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Abstract—An in-silico investigation of the effects of ultrasound
data representation on the accuracy of the motion prediction
made using deep learning neural networks was carried out.
The representations studied include: linear (‘envelope’), log com-
pressed, linear with phase and log compressed with phase. A UNet
model was trained to predict non-rigid deformation field using a
fixed and a moving image pair as the input. The results illustrate
that the choice of the representation plays an important role on
the accuracy of motion estimation. Specifically, representations
with phase information outperform the representations without
phase. Furthermore, log-compressed data yielded predictions
with higher accuracy than the linear data.

Index Terms—deep learning, motion correction, motion esti-
mation, ultrasound, data representation

I. INTRODUCTION

The success of motion correction (MoCo) deep learning
(DL) models in the field of computer vision inspired re-
searchers to apply these techniques for MoCo of ultrasound
(US) images.

To date, multiple investigation looked at the accuracy of
DL MoCo and tracking algorithms. They focused on one key
difference between conventional and US images: the presence
of speckle pattern and its decorrelation. The studies conclude
that the predictions of the DL models are comparable in terms
of accuracy to the classical algorithms [1]–[6]. However, there
are other notable differences between the conventional and US
images. Namely, the availability of the phase information and
log-compression of the images.

Therefore, this investigation aims to determine how repre-
sentation of the ultrasound data affects the accuracy of motion
correction of deep learning algorithms. This is the first study
carried out with this aim.

II. METHOD

A. Data representation

Following the acquisition of the signal, IQ demodulation
and delay-and-sum beamforming (BF), US data is complex
valued. This value at each pixel location can be represented
as reiθ (amplitude with phase). This is referred to as ‘envelope
with phase’ representation, since the real valued r corresponds
the ‘envelope’ of the data. If r is log compressed with a given
dynamic range, it is referred to as a ‘log’ representation. In this
investigation a 40 dB dynamic range was used. Analogously
to the ‘envelope’ data, ‘log’ can be supplemented with the
phase information (θ), giving raise to the ‘log with phase’
representation.

B. Data generation

In this study, in-silico soft tissue phantoms were deformed
using non-rigid spatial deformation fields (DFs). Phantoms
with realistic structure were obtained by converting publicly
available clinical BMode images [7] into 2D probability den-
sity functions, which were used to randomly sample scatterer
locations. To ensure a fully developed speckle, the phantom
was populated with scatterer density of 10 scatterers per
resolution cell [8]. The phantom was imaged using single
plane wave transmissions, simulated using Field II [9], [10]
software. The final images were obtained using delay-and-
sum BF. An example of an image produced using this data
generation pipeline is illustrated by Fig. 1.

The non-rigid deformation was modelled using polynomials
of a random order:

di(x, y, z) = axP
(Nx)(x) + ayP

(Ny)(y) + azP
(Nz)(z), (1)

where i ∈ {x, y, z}, di is the displacement along the i-axis,
Ni is the order of the polynomial and ai is a randomised



Fig. 1. An example of the simulated BMode image.

coefficient of the polynomial P (Ni). The final deformation was
obtained by combining the displacements along the three axes:

dr = bxdxx̂+ bydyŷ + bzdzẑ, (2)

where bi is a randomised constant and î is the unit vector. In
this investigation, ay = by = 0, which removed y-dependence
and the out-of-plane motion. Furthermore, the 0th order term in
the polynomial was set to zero to remove global translational
movement. This produced a smooth DF, dependent on x and
z coordinates of the phantom, example of which is illustrated
by Fig. 2.

Fig. 2. An example of a position dependent non-rigid deformation field.
In gray: regular grid. In cyan: regular grid deformed using the non-rigid
deformation field.

C. Architecture and the loss function

The model selected for this investigation was a UNet [11]
architecture, illustrated by the Fig. 3. The input of the model
was a pair of images (fixed and moving) and the output was
the DF. The model was implemented using the PyTorch [12]
deep learning framework. In the case of ‘envelope’ and ‘log’
representations, the model had two input channels. In the case
of ‘envelope with phase’ and ‘log with phase’ representations,
the model had four input channels. For example, ‘envelope
with phase’ representation had two channels dedicated to r
component of the pair images and the other two dedicated to
the θ component. Due to the varied number of input channels,
the model had 200,000 ±1% trainable parameters.

Fig. 3. UNet architecture used. The input to the model is the pair of fixed
(f) and moving (m) images. The output is the deformation field (θ). Figure
adapted from [13].

The model was trained using the mean square error between
the predicted DF of the model and the ground truth DF. The
model was trained on the each data representation indepen-
dently. Each model was trained for 300 epochs and the best
performing epoch (in terms of validation loss) was selected
for the subsequent evaluation.

III. RESULTS

The different representations were evaluated by calculating
the vector magnitude error (VME) between the ground truth
(ϕ⃗GT) and the predicted (ϕ⃗pred) DFs, given by the equation:

VME = |ϕ⃗GT − ϕ⃗pred|. (3)

VME was calculated for each pixel in the entire testing dataset.
The results of studied the data representations are illustrated
by Fig. 4 and Fig. 5.

The null hypothesis used in the investigation assumes a zero
vector at all locations as the predicted DF, which illustrated
the distribution of the vector magnitudes of the ground truth
DFs.

Fig. 4. The effect of data representation on the accuracy on the predicted
deformation fields for displacements up to 2.5λ. The data representations are
colour coded as: orange – ‘envelope’, red – ‘envelope with phase’, blue –
‘log’, purple – ‘log with phase’.

IV. DISCUSSION

The results demonstrate that data representation has an
effect on the accuracy of the predicted DFs with the best
performing representation being the ‘log with phase’. When
comparing ‘envelope’ & ‘envelope with phase’ and ‘log’ &



Fig. 5. The effect of data representation on the accuracy on the predicted
deformation fields for displacements up to λ. The data representations are
colour coded as: orange – ‘envelope’, red – ‘envelope with phase’, blue –
‘log’, purple – ‘log with phase’.

‘log with phase’, the results illustrate that the addition of the
phase information improves the accuracy of the prediction.
Additionally, they illustrate that log compression of the data
can be advantageous. However, the impact of log compression
is minimal if displacement does not exceed one wavelength,
provided phase information is present (Fig. 5 comparing
‘envelope with phase’ & ‘log with phase’).

V. CONCLUSION

The investigation, carried out in-silico, studied the relation-
ship between ultrasound data representation and the accuracy
of the motion prediction using DL MoCo algorithms. This
study was carried out in the context of non-rigid deformations
and a UNet architecture. The study finds that the choice of data
representations plays an important role in the accuracy of the
prediction. Specifically, the inclusion of the phase information
improves the accuracy of the prediction. Additionally, log-
compression of the linear envelope data can be beneficial.
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