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Abstract—The Cayley map for the rotation groupSO(3)
is extended to a map from the Lie algebra of the group of
rigid body motionsSE(3) to the group itself. This is done
in several inequivalent ways.

A close connection between these maps and linear line
complexes associated with a finite screw motions is found.
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I. Introduction

The Cayley map for the rotation groupSO(3) is well
known, [2]. However, it is not easy to find a brief, clear
introduction to the topic. In general, like the exponential
map, the Cayley map is a mapping from the Lie algebra of
a group to the group itself. However, not all Lie groups
have Cayley maps, see for example [4]. The Cayley map
for the group of rigid-body motions,SE(3) does not seem
to appear in the literature. It will be shown below that the
Cayley map forSE(3) is a straightforward generalisation
of the originalSO(3) Cayley map.

Unlike the exponential map the Cayley map depends on
the representation of the Lie algebra that we use. So in
fact there are several Cayley maps forSE(3), two cases
are studied here, one based on the standard4× 4 represen-
tation ofSE(3) and the other based on the6 × 6 adjoint
representation.

The Cayley map is a useful way of linearising the group
near its identity. This is also true of the exponential map
but the Cayley map is rational, that is it doesn’t involve
transcendental functions. This is useful in numerical ap-
plications since evaluating transcendental functions canbe
time-consuming. In [3], for example, the Cayley map for
SO(3) is considered in connection with the efficient simu-
lation of rigid-body dynamics. Another application of the
Cayley map forSO(3) occurs in [6] where interpolated ro-
tational motions are produced in the Lie algebra and then
mapped to the group using the Cayley map.

In section IV below an example is given where the Cay-
ley map forSE(3) occurs in a natural geometrical context.
It is possible to associate a linear line complex with almost
all rigid-body motions. The set of lines in the complex turn
out to be reciprocal to the screw or Lie algebra element that
produces the rigid-body motions via the Cayley map.

There is another way to associate a linear line complex
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with a rigid-body motion. This is studied in section VI. It
also produces a map from the group to its Lie algebra, and
this corresponds to the other Cayley map studied here.

To begin, the Standard Cayley map forSO(3) will be
reviewed.

II. The Cayley map for SO(3)

A. Definition

The Cayley map is a map from the vector space of3 ×
3 anti-symmetric matrices to the map of rotation matrices.
LetA be a3×3 anti-symmetric matrix then the Cayley map
is defined as:

Cay(A) = (I3 + A)(I3 −A)−1 = R, (1)

whereI3 is the3 × 3 identity matrix. It is easy to see that
the result of the Cayley map is an orthogonal matrix,

RRT = (I3 +A)(I3 −A)−1(I3 −A)−T (I3 +A)T

= (I3 +A)(I3 +A)−1(I3 −A)−1(I3 −A)

= I3, (2)

sinceA is anti-symmetric and(I3 + A) and(I3 − A), and
their inverses, commute.

Notice that the Cayley map is defined for any3× 3 anti-
symmetric matrix. Like the exponential mapping it maps
the Lie algebra of the rotation group to the group itself. The
group of3×3 orthogonal matricesO(3) is not connected. It
has two connected components, the component containing
the identity matrixI3, corresponds to the group of rotations
SO(3). The Cayley map is a continuous map andI3 is
clearly the image of the zero matrix, so we can infer that
the image of the Cayley map is always a rotation matrix.

B. Series Expansion

A formula analogous to Rodrigues formula for the ex-
ponential map can be derived. All3 × 3 anti-symmetric
matrices satisfy a cubic equation,

A3 + λ2A = 0 (3)

whereλ2 = −(1/2)Tr(A2). So we can write any power
series inA as quadratic polynomial inA. For example, the
inverse of(I3 −A) can be written as,

(I3 −A)−1 = I3 +A+A2 +A3 + · · · , (4)
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this converges in some neighbourhood ofA = 0. Using the
cubic equation (3) to simplify higher terms this becomes,

(I3 − A)−1 = I3 +
1

1 + λ2
A+

1

1 + λ2
A2. (5)

Using this result the Cayley map can be written as a
quadratic inA,

Cay(A) = (I3 +A)(I3 +
1

1 + λ2
A+

1

1 + λ2
A2)

= I3 +
2

1 + λ2
A+

2

1 + λ2
A2. (6)

C. The Inverse of the Cayley Map

There are several ways to look at the inverse of the Cay-
ley map. First supposeR is an orthogonal matrix and

R = I3 +
2

1 + λ2
A+

2

1 + λ2
A2. (7)

SinceA is anti-symmetric, transposing (7) and taking the
result from the original equation gives,

R −RT =
4

1 + λ2
A. (8)

Taking the trace of equation (7) gives,

Tr(R) = 3−
4λ2

1 + λ2
. (9)

Eliminatingλ from the previous pair of equations gives the
result,

Cay−1(R) = A =
1

1 + Tr(R)

(

R−RT
)

. (10)

Secondly, the original equation defining the Cayley map,
(1), could be rearranged. Multiplying by(I3 − A) gives,
R(I3 −A) = (I3 +A). Rearranging this gives,

Cay−1(R) = A = (R + I3)
−1(R− I3). (11)

From here the relations

(I3 −A) = 2(R+ I3)
−1, (12)

and
(I3 +A) = 2(R+ I3)

−1R, (13)

can also be produced and these will be useful later.
Finally, the3×3 orthogonal matrices also satisfy a cubic

relation, so a quadratic polynomial inR for Cay−1 could
be derived, however, this will not be pursued here.

Now so long as1+Tr(R) 6= 0, the inverse of the Cayley
map is well defined. IfR is a rotation by an angleθ then
Tr(R) = 1 + 2 cos θ. Hence, the mapCay−1 is not de-
fined for rotation angles±π. In the region where the map is
defined the Cayley map and its inverse are bijective maps,
that is the maps are one-to-one and onto. Hence, the3 × 3
anti-symmetric matrices can be used as coordinates for the
rotations. These coordinate only cover the region where the
rotation angle is not±π, so this is just a coordinate patch
or chart.

D. Comparison with the Exponential Map

For any Lie group the exponential map is a map from the
Lie algebra to the group itself. In particular, forSO(3) we
have the familiar Rodrigues formula,

eθΩ = I +
1

θ
sin θΩ +

1

θ2
(1 − cos θ)Ω2 (14)

and its inverse,

ln(R) =
θ

2 sin θ

(

R−RT
)

(15)

here Ω is a 3 × 3 anti-symmetric matrix, andθ2 =
−(1/2)Tr(Ω2).

So this map can also be used to define a coordinate patch
for the group of rotations. These coordinates are usually
known as geodesic coordinates. Notice that, once again,
the rotations by±π lie outside the coordinate patch.

To compare the two maps consider,

Cay−1(eΩ) = A =
sin θ

θ(1 + cos θ)
Ω (16)

Normalising the anti-symmetric matrices gives,(1/λ)A =
(1/θ)Ω. For the exponential map this normalised anti-
symmetric matrix determines the rotation axis of the cor-
responding rotation. Hence this will be the same for the
Cayley map.

The only difference between the two maps lies in the pa-
rametersλ andθ. For the exponential map the parameterθ
has physical significance as the angle of rotation. To find
the rotation angle in terms of the parameterλ in the Cayley
map consider the normalised anti-symmetric matrices and
equation (16) above. This gives,

λ =
sin θ

(1 + cos θ)
= tan

θ

2
. (17)

So if the Cayley map is used then the usual axis/angle rep-
resentation of the rotations can be recovered simply.

III. A Cayley map for SE(3)

In this section the Cayley map will be extended to the
group of rigid-body motionsSE(3). A typical element of
SE(3) can be written as a4× 4 matrix,

M =

(

R t

0 1

)

,

whereR is a rotation matrix andt a translation vector.
In this representation, the Lie algebra elements or twists,

can be written,

S =

(

A u

0 0

)

,

whereA is an arbitrary3 × 3 anti-symmetric matrix andv
is a 3-vector. Now if we simply imitate theSO(3) formula
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for the Cayley map, (1), we get,

(I4 − S)−1(I4 + S) =

(

R (R + I3)u
0 1

)

, (18)

where,
R = (I3 −A)−1(I3 +A)

as above. The result (18), can be found by considering the
powers of the Lie algebra elements,

Sn =

(

An An−1u

0 0

)

.

It is clear from (18), that this map is well defined and so
we will write,

Cay4(S) = (I4 − S)−1(I4 + S),

using the subscript 4 to denote the4 × 4 representation of
SE(3).

As above a Rodrigues-type formula can be derived for
this map. This is based on the fact that the4× 4 matricesS
satisfy a degree 4 polynomial equation,

S4 + λ2S2 = 0, (19)

where,λ2 = −(1/2)Tr(A2) = −(1/2)Tr(S2), again.
This leads to the formula,

Cay4(S) = I4 + 2S +
2

1 + λ2
S2 +

2

1 + λ2
S3. (20)

The inverse of this Cayley map is easy to compute. Using
the partitioned form ofM given above gives,

Cay−1

4 (M) =

(

Cay−1(R) (R + I3)
−1t

0 0

)

. (21)

As usual this is only defined for rotation angles between
±π.

For a general finite screw motion the translational part of
the matrixM has the form,

t = (I3 −R)q+
( p

2π

)

ω, (22)

whereq is any point on the screw axis,ω is the direction of
the screw axis with|ω| = θ the angle of rotation andp is
the pitch of the screw. Comparing this with (18) we have,

(I3 +R)u = (I3 −R)q+
( p

2π

)

ω. (23)

Solving foru gives,

u = (I3 +R)−1(I3 −R)q+
( p

2π

)

(I3 +R)−1
ω

= −Aq+
( p

4π

)

(I3 −A)ω

= q× a+
( p

4π

)

ω

= q× a+
(θ/2)

tan(θ/2)

( p

2π

)

a, (24)

where the results of section II have been used to sim-
plify these expressions. Notice that the pitch of this screw,
Cay−1

4 (M), is the quasi-pitch or ‘quatch’ referred to in [5].

x

y

a

Fig. 1. The Complex of Mid-point Lines.

IV. The Complex of Mid-point lines

Consider a pointx in space. Now apply a rigid transfor-
mation to this point, that is an element ofSE(3),

y = Rx+ t, (25)

whereR is a rotation matrix andt a translation vector.
The mid-point of the line joiningx to y is the pointm =
(1/2)(x + y) and the direction of this line isv = y − x.
Now shift attention to the lines through the pointm and
perpendicular tov, see Fig. 1. It is well known that the
set of all such lines, for all possible starting pointsx, form
a linear complex of lines, [1, chap. III]. Here an indepen-
dent proof of this will be given and the relationship with the
Cayley map explained.

Assume thatω is any vector perpendicular to the direc-
tion v = y − x, that isω · (y − x) = 0. Then any line
through the mid-pointm and perpendicular to the direction
y − x has Plücker coordinates,

s =

(

ω

(1/2)(x+ y)× ω

)

, (26)

see [7, chap. 6] for an introduction to line geometry in this
context. Notice that each point in space is the mid-point
of some pair of pointsx, y. Also, at each point in space
we have a point-star of lines through that point. That is, a
one dimensional family of lines through the point and all
lying in a common plane. This suggests that the set of all
these lines lies in a linear complex. To prove this suppose
the lines defined above are all reciprocal to a screwz, the
equation of the linear complex will be given by,

zTQ0s = 0, (27)

where the6 × 6 symmetric matrix is given in partitioned
form by,

Q0 =

(

0 I3
I3 0

)

. (28)

If the screwz is given byzT = (aT , uT ) then the equation
for the line complex becomes,

u · ω + (1/2)a ·
(

(x+ y) × ω

)

= 0. (29)
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Using the scalar triple product formula this equation can be
simplified to,

ω ·
(

u+ (1/2)a× (x+ y)
)

= 0. (30)

If this is true for all lines perpendicular toy − x then we
can infer that,

u+ (1/2)a× (x + y) = (γ/2)(y − x), (31)

whereγ is an arbitrary scalar constant and the factor1/2
simplifies some later equations. Next use (25) to write,

(1/2)(x+ y) = (1/2)
(

(R+ I3)x+ t
)

, (32)

and
(y − x) = (R− I3)x+ t. (33)

Substituting this in (31) gives,

u+(1/2)a×
(

(R+I3)x+t
)

= (γ/2)(R−I3)x+t. (34)

This is essentially a system of linear equations which are
quite simple to solve symbolically. LetA be the anti-
symmetric matrix satisfying,Ap = a × p for any vector
p. Then it is simple to see that,

A = γ(R+ I3)
−1(R− I3). (35)

Also we must have,

u = (1/2)γt− (1/2)a× t. (36)

This simplifies to,

u = γ(R+ I3)
−1t, (37)

since(I3 −A) = 2(R+ I3)
−1, see (12) above.

Notice that this solution depends only on the rotationR
and the translationt, not on the pointx, hence this set of
lines do indeed form a line complex reciprocal to the screw
(a,u) found above. The constantγ is irrelevant since the
equation for a linear complex is homogeneous. However,
it is clear that this screw is the inverse of the Cayley map
described in the previous section,

(

A u

0 0

)

= Cay−1

4

(

R t

0 1

)

. (38)

V. The Cayley Map for the Adjoint Representation

Here the6 × 6 representation of the group of rigid-body
motions will be used to produce a Cayley map. It will be
shown that this map is different from the one found in sec-
tion III.

A general rigid-body motion will be represented here by
the6× 6 matrix,

H =

(

R 0
TR R

)

, (39)

whereR is a rotation matrix as usual and the3 × 3 matrix
T is anti-symmetric and satisfies,Tp = t× p for any vec-
tor p. The corresponding representation of the Lie algebra
consists of6× 6 matrices of the form,

ad(s) =

(

A 0
B A

)

. (40)

BothA andB are3× 3 anti-symmetric matrices.
The Cayley map for this representation can be defined as,

Cay(ad(s)) = (I6 − ad(s))−1(I6 + ad(s)). (41)

To be sure that this is well defined we need to show that the
result is indeed a rigid transformation as in (39) above. This
can be done in a couple of stages, first

(I6−ad(s))−1 = I6+ad(s)+ad(s)2+ad(s)3+· · · , (42)

in the partitioned form this is,

(I6 − ad(s))−1 =
(

I3 0
0 I3

)

+

(

A 0
B A

)

+

(

A2 0
AB +BA A2

)

+

(

A3 0
A2B +ABA+BA2 A3

)

+ · · · . (43)

These series can be summed to give,

(I6 − ad(s))−1 =
(

(I3 −A)−1 0
(I3 −A)−1B(I3 −A)−1 (I3 −A)−1

)

,(44)

then we have,

(I6 − ad(s))−1(I6 + ad(s)) =

(

R 0
X R

)

, (45)

whereR = (I3 − A)−1(I3 + A) as in the Cayley map for
SO(3) andX = (I3−A)−1B(I3 −A)−1(I3+A)+ (I3−
A)−1B. This last3×3 matrix can be developed as follows,

X = (I3 −A)−1B(I3 −A)−1(I3 +A) + (I3 −A)−1B

= (I3 −A)−1B
(

I3 + (I3 +A)−1(I3 −A)
)

R

= 2(I3 −A)−1B(I3 +A)−1R. (46)

Now clearly the matrix(I3 − A)−1B(I3 + A)−1 is anti-
symmetric, so we may identify,

T = 2(I3 −A)−1B(I3 +A)−1, (47)

and hence conclude that(I6 − ad(s))−1(I6 + ad(s)) is a
rigid transformation. So let,

Cay6
(

ad(s)
)

=
(

Cay(A) 0
2(I3 −A)−1B(I3 −A)−1 Cay(A)

)

. (48)
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Again it is possible to write a Rodrigues-type formula for
for this map since these6 × 6 matrices satisfy the polyno-
mial relation,

ad(s)5 + 2λ2 ad(s)3 + λ4 ad(s) = 0, (49)

where, as beforeλ is the magnitude of the sub-matrixA;
λ2 = −(1/2)Tr(A2) = −(1/4)Tr(ad(s)2). The formula
is not elementary this time but can be found using the meth-
ods described in [7,§4.4], the result is,

Cay6(ad(s)) =

I6 +
2(1 + 2λ2)

(1 + λ2)2
ad(s) +

2(1 + 2λ2)

(1 + λ2)2
ad(s)2

+
2

(1 + λ2)2
ad(s)3 +

2

(1 + λ2)2
ad(s)4.(50)

As above we can rearrange the formulas for the Cayley
map to give the inverse Cayley map. As before we have,

A = (R + I3)
−1(R− I3), (51)

but now,

B =
1

2
(I3 −A)T (I3 +A). (52)

Using (12) and (13) above we can write,

B = 2(R+ I3)
−1TR(R+ I3)

−1. (53)

Finally here, it will be shown that this map really is dif-
ferent from the one given in section III. To do this consider
a particular rigid-body motion but represented in both the
4× 4 and6× 6 representations,

(

R t

0 1

)

,

(

R 0
TR R

)

.

Notice that the rotation matrixR is the same in both
cases and the translation vectort corresponds to the anti-
symmetric matrixT , that isTp = t × p for any vectorp.
To compare the Lie algebra elements which produce these
motions look at the inverse Cayley maps. Clearly the ro-
tational parts of the Lie algebra elements are the same, in
both cases we have,A = (R + I3)

−1(R − I3). For the
translational part of the Lie algebra element we have, from
(52),

B =
1

2
(T + TA−AT −ATA), (54)

for the mapCay−1

6 . Using the easily verified relation be-
tween vectors and their anti-symmetric matrices;XY =
yxT − (x · y)I3, this relation can be written in terms of
vectors,

b =
1

2

(

(I3 −A)t+ (a · t)a
)

= (R+ I3)
−1t+

1

2
(a · t)a.

(55)

x

z

a

y

n

Fig. 2. The Complex of Normal Lines.

The difference between this andu from the mapCay−1

4 , is
the term1

2
(a · t)a. This term can be developed using (22),

1

2

(

a · t)a =
1

2
(aT (I3 −R)q+

p

2π
a · ω

)

a. (56)

Here,aT (I3−R) = 0 sincea is aligned with the axis of the
rotation. So using the relationship betweena andω from
section II-D, we get,

1

2

(

a · t)a =
p

2π
(θ/2) tan(θ/2)a. (57)

Finally this can be combined with the result from (24) and
after a little manipulation of the trigonometric expressions
we get,

b = q× a+
θ

sin θ

( p

2π

)

a. (58)

That isCay−1

6
(ad(s)) has the same axis as the correspond-

ingCay−1

4 (M) but the pitches are different.

VI. Another Line Complex

In [1, Chap. III] another line complex associated to a
finite screw motion is described. There are several geomet-
rical descriptions of this complex, here a description based
on points will be given.

Let x be an arbitrary point in space and lety be the im-
age ofx under the rigid motion, so,y = Rx+ t as before.
Now consider also the image ofy under the same rigid mo-
tion, call it z so thatz = Ry + t. These three pointsx, y
andz determine a plane and the lines of the complex under
discussion are normal to this plane through the second point
y, see Fig. 2. The direction of such a line is given by the
vector product,

n = (z− y) × (y − x) = z× y + y × x+ x× z. (59)

The moment of the line is simplyy × n. Next assume that
all such lines are reciprocal to a screwsT = (cT , wT ).
That is,

c · (y × n) +w · n = 0, (60)

again the scalar triple product formula can be used to sim-
plify this,

(c × y +w) · n = 0. (61)
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This implies that(c × y +w) is normal ton and hence it
can be written as a linear sum in the pair of vectors used to
producen,

c× y +w = α(z− y) + β(y − x), (62)

whereα andβ are constants to be determined. Now the
pointsy andz can be rewritten in terms ofx,

c×Rx+c×t+w = (R−I3)(αR+βI3)x+(αR+βI3)t.
(63)

Sincex is arbitrary we must have,

CR = (R− I3)(αR + βI3), (64)

and multiplying on the right by the transpose of the rotation
matrix gives,

C =
(

αR+ (β − α)I3 − βRT
)

. (65)

ForC to be anti-symmetric, as required, clearly means that
α = β. SoC = α(R−RT ) and we see that the axis of the
screw that defines the complex is again in the direction of
the axis of the finite screw motion. The translational part of
the screw is then given by,

w = α(R + I3)t− Ct = α(I3 +RT )t. (66)

Substituting fort using equation (22) gives,

w =
(

q× c+
θ

sin(θ)

( p

2π

)

c
)

. (67)

This the same as the screw defined byCay−1

6 , it has the
same axis and pitch, see (58). The vectorc is only defined
up to an overall constantα, but this is immaterial since the
equation for the complex is homogeneous.

VII. Conclusions

The Lie algebra of the group of rigid body motions con-
sists of infinitesimal screws or twists. In this work two maps
have been found from this Lie algebra to the group of rigid-
body motions. These maps are different generalisations of
the Cayley map onSO(3) and appear to be novel. Dif-
ferent representations ofSE(3) will presumably produce
more such maps.

However, as shown above, there is a natural connection
between these Cayley maps and linear line complexes. Bot-
tema and Roth study two such complexes associated with a
finite screw motion. They call these two complexesΓ and
Γ′ [1]. The complexΓ is the complex of mid-point lines as-
sociated with the Cayley mapCay4. WhileΓ′, the complex
of normal lines is associated withCay6. This connection is
also believed to be novel. Both of these Cayley maps asso-
ciate a finite screw motion with an infinitesimal screw with
the same axis, the difference between the maps is what hap-
pens to the pitches of the screws. Only the exponential map

sends a pitchp infinitesimal screw to finite screw with the
same pitch.

Cayley maps can often be used as the basis for efficient
numerical methods in place of the exponential map. Note
that the Lie algebra structure on the infinitesimal screws is
derived from the group structure on the finite screws using
the exponential map. Hence, it may be possible to produce
a deformed Lie algebra using a Cayley map. This might be
useful for speeding up the numerical computations used in
robot control.
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