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Abstract
Accurate and real-time product demand forecasting is the need of the hour in the world of supply chain management. Pre-
dicting future product demand from historical sales data is a highly non-linear problem, subject to various external and 
environmental factors. In this work, we propose an optimised forecasting model - an extreme learning machine (ELM) model 
coupled with the Harris Hawks optimisation (HHO) algorithm to forecast product demand in an e-commerce company. 
ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient demand 
forecasting in real-time. Our ELM-HHO model performed significantly better than ARIMA models that are commonly 
used in industries to forecast product demand. The performance of the proposed ELM-HHO model was also compared with 
traditional ELM, ELM auto-tuned using Bayesian Optimisation (ELM-BO), Gated Recurrent Unit (GRU) based recurrent 
neural network and Long Short Term Memory (LSTM) recurrent neural network models. Different performance metrics, 
i.e., Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) were 
used for the comparison of the selected models. Horizon forecasting at 3 days and 7 days ahead was also performed using 
the proposed approach. The results revealed that the proposed approach is superior to traditional product demand forecast-
ing models in terms of prediction accuracy and it can be applied in real-time to predict future product demand based on 
the previous week’s sales data. In particular, considering RMSE of forecasting, the proposed ELM-HHO model performed 
62.73% better than the statistical ARIMA(7,1,0) model, 40.73% better than the neural network based GRU model, 34.05% 
better than the neural network based LSTM model, 27.16% better than the traditional non-optimised ELM model with 100 
hidden nodes and 11.63% better than the ELM-BO model in forecasting product demand for future 3 months. The novelty 
of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained 
by tuning hyperparameters using HHO. An increased number of hyperparameters has been optimised in our methodology 
compared to available models. The majority of approaches to improve the accuracy of ELM so far have only focused on 
tuning the weights and the biases of the hidden layer. In our hybrid model, we tune the number of hidden nodes, the number 
of input time lags and even the type of activation function used in the hidden layer in addition to tuning the weights and the 
biases. This has resulted in a significant increase in accuracy over previous methods. Our work presents an original way 
of performing product demand forecasting in real-time in industry with highly accurate results which are much better than 
pre-existing demand forecasting models.

Keywords Demand forecasting · Supply chain management · Extreme learning machines · Artificial neural networks · 
Optimisation · Harris hawks optimisation · Hyperparameter tuning · ARIMA

1 Introduction

In today’s highly competitive manufacturing environment, 
product demand forecasting plays a critical role in the effec-
tive management of inventories. Companies that can accu-
rately forecast market demand can take action to ensure that 
they hold the correct stocks to maximise sales and profit. 
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Demand forecasting refers to the process of making estima-
tions about future customer demand over a defined period 
using historical demand data and other external factors [1]. 
Efficient and accurate forecasting of demand enables supply 
chain managers to make intelligent decisions about various 
aspects of their business. It helps them judge their busi-
ness potential in the current scenario, optimise inventory, 
improve inventory turnover rates and decrease holding costs. 
Estimating future demand beforehand helps to identify pos-
sible upcoming difficulties and take steps to correct them 
such as increasing the number of workers during high sales 
periods. It allows companies to plan their future goals in a 
better way [2]. Hence, finding efficient and effective product 
demand forecasting methods is highly important right now. 
With better data acquisition and storage tools, a huge amount 
of historical sales data is available in all fields. Data mining 
approaches are needed to model and make sense of this data 
to make accurate future predictions about product demand.

Neural network models have been effectively used to cap-
ture and model non-linearity in product demand forecast-
ing in the past. However, traditional backpropagated neural 
networks suffer from several drawbacks like slow computa-
tional speed, over-fitting, etc. ELMs have been shown to be 
more advantageous in efficiency and generalization perfor-
mance over traditional FNN algorithms on a wide range of 
benchmark problems from different fields [3, 4]. Moreover, 
ELMs have also been shown to have universal approxima-
tion capabilities [5]. In this work, a novel approach to prod-
uct demand forecasting - a hybrid extreme learning machine 
(ELM) model with Harris Hawks optimisation (HHO) algo-
rithm is proposed. The proposed methodology retains the 
fast computational speed of ELMs while enhancing their 
ability to correctly predict product demands. The prediction 
capabilities of ELM are enhanced by auto-tuning its hyper-
parameters (number of hidden nodes, number of lags in input 
data, weights and biases of the hidden layer and the type of 
activation function) by the HHO algorithm. The superiority 
of the ELM-HHO approach was tested in comparison with 
traditional ELM and ELM-Bayesian Optimisation (ELM-
BO) approaches. The ELM-HHO algorithm was also com-
pared with GRU, LSTM and ARIMA models commonly 
used in industry to forecast product demand. Different per-
formance metrics, i.e., Root Mean Squared Error (RMSE), 
Mean Absolute Percentage Error (MAPE) and Mean Per-
centage Error (MPE) were used for model comparison. 
Moreover, horizon forecasting at 3 days ahead and 7 days 
ahead was performed to test how the ELM-HHO approach 
can be applied in real-time to predict future demand from 
the previous week’s sales data. The findings indicated that 
the suggested model outperformed the traditional product 
demand prediction models in terms of prediction accuracy, 
making it a strong candidate for real-time product demand 
forecasting applications. To our knowledge, this is the first 

time extreme learning machine models optimised by Har-
ris Hawks optimiser have been applied to product demand 
forecasting contexts. The novelty lies in the way the ELM 
and HHO approaches have been combined to ensure highly 
accurate product demand forecasting. Also, an increased 
number of hyperparameters are being optimised compared 
to traditional approaches to improve accuracy.

To reiterate, the main contributions of this paper involve :

1. Proposing a novel hybrid ELM optimised by HHO algo-
rithm to perform product demand forecasting.

2. Optimising an increased number of hyperparameters in 
ELM to improve accuracy.

3. Combining the fast computational speed of ELMs with 
the accuracy gained by optimisation using HHO.

4. Showing that the ELM-HHO model has superior per-
formance to state-of-the-art models used in the industry 
like ELM, ELM-BO, LSTM, GRU and ARIMA models 
considering RMSE of forecasting.

5. Performing horizon forecasting at 3 days ahead and 7 
days ahead with good accuracy which confirms that our 
approach is useful for the industry.

Future avenues of research lie in trying to improve the opti-
misation part by exploring multi-objective optimisation or 
trying out newer optimization algorithms like that men-
tioned in [6]. Multi-variate demand forecasting can also be 
performed in cases where inputs other than historical sales 
data are available. Auto-encoders for automatic relevant fea-
ture extraction from input time series can be investigated.

The rest of the paper is organised as follows. Section 2 
discusses the research background, related works and 
research gaps in the product demand forecasting area. Sec-
tion 3 provides a brief introduction to some preliminaries 
required to understand the proposed model. Section 4 pre-
sents the proposed ELM-HHO approach. Section 5 describes 
the historical dataset used, the experimental setup, experi-
mental results of the proposed model and comparison with 
the ARIMA, GRU, LSTM, ELM and ELM-BO approaches. 
Finally, in Section 6, the paper is concluded and future work 
is outlined.

2  Literature review

Supply chain management is the management of the flow of 
goods and services and includes all processes that transform 
raw materials into final products [7]. It involves the active 
streamlining of a business’s supply-side activities to max-
imise customer value and gain a competitive advantage in 
the marketplace [8]. Demand forecasting forms an essential 
component of the supply chain process. The role of demand 
forecasting in supply chain management involves strategic 
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business planning. Demand forecasting also sets in motion 
the push processes of supply chain management such as raw 
material planning, purchasing and logistics. It steers the pull 
processes including order management and distribution. 
While demand forecasting is undeniably important, it is also 
one of the most difficult aspects of supply chain planning. 
Demand is often volatile which makes demand forecasting 
both an art and a science. More than 74% of the respondents 
in a research survey indicated poor forecasting accuracy and 
demand volatility as the major challenges to supply chain 
flexibility [9]. Supply chain managers who learn from past 
experience can utilise demand forecasting to set better busi-
ness goals and optimise returns [10].

An extensive literature survey has revealed that there 
are two main types of methodologies that are applied in the 
domain of product demand forecasting problems [11]. These 
are: i) stand-alone forecasting models and ii) hybrid forecast-
ing models combining multiple models together. The stan-
dalone models can be statistical models or machine learning 
models. The most commonly used statistical models are sim-
ple moving average models [12], autoregressive integrated 
moving average (ARIMA) and autoregressive integrated 
moving average with explanatory variables models (ARI-
MAX). ARIMA models are used to forecast demand data 
from historical time series data, as in [13]. While ARIMA 
is a univariate method, ARIMAX uses multiple variables 
to incorporate external data (e.g., environmental factors) in 
addition to historical demand data to forecast demand [14]. 
A lot of regression models have also been used to predict 
demand, such as: Bayesian Linear Regression [15], Boosted 
Decision Tree Regression [15], Decision Forest Regres-
sion [15], Multiple Regression [12] and Symbolic Regres-
sion with Genetic Programming [12]. Recently, quite a few 
research projects using Artificial Neural Network (ANN) 
models were carried out to forecast product demand. ANN 
models are especially effective in forecasting demand when 
the time series data is non-linear. The properties of ANNs, 
such as self-learning ability, ability to perform problems 
with loss of data and ability to operate on multi-task prob-
lems, have made them especially useful in demand forecast-
ing. An Integrated Case-Based Reasoning and ANN model 
was successfully implemented to predict product unit cost 
for mobile phone companies in Taiwan [16]. A similar study 
proposed by Islek et al. [11] successfully merged various 
models, i.e., multi-layer perceptrons with Bayesian net-
works, linear regression and support vector machines to 
predict product demands in a real data set derived from a 
dried fruits and nuts company from Turkey.

Despite the growing applications and usefulness of 
neural network models in forecasting demand, the fore-
casts produced by these methods still suffer from several 
drawbacks such as over-fitting [17], slow learning speed 

[18], getting stuck at local minima etc. An emerging algo-
rithm for Single Hidden Layer Feed-forward Networks 
(SLFNs) - the ELM model was proposed in 2004[19]. It 
overcomes many of the disadvantages of traditional neural 
network models. ELM models are being used for the past 
couple of years to forecast a variety of things. A modified 
teaching-learning based optimised ELM model was used 
to forecast solar power generation of Chattisgarh state, 
India [20]. An ELM model was used to forecast monthly 
stream-flow discharge rates in Tigris river, Iraq [21]. A 
hybrid model was developed for probabilistic forecast-
ing of wind power generation using ELM and the pairs 
bootstrap method [22]. In a similar work, forecasting of 
photovoltaic power was performed using ELM [23]. Vari-
ous optimisation algorithms have also been employed with 
ELM to improve its prediction accuracy, though not in a 
product demand forecasting context. A genetic algorithm 
optimised ELM model was proposed to optimise gear-
blank preforms [24]. In another work, the gravity field of 
irregular small bodies was modelled using ELM and BO 
[25]. A number of variants of ELM have also come out, 
each with its own unique set of advantages. The Optimally 
Pruned ELM [26], for example, ranks the best-hidden neu-
rons by multi-response sparse regression and then selects 
the optimal number of neurons using a leave-one-out vali-
dation method. The online sequential ELM or OS-ELM 
[27] can learn data one-by-one or chunk-by-chunk (a block 
of data) with fixed or varying chunk size, which makes it 
faster than other sequential algorithms. In voting based 
extreme learning machine [28], multiple independent ELM 
trainings are performed instead of a single ELM training 
and then the final decision is made based on the majority 
voting method. A detailed review of trends and variants of 
ELM can be found in [29].

The major issue with time-series approaches to demand 
forecasting is that a large number of observations is 
required to determine the best fit model for a time series 
[13]. Historical data is needed for such methods. In the 
beginning, there is no information about the past and esti-
mation has to be made based on similar cases. This results 
in a large amount of uncertainty which can be avoided with 
time [13]. ARIMA models can only be applied to station-
ary time series, it fails to capture seasonality. Seasonal fac-
tors affecting demand like holidays, festivals, weather con-
ditions and other environmental exogenous factors often 
influence demand and are not adequately represented in 
forecasting models. While neural networks help in captur-
ing the non-linearity in data due to external factors, they 
suffer from certain problems like over-fitting, slow learn-
ing speed etc. ELMs help to overcome these difficulties as 
they have extremely fast learning speed, good generalisa-
tion performance and least human intervention [29].
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3  Preliminaries

This section outlines some background knowledge required 
to understand the hybrid ELM-HHO approach proposed in 
this paper, namely the basics of extreme learning machines 
and the Harris Hawks optimisation algorithm. In addition, 
some other common state-of-the-art demand forecasting 
models are introduced whose results are compared with our 
proposed model’s results later in the paper.

3.1  Extreme learning machine (ELM)

A single hidden-layer feed-forward neural network (ELM) 
with fast learning speed was put forward by Huang et al. 
[19] in 2004. The method does not require iterative tuning 
to reach a global minima [4]. It has been shown to have good 
generalisation performance, universal approximation capa-
bilities [5], high learning accuracy and least human interven-
tion [29]. The weights and biases of the hidden layer nodes 
are set randomly, thus saving time required in hyper-tuning 
by back-propagation. The weights of the output layer can be 
determined analytically by a Moore Penrose inverse opera-
tion. A generic ELM model is given in Fig. 1.

The output function of the ELM (a SLFN with L hidden 
nodes) can be represented as follows:

where N is the number of training samples, wi and bi are 
the weight and the bias of the ith hidden node respectively, 
xj is an input vector, h is an activation function (e.g., Relu, 
sigmoid, Gaussian etc.) and �i is the weight vector between 
the ith hidden node and the output. Equation (1) can be writ-
ten as:

where,

(1)fL(x) =

L∑
i=1

�ihi(x) =

L∑
i=1

�ih(wi × xj + bi), j = 1, ..,N

(2)T = H�

(3)H =

⎡⎢⎢⎣

g(w1 × x1 + b1) ... g(wL × x1 + bL)

∶ ... ∶

g(w1 × xN + b1) ... g(wL × xN + bL)

⎤⎥⎥⎦

(4)� =

⎡⎢⎢⎣

�T
1

∶

�T
L

⎤⎥⎥⎦

(5)T =

⎡⎢⎢⎣

TT
1

∶

TT
N

⎤⎥⎥⎦

H is called the hidden layer output matrix and T is the train-
ing data matrix. To minimise the cost function ||H� - T||, the 
ELM theory claims that the parameters of the hidden nodes 
wi and bi can be assigned randomly without considering the 
input data. Since H is invertible, the output weights � can be 
calculated as follows.

where H† is the Moore-Penrose generalised inverse of H.
The main steps of the ELM algorithm are as follows: i) 

weights and biases of the hidden layer ( wi and bi ) are randomly 
assigned, i = 1,...,L, ii) the hidden layer output matrix H is 
calculated according to (3), iii) The output weight matrix 𝛽  is 
calculated by 𝛽 = H†T , iv) 𝛽  is used to make predictions on 
new test data F = H𝛽 .

3.2  Harris hawks optimisation (HHO) algorithm

In 2019, Heidari et al. [30] proposed a novel nature-inspired 
metaheuristic optimisation algorithm - the Harris Hawks Opti-
miser. It is based on the cooperative predatory strategy of Har-
ris hawks, one of the most intelligent birds in nature. A group 
of hawks living in the same family or the same stable group 
collaboratively attack a prey (usually a small rabbit) from dif-
ferent directions in a technique called “surprise pounce” or 
“seven kills”. The way of pursuing may differ depending on 
the dynamically changing circumstances and the escape strat-
egy of the prey. The HHO algorithm models this behaviour in 
two broad phases - an exploration and an exploitation phase. 
It is a population-based algorithm similar to algorithms such 
as Particle Swarm Optimisation (PSO) and Ant Colony Opti-
misation (ACO). Since its development, the HHO algorithm 
has been used in a variety of fields ranging from design and 
manufacturing [31], feature selection for data mining [32] and 
even for optimising deep learning models [33].

In the HHO algorithm, the Harris hawks are considered 
as candidate solutions, and in each iteration, the fitness value 
is computed for each solution based on the intended prey. 
The steps of the HHO algorithm are given in (Fig. 2) and 
explained as follows:

3.2.1  Exploration phase

In this phase, the initial iteration scheme for the solution is 
decided based on two perching strategies of Harris hawks :

where Xrabbit(t) is the current position of the rabbit, X(t) is 
the current position vector of the hawks and X(t + 1) is their 

(6)𝛽 = H†T

(7)X(t + 1) =

{
Xrand(t) − r1|Xrand(t) − 2r2X(t)| q ≥ 0.5

(Xrabbit(t) − Xm(t)) − C q < 0.5

(8)C = r3(LB + r4(UB − LB))
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position vector in the next iteration, Xrand(t) is a randomly 
selected hawk’s position from the current population, Xm(t) 
is the average position of the current population of hawks, 
r1 , r2 , r3 , r4 and q are random numbers inside (0,1) which are 
updated in every iteration and LB and UB are the lower and 
upper bounds of variables respectively. Xm(t) is obtained as 
follows:

(9)Xm(t) =
1

N

N∑
i=1

Xi(t)

where Xi(t) is the location of the ith hawk in the current itera-
tion and N is the total number of hawks in the population.

3.2.2  Transition from exploration to exploitation

The energy of the prey or rabbit is modeled in this step :

where E indicates the escaping energy of the prey, E0 is its 
initial energy and T is the maximum number of iterations.

(10)E = 2E0

(
1 −

t

T

)

Fig. 1  The architecture of the single hidden layer ELM model
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3.2.3  Exploitation phase

Exploitation phase of the HHO algorithm includes the fol-
lowing steps :

• Soft besiege: This is the phase when the prey/rabbit still 
has enough energy and tries to escape by some random 
misleading jumps but finally fails ( r ≥ 0.5 and |E| ≥ 0.5 ). 
The hawks encircle the rabbit softly to make it more 
exhausted before performing the surprise pounce. This 
behaviour is modelled by : 

 where r5 is a random number from (0,1), ΔX(t) is the dif-
ference between the positions of the rabbit and the hawks 
in the tth iteration and J indicates the rabbit’s strength of 
jumping while it is trying to escape.

• Hard besiege This is the phase when the prey is very 
exhausted and has a low escaping energy.(r ≥ 0.5 and 
|E| < 0.5 ) 

(11)X(t + 1) = ΔX(t) − E|JXrabbit(t) − X(t)|

(12)ΔX(t) = Xrabbit(t) − X(t)

(13)J = 2(1 − r5)

• Soft besiege with progressive rapid dives When r < 0.5 
but |E| ≥ 0.5 , a soft besiege is carried out before the 
surprise pounce although the rabbit still has sufficient 
energy to escape. 

 The hawks dive based on Levy flight-based patterns 
according to the following rule : 

 where D is the dimension of the problem, S is a random 
vector of size 1 × D and LF(D) is the Levy flight function 
which is calculated using: 

(14)X(t + 1) = Xrabbit(t) − E‖ΔX(t)‖

(15)Y = Xrabbit(t) − E|JXrabbit(t) − X(t)|

(16)Z = Y + S × LF(D)

(17)LF(x) = 0.01 ×
u × �

|� 1

� |

(18)� =

⎛
⎜⎜⎜⎝

Γ(1 + �) × sin
�

��

2

�

Γ

�
1+�

2

�
× � × 2

�
�−1

2

�

⎞
⎟⎟⎟⎠

1

�

Fig. 2  The steps of the HHO algorithm (adopted from [30])
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 where u, � are random variables inside (0,1), � is a con-
stant = 1.5. So the final rule for updating the position of 
the hawks in this phase is : 

 where Y and Z are as calculated earlier in (15) and (16).
• Hard besiege with progressive rapid dives When 

r < 0.5 and |E| < 0.5 , a hard besiege is performed before 
the surprise pounce as the rabbit does not have sufficient 
energy left to escape. 

 where Y and Z are calculated using new rules : 

3.3  Other methods utilised in the comparison study

There are many state-of-the-art-models which are utilised for 
product demand forecasting applications in the industry. We 
have used some of them in this paper to compare the results 
of our ELM-HHO approach with esixting approaches. This 
subsection provides an introduction to some of these com-
parative models we have used in our study.

3.3.1  ELM‑BO

ELM-BO is a variant of ELM where the hyperparameters 
are optimised by Bayesian Optimisation (BO). BO uses 
Bayes Theorem to direct an efficient and effective search 
of a global optimisation problem. It constructs a surrogate 
function to represent the objective function probabilistically. 
The surrogate function is then explored with an acquisition 
function to choose potential solutions which are judged on 
the original objective function. BO is a popular choice of 
optimisation algorithm to tune hyperparameters in machine 
learning [34]. The same methodology is followed for build-
ing the ELM-BO model as has been described in Section 4 
for the ELM-HHO forecasting model. ELM optimised by 
BO has been used in the past to model the gravity field of 
irregular small bodies [25].

3.3.2  Autoregressive integrated moving average (ARIMA)

An ARIMA model is a statistical model which is used fre-
quently in the industry for time series forecasting. It is a 
generalisation of the simpler Autoregressive moving average 

(19)X(t + 1) =

{
Y if LF(Y) < LF(X(t))

Z if LF(Z) < LF(X(t))

(20)X(t + 1) =

{
Y if LF(Y) < LF(X(t))

Z if LF(Z) < LF(X(t))

(21)Y = Xrabbit(t) − E|JXrabbit(t) − Xm(t)|

(22)Z = Y + S × LF(D)

or ARMA model and adds to it the notion of integration. The 
main features of an ARIMA (p,d,q) model are:

• Autoregression (AR): It uses the dependent relation 
between an observation and p number of lagged obser-
vations.

• Integrated (I): It differences (subtracts an observation 
from an observation at the previous time step) the raw 
time series data d times to make it stationary.

• Moving Average (MA): It uses the dependency between 
an observation and a residual error from a moving aver-
age model applied to q number of lagged observations.

ARIMA models are perhaps the most common models used 
in industry for time series forecasting [13, 14].

3.3.3  Long short term memory (LSTM)

Recurrent neural networks (RNNs) are a form of Artifi-
cial Neural Networks that can memorise arbitrary-length 
sequences of input patterns by capturing connections 
between sequential data types. However, owing to the fail-
ure of stochastic gradients, RNNs are unable to detect long-
term dependencies in lengthy sequences [35]. To address 
this issue, a number of novel RNN models, notably LSTM, 
have been suggested. LSTM networks are RNN extensions 
designed to learn sequential (temporal) data and their long-
term connections more precisely than standard RNNs. 
LSTM models are commonly used in deep learning appli-
cations such as stock forecasting, speech recognition, natural 
language processing and so forth. Some examples of LSTM 
in time-series forecasting can be found in [36, 37]

3.3.4  Gated recurrent unit (GRU)

A GRU is a RNN architectural variation that employs gat-
ing algorithms to regulate information flow among neural 
network cells. GRUs were initially developed in [38]. They 
enable the collection of relationships from massive data 
sequences in a flexible manner without losing information 
from previous portions of the sequence. This is accom-
plished through its gating units. These units govern whether 
or not information should be preserved or deleted at each 
time step. Some examples of GRU in time-series forecasting 
applications can be found in [36, 37]

4  Proposed ELM‑HHO forecasting model

The main aim of this study is to obtain an accurate model 
for demand forecasting in an e-commerce company. The 
proposed methodology focuses on the optimisation of 
hyperparameters of ELM network using a single-objective 
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Harris hawks optimisation (HHO) algorithm. The model 
combines the fast computational speed of ELMs with the 
accuracy gained by optimising hyperparameters using 
HHO. HHO, being a population-based metaheuristic opti-
misation algorithm, finds optimum hyperparameters with 
much higher accuracy compared to solo-search algorithms 
like Bayesian optimisation [39] or stochastic algorithms like 
simulated annealing. Also, in most of the optimised ELM 
approaches mentioned in the literature review, only input 
weights and biases are optimised. In our method, we have 
optimised additional hyperparameters like the type of activa-
tion function, number of input lags and the number of hidden 
nodes which contribute greatly to the improved accuracy. 
To explore any instability arising due to stochasticity of the 
HHO algorithm, the ELM-HHO model was run a couple of 
times for each case and it was found that the optimization 
algorithm converges well in each case such that the standard 
deviation and the mean of the forecasts do not differ signifi-
cantly between successive runs.

The proposed methodology for product demand forecast-
ing is illustrated in Fig. 3. The methodological development 
of the proposed model can be described as follows: i) data 
cleansing and preparation, ii) selection of hyper-parameters 
to be optimised (refer to Table 1); iii) random generation 
of learning parameters within a specified range; iv) imple-
mentation of the HHO algorithm; v) iterative generation of 
model parameters using the HHO algorithm; vi) training 
ELM using the generated model parameters and calculating 
RMSE of forecasts with the test dataset; vii) checking fitness 
(i.e., RMSE of test dataset) at each iteration; viii) generation 
of optimised values of model parameters based on iterative 
performance; and ix) finally, validation of the ELM-HHO 
model using optimised model parameters for the best fitness 
(i.e., the least Test RMSE). The main steps of the methodol-
ogy are described in more detail below.

4.1  Preparing data

Data cleansing and normalisation are the essential initial 
steps to be taken in any forecasting task. In our methodol-
ogy, first the noisy values were smoothed and the missing 
values were replaced through linear interpolation. Then the 
time series data was normalised according to the following 
equation before being fed into the model:

where xi is ith data, � is the mean of all training data and � 
is the standard deviation of all training data. Note that the 
predictions were transformed back to the original scale using 
the following denormalisation equation before making final 
predictions:

(23)xnormalised =
xi − �

�

4.2  Generating hyperparameters for ELM network

ELM models have achieved acceptable forecasting perfor-
mance when applied on time-series data [26]. However, 
obtaining good performance with ELM is a tedious task as 
it involves the optimisation of various hyperparameters. In 
this study, the following hyperparameters were optimised. 

1. Lag size: The number of input lags decides how many 
previous time steps data should be used to predict data 
at the next time step. The lag size has a significant influ-
ence on the performance of time series forecasting [40]. 
Hence, it is vital to select the optimal lag size in fore-
casting applications.

2. Number of hidden nodes: Similar to other artificial 
neural network methods, the number of hidden neurons 
in ELM has a significant effect on its performance [41].

3. Input weights and biases: The weights and the biases 
of the hidden layer of ELM are drawn from a truncated 
normal distribution [23]. This may lead to non-optimal 
performance and may result in ill-condition [42]. Ran-
dom weights and biases may also result in over-fitting 
due to the ELM’s excessive learning abilities [43]. In 
this study, due to these limitations, input weights and 
biases of the ELM network were optimally selected to 
achieve better generalisation performance and improved 
forecasting accuracy of the ELM model.

4. Type of activation function: The performance of the 
network varies according to the type of activation func-
tions used in the ELM structure. The selection of the 
activation function generally depends on the problem, 
and this selection might have a significant impact on the 
performance of ELM networks [44]. In this research, (1) 
binary step function, (2) sigmoid, (3) hyperbolic tangent 
(TanH) and (4) rectified linear unit (ReLU) were consid-
ered.

4.3  Initialisation of the HHO algorithm

Single-objective Harris hawks optimisation was used to 
find optimal hyperparameter values. In the proposed model, 
each individual depicts a potential solution as a real vector 
I, where I consists of multiple variables to be optimised.

Here, K is the total number of weights (Table 1). The root 
mean squared error (RMSE) was used as the fitness function 
since it is the most widely utilised cost function in evolution-
ary ELMs. RMSE represents the square root of the mean 

(24)xdenormalised = (xnormalised × �) + �

(25)I = [x1, x2, x
1

3
, x2

3
, ..., xK

3
, x1

4
, x2

4
, ..., x

x2
4
, x5]
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squared differences between predicted values and actual 
values. The fitness function is given as follows.

where Yi is the actual sales data,Ŷi is the predicted sales data 
and N is the total number of days for which forecasting is 
done. It is a scale-dependent measure used to determine how 
far the absolute values of the forecasts are from the actual 
sales data.

(26)Fitness =

�∑N

i=1
(Yi − Ŷi)

2

N

Fig. 3  Flowchart of the ELM-HHO approach

Table 1  Lower and upper bounds of the ELM-HHO model param-
eters

Variable Type Lower bound Upper bound

x
1

No. of input lags Integer 1 275
x
2

No. of hidden nodes Integer 1 1826
x
3

Hidden weights Double –5 5
x
4

Hidden biases Double –5 5
x
5

Type of activation func-
tion

Integer 1 4
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4.4  Initialisation of the ELM algorithm

The HHO algorithm was used to find the optimal hyperpa-
rameters which gave the least RMSE of forecasting on the 
test dataset. The final chosen hyperparameters were then 
used to train ELM to obtain optimal forecasts. An ELM 
architecture with the optimum number of hidden nodes was 
used. If the optimum no. of input lags came out to be t, 
sales data at (n − 1), (n − 2), (n − 3)...(n − t) days were used 
as inputs to predict the target sales data at the nth day. The 
optimised weights and biases of the hidden layer with the 
optimised activation function were used to compute the 
hidden layer output matrix H. The output weight matrix 
was then calculated by 𝛽 = H†T  using the training data T. 
Finally 𝛽  was used to make predictions on new test data 
using F = H𝛽 .

5  Experimental results and discussion

5.1  Dataset

In this study, product demand forecasting was performed 
using historical sales data from the gaming industry. The 
global video game market has grown a lot in the past few 
years. Demand volatility is a particular characteristic of this 
market. Hence predicting future demand in advance can help 
gaming companies secure and retain new customers and get 
an edge over others in the market. Demand forecasting can 
enable these businesses to maintain an appropriate balance 
between their suppliers and their buyers. It can also help 
them ensure improved customer satisfaction at less cost to 
the supply chain. In this context, our article aims mainly to 
study the historical sales data of multiple products to pro-
vide reasonably accurate forecasts within a permissible error 
range. The dataset was attained from an e-commerce com-
pany based in Western Europe. It had daily sales data of 45 
different products from multiple stores from January 2013 
to December 2017. The original dataset had 4 columns in 
tabular form corresponding to date, store, item number and 
number of sales respectively. Data was present from 10 dif-
ferent stores and the daily sales number for each of the 45 
products of a particular store was an integer roughly varying 
between 5 and 150. Data for each product and store showed 
a similar trend with some variations. Hence results for only 
Store 1 have been shown in our paper. We also summed over 
the daily sales data of all 45 products from Store 1 to con-
sider the cumulative sales trend of video games from Store 
1. When broken down into trend, seasonality and residual 
components (Fig. 4), the time series data showed an almost 
monotonically increasing trend and pronounced seasonal-
ity effects, with peaks in sales appearing at regular annual 
intervals. This showed that the time-series was not random, 

and hence could be forecasted. Results of Dickey-Fuller test 
revealed that the series was not stationary, but it became 
stationary on performing a first-order differencing operation. 
The statistical description of the utilised dataset (for Store 
1) is given in Table 2.

5.2  Experimental setup

Data from January 2013 to September 2017 was used for 
training and October 2017 to December 2017 data was used 
for testing. For the ELM-BO and ELM-HHO approaches, 
an optimum number of lags or previous time steps data was 
chosen using the optimisation algorithm to be fed as input 
features into the ELM. The number of hidden nodes, values 
for hidden weights and biases in the ELM and the type of 
activation function were also optimally selected. Daily sales 
data for the last three months (October 2017 to December 
2017) of the dataset was predicted. All computer operations 
were performed in Python environment, where the computer 
was configured with Intel(R) Core (TM) i7- 10750H CPU 
@2.60 GHz and 16 GB RAM.

5.3  Performance metrics

Along with RMSE, two additional performance metrics were 
used to evaluate the accuracy of forecasts by our approach. 
These metrics are:

• Mean Absolute Percentage Error (MAPE) : MAPE 
is calculated as the average absolute percentage error 
between the observed values and the predictions. 

 Percentage errors have the advantage of being unit-free 
and are useful for comparing results among the different 
stores.

• Mean Percentage Error (MPE) : MPE is the same as 
MAPE, but instead of taking the absolute errors in fore-
casting, we consider the actual errors with sign. 

5.4  Parameter settings

The number of search agents and the maximum number of 
iterations are the two primary parameters of the HHO algo-
rithm. The number of search agents has a direct relation-
ship with the search stage’s efficiency. The number of search 
agents or population size was taken as 15 in Harris hawks 

(27)MAPE = 100 ×
1

N

N∑
i=1

| (Yi − Ŷi)

Yi
|

(28)MPE = 100 ×
1

N

N∑
i=1

(Yi − Ŷi)

Yi
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optimisation technique. Preliminary testing was performed 
to choose this number which presented an optimal balance 
between accuracy and computational costs. The optimisa-
tion algorithms for ELM (i.e., BO and HHO) were run for 
200 iterations each. Both the algorithms converged well 
within this number of iterations for our dataset. Bayesian 
optimisation was performed with the open-source Python 
library HyperOpt using a Tree of Parzen Estimator (TPE) 
algorithm to construct the surrogate function. Although 
the same methodology was followed by both ELM-BO and 
ELM-HHO, the optimised hyperparameters came out differ-
ent for both (Table 3). In the traditional ELM approach, none 
of the hyperparameters were optimised. ELM models with 
50 hidden nodes, 100 hidden nodes and 500 hidden nodes 
respectively with randomly assigned hidden weights and 
biases and 14 lags as input features were used for the fore-
casting. 14 lags was chosen as the standard in unoptimised 

ELM, LSTM and GRU models because the dataset showed 
a sharp autocorrelation peak at this lag.

ARIMA models commonly used in time series forecast-
ing were also applied to our dataset. Autocorrelation and 
partial autocorrelation plots of the daily sales data were 
used to choose the parameters of the ARIMA model. The 
auto-regressive order was chosen as 7 (from the ACF and 
PACF plots) and the integrated order as 1 (Dickey-Fuller’s 
test revealed that the first-order differenced time series was 
stationary). The predictions of ARIMA (7,1,0) model were 
compared with our ELM approaches. For fair comparison, a 
few other ARIMA models: ARIMA(5,1,0), ARIMA(10,1,0), 
ARIMA(7,1,1) and SARIMAX[(7, 1, 0) x (1, 1, 0, 12)] mod-
els were also used to perform forecasting.

A LSTM model was also used for the forecasting. It was 
a sequential model with the following layers: i) Input layer, 
ii) LSTM layer of 128 units, iii) LSTM layer of 64 units, 

Fig. 4  Data visualisation : a) Daily sales data from January 2013 to December 2017, b) Trend component of data, c) Seasonal component of 
data, d) The residual values, excluding trend and seasonal components

Table 2  Descriptive statistics 
for product sales between Jan. 
2013 and Dec. 2017

Partition Time Period No. records Mean St. dev. Median Min. Max.

Training Jan. 2013 - Sept. 2017 1736 2357.47 588.32 2325.00 1012 4199
Testing Oct. 2017 - Dec. 2017 90 2478.14 460.90 2429.50 1510 3485
Total Jan. 2013 - Dec. 2017 1826 2363.42 583.18 2339.50 1012 4199
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iv) Dropout layer with a dropout rate of 0.5, v) LSTM layer 
of 32 units, vi) Dropout layer with a dropout rate of 0.25, 
vii) Fully connected layer, viii) Regression layer. A lag of 
14 days was used as input features at each time step. The 
mini batch size was taken as 64 with an initial learning rate 
of 0.00202 and learn drop factor of 0.25. The L2 regulari-
sation metric was 1e-3 and the optimiser was Adam. The 
model was trained over 200 epochs with shuffling after every 
epoch. A GRU model was also used for the forecasting. It 
was a sequential model with the following layers: i) Input 
layer, ii) GRU layer of 128 units, iii) GRU layer of 64 units, 
iv) Dropout layer with a dropout rate of 0.5, v) GRU layer 
of 32 units, vi) Dropout layer with a dropout rate of 0.25, 
vii) Fully connected layer, viii) Regression layer. A lag of 
14 days was used as input features at each time step. The 
mini batch size was taken as 64 with an initial learning rate 
of 0.00202 and learn drop factor of 0.25. The L2 regulari-
sation metric was 1e-3 and the optimiser was Adam. The 
model was trained over 200 epochs with shuffling after every 
epoch.

5.5  Comparison of ELM‑HHO results with ELM, 
ELM‑BO, LSTM, GRU and ARIMA models

Figure 5 plots the forecasting results for all the models with 
the error values given in Table 4.

RMSE values of the test dataset were used for the com-
parison. Among the ARIMA models, ARIMA (7,1,0) gave 
the best results since the order was chosen from the trends 
observed in the auto-correlation and partial auto-correlation 
plots of the dataset. The ACF plot was found to be strong to 
a lag of 7, the inertia of that relationship carried on to subse-
quent lag values and then trailed off. So 7 was a good choice 
for the auto-regressive order. The integrated order of 1 was 
justified by a Dickey-Fuller’s test which showed that the first-
order differenced time series was stationary. ARIMA(7,1,0) 
performed 135.62% better than ARIMA(5,1,0), 1.57% bet-
ter than ARIMA(10,1,0), 23.38% better than SARIMAX 
[(7,1,0) × (1,1,0,12)] and 1.46% better than ARIMA(7,1,1) 
in terms of test RMSE of forecasting.

The ELM models, ELM, ELM-BO and ELM-HHO per-
formed better than the ARIMA models in making future 
demand predictions. ELM-BO showed an improvement 
in forecasting accuracy of 45.78% over ARIMA(7,1,0) 
while our proposed approach ELM-HHO was better than 
ARIMA(7,1,0) by 62.73%. The ELM models performed 

better than the ARIMA models because ELM, being a neural 
network model, can capture the non-linearity in sales data 
better than a statistical model like ARIMA. ARIMA models 
need to convert the time series to a stationary one, so first 
order differencing was performed on our dataset. However 
the underlying process used in ARIMA is linear, so it fails 
to capture nonlinear models from the time series. Histori-
cal sales data like our dataset is often highly non-linear and 
chaotic because a lot of external environmental factors affect 
it. ELM models are hence better forecasting models for such 
datasets.

The LSTM and GRU models also performed better than 
the statistical ARIMA models since they are also neural net-
work models like ELM. While the performance of LSTM 
and GRU models was comparable to that of the traditional 
ELM models without any optimisation, they did not perform 
as well as the optimised ELM models - ELM-BO and ELM-
HHO. The ELM-BO model was 26.07% better than GRU 
and 20.08% better than the LSTM model while the ELM-
HHO model showed an improvement in forecasting accuracy 
of 40.73% over GRU and 34.05% over the LSTM model. 
This might be attributed to the fact that the GRU and LSTM 
architectures were not tuned to achieve optimal performance.

Test RMSE values of ELM with 100, 500 and 1000 
hidden nodes respectively confirmed that the perfor-
mance of ELM depends on the number of hidden nodes. 
Hence, the ELMs in which no. of hidden nodes and other 
parameters were optimised - ELM-BO and ELM-HHO 

Table 3  Optimised 
hyperparameters for ELM 
chosen by BO and HHO 
algorithms

Algorithm No. of input No. of hidden Activation Weight Bias
lags nodes function range range

ELM-BO 158 661 Relu [–2.478, 3.016] [–4.690, 3.049]
ELM-HHO 194 656 Relu [–0.588, 3.719] [–0.612, 3.507]

Table 4  Comparison of performance of different models in forecast-
ing sales data for the last 3 months

Prediction Model Test RMSE Test MAPE Test MPE

ARIMA(5,1,0) 355.306 10.101% –2.584%
ARIMA(10,1,0) 153.164 4.123% –0.707%
SARIMAX 186.052 5.887% 0.266%
ARIMA(7,1,1) 152.994 4.116% –0.694%
ARIMA(7,1,0) 150.797 4.228% –0.868%
GRU 130.411 3.281% –1.022%
LSTM 124.217 3.109% –1.094%
ELM(50 nodes) 133.091 3.379% –1.240%
ELM(100 nodes) 117.835 2.996% –0.763%
ELM(500 nodes) 129.647 3.708% –0.312%
ELM-BO 103.442 3.604% –0.063%
ELM-HHO 92.665 2.950% 0.153%
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performed better forecasting than traditional ELM mod-
els in which all parameters were chosen randomly. HHO 
is a meta-heuristic population based optimisation tech-
nique and has been shown to have excellent performance 
on benchmark problems compared to other well-regarded 
optimisers [30]. For our problem, ELM-HHO performed 
better than ELM-BO in forecasting last three months 
sales data by 11.63%. The superior performance of ELM-
HHO to ELM-BO can be explained by the fact that BO 
learns about the underlying objective function through a 
trial and error approach which might not always result in 

finding the exact optimum. The problem may also lie in 
our choice of algorithm to construct the surrogate func-
tion, TPE was used in our case instead of Gaussian process 
or random forest. There are also a number of mechanisms 
which benefit population-based algorithms like HHO over 
solo-search ones like BO [39], such as putting together 
blocks from different solutions (search agents/ hawks), a 
population’s ability to search different parts of the fitness 
landscape to avoid getting stuck in a local optima due to 
bad initialisation etc.

Fig. 5  Forecasting sales data for the last 3 months with a) GRU, b) LSTM, c) ARIMA(7,1,0), d) ELM with 100 hidden nodes, e) ELM-BO, f) 
ELM-HHO
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5.6  Horizon forecasting results

Operation managers need long-range as well as short-range 
demand forecasts to make strategic decisions about prod-
ucts, processes and facilities. Time horizon of forecasts is an 
integral part of making efficient supply chain decisions and 
hence needs to be clearly established. Short range forecasts 
help to decide how much raw material should be ordered 
for delivery for the next week, how much of each product 
should be scheduled for production for the next week, how 
many workers should be scheduled to work next week etc. In 
this context, forecasting was performed using a 3 day ahead 
and a 7 day ahead horizon with ELM-HHO to predict the 
daily sales data for the last 3 months of the dataset. Figure 6 
shows horizon forecasting results for the last 3 months, with 
error values given in Table 5. As expected, forecasting error 
increases with the increase in horizon length. Even then, 
ELM-HHO approach resulted in good horizon forecasting 
accuracy at 3 days and 7 days ahead, thus making it a prom-
ising approach to be applied in real time in companies to 
predict future demand from last week’s sales data.

5.7  Discussion

Detailed comparisons with traditional forecasting models 
revealed that the proposed approach ELM-HHO is a highly 
accurate model for demand forecasting problems. Although 
the population-based HHO algorithm is computationally 
costlier than the solo-search Bayesian Optimisation, the rise 

in computational cost is offset by the huge improvement in 
accuracy. To summarise, the proposed ELM-HHO model 
performed 62.73% better than the statistical ARIMA(7,1,0) 
model, 40.73% better than the neural network based GRU 
model, 34.05% better than the neural network based LSTM 
model, 27.16% better than the traditional non-optimised 
ELM model with 100 hidden nodes and 11.63% better than 
the ELM-BO model in forecasting demand for last 3 months. 
Most importantly, our approach is practical and industrially 
useful as it can predict sales data accurately over a time 
horizon. The key strength of the proposed approach lies in 
combining the fast computational speed of ELMs with the 
accuracy gained by optimising hyperparameters using HHO. 
Optimising the number of input lags using HHO yields more 
accurate results than choosing them by seeing ACF and 
PACF plots, which is prone to human error. Usually, only 
input weights and biases are optimised in optimised ELM 
algorithms. In our approach, more hyperparameters like the 
type of activation function, number of input lags and number 
of hidden nodes were optimised which contributed to the 
highly improved forecasting accuracy.

6  Conclusion and future work

There are numerous challenges involved in performing 
accurate and timely product demand forecasting [45–47]. 
Traditional time series forecasting models like ARIMA 
can only be applied on stationary time series, and fail to 
capture non-linearity introduced in sales data due to mar-
ket volatility, seasonal factors etc. In this context, we intro-
duced a hybrid neural network based demand forecasting 
model - ELM tuned by Harris hawks optimiser which is 
able to accurately forecast non-linear sales data of products 
belonging to an e-commerce store. ELM, being a single layer 
feed forward neural network, has been shown to be very 

Fig. 6  Horizon forecasting for last 3 months with ELM-HHO at a) 3 days ahead, b) 7 days ahead

Table 5  Performance assessment of horizon forecasting for last 3 
months with ELM-HHO

No. days ahead Test RMSE Test MAPE Test MPE

3 days 94.214 3.207% 0.183%
7 days 99.884 3.210% 0.445%
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effective in forecasting non-linear time series data at fast 
computational speed. We improved the accuracy of ELM 
further by tuning its hyperparameters with Harris hawks 
optimisation technique. The ELM-HHO model had better 
forecasting accuracy than ELM, ELM-BO, GRU, LSTM and 
ARIMA models, thus making it a great choice for product 
demand forecasting. The ELM-HHO model also performed 
good horizon forecasting at 3 days and 7 days ahead, which 
makes it a good model to be applied by companies in pre-
dicting sales data over a horizon. This work can be extended 
in future by adding auto-encoders for time series feature 
extraction which might improve accuracy further. CNN or 
LSTM auto-encoders which can choose the most important 
time series features to be passed as inputs to the ELM layer, 
can be analysed. This will help in better identification of 
the most important input lags and reduce the computational 
complexity incurred in optimising the number of input lags 
using an optimisation algorithm. The optimisation part in 
our approach can be tuned further and multi-objective opti-
misation can be investigated. The population-based HHO 
algorithm suffers from certain drawbacks like immature con-
vergence and getting stuck in local optima. Hence, improved 
versions of HHO, like that mentioned in [48], which uses 
the Salp Swarm Algorithm (SSA) to enhance the robust-
ness of the HHO algorithm can be explored in future work. 
The HHO algorithm can even be hybridized with simulated 
annealing to accelerate its global convergence performance, 
as shown in [49] and [50]. Newer optimization algorithms 
like that mentioned in [6] can also be explored. Multivari-
ate demand forecasting which uses inputs other than just 
the historical sales data can also be explored. For instance, 
the effect of external factors like seasonal holidays, market 
volatility etc. can be introduced in our approach to improve 
robustness.
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