecessary terms will decrease the value of Rﬁdj.

SSg SSg
RP="TF 22 25
SSr SSr (25)
(n—1)SSg
RR,=1-—"T" 2
adj (n—k—1)SSy (26)

A proposed estimate of the predictive capability of a model is given

by Rgred, according to Egs. (27) and (28).
PRESS
R =1-— 27
i =155 @7)

n 2
PRESS = (ﬁ) (28)
i=1 it

h;; in Eq. (28) are the diagonal elements of the hat matrix (Eq. (11)).

The method behind Eq. (27) is to remove one of the i data points, fit
the regression model to the remaining n —1 observations and use that
model to predict the removed y; point. The process is repeated for all
data points to compute PRESS.

5. DoE applied to batteries

The following sections present the application of DoE by subject
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research area depending on the main objective of the study.

5.1. Battery ageing

Ageing within a LIB is classified as cycle ageing and calendar ageing;
the former is related to degradation processes linked to mechanisms to
the charge-discharge cycle, whereas the latter to independent mecha-
nisms of such cycles. Calendar ageing has been mainly attributed to the
build-up of the solid-electrolyte-interphase (SEI) [47]. Cycling ageing is
attributed to SEI growth, lithium platting in the anode, volume changes
and material degradation in both electrodes [48]. These mechanisms are
influenced by several factors like cell chemistry, cell temperature, state
of charge (SoC), current magnitude, depth of discharge (DoD), fre-
quency of the charge-discharge process [49,50], voltage (charging
voltage, end-of-discharge voltage and end-of-charge voltage) [51], pulse
duration [52] and superimposed AC current [53,54].

Ageing is mainly defined as capacity fade and power fade (increase in
the internal resistance or impedance) [50]. The understanding of the
relationship between the different ageing factors on these two perfor-
mance indicators (responses) is important for both, the design of more
durable LIBs and for the management of existing batteries through
battery management systems (BMS). The relationship between ageing
factors and the response is expressed mathematically by either a
physico-chemical model or an empirical or semi-empirical model.
Nevertheless, the several factors involved in the aging process make the
physico-chemical modelling a challenging task [55], and the simple
empirical and semi-empirical models are sometimes preferred. The
calibration of these models (parameterisation) is done by fitting of
experimental data.

Performing the minimum number of experiments is important in
ageing tests since these can take from months to years, especially when
dealing with new chemistries or in the development of new battery
designs [48,56]. DoE is useful not only to determine the minimum and
most valuable number of ageing tests conditions but also to obtain the
parameters to underpin empirical model development. A detailed re-
view of literature in this domain is summarised in Table 2.

Although different chemistries have been involved in the ageing
studies (Table 2), generally, temperature (T) and SoC have been iden-
tified as the two main important factors in capacity fading. The effect of
SoC is mainly due to interaction with temperature. While the effect of
temperature and SoC was already determined by studies not using DoE
[47], the usefulness of the DoE methodology is in arriving to such
conclusions faster, as well as to obtain an empirical model to explain the
observations.

Using a D-optimal design, Mathieu et al. [48] obtained cycling
degradation data that was later coupled with independently tested cal-
endar data to develop an integrated empirical model for both ageing
types. The resulting model was a double quadratic expression with
interaction (Eq. (29)). The response surfaces at constant charge current
(I¢) and discharge current (Ip) are saddle points that can be used as an
indication of the behaviour for capacity fade rate under the studied
factors ranges. The model revealed the capacity fades plateaus corre-
sponding to the graphite potential plateaus when SEI growth is the
predominant ageing mechanism as pointed out by Keil et al. [47].

1 Ic I 1 R
La(ke) = fy +ﬂA7+ﬂRSOC +Bclc+ Pplp +ﬂAC7+ﬂAD7+ﬂAAﬁ+ﬂBBSOC

(29

5.2. Energy capacity

Energy capacity is one of the LIB’s key performance indicators and an
active area of research. The required capacity of a LIB depends on its
final application (e.g. portable electronic, E