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Evaluating the impact of highway 
construction projects on landscape 
ecological risks in high altitude 
plateaus
Chao Li1,2, Jingxiao Zhang1*, Simon P. Philbin3, Xu Yang4, Zhanfeng Dong5, Jingke Hong6 & 
Pablo Ballesteros‑Pérez7

In China and other countries, many highway projects are built in extensive and high‑altitude flat areas 
called plateaus. However, research on how the materialisation of these projects produce a series of 
ecological risks in the landscape is very limited. In this research, a landscape ecological risk analysis 
model for high‑altitude plateaus is proposed. This model is based on the pattern of land uses of the 
surrounding area. Our study includes buffer analysis, spatial analysis, and geostatistical analysis. We 
apply the model to the Qumei to Gangba highway, a highway section located in the southeast city of 
Shigatse at the Chinese Tibet autonomous region. Through global and local spatial autocorrelation 
analysis, the spatial clustering distribution of ecological risks is also explored. Overall, our study 
reveals the spatial heterogeneity of ecological risks and how to better mitigate them. According to a 
comparison of the risk changes in two stages (before and after the highway construction), the impact 
of highway construction on the ecological environment can be comprehensively quantified. This 
research will be of interest to construction practitioners seeking to minimize the impact of highway 
construction projects on the ecological environment. It will also inform future empirical studies in the 
area of environmental engineering with potential affection to the landscape in high‑altitude plateaus.

Since the beginning of the twenty-first century, the Chinese government has implemented specific construc-
tion plans for highways in the Tibet plateau. This has resulted in a major increase in the size and capacity of the 
highway network in this  region1. However, the complex and special geological environment of the Tibet region 
has not been adequately considered in the construction process creating many negative effects. The progres-
sive destruction of vegetation during highway construction has caused significant landscape changes along the 
highway route resulting in a fragmented landscape. At the same time, waste discharges and exhaust gases dur-
ing the construction process have eroded the soil and will surely create further soil erosion and water pollution 
 problems2. Recent research has been mainly focused on evaluating the impact of highway construction on urban 
 areas3–5, lakes and river  basins6,7 and nature  reserves8,9. However, hardly any research has investigated the impact 
of highway construction in ecosystems at high altitudes in the Plateau. In the case of Tibet, the complex terrain, 
climatic conditions and the difficulty of data acquisition, has resulted in very limited research.

The Tibet plateau is a densely distributed area of nature reserves and an important ecological security barrier 
between China and the wider continent of Asia. It plays an important role in climate regulation, soil and water 
conservation, biodiversity protection and carbon accumulation. However, due to the fragility of the very cold 
environment and its sensitivity to external disturbances, the overall landscape pattern of such areas can be eas-
ily fragmented (i.e. acquire poor stability and resilience to external changes). Consequently, intensive highway 
construction will likely result on major negative impacts on the biodiversity and landscape patterns of this area.

At present, methods for ecological risk assessment include various modelling approaches from diverse fields 
like physics, chemistry and biology. Many of them involve simulation as well as other risk measurement methods, 

OPEN

1School of Economics and Management, Chang’an University, Xi’an 710061, Shaanxi, China. 2School of Civil 
Engineering, University of Science and Technology Liaoning, Liaoning Anshan 114051, China. 3Nathu Puri 
Institute for Engineering and Enterprise, London South Bank University, London, UK. 4Harbin Normal University, 
Harbin 150500, Heilongjiang, China. 5Institute of Eco-Environmental Policy and Management, Chinese 
Academy of Environmental Planning, Beijing 100012, China. 6Chongqing University (CQU), Chongqing 400044, 
China. 7Departamento de Proyectos de Ingeniería, Universitat Politècnica de València, Camino de Vera s/n, 
46022 Valencia, Spain. *email: zhangjingxiao964@126.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-08788-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5170  | https://doi.org/10.1038/s41598-022-08788-8

www.nature.com/scientificreports/

such as the expert judgment. Physics, chemistry and biological-based simulation involve developing a model in 
order to observe and test the envisaged impact of events on the ecological properties of the ecosystem, includ-
ing biological life. The general risk measurement method is used to estimate the importance of the risk, which 
is broken down in probability and severity. When there are many system property uncertainties or just different 
opinions on the ecological value of some of the system components, the expert judgment method can also become 
an alternative method. Similarly, ecological risk assessment methods based on remote sensing technologies 
and geographic information systems are becoming increasingly common. These technologies are also used to 
process and analyze changes in the ecological  environment10,11. In terms of ecological risk evaluation indica-
tors, there tends to be two main aspects analyzed: heavy metal pollution in soils and landscape pattern changes. 
Landscape ecological risk assessment pays more attention to spatio-temporal heterogeneity. Understanding this 
heterogeneity can help decision-making for regional risk prevention and improve landscape  management12,13. 
However, empirical studies that confirm the advantages and application of these models are extremely limited.

This research study builds on existing research and adopts the Qumei to Gangba highway section in the 
southeast city of Shigatse. This city is located in the Tibet autonomous region of China. The study considers 
the 10-km buffer zone along the highway in a high-altitude plateau area and develops a landscape ecological 
risk assessment model based on the landscape pattern. The spatial and temporal distribution of the landscape 
ecological risks along the highway are evaluated before and after the highway construction. This analysis reveals 
the characteristics and extensive impacts of highway construction on the landscape pattern and the landscape 
ecological risks of the area. It will also provide an improved understanding of the technical support required for 
the post-construction stage of ecological restoration in these high-altitude areas.

Literature review
The impact of infrastructure construction on landscape patterns. Engineering construction 
activities deeply affect the regional landscape and the level of biological activity, including human life. On the 
microscopic scale, construction activities frequently result in heavy metal pollution, which change the structure 
of the surface soil and affects the migration of  species14. On the landscape scale, construction activities often lead 
to long-term fragmentation.

Based on GIS and the buffer analysis method, Minxi et al.15 used several landscape metrics to quantitatively 
study the impact of hydropower projects construction on landscape structure changes. Yang et al.16 investigated 
the process of hydropower facility development and the ecological characteristics of a river basin. Then, they 
systematically evaluated the impact of cascade hydropower development on the river landscape. Chen et al.17 
adopted the West–East gas pipeline project in China as the research object, and studied its impact on the land-
scape pattern by comparing the changes of landscape indicators along its route.

In terms of research on the impact of highway construction on the landscape pattern, Qianqian et al.18 used 
remote sensing data to compare the pre- and post-construction stages in a 500-m buffer zone along the highway. 
Yong et al.19 analysed a 15-km buffer zone on both sides of the Yuyi expressway (Chongqing section). With the 
help of ArcGIS technology and landscape ecology methods, these researchers explored gradient differences of 
land use and landscape pattern evolution. Keken et al.20 monitored the land cover typologies in Czech Republic’s 
highways for nearly 60 years and studied the impact of road construction and operation on changes in landscape 
structure. Huang and  Ting21 studied the impact of road construction on landscape fragmentation and evaluated 
their influence and environmental variables. Mothorpe et al.22 studied the impact of the American interconti-
nental highway construction on land use, and provided technical support for future agricultural land protection 
plans. Huang et al.23 investigated Taiwan’s township roads and showed that road construction led to varying 
degrees of isolation and fragmentation on the overall landscape pattern.

The above researches provide an effective method for in-depth evaluation of the changes of regional landscape 
pattern in the process of engineering construction, but it does not consider the vulnerability and particularity of 
plateau landscape under extremely complex geological conditions. Therefore, with the help of the above research 
methods, it is necessary to evaluate the evolution characteristics of landscape pattern in the process of highway 
construction in high-altitude Plateau, and the research results can provide differentiated governance schemes 
for landscape restoration in similar regions.

The impact of infrastructure construction on ecological risks. With the rapid development of infra-
structure development, the ecological impact of these works has caused higher stress levels in the surrounding 
environment. Many Chinese scholars have focused on theory and methods development of landscape ecological 
risks assessment. Consequently, a research framework of landscape ecological risk assessment has already been 
developed.

However, the landscape factors that have been considered are mainly focused on the quantification and analy-
sis of landscape patterns. These research results have generally been used to characterize landscape ecological 
risks indirectly, though. In this vein, different scholars have selected relevant indicators, methods and models 
and applied them to different regions and for different evaluation purposes. For example, Jian et al.24 proposed 
environmental protection measures for tunnel construction by evaluating the ecological risks and provided a 
reference for the construction of similar geotechnical projects.  Wang25 studied the ecological environment along 
a high-speed railway project and put forward several measures to prevent its disturbance. He and  Xiong26 selected 
several indicators and analyzed their impact on the ecological environment with the aim of reducing ecological 
risks. Jing et al.27 verified the impact of the construction of a cross-sea bridge on the water quality and ecological 
environment of the surrounding sea. Jianhua et al.28 used multi-scale and multi-source remote sensing data to 
monitor and analyze the ecological environment and socio-economic impacts along a railway project.  Fang29 
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analyzed the main ecological environmental problems and the main influencing factors of metal mine construc-
tion projects. Then, some methods for ecological environment assessment were proposed for those mine projects.

In terms of the impact of highway construction on ecological risks, many researchers have also adopted dif-
ferent study perspectives (from micro and macro frameworks, and from single roads to whole road networks). 
Bian et al.30 assessed the ecological and health risks of the surrounding areas of a highway project by analyz-
ing the persistence of heavy metals in the soil. Limin et al.31 quantitatively studied the gradient changes of the 
landscape pattern in different buffer zones of roads according to an ad-hoc landscape pattern index. Liang and 
 Nianlai32 adopted an index evaluation method to analyze the impact of highway construction on the surround-
ing ecological environment. Specifically, they focused on how to alleviate the impact of highway construction to 
maintain the sustainable use of local natural resources. Ting and  Zongmin33 proposed an ecological environment 
impact assessment index system for highway construction. And more recently, Igondova et al.34 proposed another 
ecological impact assessment method for roads construction. In this case, though, their method included an 
ecological risk assessment index which could be applied in quantitative research studies.

Research on landscape ecological risk assessment methods. Landscape ecological risk assessment 
frequently encompasses two methods: those based on risk sources, and those based on sink and landscape pat-
terns. The so-called early landscape ecological risk assessment is one of the former methods, but it is not applica-
ble when the regional ecological stress factors are not  clear35,36. Evaluation methods based on landscape patterns 
directly evaluate landscape ecological risks from spatial patterns on a regional scale. In this regard, ecological 
risk assessment methods based on land use and cover changes have become a research  hotspot37.

In the process of ecological risk assessment, the construction of landscape ecological risk indices based 
on landscape patterns or land mosaic patterns have become prominent  too38. The risk level of the landscape 
can also be measured from the existence of external forces (i.e. rapid urbanization) and the internal pressure 
capacity of the  landscape39. In terms of evaluation indicators, the expert scoring method is frequently used as 
research method. The sorting normalization method is also used as well, but the assignment method is condi-
tioned by some subjective weight normalization which can affect the eventual assessment of different evalua-
tion  indicators40,41. As a systematic method, a multi criteria decision making (MCDM) method can reduce the 
interference of decision-makers’ subjective judgments on decision-making, and is widely used in various fields 
of ecological risk  assessment42,43. Among the MCDM methods, the analytic hierarchy process (AHP) method 
and the technique for order preferences by similarity to ideal solutions (TOPSIS) method are commonly used 
methods. Peng et al.44 used AHP to determine the weight of each factor affecting wetland ecological risk, and 
established a risk assessment model. Based on the improved AHP, Zhang et al.45 combined the fuzzy comprehen-
sive evaluation (FCE) method and applied the improved AHP to the ecological environment impact assessment 
of expressways, and concluded that the improved method has good objectivity and reliability, applicability. Luan 
et al.46 used TOPSIS method to conduct multi criteria decision making analysis on environmental pollution 
caused by land cover change, and the research results provided scientific guidance for regional environmental 
management and planning. In addition, the combination of AHP and TOPSIS method has become an important 
method for ecological risk  assessment47,48.

Recently, landscape ecological risk assessment methods usually accommodate multi-element ecological risk 
assessment. However, the selection of evaluation indicators remains subjective. Also, there is a lack of quantita-
tive standards for ecological risks. Most of the evaluations are based on qualitative analysis, whereas quantita-
tive analysis still is in an exploratory stage. Consequently, a comprehensive ecological risk assessment system 
needs to be established as soon as possible. Namely, a standard method for ecological risk assessment should be 
determined to provide a theoretical basis for further ecological environmental management and risk prevention 
measures. This method will be applied to highway construction projects, unlike many prior studies which have 
focused on cities or river basins.

Research area and research methods
General situation of the study area. The extensive repair work for the highway maintenance of the 
Qumei to Gangba highway section commenced in early 2019. This highway is located in the southeast city of 
Shigatse, in the Chinese Tibet autonomous region. The route is 145.64 km long and runs through three coun-
ties and seven towns. The terrain has a high altitude in the middle and low altitude at both ends. The highway 
runs along riverbed terraces and at the foot of mountain slopes. The average altitude of the highway is around 
3850–4750 m above sea level.

The geomorphology of the area where most of the highway is located is a plateau valley landform with some 
mid-mountain landforms. Wide river valley areas are mostly U-shaped valleys and narrow V-shaped river val-
leys. The landforms are mainly developed as modern riverbeds, floodplains and river terraces accumulating and 
cutting out structural landforms. High terraces are generally developed in the valley area, with high mountains 
on both sides of the valley and steep slopes. The main source of replenishment for the river is rainfall water. 
Most of the highway track is located at the foot of the mountain slope where the topography is relatively even.

The area where the route is located has a continental climate. The main features are dryness and lower levels 
of oxygen due to altitude, sufficient sunshine, and a wide temperature difference between day and night. Mete-
orological records from the Chinese Meteorological Bureau from recent years show that the annual average 
temperature of Sajia County is 5.5 °C, and the annual precipitation is 35 mm. The Sangzizhu area has a dry climate 
and thin air, with an average annual temperature of 4.9 °C and an average annual rainfall of 430 mm. The terrain 
of Gamba County is complex with large vertical changes. The highest point is 6783 m above sea level, whereas the 
lowest is 4375 m above sea level (a height difference of 2.408 m), and the annual average temperature is 1.5 °C. We 
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used ArcGIS software to extract the vector boundary of some counties in Shigatse region, and superimposed the 
vector data of highway from Qumei to Gamba in the software. Finally, we got the location of the highway (Fig. 1).

Model construction. Buffer analysis. A highway is a linear structure, and its impact on the ecological 
environment is generally located on both sides of the highway. Buffer analysis is an analysis tool for studying the 
ecological and environmental effects of roads and other linear structures. Based on this method, the spatial vari-
ation of the impact of roads on a certain indicator can be studied by comparing the spatial differences of related 
indicators in buffer zones. This method has been widely used in the fields of ecology and pollution  evaluation49. 
Like previous research, on the basis of Fig. 1, this study uses the highway as the baseline and uses the buffer 
analysis tool built in ArcGIS10.8 to generate a 10-km buffer zone on both sides. The influence process of highway 
construction on the landscape pattern and ecological risk is discussed indirectly by using the differences meas-
ured in each index and buffer zones (see Fig. 2).

Construction of the ecological risk index. Ecological risk refers to the probability of which a regional ecosystem 
can remain stable in response to external disturbances (including natural and/or human activities). A landscape 
ecological risk model is a method that quantifies ecological risks by considering internal and external factors 
of the ecosystem. Hence, an ecological risk index model evaluates the ecological risk status of a region from 
the landscape characteristics such as the landscape disturbance index that characterizes the degree of external 
disturbance. It also uses the landscape vulnerability index to describe the ability of the ecosystem to maintain 
stability.

The landscape ecological risk index along the highway is composed of two parts, namely the landscape dis-
turbance index and landscape vulnerability index. The Landscape disturbance index (Ei) includes three factors: 

Figure 1.  Location of the highway section from Qumei to Gamba.

Figure 2.  10-km buffer zone of the highway from Qumei to Gamba.
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the landscape fragmentation index (Ci), the landscape separation index (Si) and the landscape dominance index 
(Di). These indices are weighted to interpret some system results.

(1) Landscape disturbance index (Ei)

The landscape disturbance index can reflect the disturbance degree of different landscape types. We select 
here a landscape fragmentation index, landscape separation index and landscape dominance index to build the 
Landscape disturbance  index50.

Landscape fragmentation index (Ci)

Landscape fragmentation is a process in which the regional landscape structure gradually tends to be complex, 
heterogeneous and discontinuous under the action of external factors. The landscape fragmentation index has 
important ecological significance in measuring the loss of biodiversity. This index is calculated as:

In (1), ni is the number of patches of landscape type i and Ai is the total area of landscape type i.

Landscape separation index (Si)

The landscape separation index is used to describe the degree of separation between landscape patches and 
quantify the connection between various ecosystems. Its expression is:

In (2), A is the total area of the landscape.

Landscape dominance index (Di)

The degree of landscape dominance is the difference in the areas of various patches. It describes the degree 
in which the overall landscape is dominated by the main landscape types. The greater the landscape dominance 
grows (or falls), the higher the increase (decrease) in area ratio differences of every landscape type. The calcula-
tion formula is:

In (3), Ri is the ratio of the number of risk evaluation units with landscape type i respect to the total number 
of risk evaluation units; Fi is the ratio of the number of patches with landscape type i to the total number of 
patches in the evaluation unit; Li is the ratio of the area of landscape type i to the total area of the evaluation unit.

After calculating the three indices of Ci, Si and Di according to formulae (1)–(3), a normalization has to be 
performed. This research assigns the following weights for the fragmentation, separation and dominance indices: 
0.5, 0.3, and 0.2, respectively. The calculation formula of the landscape disturbance index for each land cover 
type of each risk assessment unit is obtained as follows:

(2) Landscape vulnerability index (Fi)

The landscape vulnerability index refers to the ability of the regional ecosystem to resist external disturbances. 
This is the internal factor that characterizes ecological risks. This index is closely related to the stage of the land-
scape in the process of natural alternation. According to classification of land uses, the landscape of the study is 
divided into six main types: cultivated land, wood land, grass land, water land, construction land, and unused 
land. Also, based on previous studies and the actual conditions of the Tibet region (Yanxu et al. 2015; Qiran and 
Hui 2014), the expert scoring method is used to determine the value of the landscape vulnerability along the 
highway. The value of landscape vulnerability index for each land type is deemed as follows: unused land is 6, 
water land is 5, cultivated land is 4, grass land is 3, wood land is 2, construction land is 1, and then normalized 
to obtain various types of landscape vulnerability indexes. The values above then become 0.2857, 0.2381, 0.1905, 
0.1429, 0.0952, and 0.0476, respectively. 

(3) Landscape ecology risk index (ERIk)

In order to connect the internal composition of the landscape pattern with the regional ecological risk status, 
and combine it with the above indices, this study uses the area proportions of each landscape type. This way, a 
landscape ecological risk index model is built. This index model can be used to describe the relative ecological 

(1)Ci = ni/Ai

(2)Si =

√

ni

A
×

A

2Ai

(3)Di =
Ri + Fi

4
+

Li

2

(4)Ei = 0.5Ci + 0.3Si + 0.2Di
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properties loss of a certain sample area. The latter fully reflect the changes in ecological risks caused by the change 
of landscape pattern. The specific construction of the model is as follows:

In (5), ERIk is the ecological risk index value of the kth risk assessment unit; Ai is the area of land cover type 
i in the kth risk assessment unit; A is the area of the kth risk assessment unit; Ei and Fi are the value of land-
scape disturbance index and landscape vulnerability index of land cover type i in the kth risk assessment unit, 
respectively.

Spatialization of ecological risks. 

(1) Division of the evaluation unit

 According to the scope of the study area and the sampling workload, we proposed a method for combining 
point grid evaluation units with the area vector evaluation units. If the grid is too large, it cannot reflect the 
spatial difference. If the size is too small, the landscape type is too single and the calculation is too large. Refer-
ring to previous studies, the grid should be 2–5 times of the average patch  area51,52. Therefore, on the basis of 
considering the actual situation and workload of the research area, a square of 2 km × 2 km was used as the 
smallest area (unit) to calculate the landscape comprehensive index. The sampling method was equidistant for 
all squares. This process can be easily performed with ArcGIS. This way, 820 different risk units were analyzed, 
and the comprehensive ecological risk index was calculated for each of them. Then, the ecological risk level at 
the center point of each 2 × 2  km2 sample area was used as the representative location of the index evaluation. 

(2) Spatial autocorrelation analysis

 Global spatial autocorrelation is a description of the spatial characteristics interrelation of several attribute values 
of an entire  region53. It is used to test whether the value of a spatial variable is related to the value of the same 
variable in the adjacent space. This study uses Moran’s I coefficient to reflect the similarity of the attribute values 
of spatially adjacent regional units. The formula for calculating the global Moran’s I coefficient is:

In (6), Wij represents the spatial connection matrix between spatial unit i and j with i ≠ j; n is the total number 
of spatial units; Xi is the attribute value of the spatial unit i; Xj is the attribute value of spatial unit j; and X  is the 
attribute average value of all spatial units. The value of I ranges from − 1 to 1. When I = 0, it means that the space 
autocorrelation is irrelevant. When I takes a positive (negative) value, there is a positive (negative) correlation.

Local spatial autocorrelation analysis can also be applied when: it is necessary to consider if there is a local 
spatial aggregation of high or low values of observations; when we want to find out which regional unit contrib-
utes more to the global spatial autocorrelation; and when we want to find to what extent the global assessment 
of the spatial autocorrelation conceals some abnormal local conditions. This study used the local autocorrelation 
LISA index to analyze the spatial aggregation of high and low values of the regional ecological risk index. Then, 
we explored the abnormal areas of the ecological risk distribution by identifying potential high or low “hot spots” 
with significant ecological risks. The formula for the LISA index is as follows:

Data source and processing. The basic data used in this study mostly encompassed remote sensing image 
data, vector data of the highway and administrative area, as well as land use and land cover data.

1. Remote sensing image data. The large and medium-level repair of the highway maintenance works on the 
Qumei to Gamba section of the highway took place between early 2019 and October 2020. In addition, 
because the characteristics of ground classes in high altitude areas of the plateau are often not obvious, 
the accuracy of selected training samples may not be guaranteed if low-resolution images are used, which 
may reduce the accuracy of classification. This study selected Sentinel-2 remote sensing images taken in 
October 2016, October 2018, and October 2020. The data was acquired from the European Space Agency’s 
(ESA) website with a resolution of 10 m. This raw source data went through some image processing such 
as orthorectification, registration, and band fusion. The preprocessed data as a data source for supervised 
classification (Table 1).

2. The vector data of the highway and administrative area. The administrative area data was mainly gathered 
from the administrative boundary data of the Shigatse area, including the administrative boundaries and 
administrative centers of the township-level regions. The vector data of the highway from Qumei to Gamba 

(5)ERIK =

n
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A
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section of the highway was also collected. This data was sourced from the Resource and Environmental Sci-
ence and Data Center of the Chinese Academy of Sciences (https:// www. resdc. cn/).

3. Land use and land cover data. With the support of ENVI5.3 software and ArcGIS10.8, a support vector 
machine algorithm was used to supervise and classify the preprocessed remote sensing images. The sentinel-2 
image data of different phases were also automatically interpreted and the accuracy of the data remained 
always above 90% (Table 1). Finally, we took cultivated land, forest land, grassland, water area, construction 
land and unused land as the main landscape types in this study.

Analysis and results
Analysis of landscape pattern changes. According to the land use of the study area and the six-type 
land classification of the Chinese Academy of Sciences (cultivated land, wood land, grass land, etc.), the overall 
landscape pattern of the study area was analyzed. It can be observed in Fig. 3 that grass land, wood land and 
unused land were the main types of land use. This is common because of the topography of the Tibetan plateau 
region. Construction land was mainly distributed in several towns and villages such as the Qumei township, and 
along the highway. Cultivated land was distributed in large extensions around residential areas. The area of water 
land was the smallest, mainly distributed on both sides of the highway.

Table 1.  Data sources and data processing steps.

Preprocessed data source in 2020 Data processing steps

Step 1 Obtain remote sensing images. Download from the European Space 
Agency (ESA) website. 
Step 2 Preprocess the data. Preprocessing remote sensing images through 
geometric correction, band fusion, mosaic and cropping, atmospheric correction 
and other steps. 
Step 3 Train the sample. According to the requirements of system classification 
and the characteristics of land type, the distribution range of various typical land 
features is selected by the way of human machine interaction on the preprocessed 
remote sensing image. 
Step 4 Supervised classification The support vector machine algorithm is used 
for supervised classification. This method can find those supervised vectors 
automatically that have a greater ability to distinguish the classification, and can 
maximize the interval between classes. So, it has a higher classification accuracy. 
Step 5 Evaluate classification results Firstly, the accuracy evaluation points 
are created, and then the accuracy evaluation points are updated according to the 
actual investigation situation. Finally, the overall classification accuracy is 
obtained by calculating the confusion matrix. 
Step 6 Post-classification processing. Including the steps of changing the color 
of the land type, classifying the statistical analysis, etc., and finally obtaining the 
land use classification data. 

Figure 3.  Map of land usages in the study area from 2016 to 2020.

https://www.resdc.cn/
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In order to fully show the influence law of highway construction on the landscape pattern, therefore, we esti-
mated the land use transfer matrix along the highway in 2016–2018 and 2018–2020. By comparing the land use 
type transfer before and after highway construction, the influence of highway construction on landscape pattern 
was quantitatively evaluated. The calculation results are shown in Tables 2 and 3 respectively.

In the process of land type transfer, the main types of land type transfer are unused land to grassland 
(98.17  km2) and grassland to forest (105.48  km2). Unused land and grassland were turned out, accounting for 
19.01% and 9.62% of their respective areas in 2016, respectively. Meanwhile, woodland, unused land and water 
area accounted for 20.19%, 13.85% and 13.80% of their respective areas in 2018, respectively. However, due to 
the small total area of water area, the converted area was less than 1  km2. It can be concluded from the transfer 
of land use types from 2016 to 2018 that the area of unused land was reduced before road construction, and the 
vegetation coverage was increased overall. Essentially, the overall transfer area of land use types was very small, 
and this transfer scenario was relatively simple.

It can be seen from Table 3 that the transfer of land use types is significantly more complicated after highway 
construction. The bidirectional transfer between grassland and unused land and between grassland and forest 
land is the main type of transfer. Among them, 203.50  km2 of unused land was transferred from grassland, 
followed by 140.45  km2 of unused land from grassland to woodland. Meanwhile, unused land and forest land 
were the main sources of grassland transfer, with 49.26  km2 and 46.60  km2 respectively, but their area was much 
smaller than that of grassland transfer.

Compared with the land use transfer before highway construction, it can also be seen that during highway 
construction, the transfer proportion of all land types increased significantly. The proportion of grassland and 
water area transferred out is more than 20%, and the area of water area, unused land and construction land 
transferred out account for 51.47%, 32.08% and 30.69% of the total area respectively.

According to the above analysis, it can be inferred that in the process of highway construction, grassland was 
damaged and polluted, and a large part of grassland was transferred to unused land, and the change of landscape 
pattern was more obvious than before highway construction, and the change of landscape pattern was more 
obvious after highway construction.

Due to the differences in the distribution of land use types, the landscape also had a significant change over 
time. As can be deduced, the major changes involved the grass land, unused land and wood land (Fig. 4). Initially, 
grassland was the most abundant landscape type, and it accounted for more than half of the total area of study. 
Wood land increased by 3.65% in 2016–2018, and by 3.27% in 2018–2020. Conversely, grass land decreased by 
2.74% and 8.85% across the two periods analyzed. The unused land showed opposite trends in both periods (first 
a decrease of 1.08% before the highway construction, then an increase of 5.24% after the highway construction).

In order to study the changes of landscape patterns quantitatively, we calculated the landscape ecological 
risk index with Fragstats4.2 software (see Table 4). The landscape indices of different landscape (land use) types 

Table 2.  2016–2018 Land use area transfer matrix  (km2).

Land type
Cultivated 
land Wood land Grass land Water land

Construction 
land Unused land Total

Transfer 
out/%

Cultivated land 86.80 0 0 0.09 0.03 0 86.92 0.14

Wood land 0.12 417.64 0 0 0 0 417.76 0.03

Grass land 3.01 105.48 1666.17 0.57 0.68 67.62 1843.52 9.62

Water land 0.02 0 0.05 5.62 0 0.02 5.72 1.58

Construction 
land 0 0 0 0 14.62 0 14.62 0

Unused land 0.03 0.15 98.17 0.25 0.15 420.58 519.33 19.01

Total 89.98 523.27 1764.39 6.52 15.48 488.22 2887.87 –

Transfer in/% 3.53 20.19 5.57 13.80 5.56 13.85 – –

Table 3.  2018–2020 Land use area transfer matrix  (km2).

Land type
Cultivated 
land Wood land Grass land Water land

Construction 
land Unused land Total

Transfer 
out/%

Cultivated land 87.25 0.32 1.39 0.09 0.74 0.18 89.98 3.03

Wood land 0.26 475.42 46.60 0.42 0.13 0.43 523.27 9.14

Grass land 3.71 140.45 1410.13 2.88 3.71 203.50 1764.39 20.08

Water land 0.17 0.23 0.65 4.94 0.02 0.52 6.52 24.23

Construction 
land 0.53 0.06 0.84 0.03 13.46 0.56 15.48 13.05

Unused land 0.17 1.24 49.26 1.82 1.36 434.37 488.22 11.03

Total 92.09 617.73 1508.88 10.18 19.42 639.57 2887.87 –

Transfer in/% 5.26 23.04 6.54 51.47 30.69 32.08 – –
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also showed significant changes. Before and after the highway was constructed, the ecological risk index of cul-
tivated land and construction land was the smallest. The reason was that the distribution of cultivated land and 
construction land was relatively concentrated, so the integrity of the patch improved. Unused land was highly 
fragmented and had the highest risk index, which was mainly related to the nature of land use in the landscape 
type. Combining the landscape indices of various landscapes, the ecological risk index along the highway in 2016, 
2018, and 2020 was also calculated (with Formula 5). After its calculation, the ecological risk index of the three 
phases were 0.2316, 0.2217, 0.2822, respectively. Judging from the overall changes in the four years of the time 
span, the ecological risk index of the buffer zone did not change significantly before the highway was constructed. 
However, afterwards, the ecological risk index increased much more than in the previous period (a differential 
increment of 0.0605 and total increase of 27.29%). This variation indicated that the ecological risk index along 
the route showed a steeper upward trend after the highway was constructed.

Analysis of the temporal and spatial changes of the ecological risk index. Distribution charac-
teristics of ecological risk index. Based on the grid model and the Kriging interpolation method performed 
with the geostatistical analyst module of ArcGIS software, the ecological risk index of each risk assessment unit 
was spatially interpolated. This allowed us to create the ecological risk index spatial distribution map along the 
highway (see Fig. 5).

In order to better discriminate the ecological risk changes in the areas along the highway and further 
study the impact of project construction, we created five ecological risk index value bins, namely: low risk 
area (0 ≤ ERI < 0.2), sub-low risk area 0.2 ≤ ERI < 0.4), medium risk area (0.4 ≤ ERI < 0.6), sub-high risk area 
(0.6 ≤ ERI < 0.8) and high risk area (0.8 ≤ ERI ≤ 1.0). An ecological risk level distribution map was drafted (see 
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Figure 4.  Changes in various landscapes (land use types) along the highway in 2016–2018 and 2018–2020.

Table 4.  The landscape pattern index of different land types along the highway from 2016 to 2020.

Landscape type Year
Landscape 
fragmentation index

Landscape separation 
index

Landscape dominance 
index

Landscape 
disturbance index

Landscape 
vulnerability index

Ecological Risk 
Index

Cultivated land

2016 0.0163 0.3684 0.0557 0.0009 4 0.0002

2018 0.0222 0.4223 0.0590 0.0015 4 0.0003

2020 0.0252 0.4443 0.0607 0.0020 4 0.0004

Wood land

2016 1.1567 1.4138 0.3404 0.3903 2 0.0372

2018 1.0498 1.2037 0.3747 0.3630 2 0.0346

2020 0.8537 0.9976 0.3923 0.4053 2 0.0386

Grass land

2016 0.5499 0.4640 0.6551 0.3060 3 0.0437

2018 0.5435 0.4716 0.6379 0.2987 3 0.0427

2020 0.6773 0.5695 0.5971 0.3728 3 0.0533

Water land

2016 0.1259 3.9868 0.0632 0.3233 5 0.0770

2018 0.1303 3.7961 0.0634 0.3223 5 0.0767

2020 0.0767 2.3329 0.0650 0.3155 5 0.0751

Construction land

2016 0.0116 0.7583 0.0684 0.0366 1 0.0017

2018 0.0136 0.7959 0.0695 0.0368 1 0.0018

2020 0.0165 0.7830 0.0715 0.0578 1 0.0028

Unused land

2016 2.7558 1.9576 0.4601 0.7667 6 0.2190

2018 2.8222 2.0429 0.4520 0.7799 6 0.2228

2020 2.1771 1.5682 0.4770 0.8337 6 0.2382
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Fig. 6). It can be seen therefore that during the construction of the highway, the ecological risk level changed 
significantly. This was mainly manifested as a generalized shift from a lower level of risk to a higher level of risk 
in most areas.

Time series changes of the ecological risk index. In Table 5, the analysis highlights that the proportion of area 
occupied by the low risk area was the largest in the three years of the study (51.35%, 57.71%, and 36.65%, respec-
tively). The area of low risk increased slightly before highway construction, then decreased sharply during the 
construction period (a decrease of 21.07%). The area change of the medium risk area was in second place (it 
increased by 10.58% during the construction of the highway). The area of high risk had the smallest proportion, 
but the maximum area appears in 2020, when reached the 2.76% of the total area. The sub-high risk area had the 
smallest amount of change in the three phases (area changes remained below 1% in the two periods). In general, 
before the road was constructed, areas with low ecological risk increased, while areas with high ecological risk 

Figure 5.  The distribution of ecological risk index along the highway in 2016, 2018, and 2020.

Figure 6.  Distribution of ecological risk levels in 2016, 2018, and 2020.

Table 5.  Changes in the ecological risk level areas along the highway from 2016 to 2020.

Ecological risk level

2016 2018 2020

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Low risk area 1482.93 51.35 1666.49 57.71 1058.42 36.65

Sub-low risk area 879.62 30.46 745.06 25.80 991.66 34.34

Medium risk area 269.80 9.34 233.66 8.09 539.30 18.67

Sub-high risk area 208.14 7.21 200.44 6.94 218.85 7.58

High risk area 47.37 1.64 42.21 1.46 79.64 2.76
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slightly decreased. However, after the highway was constructed, the opposite change occurred. This indicated 
that the ecological security status during the construction of the highway affected the surrounding area to some 
extent.

Based on the previous classification of ecological risk grades, the analysis of ecological risk grade transfer 
changes helps to identify further local differences. Hence, with the help of a spatial statistical analysis method, 
the ecological risk transfer matrix of the 10-km buffer zone in two periods could be calculated (see Tables 6, 7).

In Table 6 we can see that the changes in the ecological risk exhibited the characteristics of a higher level of 
risk shifting to adjacent lower risks from 2016 to 2018. The total area of the reduced ecological risk level area was 
250.85  km2, while the area with increased ecological risk level was just 0.26  km2. This indicates that the ecological 
security situation along the highway improved during this period. In the process of ecological risk transfer and 
transformation encompassing all levels, the dominant area transfer occurred from sub-low risk to low risk, with 
an area of 183.83  km2 accounting for 73.21% of the total transferred area. Overall, it can be observed that the 
ecological environment along the highway was generally better before the road was constructed.

In Table 7 we can see that the changes in ecological risk grade between 2018 and 2020 were still dominated by 
the transfer of adjacent risk levels. In this time span, the area of transfer across risk levels was minimal. During 
the period of highway construction, the ecological risk changes were mainly based on the transfer of low-level 
risks to adjacent high-risks. The total area of the areas with elevated risk levels was 1071.34  km2, which accounted 
for 37.10% of the total area. The area with reduced risk levels was 12.47  km2, which was far less than the total 
area with increased risk. These results highlight that the overall ecological risk along the road rose during the 
construction of the highway and the overall ecological security situation showed a downward trend.

Spatial autocorrelation analysis of the ecological risk index. Global spatial autocorrelation analy-
sis. With the aid of the “Geoda” software, we calculated the global Moran’s I index value of the ecological risk 
index in 820 2 × 2  km2 sample areas along the highway in 2016, 2018 and 2020. Namely, this calculation was used 
to verify the spatial pattern and significance of the ecological risk index of the entire study area.

The Moran’s I index in 2016, 2018 and 2020 was 0.954, 0.952 and 0.955, respectively. The index in the three 
phases was also positive, and its change trend not very obvious. However, this indicates that the ecological risk 
index of the area along the highway had a moderately strong positive correlation with the spatial distribution 
(i.e., adjacent plots had mutual influence and showed a high degree of spatial similarity). In the time series, the 
spatial clustering of plots with similar land use showed first a trend of ecological index decrease, and then, an 
increase. This indicates that the overall spatial differentiation of the landscape ecological risk intensity increased 
slightly along the route during the construction of the highway.

Local spatial autocorrelation analysis. The global autocorrelation analysis mainly considers the overall distri-
bution of the ecological risk index. However, the local spatial autocorrelation helps to discriminate more fine-
grained (local) change characteristics and spatial patterns. The LISA graph of local autocorrelation was used in 
this case to analyze the ecological index risk plots around the highway. Rook’s adjacency weight matrix was also 
used to calculate the local autocorrelation results along the highway from 2016 to 2020 (see Fig. 7).

It can be observed in Fig. 7 that the types of the spatial distribution of the ecological risk index in the three 
phases was mainly of high–high aggregation and low–low aggregation. The low–low aggregation areas of ecologi-
cal risk were mainly distributed in the northern and southeastern parts of the study area. This indicates that the 

Table 6.  Transfer matrix of ecological risk levels in the 10-km buffer zone along the highway in 2016–2018.

Ecological risk level

Areas of different ecological risk levels in 2019/km2

Low risk area Sub-low risk area Medium risk area Sub-high risk area High risk area

Areas of different 
ecological risk lev-
els in 2016/km2

Low risk area 1482.67 0.26 0 0 0

Sub-low risk area 183.83 695.79 0 0 0

Medium risk area 0 49.00 220.80 0 0

Sub- high risk area 0 0 12.86 195.28 0

High risk area 0 0 0 5.16 42.21

Table 7.  Transfer matrix of ecological risk levels in the 10-km buffer zone along the highway in 2018–2020.

Ecological risk level

Areas of different ecological risk levels in 2020/km2

Low risk area Sub-low risk area Medium risk area Sub-high risk area High risk area

Areas of different 
ecological risk lev-
els in 2018/km2

Low risk area 1049.07 613.89 3.53 0 0

Sub-low risk area 9.35 377.76 357.54 0.41 0

Medium risk area 0 0 175.97 57.69 0

Sub-high risk area 0 0 2.27 159.90 38.28

High risk area 0 0 0 0.85 41.36
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ecological risk intensity in this region was low, and the ecological risk intensity of adjacent areas was also low. 
The latter may have happened because the area had more wood land and this ecosystem was more stable. The 
high–high aggregation areas of ecological risk were mainly concentrated in the central and southern part of the 
study area. This highlights that the ecological risk grade of these areas was high, and the ecological risk grade of 
adjacent areas was also high. This probably happened because the area had more unused land and low vegetation 
coverage. Finally, it can also be seen that the number of high–high concentration plots increased significantly 
from 2018 to 2020. This may have happened because grass land was extensively destroyed during the highway 
construction process, which further increased the area of unused land.

Discussion
At present, studies on the impact of engineering construction on ecological risk are mainly focused on large-scale 
hydropower projects and urban roads in developed areas, while there is still a lack of systematic research on 
ecological risk assessment in high-altitude Plateaus. The process which highways impact the ecological environ-
ment is quite complex. This study has adopted the macro perspective of the landscape pattern and enabled the 
development of an ecological risk model. According to a comparison of the risk changes in two stages (before 
and after the highway construction), the impact of highway construction on the ecological environment has 
been quantified. Although there are certain limitations in this study, the analysis results are consistent with the 
actual survey situation for the highway.

Regarding extant research on the impact of highway construction on the ecological environment, most 
researchers have focused on time-based studies over an extended time  period20,54. The research reported here 
adopted the time period corresponding to the highway works maintenance program. Remote sensing data 
analyzed in the study were selected from the same month of each year with a unified time scale. Furthermore, 
the landscape pattern and ecological risk indicators before and after highway construction were compared to 
study the impact of highway construction on the ecological environment. At the same time, due to the complex 
terrain in Tibet and the abrupt land features, in order to improve the classification accuracy, Sentinel-2 remote 
sensing images with a resolution of 10 m were selected. These images were combined with actual field surveys 
and, in some cases, incoherent data were corrected.

The analysis of landscape pattern before and after highway construction identified that the landscape pattern 
changes were more pronounced during the construction period than before construction. However, the overall 
landscape pattern as well as the types of main land uses along the highway did not change. This is in line with 
the conclusions of Gang, HuiJun, and  Guang55 on wetlands in arid areas, and Haihang et al.’s56 on urban areas. 
The analysis of the ecological risk index before the highway construction scenario highlights that the average 
ecological risk index of the constructed highway is significantly higher than before. Although this is similar to 
the research study of Shiliang et al.57, it is fundamentally different to the conclusions of other researchers like Mo 
et al.52. A likely cause of this difference may be that the impact of construction on ecological risks of urban roads 
is different at the county-level and township roads, that is, urban areas may have more diversified risk sources.

For the convenience of discussion, we compared the differences between the relevant references and this study 
in methods, locations and main results in the form of tables (Table 8). It can be seen that some scholars have 
analyzed the ecological risk changes of river basins by establishing ecological risk models. The results show that 
in the process of urbanization, the ecological environment quality of these areas is declining, which is similar 
to the research conclusion of this  paper58,59. Yuan et al.58 also analyzed the relationship between flood feature 
values and landscape patterns through multiple linear regression methods, which provided useful information 
for regional landscape planning and watershed flood control planning. Different from the above references, this 
study quantitatively studies the changes of various landscape indicators during highway construction, which 
can provide specific reference for regional landscape governance. At the same time, Research on the impact 
of infrastructure construction on ecological risk levels identifies that the transfer of ecological risks mostly 
involved the transfer between adjacent risk grades (i.e., cross-risk transfer rarely occurred). This is similar to 

Figure 7.  Local spatial autocorrelation diagrams of the ecological risk index.
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the conclusions of Jie et al.40 on the ecological risks of the entire Qinghai-Tibet Plateau landscape. Furthermore, 
the research on the spatial heterogeneity identified that the ecological risk index of the three phases along the 
highway had a high degree of positive correlation with the spatial distribution. This spatial distribution was 
mainly of high-high aggregation and low-low aggregation. Particularly, the area with high-high aggregation 
increased significantly during the construction period. This is similar to the spatial distribution characteristics 
of the ecological risk index obtained by Fengjiao and  Xiao60 and Xie et al.59. However, their research objects and 
methods were quite different.

Relevant references also reported changes in regional landscape patterns and ecological risks caused by 
highway construction, which is similar to the method used in this  study52,61. By analyzing the changes in the 
landscape pattern, these two references concluded that the landscape type with the largest area increase was 
construction land, while the area of unused land increased the most in the study. This may be caused by the 
large differences in population, economy, topography and other factors in the study area, which is located at 
extremely high altitude. It is worth mentioning that the highway is a single linear project in this study, so the 
research method of buffer zone is also adopted. Oliveira et al.62 considered social and environmental factors, and 
used buffer and landscape index analysis to analyze the changes in the landscape pattern of the Rio Doce State 
Park in Brazil. They believed that the substantial reduction of farmland area should be given enough attention. 
Different from this reference, this study established a landscape ecological risk model and studied the aggregation 
effect of ecological risks through autocorrelation analysis. In addition, although some literatures do not establish 
ecological risk models, they take other factors such as social and economic into consideration. Through regres-
sion analysis, they studied the relationship between landscape pattern and socio-economic factors qualitatively 
or quantitatively, which had a certain positive effect on the development of ecological  economy63,64, and is also 
some of the shortcomings of this study. By synthesizing social, historical, economic, environmental and other 
factors, constructing an ecological risk assessment model under the influence of multiple factors, thus laying the 
foundation for the establishment of a scientific and practical ecological development model, may be a valuable 
future research direction.

Changes in the landscape pattern of land use will inevitably lead to changes in regional ecological functions. 
Therefore, studying ecological risk changes from the perspective of its landscape structure helps to objectively 
reflect the ecological risk pattern of highways (and probably other linear infrastructures as well).

Conclusions
Combining the information of land use and land cover data with a Chinese highway vector data, this research 
study has evaluated the impact of highway construction on the landscape. As a result, an ecological risk model for 
a high-altitude plateau area has been proposed using a geographic information system combined with statistical 
analysis. The following conclusions are obtained from the Qumei to Gangba highway section (Tibet autonomous 
region), where this model has been implemented:

(1) From 2016 to 2020, the major land use type in the buffer zone along the highway was grassland, accounting 
for more than 52% of the surrounding area. This land use was followed by woodlands and unused lands. 
The overall trend of land use change was a decrease in grassland area. Conversely, the area of woodland, 
cultivated land, construction land and water-based land increased. The type of transfer mainly involved 
the conversion of grassland to woodland, and a balanced mutual conversion between grassland and unused 
land. This means that before the highway construction, the area of grassland and unused land transferred 
to each other was almost the same. However, after highway construction, the area of grassland converted 
to unused land was comparatively much larger, whereas he mutual transfer area of other land use types 
was negligible.

(2) The average values of the ecological risk indices at 2016, 2018 and 2020 were 0.2316, 0.2217 and 0.2822. This 
indicates that the ecological risk intensity of the study area also showed different trends before and after 

Table 8.  Comparison of research methods and main results with existing studies. A: The main altitude of 
the study area, B: Remote sensing image resolution adopted (meter), C: Buffer analysis, D: Ecological risk 
model, E: Analysis of landscape pattern change, F: Analysis of ecological risk change, G: Global spatial 
autocorrelation analysis, H: Local spatial autocorrelation analysis, I: Regression analysis, J: Considerations of 
social or economic factors, K: Considerations of the impact of road construction, L: Landscape types with the 
largest area increase (decrease), M: Change of overall ecological risk (“↑” indicates increased risk, “↓” indicates 
decreased risk).

Reference Study area A B C D E F G H I J K L M

Xie et al.59 Jiangxi, China 11–40 100  × √  × √ √ √  ×  ×  × / ↑

Oliveira et al.62 Minas Gerais, Brazil 100–1500 30 √  × √  ×  ×  ×  × √  × Wood land (Farmland) /

Mo et al.52 Beijing, China 20–2303 30  × √ √ √  × √  ×  × √ Construction land (Cultivated Land) ↓

Dadashpoor et al.64 Tabriz, Iran 1300–3300 30  ×  × √  ×  ×  × √ √  × Construction land (Farmland) /

Yuan et al.58 Nanjing, China 20–30 30  × √  × √  ×  × √  ×  × / ↑

Mann et al.61 Uttarakhand, India 204–2400 15  × √ √ √  ×  × √ √ √ Construction land (Wood land) ↑

Li et al.63 Coastal Areas, China 4–10 260  ×  × √  ×  ×  × √ √  × Construction land (Cultivated Land) /

This study Shigatse, China 4375–6783 10 √ √ √ √ √ √  ×  × √ Unused land (Grass land) ↑
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the highway construction. Before the highway construction, the ecological risk slightly reduced. Whereas 
after the road construction, the ecological risk increased significantly.

(3) During the study period, the transfer of ecological risks mainly involved transfers between adjacent risk 
levels (cross-risk transfers seldom occurred). However, before the highway construction, the ecological 
risks were mainly transferred to the lower-level risk level. After the construction project, the ecological 
risks were mainly transferred to a higher risk level.

(4) Global autocorrelation analysis performed with the Moran index indicated that the ecological risk index 
along the highway had a high degree of positive correlation with the spatial distribution. In other words, 
adjacent land uses interacted with each other and showed a high degree of spatial similarity. In terms of 
time series, the spatial agglomeration of land plots with similar ecological risk levels did not show an obvi-
ous trend. Based on the local autocorrelation analysis, though, it was found that the spatial distribution 
of ecological risk index was dominated by high–high aggregation and low–low aggregation. The areas of 
high-high aggregation increased significantly during the highway construction period and this evidences 
that the highway construction had an important influence on the spatial distribution of ecological risks.

This study has qualitatively and quantitatively analyzed the process and ecological effects of highway construc-
tion on the ecological environment from the perspective of the landscape pattern. It has also provided some new 
approaches for the study of infrastructure-related ecological risks in high-altitude plateaus. The study has mainly 
considered the impact assessment of a single highway, but have neglected other roads along the route. Similarly, 
the corresponding relationship between different buffer distances and landscape ecological risk has not been 
discussed. Those simplifications will be analysed in further research work, but we find it is highly unlikely that 
they could have affected the major conclusions from this study.

Due to the fragility of the plateau landscape in Tibet and the complexity of the geological conditions, how to 
carry out a quantitative analysis of the impact of construction roads on the ecological environment for this type 
of area has become the key to ecological environmental assessment. This study constructed a plateau high-altitude 
landscape ecological risk assessment model and analyzed the impact of highway construction on ecological risks 
dynamically. Its research results provided technical support for the construction of differentiated ecological 
restoration programs, and also provided a new research perspective and research foundation for ecological risk 
assessment of engineering construction projects in high-altitude plateau.
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