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Abstract: The term "Critical Raw Materials" (CRMs) refers to various metals and non-metals that 28 

are crucial to Europe’s economic progress. Modern technologies enabling effective use and recycla- 29 

bility of CRMs are in critical demand for the EU industry. The use of CRMs especially in the field of 30 

biomedical, aerospace, electric vehicles, and energy application is almost irreplaceable. Additive 31 

Manufacturing (also referred to as 3D printing) is one of the key enabling technologies in the field 32 

of manufacturing which underpins the fourth Industrial Revolution.  Not only does 3D printing 33 

suppresses waste but it also provides an efficient buy-to-fly ratio and possesses the potential to en- 34 

tirely change supply and distribution chains significantly reducing costs and revolutionizing all lo- 35 

gistics. This review provides comprehensive new insights into CRM-containing materials processed 36 

by modern AM techniques and outlines the potential for increasing the efficiency of CRM utilisation 37 

and reducing the dependence on CRMs through wider industrial incorporation of AM and specifics 38 

of powder-bed AM methods making them prime candidates for such developments. 39 

Keywords: Additive Manufacturing; Critical Raw Materials; CRM; recyclability; powders for addi- 40 

tive manufacturing; Powder Bed Fusion 41 

 42 

1. Introduction 43 

There is a growing global concern about securing access to metals and minerals 44 

needed for developing economic production. The dependence of industrial sectors on 45 

scarce materials, in many cases almost entirely dependent on remote sources, represents 46 
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a threat to the future competitiveness of highly import-dependent industrialised countries 47 

such as the European Union (EU), Japan and the USA. It is also complemented by the 48 

additional challenge of sustainable management of all resources starting from raw mate- 49 

rials through manufacturing and logistics to waste treatment and end-of-life product re- 50 

cycling.  51 

Critical raw materials (CRMs) are raw materials of high importance to the global 52 

economy. Their supply is at risk, as defined in the current methodology for raw materials 53 

assessment published by the European Commission (EC) in 2017 [1]. European legislators 54 

were already pointing out the criticality of the raw material for quite a while, indicating 55 

that this issue is both economical as well as political. In 2007, the EU Council declared the 56 

Conclusions on Industrial Policy requesting the Commission to develop a coherent ap- 57 

proach about raw materials supplies to EU industries. The corresponding approach 58 

should cover all relevant areas of policy (foreign affairs, trade, environmental, develop- 59 

ment and research and innovation policy) and identify appropriate measures for cost-ef- 60 

fective, reliable and environmentally-friendly access to and exploitation of natural re- 61 

sources, secondary raw materials and recyclable waste, especially concerning third-coun- 62 

try markets [2]. In response, the first European Raw Materials Initiative was launched by 63 

the EC in 2008 to provide a fair and sustainable supply of raw materials from international 64 

markets and the EU, while promoting resource efficiency and circular economy [3]. The 65 

first CRMs list was released in 2011, which contained 41 candidates and 14 CRMs were 66 

selected [4] as supercritical. In 2014, the CRMs list was updated, and 20 CRMs were iden- 67 

tified out of 54 candidates [5]. A third CRMs list with 26 raw materials and groups of raw 68 

materials out of the 78 candidates was released in 2017 [6]. The last CRMs list was released 69 

in 2020 which contains 30 elements [7]. Bauxite, Lithium, Titanium and Strontium were 70 

added to the CRMs list for the first time, while Helium, critical in 2017, was removed from 71 

the list due to a decline in its economic importance. The CRMs list is updated every three 72 

years, to account for the production, market and technological developments. A summary 73 

of the four CRMs listed above is presented in Fig. 1, where elements listed in 2011, 2013, 74 

2017 and 2020 as CRMs are marked in different colors. From the table, the evolution of 75 

criticality of each element or material since 2011 is evident. It is worth noting that many 76 

other raw materials, even when not classed as critical, are important to the EU economy 77 

and are continuously monitored by EC. 78 

 79 

Figure 1. Critical raw materials list for 2011–2020 overlaid on the periodic table of the elements (adapted from [8]). 80 
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European initiatives were broadening, and in 2011 EU together with Japan and the 81 

US started a trilateral dialogue to promote cooperation in the field of critical materials, 82 

identifying the main areas of cooperation in collecting raw materials data, analysing trade, 83 

waste recycling and options for CRM substitution. Representatives of the European Com- 84 

mission (EC), the US Department of Energy (DOE), and Japan’s Ministry of Economy, 85 

Trade and Industry (METI) and the New Energy and Industrial Technology Development 86 

Organization for Japan, decided to meet annually since 2011 for discussing CRM issues 87 

via a Trilateral Conference. 88 

The growing interest of researchers in solving the problem associated with the sup- 89 

ply risk of raw materials can be testified by the increasing number of publications pub- 90 

lished during the last decade covering topics such as CRMs applications, manufacturing, 91 

recycling and life cycle analysis. A simple search through research databases for the key- 92 

words, “critical raw materials” returns 330 publications as of February 2021 in the Scopus 93 

database alone, with first publication reported in 1975 [9] and annual publication numbers 94 

increasing considerably since 2012. Results also indicate that the publications mostly focus 95 

on recycling, substitution, circular economy and rare earth elements. This search concerns 96 

only the publications specifically addressing as keyword “critical raw materials”, while 97 

other publications on manufacturing technologies, industrial applications and disposal of 98 

individual elements coupled with the keyword CRM would yield even more papers. 99 

The corresponding report on the assessment of the methodology for establishing the 100 

EU CRMs list screened 212 communications dealing with critical raw materials: around 101 

233 organisations were identified as being involved in criticality studies. Among these, 72 102 

developed their methodology and 58 organizations developed their CRMs lists [10]. In 103 

2018, the Department of the Interior of the United States published the list of 36 critical 104 

minerals and elements (including aluminum, arsenic, barite, beryllium, bismuth, cesium, 105 

chromium, cobalt, fluorspar, gallium, germanium, graphite, hafnium, helium, indium, 106 

lithium, magnesium, manganese, niobium, platinum group metals, potash, the rare earth 107 

elements group, rhenium, rubidium, scandium, strontium, tantalum, tellurium, tin, tita- 108 

nium, tungsten, uranium, vanadium, and zirconium), and declared their 100% import re- 109 

liance on 14 minerals [11,12]. 110 

Currently, known approaches to address the problem of CRMs are summarized in 111 

Fig. 2. They are related to securing the supply chain (through raw materials diplomacy 112 

and developing own mining and recycling), extending the lifetime of the products con- 113 

taining CRMs, developing more sustainable production methods for materials containing 114 

CRMs and introducing new CRM-free materials. In absence of having immediate availa- 115 

bility of raw materials, novel solutions for improving raw material production, recycling, 116 

reducing the consumption and substitution of CRMs move to the top of the agenda 117 

[8,13,14]. 118 

 119 

Figure 2. Primary solutions to tackle and address the issue of critical raw materials. 120 
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One of the technologies capable of solving some of the discussed challenges is Addi- 121 

tive Manufacturing (AM) of metals and non-metallic materials. AM adds a material layer- 122 

by-layer in contrast to the traditional methods of subtractive manufacturing, removing 123 

material from large ingots by turning, drilling and milling. Unique advantages of AM 124 

methods include achieving unprecedented freedom in the shape, significant reduction of 125 

waste and, in many cases, reduction of energy consumption [15–17]. Specific processing 126 

conditions characteristic to AM allow for developing new materials with unique proper- 127 

ties not possible to manufacture by other methods, including bulk metallic glasses [18,19], 128 

high entropy alloys [20–22] and different composites [23,24]. Due to these reasons, Addi- 129 

tive Manufacturing was identified as an essential part of the upcoming 4th industrial rev- 130 

olution, and in particular, as an effective and promising method to reduce CRM used in a 131 

wide variety of industrial production processes [8,13].  132 

Today, AM technologies are capable of utilising a variety of different materials. This 133 

review focuses on the AM methods capable of working with metallic and ceramic materi- 134 

als, most relevant to the CRMs. This review also aims to outline emerging possibilities 135 

provided by AM capable to mitigate critical CRM challenges, and to highlight the recent 136 

trends in AM of CRMs. 137 

A carefully designed and developed methodology was used to screen the materials 138 

presented in this review paper. As such three separate lines of the search were performed 139 

from the openly available research publications and legislature documents. Correspond- 140 

ing databases used were Google Scholar, Science Direct (Scopus), Springer Link, Wiley 141 

Online Library, EU public document and decision databases (Public Register Europa - 142 

Europa EU, Documents and publications by EU - Consilium.europa.eu) and open Google 143 

search. 144 

The first line of search concerned the issues related to CRMs and corresponding future 145 

challenges. The material obtained from this search pattern is the basis of Chapter 1. The 146 

second line of search concerned the use of CRMs in additive manufacturing- as individual 147 

elements and as parts of alloys. Particular focus was on the precursor material manufac- 148 

turing methods, AM methodology and material recycling, which has informed the writing 149 

of Chapters 2 and 3. The third line of the search was partially based on own databases of 150 

the research publications, and on additional search on the advantages of AM and future 151 

trends in AM development relevant to solving critical issues and future challenges for 152 

CRMs. 153 

Since the primary scope for this research is focused on the additive manufacturing of 154 

CRMs, corresponding approach is material- and technology-focused. From this point of 155 

view, a full initial database of the publications involved results of all three searches. Cor- 156 

responding inclusion criteria were official documents and open scientific publications 157 

from peer-reviewed sources. The corresponding initial database was split into three sub- 158 

sets referring to three lines of the search described earlier. One should note, that some of 159 

the papers were presented in two or even all three sub-sets. 160 

2. Powder materials used for Additive Manufacturing 161 

Powder precursor materials are the base for a large family of AM technologies cur- 162 

rently used in industry, such as: 163 

1. Powder Bed Fusion (PBF) including Selective Laser Sintering (SLS), Selective Laser 164 

Melting (SLM) and Electron Beam Melting (EBM); 165 

2. Nano-Particle Jetting (XJET process); 166 

3. Binder Jetting Printing (BJP); 167 

4. Laser Engineering Net Shaping (LENS). 168 

The requirements for powder precursor materials depend on specific AM technology 169 

(see Fig.3). The fundamental requirements to metal and ceramic powders include grain 170 

shape (spherical, irregular, granulated); grain size (nano-, submicron-, or micron powder); 171 
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composition (pre-alloyed or blended); gas infusions; powder flowability; tendency to ox- 172 

idise; sintering/melting conditions; etc.  173 

 174 

Figure 3. Crucial powder characteristics in additive manufacturing  175 

Fig.3 illustrates the typical powder grain size distribution required by different AM 176 

systems by taking an example of titanium alloy powders produced by gas atomization 177 

[25]. EBM uses a nominal particle size distribution between 45–106 μm, whilst SLM uses 178 

finer powders between 15–45 μm. Particle size distribution has a serious impact on the 179 

capabilities of the corresponding AM technology. Powders with finer grains allow to 180 

achieve better control on the layer thickness which aids to improve print resolution while 181 

reducing the as-printed roughness of the components [26]. On the other hand, thicker lay- 182 

ers with larger size grain powder potentially allow faster manufacturing. The presence of 183 

finer powder fractions in the distribution allows for higher packing density since small 184 

particles help in filling the voids between larger ones increasing the volume of solid metal 185 

produced from the powder layer. Small particles (smaller than 15-10 μm) reduce the flow- 186 

ability of the powder and increase the risks during powder handling. So a trade-off in the 187 

particle size distribution is needed to obtain high packing density and good flow proper- 188 

ties [27,28]. 189 

Powder bed AM technologies, such as SLM, EBM and LENS predominantly rely on 190 

using individual elemental or pre-alloyed powders. During atomization, processing, in- 191 

termediate handling and subsequent shipping at air atmosphere, the metal powder can 192 

become contaminated adsorbing gases such as argon from atomization, oxygen, nitrogen 193 

and moisture from the air. 194 

Surface oxide of metal powders (composition, phases/inclusions and their distribu- 195 

tion, thickness etc.) is connected to the cooling rate and other conditions during atomiza- 196 

tion, the particle size and secondary dendrite arm spacing, the type of atomization (e.g., 197 

water-, gas-atomization, or rotating electrode process), and the oxygen availability [29,30]. 198 

The undesirable entrapped or adsorbed gases and moisture become the source of pores in 199 

manufactured components and can react during the AM process forming oxide or nitride 200 

inclusions and layers at the microstructure boundary surfaces. These oxides result in thin, 201 

inherently weak grain boundaries and limit the bonding forces between individual pow- 202 

der particles during AM processing. A powder thermal pre‐treatment, which involves de‐ 203 

gassing the powder at an elevated temperature in a vacuum, is one of the possible ways 204 
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of dealing with the issue. With laser-based AM technologies, it becomes a common addi- 205 

tion to the main process, while in EBM it happens inside the machine as one of the essen- 206 

tial process stages. Without powder thermal pre‐treatment, other undesired effects during 207 

melting can also occur, including the formation of the “balls” fused randomly to the top 208 

of a processed solid layer severely distorting the process [31].  209 

The powder particle size and shape are quite critical. Together with the powder ele- 210 

mental content and level of purity, they play a crucial role in powder selection for AM 211 

[32]. It is quite difficult to obtain high-density products with the powders, having irregu- 212 

lar grains strongly deflecting from spherical, or having large numbers of so-called “satel‐ 213 

lites” (smaller particles fused with the main grain). In such a case, it commonly results in 214 

materials with high porosity and heterogeneity of the microstructure and even anisotropy 215 

of properties. In addition, powder particles with a specific surface have a greater tendency 216 

to adsorb gases and humidity from the atmosphere. An important parameter for the over- 217 

all quality of AM parts is the apparent density of powder before sintering or melting. 218 

Though it is not definite, a common “rule of thumb” for example for EBM suggests that 219 

the apparent density of the loose powders should generally be between 50 and 75% for 220 

the solidified material. Studies have shown that the control and selection of powder par- 221 

ticle shape and size distribution can increase the apparent density of the powder depos- 222 

ited in a layer. Experiments show that the apparent density of thin powder layers in- 223 

creases from 53% to 63% of solid material when adding 30 volume % of fine powder to 224 

the coarse one [33].  225 

2.1. Metal powders for Additive Manufacturing 226 

Metallic elemental and alloy powders grain shape, size distribution, surface mor- 227 

phology and composition, and overall purity are of great importance in the production of 228 

good quality and fully dense components [34]. It is valid not only for the freshly manu- 229 

factured powders but for the powders after storage and recycling. Even for the materials 230 

having no tendency to easily react with oxygen, the presence of surface oxide can strongly 231 

impact the property of additively manufactured components (e.g. [35,36]).  232 

The characterisation of powders is commonly made by using different analytical 233 

techniques including X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectros- 234 

copy (AES), scanning/transmission electron microscopy (SEM/TEM), electron backscat- 235 

tered diffraction (EBSD) and X-ray Diffraction (XRD). These techniques are limited in 236 

terms of either spatial or lateral resolution or chemical information of phases and hence 237 

are often required to be done together to obtain more meaningful information [37]. Both 238 

the characteristics of the metal powder and the type of the AM process determine the 239 

properties of the product. Since during AM, powder is commonly recycled, characteriza- 240 

tion of its properties is performed not only for the as-received samples, but also at regular 241 

intervals throughout the manufacturing process. 242 

2.2. Production of metal powders for Additive Manufacturing 243 

Metal powders can be produced using several methods, some of which are solid-state 244 

reduction, milling, electrolysis, chemical processes, and atomisation [38]. Atomisation so 245 

far is the most common route for producing metal powders for AM, dominating the mar- 246 

ket for powder-bed AM. Corresponding atomization technologies are well established. 247 

They allow producing powders with different grain sizes in adequate shapes from a vari- 248 

ety of metallic materials. These methods are quite cost-competitive and allow for bulk 249 

production of powders for both AM and traditional powder metallurgy. The first stage of 250 

the overall production chain involves traditional mining and extraction of an ore to form 251 

a pure or alloyed bulk metal product (ingot, wire, rod). The second stage is powder pro- 252 

duction itself (atomization process) followed by sifting into different fractions, size and 253 

shape classification and validation. For PBF, additional flow tests are commonly added to 254 

the validation protocol.  255 
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The specific atomization process can be different depending on the chosen AM tech- 256 

nology. Gas and plasma atomization producing particles of quite regular, close to spheri- 257 

cal shape with rather small porosity and high uniformity are the most relevant ones for 258 

the powder-based AM (see Fig.4a-b). Annual powder production using water atomisation 259 

so far well exceeds the volumes produced by gas atomization. However, water atomiza- 260 

tion results in particles with a highly irregular morphology as the particles solidifies faster 261 

than their spheroidization time. The resulting powders can contain trapped water and, 262 

with some metallic materials, metal hydrides. This renders the water atomization process 263 

unsuitable for AM [26]. 264 

All atomization processes consist of three main integrated steps: melting, atomiza- 265 

tion and solidification. Melting can be accomplished by different techniques such as vac- 266 

uum induction melting, plasma arc melting, induction drip melting, or direct plasma heat- 267 

ing [39]. Though ideal powder grain shape is near spherical, depending on the method of 268 

powder production used, non-spherical particles, joined particles and particles with dif- 269 

ferent intrinsic morphology (e.g., "tear-drop" shapes) and irregularly shaped ones may 270 

occur [32]. In some cases, fractions of irregular-shaped grains can be accepted for AM 271 

precursor materials if they do not strongly disturb the powder flowability or apparent 272 

density.  273 

 274 

Figure 4. Production of metal powders: a – gas atomization; b – plasma atomization; c – plasma rotating electrode process. 275 

2.2.1. Gas Atomisation 276 

In Gas Atomization (GA), the feedstock elemental metal or alloy is melted in a fur- 277 

nace, usually in a vacuum induced melting (VIM) one. The furnace is positioned above 278 

the atomisation chamber for direct material discharge into the atomiser. In gas atomiza- 279 

tion, the stream of liquid metal is broken by a high velocity gas flow (air, nitrogen, argon, 280 

or helium) (Fig.4a). Air is commonly used for the atomization of ferrous alloys, and inert 281 

gases are used for non-ferrous ones [40,41]. A high solidification rate characteristic for this 282 

method results in powders with good material microstructure and quite a homogeneous 283 

composition. The particle size distribution can be modulated to a certain extent by adjust- 284 

ing the ratio of gas to melt flow rate. Commercial gas atomized powders commonly have 285 

near to spherical grains with small numbers of attached satellites. Median particle size is 286 

in the range of 50 μm to 300 μm. For a given particle size, cooling rates are about one order 287 

of magnitude lower than in water atomization. Some of the powder materials produced 288 

by gas atomisation are nickel, iron, aluminium, titanium and cobalt. The characteristic 289 

particle size plays a crucial role in the micro-morphology, porosity and gas content of the 290 

atomized powders. Pore size and pore presence within powders gradually increase with 291 

the increase of average grain size [42]. Although the yield of the fine powder prepared by 292 

the GA method is high, such powders are generally characterized by wide particle size 293 

distribution and high fraction of hollow powders, which is detrimental to the performance 294 
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of resultant AM products. Consequently, the yield of the powder with a defined selected 295 

grain size fraction after sieving can become significantly lower. 296 

2.2.2. Plasma Atomization 297 

Plasma atomization (PA) has been developed to produce fine, spherical powders. PA 298 

utilises multiple direct-current arc plasma steps to accelerate the atomization gas. In the 299 

PA process, metal wires are fed into the apex of the gas plasma flow, where they melt and 300 

are atomized in a single step (see Fig.4b). This process offers a unique ability to produce 301 

spherical powders of reactive metals with a typical average particle size of 40 μm and the 302 

particle size distribution from nanometres to 250 μm [43]. Plasma Atomization produces 303 

premium quality spherical powders of reactive and high melting point materials such as 304 

titanium, nickel, zirconium, molybdenum, niobium, tantalum, tungsten and their alloys. 305 

This process offers the highest purity powders with trueness in spherical shape of the 306 

particles and minimal satellite content. The powder obtained using this method exhibits 307 

exceptionally flow ability and good packing properties [44]. 308 

2.2.3. Plasma rotating electrode process 309 

A more specialised method called plasma rotating electrode process (PREP) makes 310 

use of a rotating bar instead of a wire as the source of metal, whereby on entry to the 311 

atomisation chamber, the bar extremity is melted by the plasma torches and solidifies be- 312 

fore reaching the encompassing walls of the chamber [45] (see Fig.4c). This process results 313 

in powders of high purity, with quite spherical grains, and fine particle sizes (from several 314 

nanometres to 100 μm). Titanium and exotic materials can be produced by PREP [26,46]. 315 

The PREP powder is widely recognized to have very high purity and near-perfect spher- 316 

ical shape. Certain presence of satellites on powder grains not only reduces the fluidity of 317 

the powder but also adversely affects the performance of the final products. Present re- 318 

search on Ti-6Al-4V, 316L austenitic stainless steel and Co-Cr-Mo alloy, suggests that it is 319 

barely possible to avoid the presence of satellites and joined powder grains during PREP 320 

in its present shape [46]. 321 

2.2.4. Mechanical spheroidization of metal powders 322 

Certain strategies for improving the powders having irregular shapes after atomiza- 323 

tion were reported, including mechanical spheroidization of the grains [47]. The flow abil- 324 

ity of irregularly shaped powders can be significantly improved by tapering sharp edges 325 

on the particles through high-speed blending or high shear milling. Nonetheless, the par- 326 

ticles produced by this method are only quasi-spherical, which may limit the applications 327 

of such powders. In addition, this method should be used with certain care, because of 328 

potential mechanical and mechano-chemical effects including particle surface strengthen- 329 

ing and compaction, the formation of oxide and nitride surface films, and changes in ma- 330 

terial microstructure. Such changes can affect the AM process parameters and the quality 331 

of manufactured material and components. 332 

2.3. Metal powders processed in Additive Manufacturing 333 

There is a wide range of metallic powders that are already used in AM. Their choice 334 

depends on the desired properties of the product and employed AM technology. Some of 335 

the common metal powders utilised in AM are nickel, steel, aluminium, cobalt-chromium, 336 

and titanium alloys. This publication describes issues regarding materials, most of which, 337 

do not belong to the group of critical materials. However, it should be remembered that 338 

not all alloying elements for these materials belong to the critical materials, and in many 339 

cases, the CRMs share in such alloys is relatively small. However, with growing demand 340 

for the additive manufacturing of such alloys, they are widely accepted by the industry, 341 

when produced by more traditional methods.  342 

2.3.1. Tungsten alloys 343 
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Tungsten (W) has the highest melting and boiling point among other elements and 344 

the lowest thermal expansion coefficient (CTE) among metals [48]. It is mainly produced 345 

from wolframite and scheelite and the main producer is China having about 50% of the 346 

world’s reserves. 347 

Cemented carbides, WC-Co is the main application of tungsten [49]. Studies are re- 348 

ported on additive manufacturing of WC-12%Co using BJP [50]. The additively manufac- 349 

tured parts passed high-temperature sintering (1485 °C) under the pressure of 1.83 MPa 350 

with resulted density near to theoretical one - 14.1 to 14.2 g/cm3. 351 

Another application of tungsten is as an alloying element in high-speed steels for 352 

working, cutting and forming metal components. As an alloying element, W has been 353 

used in nickel and cobalt-based superalloys for aircraft engines and turbine blades, be- 354 

cause of their high-temperature strength, creep strength, high thermal fatigue resistance, 355 

good oxidation resistance and excellent hot corrosion resistance [49]. Another application 356 

is in light bulb filaments, electrodes, wires, a component of X-ray and cathode-ray tubes, 357 

heat and radiation shielding, heating elements in furnaces, etc., which accounts for about 358 

10% of the W market [49]. 359 

Tungsten and its alloys can be processed by PBF AM techniques having high energy 360 

density beams [51,52]. For these alloys, the initial apparent powder density is crucial for 361 

the resulted final density of the manufactured components. That means that selection of 362 

a proper powder feedstock has a significant impact on the mechanical properties of the 363 

manufactured components and should be taken into account during the process parame- 364 

ter optimization. 365 

2.3.2. Chromium and Cobalt alloys 366 

Despite strategic importance and widespread use, chromium was not included in the 367 

CRM lists released in 2011 and 2017. The main chromium producers are South Africa 368 

(about two-fifths of the chromite ores and concentrates), together with Kazakhstan (pro- 369 

duces one-third of Cr). India, Russia and Turkey are also substantial producers of Cr.  370 

Significant chromium demand comes for the production of iron-based alloys. As one 371 

of the major alloying elements in stainless steel, Cr content range between a mass fraction 372 

of 10.5% and 30% [13]. Owing to its strong reactivity with oxygen, it provides the ability 373 

to passivate the surface by an adherent, insoluble, ultrathin layer that protects the under- 374 

lying metal against attacks of the corrosive agents, mainly acids and/or chloride-contain- 375 

ing environments. Cr is also responsible for surface self-healing in presence of oxygen [13]. 376 

Another widespread use of Cr is in surface coatings, such as conversion chromate 377 

coatings [53], hard chrome [54,55] and PVD CrN-containing coatings [56–59]. Such coat- 378 

ings are used to improve the resistance to high temperature, corrosion and wear of sub- 379 

strates. However, electroplated Cr and conversion chromate coatings present health issues 380 

and are banned in many applications, with some exceptions for military and aerospace 381 

ones. These coatings contain hexavalent Cr, which recognized to have carcinogenic effects. 382 

In additive manufacturing, Cr is widely used in alloys such as CoCrMo. These alloys 383 

are of high demand for specific biomedical implant elements, where high fatigue and wear 384 

resistance are of high importance (e.g. knee joints) [60]. 385 

The main producer of cobalt worldwide is the Democratic Republic of Congo. Cobalt 386 

(Co) is a metal used in several commercial, industrial, and military applications [61]. Co is 387 

rarely used as a structural material in its pure form but rather is employed as an alloying 388 

element [61]. 389 

Stellite is one of the most popular examples of Co-based superalloys. Patented in 390 

1907, originally developed to produce fine cutlery, the Stellite alloys have found wide- 391 

spread applications as tool material for cutting, high speed machining, etc. Cobalt-based 392 

super-alloys have higher melting points than nickel-based ones and retain their strength 393 

at high temperatures. They also show superior weldability, and better hot corrosion and 394 
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thermal fatigue resistance than nickel-based alloys, making them suitable for use in tur- 395 

bine blades for gas turbines and jet aircraft engines. Stellite can be additively manufac- 396 

tured using Direct Energy Deposition processes [62]. 397 

As it was mentioned above, Co is used in WC-Co cemented carbides that could be 398 

processed by BJP [50]. Around 12% of the consumed Co is for this application, where Co 399 

is used as the metal binder due to its excellent wetting, adhesion and mechanical proper- 400 

ties. Also, Co is recognized to have genotoxic and cancerogenic activity.  401 

2.3.3. Natural graphite and graphite –derived materials 402 

Graphite is a carbon mineral, where atoms are arranged in layers with relatively 403 

weak bonds between them, which confer it high anisotropy in thermal and electrical 404 

transport and quite specific mechanical properties [63]. It is used in numerous applica- 405 

tions ranging from electrical machines and vehicles, refractories, foundries, construction 406 

industry, lubricating agent etc. Natural graphite is mined in three different shapes: vein, 407 

flake and microcrystalline [64]. The bulk producer of graphite is China. Production of syn- 408 

thetic graphite is mainly concentrated in the US, EU and Japan, and the forecast indicates 409 

for synthetic graphite market an increasing trend, owing to an increase in demand from 410 

the steel and electric battery industry.  411 

Additive Manufacturing using graphite- derived materials (GDM), such as carbon 412 

nanotubes, graphene, graphene oxide and reduced graphene oxide, is one of the perspec- 413 

tives, intensively developing modern trends [65–69]. It is experimentally shown that the 414 

addition of relatively small (up to 10 volume %) amount of carbon nanotubes and espe- 415 

cially graphene can significantly improve the mechanical properties and abrasion re- 416 

sistance of metallic materials (e.g. [70–72]). The majority of the experiments were carried 417 

out using the blends of the main metallic material and fine GDM powders. In these cases, 418 

special complicated procedures such as dispersion-based/wet-mixing process were used 419 

to provide a uniform dispersion of GDM through the powder blend [68,73–75]. Unfortu- 420 

nately blending of the powders with so dissimilar apparent densities leads to the deterio- 421 

ration in GDM distribution uniformity after recycling. However, modern technologies al- 422 

ready allow for the effective manufacturing of the GDM-coated powders well suitable for 423 

the powder-bed AM [76]. 424 

2.3.4. Titanium alloys 425 

Commercial spherical Ti powder production methods include gas atomization (GA), 426 

plasma atomization (PA), and plasma rotating electrode process (PREP). The require- 427 

ments of the particle size distribution (PSD) vary with applications, for example, 20–45 428 

μm for SLM, 10–45 μm for cold spraying, and 45–175 μm for EBM. Most applications re- 429 

quire the oxygen content in Ti powder to be less than 0.15 wt.% [39]. Ti-6Al-4V (Ti64) is a 430 

widely used α+β alloy known for its enhanced processability and high strength at moder‐ 431 

ate to high temperatures [77,78]. Aluminium stabilizes the α-phase whereas vanadium 432 

stabilizes the β-phase. Due to the high cooling rates during PBF, the β-phase solidifies into 433 

primarily α′-martensite microstructures. This leads to embrittlement and decreasing elon- 434 

gation of particles [79,80]. The martensitic phase has the same chemical composition as 435 

the β-phase but its crystalline structure is hexagonal pseudo-compact resulting in high 436 

residual stresses [81]. The α-phase increases hardness and strength, though also leads to 437 

a more brittle sample, whereas the β-phase improves ductility whilst reducing hardness 438 

and tensile strength. So far, no comprehensive studies contains a full life cycle analysis of 439 

the titanium-based powders used for AM. However, certain conclusions can be drawn 440 

from the analysis carried out on the traditional industrially used Ti powders [82]. 441 

2.3.5. Zirconium, Niobium, Tantalum 442 

The promising application of zirconium (Zr) is related to titanium-based alloys. Bi- 443 

nary and ternary Ti-based alloys with zirconium, niobium and tantalum are regarded as 444 

the most promising substitution of the Ti64 for biomedical applications [83], showing sig- 445 

nificantly better biocompatibility and having mechanical properties much closer to that of 446 
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the human bones [16,17,84–87]. Growing demand for the prosthesis and implants and the 447 

ability of additive manufacturing to functionalize them will determine the demand for Zr 448 

as an alloying element rather than an individual material. 449 

Zr and Zr alloys are a promising new class of biomaterials. In the past, the main prob- 450 

lem of using the powder metallurgy of Zr and Zr-alloys was the absence of adequate pow- 451 

der that is possible to use in AM. Patented solutions were not sufficient to introduce this 452 

manufacturing technique into the production of zirconium parts. There are many meth- 453 

ods for producing Zr metal and Zr powder. The following ones are suitable for powder 454 

production: reduction of zirconium dioxide with Ca, Al, Mg or C; reduction of ZrCl4 with 455 

Ca, Na, Mg or Al; reduction of Na5Zr2F13, K2ZrF6 with Na, K, Al; electrolysis of molten mix- 456 

tures of K2ZrF6 and electrolytes; and hydrogenation of zirconium sponge or zirconium 457 

lump [88]. However, the powders manufactured using these methods are often character- 458 

ized by elongated shape grains and a high content of impurities. At present, most zirco- 459 

nium products are obtained by foundry methods. New technologies such as direct laser 460 

sintering and microwave sintering, used to manufacture high-quality components, re- 461 

quire spherical powders with narrow particle size distribution as this affects the packing 462 

density and sintering mechanism [89]. Zr, especially in the state of powder, has a very 463 

strong activity and strong chemical affinity for oxygen, nitrogen and hydrogen, so it must 464 

be prepared, handled and processed in tightly controlled technological conditions such as 465 

high vacuum, and atmosphere of extra-pure inert gas [90]. Nevertheless, the progress of 466 

gas atomization methods already allows for the manufacturing of complex AM-grade 467 

powders such as highly biocompatible HEA TiNbTaZrMo ones [91,92]. The powders for 468 

manufacturing of components from pure Zr also should be chemically pure because the 469 

impurities such as H, O, C, N, S can cause brittleness. These impurities have a significant 470 

influence on metal properties such as tensile strength, hardness and ductility and increase 471 

surface tension during processing. New metal powder processes developed for zirconium 472 

synthesis (and the spheroidization) have been developed over the past few years. For ex- 473 

ample, The South African Nuclear Energy Corporation produces Zr powders for the nu- 474 

clear industry via a plasma process [93]. 475 

2.3.6. Steels and iron-based alloys 476 

Some steels and cast iron alloying elements (Chromium, Niobium, Tungsten, and 477 

Hafnium) are CRMs or near CRMs. Thus, iron-based pre-alloyed powders for AM are also 478 

the focus of the present paper. Such powders are typically fabricated using advanced 479 

powder fabrication techniques such as EIGA (Electrode Induction Melting Gas Atomiza- 480 

tion), VIGA (Vacuum Induction Melting Inert Gas Atomization), or plasma atomisation. 481 

Corresponding powders are high purity ones and have spherical shape grains. In the 482 

EIGA process, the metal is melted from an induction-heated rod, from which the liquid 483 

metal drops into the atomization nozzle without any contact with the surrounding walls. 484 

In the VIGA method, the materials are melted using electromagnetic induction, which 485 

delivers heating power into the crucible/material under vacuum or in the inert gas atmos- 486 

phere without contact with any potentially contaminating material. Once the desired melt 487 

homogeneity and chemical composition are achieved, the material is poured into a tun- 488 

dish by crucible tilting. A high-pressure, inert-gas jet atomizes the metal stream flowing 489 

from the tundish orifice into the atomization nozzle system. The combination of molten 490 

metal and gas jet creates a spray of micro-droplets which solidifies in the atomization 491 

tower and form fine powder with spherical grains [94]. Not all AM techniques are suitable 492 

for processing iron-based materials. Specific solidification conditions, including thermal 493 

gradients in and around melt pool, and different solidification rates characteristic to AM 494 

processes result in different material microstructure. This leads to the differences in phase 495 

composition (austenite or martensitic), grain dimension and alignment, and carbide pre- 496 

cipitation in the grain boundaries of the additively manufactured steels and high carbon 497 

content alloys, as compared to the materials processed by traditional methods. Neverthe- 498 
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less, proper optimisation of the AM processing parameters can lead to materials with su- 499 

perior microstructure and better mechanical properties as compared to traditional manu- 500 

facturing of the same constituent materials (e.g. [95–98]). 501 

Iron-based powder grains are typically covered with a relatively homogeneous oxide 502 

layer formed by the main element (iron oxide in case of stainless or tool steels). The thick- 503 

ness of the oxide layer is between 1 and 4 nm, depending on alloy composition, powder 504 

manufacturing method and powder handling. The rare presence of the particulate oxide 505 

features with size up to 20 nm, rich in oxygen-sensitive elements, was also observed [99]. 506 

In many cases presence of a thin oxide layer does not impact the quality of manufactured 507 

components, but successive powder recycling, especially in presence of air humidity, it 508 

can limit the effective lifetime of the iron-based powders. Mechanical properties and per- 509 

formance of additively-manufactured components can also be improved by post-manu- 510 

facture heat-treatment [96,100]. Other classes of iron-based alloys leading to the amor- 511 

phous  materials that have the potential of reducing CRM consumption are discussed in 512 

a separate paragraph related to the upcoming trends. 513 

2.3.7. Aluminium alloys 514 

Although Aluminum does not belong to critical raw materials currently, a part of 515 

alloying elements forming a high number of important aluminum alloys, namely silicon, 516 

magnesium, and scandium, are listed as CRM. Moreover, Al is of high economic im- 517 

portance and even though it so far has low supply risks, it deserves consideration, already 518 

being listed as CRM by the US authorities and as a potential CRM for EU in near future. 519 

At present, gas atomization (GA) is the main commercial production method for alumin- 520 

ium and its alloy powders [101,102]. Due to high affinity of aluminium to oxygen, caution 521 

should be taken in preventing any possible ignition of the powder or explosion of fine 522 

powder fraction suspended in the air. Atomization in air leads to immediate partial oxi- 523 

dation of the liquid material and prevents the liquid metal from transforming into a spher- 524 

ical shape making the powder unsuitable for additive manufacturing processes. The GA 525 

technology for aluminium is a dangerous process and special safety measures are re- 526 

quired, which considerably raises the manufacturing costs [103]. The high thermal con- 527 

ductivity of aluminium and its alloys makes them difficult to cast and weld. For Powder 528 

bed AM technologies, things get worse: aluminium powders are inherently light and have 529 

a poor flow ability during recoating. They are also highly reflective making problems for 530 

laser-based AM and have a high thermal conductivity when compared to other materials 531 

[104]. Nevertheless, continuing research on the PBF-AM of Al is going forward. It is shown 532 

that microstructure of Al-Si (AlSi7Mg, AlSi10Mg) parts produced by laser methods are char- 533 

acterized by finer grain size in the microstructure as compared to that of cast or wrought 534 

parts. 535 

2.4. Production of metal powders for Additive Manufacturing 536 

Additive manufacturing has already successfully incorporated ceramic materials. 537 

According to the form of the precursor, these technologies can generally be divided into 538 

slurry-based, powder-based and bulk solid-based methods (laminated object manufactur- 539 

ing). The mechanical properties of resulting materials depend significantly on the degree 540 

of neck growth between grains, as well as porosity and pore size in the resulting material. 541 

Regardless of the specific method, additive manufacturing of ceramics mainly uses mate- 542 

rials such as Al2O3, ZrO2, SiO2, Y2O3, TiC, TiN, TiB, AlN, SiC, Si3N4, WC, Ti3SiC2, CaCo3 and 543 

others. Out of the elements used in the mentioned ceramic materials only silicon, cobalt 544 

and tungsten are on the CRM list, with zirconium and aluminum expected to be on the 545 

CRM list in the near future. However, ceramic and ceramic-containing materials have po- 546 

tential in substituting some of the CRM-dependent ones and thus deserve corresponding 547 

analysis.  548 

In solid-phase reaction synthesis of ceramic powders, there are three types of chem- 549 

ical reactions: oxidation or reduction of a solid, thermal decomposition of a solid, and 550 
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solid-state reaction between two types of solid. With liquid phase synthesis of ceramic 551 

powders, there are five different methods: drying of a liquid, precipitation, sol-gel syn- 552 

thesis, hydrothermal synthesis, and reactions of a liquid metal melt with gas to give a solid 553 

ceramic. There are three operational principles for precipitation: temperature change, 554 

evaporation, and chemical reaction. These methods are generally broken into three cate- 555 

gories: solid phase reactant, liquid phase reactant, gas phase reactant synthesis and the 556 

later is essentially a precipitation method; however, the solid precipitated is of nanometer 557 

size and can be organized into a gel network or sol particle depending on conditions. Hy- 558 

drothermal synthesis methods use high pressure to make a specific solid phase insoluble. 559 

Gas phase ceramic powder synthesis methods include evaporation-condensation and 560 

chemical reactions in the gas phase. These gas phase reactions include thermal decompo- 561 

sition, oxidation or, reduction, as well as chemical combination reactions [105]. The most 562 

common is the use of AM for Al2O3 and ZrO2 [106]. It is known that when using free sin- 563 

tering or pressure sintering methods, the highest relative density values and thus the best 564 

mechanical properties are obtained for very fine powders, preferably sub-micrometer 565 

ones (Fig. 5a). Commercial powders are available usually in the form of weak agglomer- 566 

ates or granules prepared from very fine powders (Fig.5.b). Isometric shape particles and 567 

granules of ceramic powders are preferred, in free and pressure sintering processes be- 568 

cause of the better formation and consolidation of the grains. Many multicomponent 569 

nano-sized ceramic powders have been prepared using an aqueous sol-gel method. 570 

 571 

Figure 5. Morphology of powders: a – Al2O3 submicron powders, mean particles size 0.7 μm, prod. 572 

Alcoa A16SG, specific surface area 8.9 m2/g, shape factor β=1.42; b - ZrO2 granules TZ-3Y, partially- 573 

stabilized zirconia powder with a uniform dispersion of 3 mol % yttria, 40 nm, prod. Tosoh Corpo- 574 

ration. 575 

In industrial production, the granulation methods of ceramic powders mainly in- 576 

clude dry roller granulation, cold isostatic pressing and spray granulation. In the case of 577 

free and pressure sintering, small amounts of additives, e.g. MgO to Al2O3, Y2O3 to ZrO2 578 

or carbon for SiC sintering are introduced into the powders. These additives limit grain 579 

growth, stabilize selected phases that we want to keep or improve the stoichiometry of 580 

the product and facilitate sintering by lowering the sintering temperature.  581 

A large part of the research conducted in the field of ceramics - AM is based on pow- 582 

ders with a larger size of 40-100 microns. These powders are characterized by lower rela- 583 

tive density, and this determines the lower strength of the sintered contacts (necks) after 584 

sintering (using AM methods), which is the basic problem of using ceramics indirect AM 585 

manufacturing. For this reason, in order to increase the density of AM ceramic products, 586 

finer size powder is fed to the process of granulation or functionalization of their surface 587 

in order to improve the flow ability and sintering performance of these powders. High 588 

values of particle spheroidization and fractional composition homogeneity are achieved 589 

after plasma treatment. A comparative study of thermal barrier coatings based on yttria- 590 
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stabilized zirconium oxide powder demonstrated that deposited coating thickness, pow- 591 

der dispersion degree and material efficiency of plasma spheroidized powder is compa- 592 

rable to a high-quality commercial powder [107]. 593 

2.5. Ceramic powders for direct additive manufacturing 594 

The direct additive manufacturing of ceramic components is still at an early phase of 595 

development, although it was attempted by Lakshminarayan et al. [108] in 90s. For some 596 

AM processes to produce ceramic parts, cracks are still the most critical flaws that com- 597 

promise the mechanical strength. During single-step processes, i.e. direct energy deposi- 598 

tion and single step PBF processes, thermal cracks are generally caused by thermal shocks 599 

introduced by the laser-beam heating [109]. The direct AM process is very challenging 600 

due to the ceramic material properties, such as high melting temperature, high melt vis- 601 

cosity and poor thermal shock resistance. Sources like a focused laser, electron and infra- 602 

red beams are used as a heating-sintering tool. The process of heating allows the powder 603 

to take the shape of the intended object. This greatly improves the productivity of addi- 604 

tively manufactured ceramic components because the time-intensive debinding and sin- 605 

tering phases characteristic of indirect methods are not necessary. The use of granulate 606 

composed of micrometric yttria-stabilized zirconia with sub-micrometric alumina im- 607 

proved the homogeneity of the microstructure. Thermal post-processing in some cases 608 

can improve the mechanical properties of the resulting material. For example, it allows 609 

the amorphous alumina in corresponding ceramic parts to crystallize [110]. An important 610 

phenomenon that should be taken into account during ceramic powder consolidation by 611 

direct AM methods is the formation of the glassy phase, which can affect the fragility of 612 

products. 613 

2.6. Ceramic powders for additive manufacturing of MCC 614 

One of the promising application of ceramic powders in AM is using them together 615 

with metallic ones for producing metal-ceramic composites (MCCs) in AM processes ini- 616 

tially developed entirely for metal precursors. Experiments carried out using different AM 617 

technologies [111–114] indicate that this method allows improving mechanical properties 618 

and abrasion resistance of the basic alloys. Experiments were carried out both using pow- 619 

der blends in which ceramics phase was a very fine powder, and using different technol- 620 

ogies providing agglomerated grains containing both ceramic and metal powders (e.g. 621 

[115]). Different mechanisms responsible for the property improvement were suggested, 622 

including the ability of sub-micrometre ceramic inclusions to act as dislocation traps. The 623 

resulting microstructure strongly depends on the melting temperature of the ceramic and 624 

the temperatures reached in the melting pool, and on the wettability of the ceramics in the 625 

molten metallic material. At current stages of research, it is not possible to forecast which 626 

combination of materials in MCC-AM will be successful in producing materials with su- 627 

perior properties. However, definitely, this line of development has potential in relation 628 

to sparing CRM in industrial applications. 629 

2.7. Ceramic powders for slurry based methods 630 

Slurry-based ceramic 3D printing technologies generally involve fine ceramic parti- 631 

cles dispersed in liquid or binder, in the form of relatively low viscosity inks or viscous 632 

pastes. The slurry content can be additively manufactured by either photopolymerisation, 633 

inkjet printing or extrusion [116]. All slurry methods are commonly multi-step ones, ini- 634 

tially producing the non-dense semi-finished parts that are commonly called “green bod‐ 635 

ies”, followed by de-binding and firing processes yielding final components.  636 

Binder jetting is an additive manufacturing process in which a liquid bonding agent 637 

is selectively deposited to join powder materials [117]. Currently, the density of the ce- 638 

ramic parts made by binder jetting is rather low and their mechanical properties are far 639 
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from adequate. The main reason comes from the low sinterability of current powder feed- 640 

stock due to large particle size (10–100μm) and the inability to deposit a smooth layer of 641 

the precursor.  The coarse powder exhibits good flow ability, and the fine powder that 642 

can provide better sintering has poor flow ability [118]. Many studies have reported that 643 

the quality of parts using binder jetting is significantly different when coarse powders are 644 

used. Studies have shown that the accuracy and strength of ceramic parts are closely re- 645 

lated to powder and binder choice, printing parameters, equipment, and post-treatment. 646 

Studies have focused on the optimization of binder jetting employing multimodal filler 647 

particles for improving the strength and performance of binder-jetted parts [119]. One of 648 

the solutions to improve the compaction of the material is the use of nano-powders. 649 

Smaller particles as densifiers occupy the inter-granular pores in the powder and improve 650 

the density of green printed parts but the applied nano-suspension can quickly clog the 651 

jetting nozzles [120]. The shape of ceramic powders mainly affects the flow ability of 652 

slurry, the tap density, the powder bed (packing) density, the pore structure of the green 653 

body, and the contact mode between the particles. Generally speaking, spherical particles 654 

have better flow ability in the slurry and higher tap densities than irregular ones. How- 655 

ever, during the printing process, the powders will be spread by the roller, which means 656 

that the powders will not be compacted; thus, the contribution of spherical morphology 657 

to packing density will be reduced. In contrast, irregular powders have a relatively high 658 

packing density [121]. Suwanprateeb et al. [122] reported that irregular hydroxyapatite 659 

has a higher packing density than spherical shapes powder. This is because the spherical 660 

particles undergo a low uniaxial pressure, and their good flow ability causes the particles 661 

to roll towards each other. Although the particles are re-arranged and slipped, they are 662 

still in point contact and, thus, cannot effectively reduce the pore volume. For irregular 663 

particles, after being re-arranged and slipped, the larger internal friction causes them to 664 

combine and become compact, while the point contact between some of the particles be- 665 

comes surface contact, which can effectively reduce the pore volume. Therefore, the irreg- 666 

ular powders will result in a higher green density than the spherically shaped ones. The 667 

green body density is usually positively correlated with green strength. This higher green 668 

strength improves the handling characteristic of the as-fabricated green body. The original 669 

morphology of as-purchased hydroxyapatite powders prior to preparation commonly ex- 670 

hibit agglomerates of needle-like crystals [122]. 671 

A new powder surface modification method, i.e., particle coating, sol-gel process was 672 

used to synthesize the amorphous phase material and applied to increase the powder sin- 673 

terability and the part strength. Specifically, coarse crystalline alumina particles (70 and 674 

10 mm on average) were coated with amorphous alumina, in which the micro-sized core 675 

was designed to provide the high flow ability and the amorphous shell to promote sinter- 676 

ing due to its high activity [123]. The coarse crystalline core can help to maintain the high 677 

flow ability and the amorphous shell can promote sintering due to its high activity [123]. 678 

2.8. Ceramic powders for porous bone implants 679 

While research on ceramic scaffolds for bone regeneration has progressed rapidly, 680 

the clinical outcome of these synthetic bone implants remains limited, especially for major 681 

load-bearing applications. Not only should these scaffolds provide adequate mechanical 682 

support, but also possess sufficient porosity to facilitate nutrient/metabolite transporta- 683 

tion and bone tissue ingrowth [124]. At the same time, ceramic implant-scaffolds have a 684 

great potential of substituting metallic ones due to their advanced biocompatibility, re- 685 

ducing the dependence on certain CRMs traditionally used in metallic implants in future 686 

orthopaedics. 687 

One of the additive manufacturing techniques, direct ink writing (DIW), also known 688 

as robocasting, has attracted considerable attention in bone tissue engineering. In the ro- 689 

bocasting fabrication method, a filament or ink is extruded through a nozzle in a layer- 690 

wise fashion and ultimately forms a 3-D mesh structure with interpenetrating struts. After 691 
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the initial layer is created, the X-Y stage is incremented in the Z-direction and another 692 

layer is deposited. This process is repeated until the desired scaffold structure is created. 693 

While robocasting can fabricate regular and controllable patterns in the X-Y plane, its abil- 694 

ity to maintain high precision with sophisticated structures in the Z direction is restricted 695 

due to depositing ceramic struts on top of one another [125]. This technique has been used 696 

to fabricate scaffolds with a wide variety of ceramic materials such as bioactive glass [126], 697 

hydroxyapatite (HA), calcium phosphates [127], calcium silicate (CSi) and Sr-HT Gahnite 698 

[128], as well as other composite materials, exhibiting significant potentials. Polylactide or 699 

polycaprolactone scaffolds with pore sizes ranging between 200-500 μm and hydroxyap‐ 700 

atite contents up to 70 wt. % , and scaffolds containing bioactive glasses were also 3D- 701 

printed [129,130]. 702 

Ceramic scaffolds and implants for osteogenesis are based mainly on hydroxyapatite 703 

since this is the inorganic component of bone. The usual fabrication technique for ceramic 704 

implants is the sintering of the ceramic powder at high temperatures. 705 

Porosity control in ceramic additive manufacturing is quite challenging. One should 706 

separate what is the scaffold porosity, and what is a material porosity. Scaffold porosity 707 

mainly relates to the ratio of the solid material and free space in the manufactured scaffold 708 

or “porous” implant section. This property is strongly related to the part design and abil‐ 709 

ity of the material and chosen AM method to produce the part without deflecting from 710 

the designed shape. As a thumb rule, it is very hard to design holes in AM structures 711 

smaller than five times the average size of the powder grains. Pores (micro-pores) in re- 712 

sulting solid materials (e.g., struts in the porous-by-design lattice scaffolds) are mainly 713 

related to the material, AM technology, and process parameters. These micro-pores com- 714 

monly have different shapes and sizes, and their distribution is not uniform. The micro- 715 

pore morphology can be partly influenced by controlling the size distribution and mor- 716 

phology of the precursor powder. The porosity of materials can also be controlled by an 717 

appropriate selection of sintering conditions (time, temperature, pressure, atmosphere) 718 

[131,132]. For example, hydroxyapatite samples additively manufactured from milled 719 

powders are significantly stronger than samples manufactured from spray-dried pow- 720 

ders. This is a combination of the specifics of the manufacturing and the difference in 721 

morphology of the prepared powders. In the case of milled powders, these factors induce 722 

better packing and rearrangement in the green state and improve densification and pore 723 

characteristics in the sintered state. Although the spray drying technique of powder prep- 724 

aration is more convenient and faster, the grinding route is preferable when the greater 725 

strength of fabricated components is considered [122]. Another ceramic material for bone 726 

implants is bioglass (materials with different compositions of SiO2,CaO,Na2O, and P2O5) 727 

[133]. 728 

2.9. Powder handling safety issues 729 

Safety precautions in handling CRM-containing powders used in AM are always 730 

mandatory. Many of the CRM- containing materials are listed as “dangerous” in quite 731 

different ways, so studying the safety precautions and safety data sheets related to the 732 

involved chemical elements and materials are advised. Handling with care is always ad- 733 

vised, avoiding spillage and anything promoting contaminating the air with fine material 734 

powders. Fine particles can cause severe dysfunctions, skin problems, lung diseases, can- 735 

cer when exposed to or directly inhaled. Some of the metals in prolonged exposures were 736 

linked to the onset of Alzheimer’s disease [134]. Special powder-safe respirators should 737 

be used to prevent small particles from reaching the bronchus and lungs, powder-free 738 

gloves should protect the hands.  739 

In addition to potential health risks, metal powders are combustible, flammable, and 740 

when aerated present a risk for explosion. Facilities, where metallic powders are kept or 741 

handled, should have proper protection from electrostatic and electrical sparks (including 742 
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non-static flooring, special clothing and shoes for the staff, grounding wires, special vac- 743 

uum cleaners- as the majority of domestic ones have spark-producing electric motors, 744 

etc.). Also, only specialised fire extinguishers rated for combusting metals should be used 745 

in such facilities.  746 

At the same time, with correctly deployed preventive measures and proper handling 747 

protocol implementation in corresponding AM facilities no higher levels of danger than 748 

many common industrial facilities are found. 749 

3. Additive Manufacturing processes 750 

The main consolidation mechanism of AM technologies are partial melting, full melt- 751 

ing and solid-state sintering, which might act together, and it is not always obvious what 752 

consolidation mechanism is dominating [135]. 753 

The role of additive manufacturing is going to increase with the world entering the 754 

fourth industrial revolution. Following key advantages of the AM methods will define 755 

their fundamental role in future manufacturing. Additive manufacturing is capable of ex- 756 

tremely high flexibility in producing small and medium series of complex parts, comple- 757 

mented by seamless switching to the manufacturing of the parts with a completely differ- 758 

ent design. Manufacturing capacity with the AM methods is highly scalable, which would 759 

be beneficial to both industrial giants and SMEs. AM methods allows not only to achive a 760 

higher flexibility to achieve any desirable shape but also for the cost- and time- effective 761 

functionalization and individualization of the parts. The digital nature of the design for 762 

AM allows for reducing cost and time for component modification which reduces the 763 

need for inventory as they can be manufactured on demand using the library of digital 764 

files. With the development of the ‘service points’ for additive manufacturing across the 765 

world, there is a potential for a significant reduction of the transportation costs for the raw 766 

materials and especially- manufactured components. Recycling of the precursor powders 767 

can be almost completely performed at the manufacturing sites. The high degree of recy- 768 

clability of the powders along with other aspects of material and energy saving allows for 769 

significantly decreasing environmental impacts of industrial production. Along with the 770 

possibility of reducing the amounts of CRMs per component, and with newly developed 771 

materials- with the ability to avoid using them, additive manufacturing will be a major 772 

contributing factor in solving the CRMs problem and reaching the goals set by EU Com- 773 

mission. 774 

3.1. Industrial Additive Manufacturing for CRM-containing materials 775 

Perez et al. [136] presented the general AM standards related to terminology, data 776 

formats, design rules, qualification guidance and generally outlined different additive 777 

manufacturing technologies. A comprehensive overview of AM processes and standards 778 

with emphasis on materials, processing and testing methods is given by Riipinen et al. 779 

[137]. The well-established additive manufacturing processes are classified according to 780 

ISO/ASTM 52900-2017 into single step and multi-step AM processes [117]. These are fur- 781 

ther divided into processes where AM is done as a fusion of similar materials, or as adhe- 782 

sion of dissimilar materials. In both groups, processes are divided according to used ma- 783 

terial classes into metallic, polymer, ceramics, and composites, while also secondary pro- 784 

cessing such as sintering and infiltration is mentioned. Figure 6 presents the most mature 785 

and widely used AM processes such as Vat Photo Polymerisation (VPP), Binder Jetting 786 

(BJ), Powder Bed Fusion (PBF), Material Jetting (MJ), Direct Energy Deposition (DED), 787 

Sheet Lamination (SL), and Material Extrusion (ME), together with materials that can be 788 

used in a particular process. A more complete interactive map of additive manufacturing 789 

processes, which also includes materials as cement, hydrogels and bioinks, with a direc- 790 

tory of more than 800 companies manufacturing AM hardware can be accessed at 3dprint- 791 

ingmedia.net [138].  792 
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Figure 6. Additive manufacturing processes as defined in [139] 794 

Today, the most promising AM technologies from the CRM point of view are Powder 795 

Bed Fusion, PBF, and Direct Energy Deposition, DED, which are also the most widely 796 

used in the industry. These are followed by Binder Jetting and Material Extrusion (ME) 797 

[140,141]. The less industrially known AM technologies, which uses ultrasonic, friction 798 

and friction stir welding, together with thermal spraying (e.g. cold spraying) also present 799 

high potential [142–144]. Their main advantages compared to PBF and DED are in the 800 

possibilities to join dissimilar materials, some better energy efficiency and smaller heat 801 

input, a protective chamber or atmosphere is generally not needed, and the processes have 802 

a promising buy-to-fly ratio. 803 

Within PBF-AM, one can distinguish SLM and EBM technologies. Both of them uses 804 

powder precursors, and the manufacturing is performed in a closed chamber in an inert 805 

atmosphere (SLM) or high vacuum (EBM). In both PBF-AM technologies selective melting 806 

of desired parts of layer of powder by intense beam, with a non-melted powder enabling 807 

partial support of manufactured components and acts as a heat insulator, makes the prod- 808 

uct. The process continues by adding and melting consecutive layers of powder.  809 

Laser-based PBF-AM methods allow for industrial manufacturing of functional parts 810 

and tools with complex shapes from metals (stainless steels, tool steels, Co-Cr alloys, Ni 811 

based superalloys, Ti alloys, Al alloys) and ceramic powders. The component surfaces 812 

have excellent to moderate finish in an as-manufactured state, good functional properties, 813 

and can be micro- and nano-structured. The products are usually made from one material, 814 

which enables high recyclability of the powder. Powder preheating is done using infrared 815 

heaters or beams of lower intensity, and laser beam deflection is done using mirrors.  816 

Electron beam melting generally enables working beams of higher intensity and 817 

higher (up to 60 cc/h) material deposition rate but is generally limited only to the electri- 818 

cally conductive powders. This defines the quite limited selection of materials available 819 

for industrial EBM manufacturing, including Ti (grades 1, 2, 23 and 5), nickel base alloys, 820 

aluminium alloys (Al-Si), stainless steel (316L, M300, 17-4 PH) and CoCrMo [44]. It also 821 

enables the production of functional parts of complex geometry, but its resolution is lower 822 

and surface roughness of components is higher than that provided by the laser-based 823 

methods due to the larger average grain sizes of precursor powders. The process is carried 824 

out in a deep vacuum, which enables close to 95 % energy-efficiency, which is 5-10 times 825 

higher than that for laser-based PBF. The vacuum is also perfect for processing reactive 826 

metals like Ti and Al, maintaining the chemical composition, and reducing the heat loss 827 

to the environment. The additional advantage is due to the powder bed preheating. Being 828 
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an essential prerequisite for the conductive powder melting (partially sintering it and pre- 829 

venting forming clouds of charged particles in the working chamber), it efficiently re- 830 

moves moisture and gases adsorbed on the powder surfaces. EBM- manufactured parts 831 

also exhibit significantly lower internal stress, as the process is carried out at elevated 832 

temperatures, continuously annealing the produced material.  833 

Corresponding disadvantages of the electron beam PBF as compared to the laser- 834 

based ones are smaller available working volumes (and thus maximum component di- 835 

mensions), complications of the semi- sintered powder recovery from holes and crevices, 836 

higher surface roughness of components in as manufactured state, and longer times for 837 

reloading the machines. Additionally, laser-based AM technologies are already strongly 838 

incorporated into the Hybrid Manufacturing chains using precise machining after AM, 839 

and can provide higher technology readiness levels of as-manufactured parts. At the same 840 

time, it should be noted that both laser- and electron beam-based PBF AM technologies 841 

are continuously developing and are slowly overcoming their current limitations.  842 

SLM, another PBF-AM representative, enables the production of complex parts with 843 

high technology readiness levels (TLR) for aerospace (TLR 5-7), tooling (TLR 9), automo- 844 

tive (TLR 4-5), and medical industries (TLR 9-10). Typical products for the aerospace in- 845 

dustry are fuel injection components, structural elements and turbine blades. In the tool- 846 

ing industry, inserts are made, usually with complex internal cooling channels that enable 847 

efficient cooling/heating and prolongation of tool life. In the automotive industry, differ- 848 

ent structural and functional components are successfully manufactured in low series. In 849 

the medical industry medical instruments, artificial hip joints, different implants for re- 850 

constructive surgery, crowns and copings in dentistry, are produced [141,142,145–148].  851 

Another powder- using AM technology, DED, is less widespread for metal AM as 852 

compared to PBF ones due to lower accuracy and requirement of post-processing. How- 853 

ever, it enables higher deposition rates, production of bigger parts without limitation to 854 

small chamber size, component reparations, and production of functionally graded mate- 855 

rials, as well as multi-materials components. Corresponding equipment includes a feed- 856 

ing “nozzle” mounted on a multi-axis arm or robotic system with an external rotating 857 

table and protecting chamber in case of manufacturing using reactive metals. The material 858 

in powder or wire form is supplied through the nozzle and is melted by the electron or 859 

laser beam together with the surface of the product. The wire is a cheaper precursor ma- 860 

terial, it enables higher deposition rates but such systems have lower accuracy compared 861 

to powder-based ones. Materials in powder form are more expensive, and the atomization 862 

process of powder production is less energy efficient (11-59 %). In contrast to wire-based 863 

systems, powder ones can return into processing from 20 to 90-98 % of precursor directly 864 

or after sifting [136, 143–146]. However, the wire is cheaper, more widely available in 865 

larger quantities, and demands less stringent safety precautions in handling concerning 866 

metal powder. Wire with its much lower surface to volume ratio is less prone to absorbing 867 

moisture, nitrogen and oxygen and other undesired elements from the atmosphere, and 868 

thus it affects the deposition process much less and provides materials with lower num- 869 

bers of residual pores, as compared to powder-based technologies. An interesting new 870 

technology that will soon be industrially available is the so-called “Joule Printing”. It is 871 

quite similar to wire-based DED AM technology but uses resistive heating (as in the weld- 872 

ing process) instead of electron or laser beams. Its advantages are lower energy consump- 873 

tion and low heat input (1.4 -1.6 Wh/cc), which only turns the precursor material up to a 874 

mushy state avoiding the formation of the melt pool. The process enables producing near- 875 

net-shape structures with high deposition speed (1000 cc/hr), which is 2-10 times faster 876 

than DED-Powder, and similar rate to DED-ARC, while the resolution is compared to 877 

DED-Powder [153]. Manufacturing can be done in demanding environments, with high 878 

material efficiency, using commercially available welding wires, while the output mate- 879 

rial properties are close to wrought/cast metal ones [153].  880 
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In general, DED enables the production of less complex parts as compared to PBF. 881 

DED parts usually need post-processing (e.g. heat treatment), mechanical treatment and 882 

machining to obtain the desired shape and mechanical properties. DED is typically used 883 

for repair of worn components, modification of tooling for re-use, for rapid prototyping 884 

of bigger parts and direct manufacturing of large components. DED processes are gener- 885 

ally classified as Electron Beam Additive Manufacturing (EBAM), Laser metal deposition 886 

(LMD wire/powder) and Wire and Arc Additive Manufacturing (WAAM) [145,153–157]. 887 

EBAM uses precursor material in the wire form. It produces bigger near-net-shaped 888 

parts of the highest quality inside the vacuum chamber. Parts are made with high depo- 889 

sition rates ranging from 3 to 11 kg/h. In the process, a variety of materials can be used: 890 

titanium and titanium alloys, Inconel, nickel alloys, stainless steel, aluminium alloys, co- 891 

balt alloys, zircalloy, tantalum, tungsten, niobium, and molybdenum [158]. During the 892 

EBAM and post-machining overall high material efficiency is achieved [157]. 893 

LMD uses the material in a wire or powder form, which is fed through the nozzle. 894 

The fabrication can be done in a local protective atmosphere or an inert gas chamber. Dep- 895 

osition layer thickness varies between 0.1 mm and ~ 3 mm, deepening if a high-resolution 896 

printing or fast manufacturing rate is targeted. Deposition rates for wire LMD are much 897 

higher than for SLM or powder- LMD. A vast variety of different materials and alloys can 898 

be used for processing. Good metallurgical bonding with a low dilution level can be 899 

achieved with low impact on base material properties [157]. 900 

WAAM uses an electrical arc from power sources typical for welding like Gas Metal 901 

Arc (GMA), Tungsten Inert Gas (TIG), Plasma (PL) or their combination together with the 902 

precursor material in a wire form. The process achieves high deposition rates from 1 to 10 903 

kg/h, with moderate surface finish and low to medium part complexities. Major benefits 904 

are lower equipment and precursor material cost, a big variety of precursor materials and 905 

high material efficiency [155,156]. This makes the process extremely well suited for the 906 

manufacturing of large parts with up to medium complexity, at a much lower price com- 907 

pared to other AM processes. The main drawback is potentially higher residual stresses, 908 

distortions and coarse grain microstructure as the consequence of higher temperature gra- 909 

dients. Additional post-processing with mechanical treatment, heat treatment and/or ma- 910 

chining may be needed to obtain industry- acceptable products [95,96,145,154–156,159– 911 

161].  912 

Table 1 presents a comparison for most common PBF and DED additive manufactur- 913 

ing processes in terms of processing conditions, component complexity and qualities, dep- 914 

osition rates and capability of multi-material processing. Inability of multi-material pro- 915 

cessing stated for SLM and EBM is related to the industrial-grade processing, although 916 

experimental confirmations for its feasibility are already demonstrated experimentally. 917 

Table 1: Comparison of most common metal PBF and DED additive manufacturing processes [95,137,145,153,155,157–159,161–170].  918 

 
PBF DED 

SLM EBM 
LMD - 

powder 
LMD - wire 

EBAM - 

wire 
WAAM 

Type of atmosphere 
Inert (Ar, 

N) 

Vac-

uum 
Inert Inert Vacuum Inert 

Relative part density       

Typical layer thickness 

[m] 
10-100 50-200 

10 - 100 (250 

- 1000) 
130 – 1000 3000 3000 

Part complexity 
almost un-

limited 

some 

limited 
limited Limited limited limited 

Minimal wall thickness 

[mm] 
 0.1 mm 

 0.x 

mm 
 1 mm  1.5 mm  1.5 mm  1.5 mm 



Materials 2021, 14, x FOR PEER REVIEW 21 of 43 

 

 

 
PBF DED 

SLM EBM 
LMD - 

powder 
LMD - wire 

EBAM - 

wire 
WAAM 

Surface roughness Ra 

[m] 
5 - 15 ~ 20 2-91 10 – 91 20 20 - 100 

Deposition rate [cm3/h] 

10-25 (100 

for multi-la-

ser) 

3 - 11 

kg/h 
< 70 

100 - 200 

(<500);  

100 - 200 

(<500) 

100 - 200 

(<500); 1 - 

10 kg/h 

Multi-material no* no* possible possible possible possible 

Process energy density 

[Wh/cm3] 
  17.4 9.2 36 4.9 

Energy efficiency [%] 10-20 95  2-5 15-20 < 90 

3.2. Recycling of metal powders for Additive Manufacturing 919 

Powder recyclability is a crucial parameter of powder lifecycle and overall manufac- 920 

turing efficiency. In metal-based processes (PBF, LENS) the microstructure of the virgin 921 

(not recycled) powder has a certain tendency to change due to repetitive re-use and recy- 922 

cling [14,171,172]. The flow ability and powder morphology can change because of ther- 923 

mal cycling during processing and mechanical impacts during layer deposition, powder 924 

recovery and sifting. Increased temperatures of the powder in the AM process can force 925 

surfaces of powder to react with ambient atmospheric gases or their residual content in 926 

the protection volume. An increase of oxygen content in the powder often results in re- 927 

ducing the mechanical performance of the printed metal parts [14,171]. Most often, pow- 928 

ders are passed through a sieve before being used again. That may cause particle defor- 929 

mation and breakage of the grains that formed joining necks. Recycled powders show a 930 

minor decrease in the amount of fine (< 10 μm) particles, a slight increase in average par‐ 931 

ticle diameter, and a slightly wider grain size distribution [14,173,174]. Sieving also can 932 

remove some of the satellites, leading in some cases to better flow ability of the recycled 933 

powders.  934 

Additional contamination, either through impurities coming from the sieves and ves- 935 

sels, foreign bodies or interstitial elements may be introduced to the powder as a result of  936 

handling during pre-processing  or post-processing stages [26]. It is clear that the amount 937 

of powder belonging to each separate virgin batch is constantly decreasing as part of it 938 

forms solid components. At some point, the volume of the powder becomes lower than 939 

the minimum demanded by the AM machine. Three strategies are commonly used: top- 940 

ping up the reused powder with virgin one, saving small batches of recycled powders and 941 

mixing them for further manufacturing, using recycled powder from virgin batch without 942 

topping or mixing at all. The third option is preferable for manufacturing parts destined 943 

for critical applications. However, there is no consensus on which of the first two options 944 

should be preferred and in which cases. Nevertheless, it is agreed that each recycled pow- 945 

der should have its “passport” stating the date of virgin batch purchase and its initial 946 

elemental content, history of the builds using it, number of recycling procedures, and re- 947 

sults of regular powder analysis. It is also clear that for increasing powder lifetime, the 948 

recycling process and storage conditions for the powder should be strictly regulated, in- 949 

cluding humidity and temperature control, and specialized ventilation with filtering of 950 

the incoming air control in the operating rooms.  951 

An interesting approach to use beam-based technologies for material recycling is also 952 

starting to develop. Recently, some authors have investigated the feasibility of turning 953 

recycled powders that are not fit for further use due, for example, to some excessive ag- 954 

glomeration into metal bars [175]. Powder-bed machine manufactures thin-walled cylin- 955 

ders with the powder enclosed in them. This does not require high purity of the precursor 956 

and is not depending on the high spatial resolution. This is followed by HIP-treatment of 957 
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the cylinders resulting in solid metal bars. Studies have shown that it is quite realistic 958 

when using EBM, as the processing happens in a vacuum and powder inside the sealed 959 

cylinders does not have any encapsulated gases. This approach is inspired by the recycling 960 

pathway using laser or electron beam- based equipment with simplified control of the 961 

beam used just for melting scrap material into ingots [176–178], but has an advantage of 962 

essentially full recycling at the manufacturing site without any need of costly and hazard- 963 

ous transporting of powders to a specialized recycling site.  964 

4. Modern and future trends in Additive Manufacturing of CRM-based materials 965 

Table 2 outlines the modern status of additive manufacturing of CRM and CRM-con- 966 

taining materials. Further progress in solving CRM-related challenges belongs to the de- 967 

veloping trends in AM and its deep integration with other processing modalities. Several 968 

AM-related possibilities to reduce and optimize the use of CRMs and CRM- based mate- 969 

rials are discussed in this review:  970 

 use of Hybrid Manufacturing [137,144,179],  971 

 production of multi-material components [180,181],  972 

 production of functionally graded materials (FGMs) [156,164,182,183]  973 

 repairing and remanufacturing i.e. using additive manufacturing[141,184–187].  974 

This review also provides a brief overview of laser-shock peening, as one of the po- 975 

tential industrial post- processing routes allowing for reducing residual stresses in addi- 976 

tively manufactured components and increasing their value as CRM-reducing and CRM- 977 

sparing manufacturing routes. 978 

Table 2. Applied AM technologies for CRM and CRM-containing materials 979 

CRM 
Material extru-

sion (FDM) 
PBF DED 

Vat photo 

polymerization 

Sheet Lami-

nation 

Binder 

Jetting 

Main  

application 

Ti - alloys  [188] [189]   [190,191] 
Aerospace & 

bio-medicine 

Ni-alloys  [188,192,193] [193,194]   [195,196] Aerospace 

Al-alloys [197] [98,198] [165]  [199,200]  Aerospace 

Cu-alloys [197] [201–203]  [204]  [205,206] 
Electric- 

magnetic 

Mg  [207,208]     Medical 

W  [51,52,209] [210]   [52] 
Nuclear  

reactor 

RE-based  

materials 
[211,212] [213,214]  [214]  [215] 

Permanent 

magnets 

Si / SiC / 

SiO2 
[216] [217]  [216] [218] [219] 

Tooling, op-

tics, medical 

Au  [220,221]     Jewelry 

Co-Cr  

alloys 
 [60,222,223]    [223] Bio-medicine 

Nb/Zr/Ta 

contain-

ing alloys 

 [224,225] [89]    Bio-medicine 

Graphite [197]  - [66] - [63,226] Thermal 

 980 

4.1. Hybrid manufacturing technologies 981 

Hybrid manufacturing is commonly described as the combination of additive man- 982 

ufacturing and subtractive manufacturing in a single machine or a set of closely linked 983 
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machines in a single production line [227,228]. Manufacturing of the component in such a 984 

case could start from a billet or a plate, followed by pre-machining, manufacturing and 985 

post-machining stages, when one or more of these stages uses some AM technologies. 986 

Each of the stages most efficiently uses its best advantages, thus combining in final prod- 987 

uct high complexity, high precision and best surface finish. In hybrid manufacturing 988 

mode parts with precise complex geometry, multi-material components, parts with con- 989 

formal cooling channels, multi-material-tools etc. can be produced with high efficiency 990 

and optimized use of precursor materials. Lightweight structures, turbine blades, differ- 991 

ent housings, structural elements and multi-material components for the aerospace and 992 

automotive industry can be manufactured by optimising the use of CRMs and increasing 993 

the buy-to-fly ratio [229]. Different medical tools, fixation elements and implants with pa- 994 

tient-specific and functionally optimized geometries and elements for optimal tissue in- 995 

growth, biocompatible and bacteria hostile surfaces and with suitable mechanical proper- 996 

ties can be efficiently produced by AM, while their precision elements (threaded holes, 997 

sliding balls with mirror surface finish etc.) are effectively completed by traditional ma- 998 

chining. Many of the post-processing stages such as additional machining, polishing, heat 999 

treatment and surface modifications that today are separated from AM technology can be 1000 

included in the hybrid manufacturing systems. 1001 

Reduced consumption of CRMs can also be obtained using repair welding and repair 1002 

additive manufacturing of worn out or damaged products, so the need for new parts is 1003 

significantly reduced [230,231]. This option is increasingly utilized in the industrial tool- 1004 

ing sector, where an improved repair welding (cladding) technology and proper selection 1005 

of materials can lead to restoration of the tool several times. This approach not only re- 1006 

duces the use of CRMs but also saves other resources and reduces the waste and green- 1007 

house gas footprint of the manufacturing. 1008 

4.2. In-situ alloying 1009 

CRMs used in aerospace and biomedical industries are main constituents of compo- 1010 

sition wise and microstructurally complicated alloys with mechanical, physical and ther- 1011 

mal properties adjusted to the service conditions of the critical components. Today pre- 1012 

alloyed powders are the main precursor for additive manufacturing of CRM-containing 1013 

materials. However, low availability and high cost of quality-produced atomized spheri- 1014 

cal pre-alloyed powders may be a vulnerable point in the production chain of the critical 1015 

components. In addition, not all desired materials can be alloyed effectively in stationary 1016 

conditions, further limiting the possibilities of additive manufacturing of CRM-containing 1017 

materials. Despite numerous advantages of AM, it hampers the development of technol- 1018 

ogy implementation as a preferential production route for CRM-containing components 1019 

[95,232–236]. In-situ alloying of blended/elemental powders during AM process enables 1020 

overcoming this obstacle [237]. 1021 

Titanium based alloys belong to the most popular CRM-based ones used in aero- 1022 

space, automotive and biomedical applications with the domination of precursor material 1023 

in a form of pre-alloyed spherical powders [188,238]. Certain attempts to perform PBF- 1024 

AM of the microstructurally complicated Ti-based materials via successful in-situ alloying 1025 

of elemental powder blends were performed during the last years and reported in the 1026 

literature.  1027 

Vrancken et al. [239] studied SLM in-situ alloying of Ti64 and 10% Mo powders. Mo- 1028 

lybdenum powder with 5–10 μm sized particles was used. SLM- produced alloy have a 1029 

good combination of high strength (919 MPa), excellent ductility (20.1%) and low Young’s 1030 

modulus (73 GPa).  1031 

Dzogbewu et al. [240] reported SLM manufacturing of Ti15Mo alloy for biomedical 1032 

applications using Ti and Mo elemental powders as raw materials. Various blend compo- 1033 

sitions and various scanning strategies were studied, and the obtained as-printed materi- 1034 

als were characterized to optimize the process parameters. It was concluded that although 1035 
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achieving the final product with good homogeneity remains a challenge, in-situ alloying 1036 

involving beam-based AM like SLM has a high potential for developing new materials.  1037 

Yadroitsev et al. [241] reported on the trials to alloy Ti15Mo and Ti64 with Cu and Mo 1038 

introduced as elemental powders. The effect of the process parameters, i.e., energy input 1039 

and scanning strategy were studied. The viability of the in-situ alloying assisted SLM as a 1040 

production route has been confirmed.   1041 

Fischer et al. [242] investigated and reported the microstructure and mechanical 1042 

properties of Ti-26Nb alloy synthesized by powder bed SLM form of a mixture of Ti and 1043 

Nb elemental powders. 1044 

Surmeneva et al. [224] reported on the in-situ alloying of binary Ti10at%Nb by EBM 1045 

of elemental powders. Despite quite unfavorable grain size distribution and shape of used 1046 

Nb powder, it was possible to achieve test samples of reasonable quality. At the same time, 1047 

the uneven distribution of Nb fraction through the material led to the local gradients in 1048 

the Ti-Nb mixing ratios. Though unfavorable for industrial process, this allowed for stud- 1049 

ying the microstructure of EBM-processed Ti-Nb materials with different elemental con- 1050 

tent. It was concluded that for effective in-situ alloying and production of porosity-free 1051 

Ti-Nb alloys further process parameter optimization, and agglomerated powders in ad- 1052 

justed mixing ratios are essential.   1053 

Nickel and Iron based alloys belong to high-performance structural materials, 1054 

which are widely used in aggressive environments and at elevated temperatures. The ur- 1055 

gent need for components having compositional and functional gradient combined with 1056 

high geometrical complexity causes a growing interest in the implementation of AM man- 1057 

ufacturing routes for these alloys [243]. 1058 

Li et al. [243] studied and reported on in-situ alloying assisted SLM synthesis and 1059 

characterisation of Fe-Cr-Ni alloy from pre-mixed blend of elemental metal powders. The 1060 

authors investigated precursor materials (blending ratios and particle sizes) and manu- 1061 

facturing parameters (heat input and scanning strategy). Phase compositions and micro- 1062 

structural formation were thermodynamically calculated and predicted, and compared 1063 

with the obtained experimental results. The corrosion resistance of the synthesized func- 1064 

tionally graded material was examined, and the applicability of the in-situ assisted ther- 1065 

mal AM-SLM route has been confirmed.  1066 

Li et al. [244,245] synthesized and investigated a novel heterogeneous material, al- 1067 

loying Ti64 and SS316 with multi-metallic fillers. The authors concluded that the studied 1068 

material is promising for critical spacecraft components, which require lightweight, high 1069 

strength-weight-ratio and corrosion resistance.  1070 

Shah et al. [246] synthesized an Inconel-stainless steel-based functionally graded ma- 1071 

terial with strong corrosion resistance at high temperatures. This material should be used 1072 

as a critical raw material in light-water reactors subjected to a large variety of high tem- 1073 

peratures, pressures and stresses [247]. 1074 

High entropy alloys (HEA) are a novel promising class of materials, in which the 1075 

formation of a single-phase solid solution is thermodynamically preferable over the for- 1076 

mation of intermetallic compounds [248]. Refractory metals containing HEAs are usually 1077 

composed of body-centered cubic (BCC) solid solutions [249] and have a high potential to 1078 

substitute presently used critical raw materials due to their high-temperature mechanical 1079 

strength [249]. Sometimes, full of partial substitution of refractory elements like W, Ta and 1080 

Mo by transition metals [250,251], or Al [252] is performed to decrease the specific weight 1081 

of the alloy and to improve corrosion resistance. Although this substitution is useful for 1082 

achieving the mentioned aims, it may result in a poor mixing of the raw constituents, 1083 

which causes low homogeneity of the finally obtained material. Furthermore, since the 1084 

conventional way to produce HEAs is a vacuum arc melting [253–256] the main problem 1085 

arises due to the difference in melting points and vapor pressures of the alloying elements 1086 

at high temperatures. Additionally, oxidation resistance of the alloying refractory ele- 1087 

ments required an extremely high operating vacuum, at which low-melting constituents 1088 



Materials 2021, 14, x FOR PEER REVIEW 25 of 43 

 

 

usually evaporate. The problems mentioned above bring PBF AM technologies into focus 1089 

as the most promising manufacturing technology for this class of materials. However, 1090 

some of them contain CRMs, but there is a high potential of an overall reduction of their 1091 

use when HEA substitutes more conventionally manufactured CRM-containing materials 1092 

with similar properties. Since the production of HEA-parts often requires complicated, 1093 

expensive and low-available pre-alloyed precursor powders, in-situ alloying of pre-mixed 1094 

elemental powder blends seems the most promising synthesizing way for these class of 1095 

materials. In this regard, molecular dynamics simulation can be used as an efficient pre- 1096 

dictive tool to investigate the mechanical and deposition properties of HEA and other 1097 

materials [257].  1098 

Bulk metallic glasses (BMGs) are a class of materials that can significantly benefit 1099 

from in-situ alloying. As with HEAs, manufacturing of these materials should strongly 1100 

benefit from the PBF-AM production route, as BMGs lose their most attractive properties, 1101 

such as high corrosion resistance, very special elastic properties and hardness if heated 1102 

above glass transition temperatures and subjected to slow cooling [18,19]. Thus, beam- 1103 

based AM methods including PBF ones providing extreme melting and solidification rates 1104 

are very promising BMG manufacturing options. Many of the BMG materials introduced 1105 

for industrial applications contain CRMs [18,258,259]. However, the recent introduction 1106 

of the BMG compositions without CRM content together with their in situ alloying man- 1107 

ufacturing possibilities allow for CRM-sparing manufacturing of these materials [19,259– 1108 

262]. 1109 

Li [263] discussed the prospects of AM routes for the production of HEAs and BMG. 1110 

SLM is one of the presented possible approaches for HEA fabrication. The author men- 1111 

tioned that SLM of powders blends could be used for HEAs synthesizing, including man- 1112 

ufacturing of advanced composite alloys.  1113 

Ocelik et al. [264] synthesised three-layered coatings made of HEA by SLM from pre- 1114 

mixed elemental powder. The authors found solidification conditions to be the most crit- 1115 

ical parameter for successful HEA processing, while high-power laser beam with regu- 1116 

lated power density and speed is mentioned as a unique advantage of the used additive 1117 

technology.  1118 

Haase et al. [265] reported on successful simulation and experiments made using 1119 

SLM of HEA from the blend of elemental powders. The authors mentioned this approach 1120 

as very attractive due to the ease of modifying target material composition. HEAs pro- 1121 

duced by this route demonstrated high strength and homogeneous composition. The au- 1122 

thors noted the importance of proper adjustment of the laser beam power and scan strat- 1123 

egy for obtaining high homogeneity of the final as-printed components.  1124 

Dobbelstein et al. [266] reported on direct metal deposition assisted synthesis of 1125 

MoNbTaW refractory HEA. The applied experimental set-up permitted to perform in-situ 1126 

alloying of the pre-mixed powder blend. The authors also discussed the effect of process 1127 

parameters on final product oxidation and the formed microstructure and mechanical 1128 

properties. 1129 

Joseph et al. [267] reported on a comparison of microstructure and mechanical prop- 1130 

erties of the direct laser fabricated (DLF) and arc-melted AlxCoCrFeNi HEA. The process 1131 

and the effect of the production parameters on phase formation, oxidation behavior and 1132 

mechanical properties of the final product, are described in detail. The authors concluded 1133 

that the DLF production route permits obtaining materials with the microstructure and 1134 

properties similar to those obtained by conventional processing, i.e. arc melting. 1135 

Cui et al. [20] discussed a thermodynamic approach permitting to predict the stability 1136 

of HEAs. Several examples for successful attempts of laser-based additive manufacturing 1137 

of these multi-component alloys from blended elemental Al, Co, Cr, Fe, Ni and Cu powders 1138 

are given. 1139 

Popov et al. [21] reported on a successful trial synthesizing Al0.5CrMoNbTa0.5 high en- 1140 

tropy alloy by EBM and comparing the test sample microstructure and homogeneity with 1141 



Materials 2021, 14, x FOR PEER REVIEW 26 of 43 

 

 

the one for material synthesized by a conventional arc melting route. Although the ob- 1142 

tained product’s microstructure should be more homogeneous, i.e., that the production 1143 

process must be improved, the authors conclude about a principal possibility to synthe- 1144 

size HEAs by AM routes.  1145 

4.3. 3D Laser Shock Peening 1146 

As mentioned, the SLM process is a very attractive technology for fabricating com- 1147 

ponents with very complex spatial shapes, such as near-net-shape parts that are impossi- 1148 

ble or prohibitively complicated to produce through conventional production routes 1149 

[268]. Indeed, optimization of the AM processing of such components resulted in achiev- 1150 

ing only slightly lower static mechanical properties than those obtained with conventional 1151 

processes. However, as with other processes that include layer-by-layer crystallization 1152 

and solidification, the generation of Tensile Residual Stresses (TRS) can be considered one 1153 

of the major deficiencies of many AM methods. In such processes, external energy is sup- 1154 

plied with high local density to the last processed layer, leading to the temperature gradi- 1155 

ents and anisotropic partial annealing of the processed components. Except for the case of 1156 

EBM, where the build is kept at a strongly elevated temperature, it results in significant 1157 

accumulation of TRS or even considerable component distortion [269]. A considerable ef- 1158 

fort was devoted to the reduction of TRSs in laser-based technologies, including in-situ 1159 

heating (preheating or high-energy laser re-melting) or post-annealing. This strategy is 1160 

successful to some degree and up to 70 % reduction of TRS with annealing was reported 1161 

by Mercelis and Kruth [270]. The main drawback of these methods is that they cannot 1162 

completely remove either tensile or compressive residual stresses (CRS). Alternative ap- 1163 

proaches were tested, and several options emerged: Shot Peening (SP), Laser Shock Peen- 1164 

ing (LSP) and 3D Laser Shock Peening (3D LSP) [269].  1165 

LSP, similar to SP, deforms the surface layer of the part, by the application of the 1166 

shock wave induced by the localized plasma pressure on the component. To enhance this 1167 

effect, water or solid (glass) confinement is used, together with a corresponding laser 1168 

wavelength setup of 532 and 1064 nm, respectively. It was soon realised that LSP could be 1169 

performed during the laser-based AM process itself. 3D LSP process, patented by the La- 1170 

boratory of Thermomechanical Metallurgy (LMTM) [268] refers to the combination of the 1171 

SLM process with LSP. LSP treatment is used after several completed layers so that CRS 1172 

can be handled throughout the component. To achieve this, the LSP setup must be inte- 1173 

grated into the SLM device [271]. Several publications proved the benefits of this ap- 1174 

proach, which can mainly improve the fatigue, wear and corrosion properties, as well as 1175 

improve geometrical accuracy of parts fabricated by this hybrid manufacturing system, 1176 

significantly increasing the service life of parts. 1177 

Bending fatigue properties of 316L produced by a combination of SLM and 3D LSP 1178 

(hybrid SLM-LSP) were significantly higher than manufactured samples and convention- 1179 

ally produced in both machined and non-machined conditions [272]. It was shown that 1180 

by employing 3D LSP fatigue life is increased more than 14 times compared to AM sam- 1181 

ples, and 57 times over that of conventionally produced material.  1182 

It was reported that LSP with solid confinement does increase the microhardness 1183 

near the surface region, through the accelerated recrystallization kinetics upon heat treat- 1184 

ment, which results in refined equiaxed grains [273]. 1185 

Kalentics et al. [268] successfully applied the SLM-LSP process for Ti64 alloy bridge- 1186 

like samples. It was shown that LSP has reduced the distortion angle by up to 75 % com- 1187 

pared to as-built specimens. Furthermore, 3D LSP was used for nickel-based alloy pro- 1188 

duced by SLM [274]. A 95 % reduction of the number of cracks in this very crack-prone 1189 

alloy wiring welding has been observed. 1190 

Thus, Laser Shock Peening’s introduction is following a general trend of Hybrid 1191 

Manufacturing, and the development of additive manufacturing technology integrating 1192 
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AM with other important technologies not only into the same processing line but essen- 1193 

tially into the same process.  1194 

5. Conclusions 1195 

Additive manufacturing (AM) technologies are becoming critical to manufacture and 1196 

repair to achieve sustainable use of Critical Raw Materials, vital to the European Indus- 1197 

tries. The wider introduction of AM technologies in their present shape, their develop- 1198 

ment and incorporation into the hybrid manufacturing production chain along with the 1199 

development of smart recycling routes for the components using CRMs and CRM-con- 1200 

taining alloys is one of the developing trends in sparing utilisation of critical materials. 1201 

The key advantages of AM such as shape optimisation and possibilities of on-demand 1202 

manufacturing present the nearest opportunities to the manufacturing industries. The ad- 1203 

ditional opportunity presented by modern AM is in the development of newer composi- 1204 

tions with unique properties reducing or even eliminating the use of CRMs. In this aspect, 1205 

beam-based PBF AM seems to be the most promising technique since it generates unique 1206 

conditions of fast-melting and solidification, beam energy manipulation possibilities for 1207 

microstructure engineering, in-situ alloying, and possibilities of metal-metal and metal- 1208 

ceramic composite manufacturing. Fast melting and solidification are capable of preserv- 1209 

ing the unique metastable microstructure of materials, which is not possible with tradi- 1210 

tional manufacturing methods. This opens wide possibilities for manufacturing materials 1211 

with unique properties including high entropy alloys and bulk metallic glasses as well as 1212 

new composite materials for aerospace and biomedical industries. Development of new 1213 

alloys for AM, specifically targeting preservation of metastable microstructure already 1214 

shows possibilities in reducing the consumption of CRMs. An additional benefit of vary- 1215 

ing beam energy application rates, not only layer from layer but within each layer, char- 1216 

acteristic to beam-based AM, promises further possibilities for microstructural and prop- 1217 

erty enhancement along all three dimensions, allowing for material savings. 1218 

The ecology friendliness and sustainable nature of AM technologies make further 1219 

research and development in this area critical for further progress in the field of “material- 1220 

oriented manufacturing” and “solid freeform fabrication”. 1221 
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