
The Z Notation:
Whence the Cause and Whither the Course?

Jonathan P. Bowen

Department of Informatics
School of Engineering

London South Bank University
Borough Road, London SE1 0AA, UK

Israel Institute for Advanced Studies
The Hebrew University of Jerusalem, Israel

Museophile Limited, Oxford, UK

jonathan.bowen@lsbu.ac.uk
www.jpbowen.com

Abstract. The Z notation for the formal specification of computer-based sys-
tems has been in existence since the early 1980s. Since then, an international Z
community has emerged, academic and industrial courses have been developed,
an ISO standard has been adopted, and Z has been used on a number of signif-
icant software development projects, especially where safety and security have
been important. This chapter traces the history of the Z notation and presents is-
sues in teaching Z, with examples. A specific example of an industrial course is
presented. Although subsequent notations have been developed, with better tool
support, Z is still an excellent choice for general purpose specification and is
especially useful in directing software testing to ensure good coverage.

1 Whence the Cause?

“Mathematical reasoning may be regarded rather schematically as the exercise
of a combination of two facilities, which we may call intuition and ingenuity.”

– Alan M. Turing
The Purpose of Ordinal Logics (1938)

1.1 History

The computing pioneer Alan Turing (1912–1954) [13, 22] and the physicist Albert Ein-
stein (1879–1955), who died only a year after Turing although after a considerably
longer lifespan, are two of the western scientists who are celebrated with busts on the
campus of Southwestern University in Chongqing, China (see Figure 1). Einstein is of
course extremely well-known internationally, but Turing has been less well-known until
more recently when his achievements have become increasingly visible to the public.
He is considered by many to be the founding father of modern computer science with

his 1936/7 paper on the Entscheidungsproblem (“decision problem” in German), estab-
lishing what is computable through the theoretical computing device that has become
known as a Turing Machine [42]. This is an abstract model of a computing machine
that is useful for demonstrating what is and what is not computable. This astoundingly
novel approach has had a profound effect on the theory of computation subsequently,
effectively founding the field of theoretical computer science.

Fig. 1. Busts of Alan Turing and Albert Einstein on the campus of Southwest University,
Chongqing, China. (Photographs by Jonathan Bowen.)

Turing produced what is considered by many as the first paper on proving a program
correct [43]. However, sadly this short paper had little impact on the development of
formality in computing until it was rediscovered and evaluated in its historical context
much later [34]. Instead, Tony Hoare’s much later 1969 paper on an axiomatic basis for
computer programming, introducing Hoare logic and assertions, was a turning point in
providing a formal approach to program proving [29].

Formal methods [18] emerged during the 1970s as a mathematically-based approach
to software development. Jean-Raymond Abrial’s 1974 paper on data semantics [1] was
in hindsight a seminar paper leading to the development of the Z notation for the formal

2

specification of computer-based systems. In the early 1980s, Abrial visited the Program-
ming Research Group (PRG) in the Oxford University Computing Laboratory (OUCL)
and sowed the seeds for the development of the Z notation there. A Z course was es-
tablished for both academics and industry. Projects such as the Distributed Computing
Software Project used Z to specify network services at OUCL [15, 24]. A series of Z
User Meetings was established, first in Oxford from 1986, with written proceedings
from 1987 [5], then around the UK from 1992 [36], and finally internationally from
1998 [14].

A “Z Reference Manual” (ZRM) was published as a book originally in 1989, with
a second edition in 1992, and further revisions online in 2001 [39]. This was and even
remains a de facto standard, with an associated type-checker, fUZZ [40]. However, an
ISO/IEC standard with a formal semantics written in the Z notation itself was issued in
2002 [32]. The development of a formal semantics revealed some issues in Z that were
clarified in the final semantics in the ISO/IEC standard [27].

Turing is associated with Cambridge University and later Manchester University.
There is no known record of him ever having even visited Oxford University. However,
Turing did liaise with Christopher Strachey (1916–1975), at one time a teacher at Har-
row School, but also an expert early programmer. His program for the game of draughts
impressed Turing. Strachey went on to found the Programming Research Group at Ox-
ford in the 1960s, where he developed denotational semantics with colleagues there.
Strachey’s untimely death in 1975 led to the appointment of Tony Hoare as the next
head of the PRG. It was Hoare who fostered a suitable environment at Oxford for the Z
notation to emerge and flourish in the 1980s and 1990s.

1.2 Background

The Z notation is an industrial-strength formal specification notation based on typed
set theory and first order predicate logic, used in the specification of discrete computer-
based systems [10, 39]. As well as standard mathematical operators, Z also includes
a number of additional operators that have proved to be useful for specifications in
practice, using more specialised sets such as relations, functions, and sequences. In
addition to the mathematical notation, Z also includes a schema notation that collects
the mathematical description into schema boxes containing declarations and predicates.
These schemas may be combined to form larger specifications using schema operators
that largely match logical operators, aiding the structuring of large specifications at an
industrial scale.

This chapter includes a description of an industrially used course that covers the
mathematical and schema notation of Z. Delivery of the course is in the form of lectures
interspersed with paper-and-pencil exercises. The course is based around an ongoing
case study example and finished with a further example for study. Previous experience
of standard mathematical set theory and predicate logic is helpful although not essential.

1.3 Brief survey

Formal methods are useful for improving software engineering where high integrity
is desirable or required [18, 19, 28]. Examples of real industrial use are available [3,

3

25, 2]. There are a number of formal methods available with various strengths – and
weaknesses – depending on the situation in which they are applied. See http://
formalmethods,wikia.com for a wiki with information on formal methods in
general and the Z notation in particular. Z’s strength is its use as a general purpose
specification language in a human-readable form, interspersed with informal text, that
can be scaled up to an industrial level. A weakness is its lack of good tools.

Z can be used for formal specification with the aim of designing and documenting
mainly software but also hardware systems [6]. For example, Z has been used to specify
microprocessor instruction sets [4]. It can also be used to specify software tools [7] and
even window-based user interfaces [8].

Z is not executable in the general case, although an executable semantics for Z has
been explored [20]. It is possible to embed Z within other formal systems. For example,
see a shallow embedding of Z in HOL (Higher Order Logic) [16].

Z has good type-checking support, notably the fUZZ type-checker [40] based on the
Z Reference Manual [39]. This is based around the LATEX document preparation system,
widely used in academia. There are a number of style files available to allow format-
ting of the Z symbols and schema structures. These include zed.sty (the original
style file), fuzz.sty (designed for use with fUZZ), zed-csp.sty (also including
support for CSP [30]), and oz.sty (supporting the object-oriented extension of Z,
Object-Z [38]). All these styles are essentially compatible with the core parts of the Z
notation. This chapter has been formatted using zed-csp.sty, mainly because it is
very comprehensive for the Z glossary in Appendix A.

LATEX is not widely used in industrial, where Word is much more common. There
is a Z Word Tools plug-in for Word that allows Z symbols and schemas to be written
in Word using an additional menu entry [26]. It also integrates the fUZZ type-check to
allow convenient type-checking of Z from within Word. Z has the potential to allow
proofs, either at an informal level, or with tool support. Leading Z proof tools include
Z/EVES [37] and ProofPower [33]. However, learning to use such a tool effectively
requires a significant amount of time and effort, longer than is normally available on an
industrial project,

Despite the issues of proof support for Z, a Z specification is still extremely useful
for another important part of the development process in industrial-scale projects. It can
be used to aid much more effective and comprehensive testing of a software artefact
[21, 23, 31, 41], helping to ensure more complete coverage of branches in a program for
example. It can even be used to specify testing criteria, which are often defined in a
rather loose way, in a more precise manner [44, 45].

1.4 Overview of Z structuring

The Z notation includes mathematics based on logic and set theory (see a glossary in
Appendix A) together with the schema box structuring notation. It is the latter than
makes Z powerful and useful for very large specifications (potentially consisting of
thousands of pages) as well as small specifications, as typically presented by academics
for didactic purposes. In this section we present some of the important basic aspects of
a Z specification, especially with respect to structuring using schemas.

4

All Z specifications have the set of integers (Z) included by default as a given set,
with the standard arithmetic operators available. Additional given sets (or basic types)
may be specified as needed, providing distinct types of sets from which more complex
abstract data structures can be constructed. For example, to declare given sets X and
Y , the following could be included at the start of a Z specification:

[X ,Y]

A Z schema has the form of a name (used to reference it later in the specification),
a declaration part, and a predicate part that optionally relates components that have
been declared in the schema (defaulting to true if omitted). For example, the following
simple schema T declares an integer n with no constraints on its value:

T
n : Z

It is possible to include a schema within another schema. For example, the following
schema S includes the declarations and predicates of T . It also declares an additional
set x and constrains the value of n to be the size of the set (an “invariant” predicate for
the state schema S):

S
T
x : PX

n = #x

Note that P indicates a power set (the set of all subsets of X in this case). x is drawn
from this set (i.e., it is some subset of X , possibly the empty set ∅, possible the full set
X , or somewhere in between). The complete version of S if the included schema T is
expanded is as follows:

S expanded
n : Z
x : PX

n = #x

Schemas may be “decorated” with appended subscripts and superscripts. The most
normal decoration is the prime (or “dash”, ′), used by convention to indicate the “after
state” of an operation schema (with a matching unprimed “before state”). All the com-
ponents of the schema S ′ are also renamed with an appended prime (i.e., n ′ and x ′ in
this simple example). Thus S ′ expands to:

S ′ expanded
n ′ : Z
x ′ : PX

n ′ = #x ′

5

In a state-based Z specification, the system is modelled as a series of operations
(with related before and after states) that change the state of the system. For the system
to start in the first place, there needs to be an initial state that is the system state, but
normally together with some initial constraints (specified as predicates). Since this is
the state after initialisation, it is normally specified in terms of an after state, namely S ′

in this example:

InitS
S ′

n ′ = 0

The constraint that n ′ is zero means that the size of x ′ is also zero and thus x ′ is empty.
The predicate x ′ = ∅ could equally well have been used.

For an operation schema in Z, a before state (undecorated) and an after state (dec-
orated with primes) are related together. The most general operation, where the after
state may take on any arbitrary value with respect to the before state, can be specified
using schema inclusion as follows with the example S state schema:

ChangeOfState
S
S ′

This expands to:

ChangeOfState expanded
n,n ′ : Z
x , x ′ : PX

n = #x
n ′ = #x ′

Note that predicates on separate lines in a schema are joined with logical conjunction
by default.

Most operation schemas in Z will include this general change of state together with
further constraining predicates relating the after-state components (here n ′ and x ′) with
the before-state components (here n and x). Since the ChangeofState schema above
is likely to be useful in a number of operation schemas in practice and since a real Z
specification may specify operations on a number of sub-states that can later be com-
bined into a complete system, there is a convention that a schema named ∆S (in the
case of the S schema for example) is automatically available for the specification, with
the same meaning as ChangeOfState above.

For the specification of operations, typically these may have inputs and outputs as
well as the change of state. Inputs and outputs are conventionally indicated with an
appended “?” and “!” respectively. So, as an example, consider an operation to add an
input element e? to the set x :

6

AddOp
∆S
e? : X

e? /∈ x
x ′ = x ∪ {e?}

Here there is a “precondition” predicate that e? is not already a member of the set x ,
There is also a “postcondition” predicate meaning that the set x ′ is the original set x with
the element e? added to it. Note that the value of n ′ has not been specified explicitly,
but implicitly it has a value of the size of the set x ′ due to the invariant predicate in S ′.
The full expanded version of AddOp is as follows:

AddOp expanded
n,n ′ : Z
x , x ′ : PX
e? : X

n = #x
e? /∈ x
n ′ = #x ′

x ′ = x ∪ {e?}

Sometimes operation schemas do not actually change the state of the system, for
example in status operations where part of the state is returned as an output. Z includes a
convention similar to the∆ convention, with matching before and after states where the
values of the matching before and after components maintain their value. For example
in this case:

NoChangeOfState
∆S

n ′ = n
x ′ = x

Similarly to the ∆ convention described earlier, there is a convention that a schema
named ΞS (again for example) is automatically available within the specification, hav-
ing the same meaning as NoChangeOfState above. So in the running example, for a
status operation that returns, using the output n!, the size of the set x (which is al-
ways constrained to be the same is n), the following status operation scheme could be
specified:

SizeOp
ΞS
n! : Z

n! = n

7

This could be expanded as:

SizeOp expanded
n,n ′ : Z
x , x ′ : PX
n! : Z

n = #x
n ′ = #x ′

n ′ = n
x ′ = x
n! = n

As can be seen, there is much clutter in the expanded version of the schema that ob-
scures its actual purpose. Thus the use of schema inclusion is a very important part of
the structuring techniques used by Z in practice, making the specification much shorter,
less repetitive, and more readable.

There are further features for combining schemas, using operators that match the
logical operators, but the introduction above should be sufficient for non-experts in Z to
follow the example questions and answers in the next section.

2 Whither the Course?

“Teaching to unsuspecting youngsters the effective use of formal methods is
one of the joys of life because it is so extremely rewarding.”

– Edsger W. Dijkstra (1930–2002)
A. M. Turing Award winner in 1972

There have been many Z courses over the years, since the original one at Oxford
University started in the 1980s, initially inspired by Jean-Raymond Abrial (see Figure 2)
and later developed as a course for academic and industry, as well as being presented on
the Masters degree course on Computation at the Programming Research Group there.
Subsequently many universities incorporated Z into their undergraduate Computer Sci-
ence degree programmes [35]. and it continues to be used for teaching, especially in
software engineering courses, to this day.

In addition to academic courses on Z, industrial courses have also developed for
training practitioners in software engineering. On of these was at Praxis (later Altran
Praxis and now Altran UK). The course, written in the troff document markup lan-
guage of UNIX, is in use to this day. It has been presented by the author at Altran
Praxis in Bath, UK, and more recently in abbreviated form, with some additional ma-
terial, at the Summer School on Engineering Trustworthy Software Systems (SETSS)
held at Southwest University, Chongqing, China, in September 2014. The course is
proprietary and copyright by Altran so cannot be published publicly in full. However
extracts are including in Appendix B to give a flavour of the material. The course is
normally presented intensively over a period of around four days, with lectures together
with paper-and-pencil exercises intermingled.

8

Fig. 2. The front page of the hand-written notes on the Z course during the 1980s at the Program-
ming Research Group, Oxford University. (Drawing by Ib Sørensen, from an idea by Bernard
Sufrin.)

An interesting feature is that the course is actually really two courses, one for “read-
ers” of Z and one for “writers” of Z. In practice, many more engineers must learn to
read Z on a particular project and far fewer are needed to write Z. This is because Z is
typically used by both programmers, implementing the software product, and by soft-
ware testers, who can use the Z specification to direct the tests that are needed in a very
systematic way [23]. Neither implementers nor testers need to be able to write Z, but
both must read and understand Z effectively in a project where the specification is writ-
ten in Z. These tend to be major teams on a typical software project, the testing team
often outnumbering even the implementation team. Most professional and experienced
software engineers are able to assimilate the ability to read Z relatively easily, in a sim-
ilar way to the fact that reading a book such as a novel is much easier than writing one.
After a few day’s on a Z course, followed by a week or two of using Z documents, a
good software engineer can read and understand Z effectively.

In contrast, writing a Z specification is a much more difficult skill to acquire. Thus
the course by Altran has additional material on this aspect. Writing an effective Z spec-
ification that is amendable to both implementation and testing in a cost effective man-

9

ner is something that only comes with experience, typically over months, arguably for
greatest effectiveness over years. Fortunately the number of people needed to specify a
software product on a large software project is much smaller the the numbers needed
for implementation and testing, perhaps even by an order of magnitude. A wise decision
is only to include the most experienced software engineers on the specification team,
ideally with several years of at least reading Z.

2.1 Exercise

Since the Z course produced by Altran/Praxis cannot be reproduced in full here, we
include an example exercise and solutions for part of a Z course that has been delivered
as a component of the final year of an undergraduate degree programme in Computer
Science at Birmingham City University.

We use, as an example, a simplified air traffic control system. The questions are
informal in nature and the task is to write Z that formally specifies the informal descrip-
tion in the questions. This emulates the task of a software specifier on a real project,
where some informal requirements written in a natural language such as English, per-
haps augmented with some diagrams, need to be formalised in a more rigorous and
mathematically-based notation such as Z.

One issue of learning a notation like Z is that there are often examples of a com-
pleted specification available, but there is very little indication of how to reach that
specification [11]. An example has previously been given of a simple invoicing system
specified using a number of different notations, including Z [12], where the questions
that should be answered as the specification is developed are explicitly stated. Here we
first present the questions and then example solutions with an indication of how these
can be derived mentally.

2.2 Questions

The following are questions on a simple air traffic control system that need to be an-
swered using Z notation. A comprehensive glossary of the Z notation is available in
Appendix A for reference.

Question 1: An air traffic control system involves a number of airspace sectors and a
number of planes. Define two given sets to model these.

Question 2: The airspace consists of a number of sectors. Each sector may have a num-
ber of adjacent sectors, which are then related to each other. Note that the adjacency
relation is symmetric; i.e., if a sector is adjacent to another sector, then the reverse
is also true. Sectors cannot be adjacent to themselves (i.e., sectors cannot map to
themselves in the adjacency relation). In addition, all sectors in the airspace have
adjacent sectors. Define a state schema that models sectors and a relation indicat-
ing which sectors are adjacent, with appropriate constraining predicates. Note that
idX in Z is a one-to-one function that maps all elements in X to themselves.

10

Question 3: Each sector may contain a number of planes at any given time. Extend
the previous state schema with a function that models planes in sectors. Planes can
only be in valid sectors within the airspace.

Question 4: In each sector, some of the planes may be queued to leave the sector, in a
sequence of planes. Extend the state schema in Question 3 to include a function that
models the queued planes in each sector. Such queues can only be in valid sectors
in the airspace. In addition these queues can only include a subset of the planes that
are in each sector.

Question 5: There is more than one sector in the airspace. Initially there are no planes
in the airspace. Define an initialisation schema that ensures these conditions.

Question 6: Define operations for the following, assuming success in each case, but
including preconditions as needed:
1. Have a new plane added to one of the sectors (both specified as inputs), but

not in the queue for the sector (e.g., after taking off from an airport or arriving
from another airspace).

2. Queue an existing plane (specified as an input) that is not yet in a queue. The
plane should be added to the last position of the queue in its sector.

3. Remove the plane at the head of a queue in a specified sector from the airspace
(e.g., land at an airport or be transferred to another airspace). Output the plane
involved.

4. Have the plane at the head of a queue in a sector move to an adjacent sector.
Both sectors should be specified as inputs and the plane should not be included
in the queue of the new sector.

Question 7: (optional)
1. Extend your answers in Question 6 to handle errors and provide total opera-

tions, with appropriate error messages.
2. Informally describe and formally specify further operations (e.g., changing

airspace sectors).

2.3 Answers

Here for each question in the previous subsection we present the thought processes that
lead to a solution, together with an example model answer in Z.

Answer 1: In Z, “given sets” (or “basic types”) are potentially infinite sets with no
implicit structure on which the specification is going to operate. Z is typed so
these sets are non-overlapping and are not compatible with standard set operations
(e.g., union ∪ or intersection ∩). The question suggests two such sets, which we
could name SECTOR to model all the possible airspace sectors in the system and
PLANE for all the possible airplanes in the system. Obviously these are two dif-
ferent types of entity, so comparing them, subsets of them, or elements of them in
any way (e.g., with equality =) is not correct and in Z would produce a type error
if the specification is mechanically type-checked.

11

In our simple example, we can define these two given sets in Z at the beginning of
a specification as follows:

[SECTOR, PLANE]

Note that a convention (but not a requirement) in Z is to use all upper case name
for given sets. This is not required, but it does make identifying them easier in a
specification and is widely used in practice.

Answer 2: Once we have some given sets in Z, we can start to use these to build up
more complex structures. Typically we do this with “schema” boxes, that collect
together mathematical objects such as sets, relations, functions, sequences, etc. A
feature of Z is that all these are modelled as various types of set, so many Z op-
erators can be reused on more specific structures. For example, standard set oper-
ators like union and intersection can be used on all these more refined set-based
structures if desired. In addition, further more specific operators are available in Z
that can be applied only to restricted forms of sets (e.g., relations). Schemas in Z
are often used to specify abstract state structures on which operations can perform
changes to those structures.

In this question, we require a number of sectors. We can do this by defining a set
sectors (for example) to be drawn from a set of subsets of SECTOR (a “power
set” PSECTOR). In the declarations below, “:” is much like that used in many
programming languages to declare variables. In Z, it can be considered as meaning
“is a member of” a set (written as ∈ when used in predicates (in the lower half of a
schema box) rather than the declaration part (the upper half of the schema box). So
x : X can be thought of as x ∈ X . Further, a declaration of the form x1 ∈ P x2 can
be considered as meaning x1 ⊆ x2 (i.e., x1 is a subset of x2). So below, sectors ⊆
SECTOR holds. This is because we wish to model the airspace is a number of
sectors, which are a subset of all the possible sectors (the set SECTOR).

Another property of airspace is that some sectors are adjacent to each other. I.e.,
it is possible for airplanes to fly directly between them. We model this as pairs of
sectors that are considered to be next to each other. Adjacent sectors have a number
of properties that always hold for all configurations of sectors in the airspace. For
example, if a sector is adjacent to another sector, then the second sector is also
adjacent to the first sector (i.e., it is symmetric, adjacent∼ = adjacent). Sectors
cannot be adjacent to themselves, so the intersection of adjacent sectors and sectors
mapped to themselves is empty (adjacent ∩ id sectors = ∅). All sectors in the
airspace have at least one adjacent sector (i.e., the domain of the adjacent sectors
is the same as the set of sectors in the airspace, sectors = dom adjacent). This
means that the range of the adjacency relation is also the same as all the sectors in
the airspace (sectors = ran adjacent) since this relation is symmetric. So in all,
the following holds:

12

Airspace0
sectors : P SECTOR
adjacent : SECTOR ↔ SECTOR

adjacent∼ = adjacent
adjacent ∩ id sectors = ∅
sectors = dom adjacent

Answer 3: All planes in the airspace are in one of the sectors. We can model this as a
partial function from airplanes to sectors. (planes : PLANE 7→ SECTOR). The
sector for each plane must be one of those that is in the airspace (ran planes ⊆
sectors). We can augment the state space by adding this information to the existing
airspace Airspace0 (an “included” schema with all the information in that schema
too) as follows:

Airspace1
Airspace0
planes : PLANE 7→ SECTOR

ran planes ⊆ sectors

Answer 4: Within each sector there is a queue of planes (possibly empty) waiting to
leave the sector, again modelled as a partial function, this time from sectors to
an injective sequence of airplanes (queues : SECTOR 7→ iseqPLANE). Being
injective meane that the planes in the sequence are all different. Queues of planes
waiting to leave each sector. Each sector in the airspace has a (possibly empty)
queue associated with it (dom queues = sectors). What is more, the planes in the
queues within each sector are a subset of the planes in that sector (∀ s : sectors •
ran(queues s) ⊆ planes∼ (| {s} |)). Some planes in the sector may not (yet) be
waiting in the queue for that sector. Again we can augment the state space to create
our complete abstract state scheme Airspace:

Airspace
Airspace1
queues : SECTOR 7→ iseq PLANE

dom queues = sectors
∀ s : sectors • ran(queues s) ⊆ planes∼(| {s} |)

Answer 5: The airspace at initialisation has more than one sector in it (#sectors ′ > 1)
and no planes (planes ′ = ∅). Thus the state after initialisation, indicated with a
postpended prime (′) by convention in Z, is as follows:

InitAirspace
Airspace ′

#sectors ′ > 1
planes ′ = ∅

13

Note that the prime appended with the Airspace schema means that all its com-
ponents (in this case sectors , adjacent , planes , and queues) all have primes ap-
pended to them as well (i.e., sectors ′, planes ′, etc.).
In formulating the state at initialisation, we should consider all the state compo-
nents. However it is normal for there to be invariant predicates relating some of
these components. It is often the case that specifying one state component to be
empty implies that one or more other related state components are restricted in
some appropriate way, typically to be empty too. For example in this case, because
there are no planes in the airspace initially, the queues in each sector (modelled by
the queues state component) are restricted by the universally quantified predicate in
Airspace to be empty too since a subset of an empty set can only be the empty set
too. Note that nothing specific has been said about the adjacent state component
apart from the constraints that are already in the predicate part of the Airspace0
schema since there is no additional predicate involving adjacent ′.

Answer 6: Below are various operations on the airspace, specified as schemas with
a “before state” (with “unprimed” state components) and a matching “after state”
(with “primed” state components, postfixed with the prime symbol ′). ∆Airspace
indicates both a before state Airspace and an after state Airspace ′ where the prime
′ filters through to the names of all the components parts of the state in the schema
too.
1. A plane entering the airspace can be specified as follows:

NewPlane
∆Airspace
ΞAirspace0
p? : PLANE
s? : SECTOR

p? /∈ dom planes
planes ′ = planes ∪ {p? 7→ s?}
queues ′ = queues

The ΞAirspace0 is similar to ∆Airspace0 but with all the primed state com-
ponents in Airspace0′ constrained to be the same as the unprimed equivalents
in Airspace0. In this case, the state components in Airspace0 are sectors and
adjacent . Inputs to operation schemas (with before and after states) are ap-
pended with a question mark (?) by convention to differentiate them from state
components. Here there are two inputs, p? for the plane that is entering the
airspace and s? for the sector that it enters.

Next the predicates for the schema need to be formulated. First consider the
precondition for the operation to be valid, only dealing with the before (un-
primed) state and inputs. The plane p? must not be one of the planes already
in the airspace. It is worth considering especially if there are any limitations
on inputs for the operation to be successful. This is very often the case and
it is helpful to specify this explicitly even if it is implied indirectly by other

14

predicates. The implementer will find it useful and it will help in testing the
implementation later too if the specification is used to direct the tests.

Now consider the postcondition for the operation. I.e., how are the after state
and outputs related to the before state and inputs? The plane p? is added to
the sector s? that it enters. It is not in the queue to leave the sector initially so
the queues are unchanged. The rest of the airspace state is also unchanged. It
is important to explicitly specify when the after state is the same as the before
state in a specification of an operation if this is what is required. Otherwise the
after state may take on any value. It is important to go through all the after-state
components and outputs in an operation and ensure that they are specified in
some way. It is unusual to allow an after state or output to take on any value.
This is easy for the implementer, but normally not very useful or desirable for
the customer. Similarly, it is normally for all the inputs to be used in some way
in the predicate part of the schema and all the outputs to be set in some useful
way,

Here ΞAirspace0 ensures that the rest of the otherwise unmentioned state
components remain the same after the operation. This is a technique often used
in Z to “frame” operations on selected parts of the state of interest in a partic-
ular set of operations. It helps in structuring the specification when there are
several similar operations where much of the state is unchanged but a partic-
ular part is changed in a different way for individual operations. In this case,
ΞAirspace0 in the declaration part of the schema acts as a short form for the
predicate sectors ′ = sectors ∧ adjacent ′ = adjacent , which would become
repetitive if needed in multiple operations and would also obscure the impor-
tant predicates in the operations.

2. Queueing a plane to leave a sector can be specified as follows. The plane starts
at the back of the queue.

QueuePlane
∆Airspace
ΞAirspace1
p? : PLANE

p? ∈ dom planes
∀ s : sectors • p? /∈ ran(queues s)
queues ′ = queues ⊕

{planes p? 7→ queues(planes p?)a 〈p?〉}

In this case,ΞAirspace1 is used to specify the fact that all the state components
sectors , adjacent , and planes , remain the same. It is only queues that changes,
in fact only one queue in one particular sector. p? is the input plane that is to
be queued.

Again, for the predicate part, we consider the precondition first. The plane p?
is in the airspace but it is not in any of the queues in all of the sectors in

15

the airspace. In considering the postcondition, only one individual queue is
changed. All of the rest of the state remains the same since the sector where
the plane is located does not change. The plane p? is added to the end of the
queue for the sector in which it is located. The overriding operator (⊕) is one
that is commonly used in Z when a small part of a relation, often a function, is
to be change to have a different value in the range associated with a particular
element in the domain.

The use ofΞAirspace1 in the declaration part of the schema above ensures that
other state components apart from queues remain the same, so only queues
needs to be considered explicitly for the postcondition.

3. The plane at the head of the waiting queue in a given sector leaves the airspace
(e.g., comes in for landing or passes to another airspace).

RemovePlane
∆Airspace
ΞAirspace0
s? : SECTOR
p! : PLANE

queues s? 6= 〈〉
p! = head(queues s?)
planes ′ = {p!} −C planes
queues ′ = queues ⊕ {s? 7→ tail(queues s?)}

Here there is an input s? to specify the sector to which the operation applies and
an output p! giving the plane at the head of the queue that is leaving the sector.
An appended exclamation mark (!) is used to indicate an output by convention
in Z.

As a precondition, the queue for the sector s? must be non-empty. This is an
important precondition since at least one plane is needed in the queue to allow
one to be removed. The plane p! is the one at the head of the queue. It is
removed from the overall airspace. It must also be removed from the queue for
the specified sector s?.

4. The plane at the head of the waiting queue in a given sector moves from that
sector to an adjacent sector.

MovePlane
∆Airspace
ΞAirspace0
s1?, s2? : SECTOR

queues s1? 6= 〈〉
s1? 7→ s2? ∈ adjacent
planes ′ = planes ⊕ {head(queues s1?) 7→ s2?}
queues ′ = queues ⊕ {s1? 7→ tail(queues s1?)}

16

Two sectors are declared as inputs, s1? for the sector where the plane at the
head of the queue is to be moved and s2? for an adjacent sector where it is to
be moved.

Again, a precondition is that the queue for the sector s1? must be non-empty.
Another precondition is that the sector s2? must be immediately adjacent to
the sector s1?. A postcondition is that the plane is moved from sector s1? to
sector s2?. It is also removed from the queue in sector s1?. Note that it is not
added to the queue in sector s2?.

Answer 7: (optional)
There are a variety of answers possible for this part. It is designed to be more open-
ended for the better students to tackle. Only those aiming for top marks are likely
to attempt this question.

2.4 Z course

The Z course produced by Altran is a commercial course and as such the copyright is
owned by the company. Thus some extracts are included as Appendix B of this chapter
to give a sample of the style of the course. Full model answers are also available, but
these are not reproduced here for obvious reasons.

The following is a timetable for a typical four-day Z Readers Course. There are nor-
mally four sessions each day, two in the morning and two in the afternoon, with breaks
between the sessions. These sessions are typically of 90 minutes duration. Lectures are
interspersed with exercises, normally at the end of sessions.

Day 1
Session 1: General Introduction
Session 2: Case Study Introduction
Session 3: Underlying Mathematics: Sets
Session 4: Case Study (continued) and Relations

Day 2
Session 1: Relations (continued)
Session 2: Functions
Session 3: Case Study (continued)
Session 4: Underlying Mathematics: Logic

Day 3
Session 1: Introduction to Schemas
Session 2: Case Study Operations
Session 3: Schema Calculus
Session 4: Analysing Specifications

Day 4
Session 1: Schemas as Types
Session 2: Alternative Case Study
Session 3: Syndicate Exercise
Session 4: Syndicate Exercise (continued)

The Z Writers Course is longer than the Z Readers Course. In particular, more time
is allocated to actually writing a Z specification, e.g., as a mini-project in small groups.

17

3 Conclusion

This chapter has presented the formal specification language Z, including information
on an industrial Z course and some example Z questions and answers, with commentary
on how to approach developing a formal Z specification from an informal description. A
glossary of Z is included in Appendix A and parts of an industrial Z course are included
in Appendix B, with some commentary,

Z is now a mature formal specification language with an ISO standard. It is still
lacking in good industrial-strength tools but despite this deficiency it has been used in
significant industrial projects involving teams of more than a hundred engineers and
associated personnel. Research in Z has now slowed but that is an indication of its ma-
turity. It is likely to continue to play an important part of safety and security-related
projects when high integrity is essential. It can play an important part in a safety case,
especially with respect to its use in improving the efficacy of testing. To paraphrase a
well-known quotation by Winston Churchill, reports of Z’s death are greatly exagger-
ated!

Acknowledgements: Material for the Z course was kindly made available by Altran UK
(formerly Altran Praxis), a software engineering company based in the United Kingdom
with extensive experience of the industrial use of formal methods in general and the Z
notation in particular. The extracts of the Z course included in Appendix B are copyright
Altran UK and are reproduced here with permission. I am very grateful to Jonathan
Hammond of Altran UK for his help and advice in this matter. Thomas Lancaster of
Birmingham City University invited me to contribution to a Z course for final year
undergraduates. The questions and answers on an example air traffic control system as
presented here were originally developed as a result.

The Z notation in the main part of this chapter has been formatted using the LATEX
style file zed-csp.sty and type-checked using the fUZZ type-checker [40]. It is be-
lieved that the drawing in Figure 2 is by Ib Holm Sørensen (who died in 2012), from an
idea by Bernard Sufrin.

Many thanks to my good colleague, Prof. Zhiming Liu, for inviting me to present at
the Summer School on Engineering Trustworthy Software Systems (SETSS) at South-
west University in Chongqing, China, during September 2014, and thank you to all at
Southwest University for a very pleasant and well organized visit, together with finan-
cial support. I am grateful too for financial support from Museophile Limited.

Finally, very many thanks to the Israel Institute for Advanced Studies at the He-
brew University of Jerusalem, who funded me as a Visiting Scholar for a Computability
Research Group during the completion of this chapter and provided a very supportive
academic environment in which to do it.

References

1. Abrial, J.R.: Data semantics. In: Klimbie, J.W., Koffeman, K.L. (eds.) IFIP TC2 Work-
ing Conference on Data Base Management. pp. 1–59. Elsevier Science Publishers (North-
Holland) (Apr 1974)

18

2. Bagheri, S.M., Smith, G., Hanan, J.: Using Z in the development and maintenance of compu-
tational models of real-world systems. In: Canal, C., Idani, A. (eds.) Software Engineering
and Formal Methods, SEFM 2014 Workshops. Lecture Notes in Computer Science, vol.
8938, pp. 36–53. Springer (Feb 2015)

3. Boulanger, J.L. (ed.): Formal Methods: Industrial Use from Model to the Code. ISTE, Wiley
(2012)

4. Bowen, J.P.: Formal specification and documentation of microprocessor instruction sets. Mi-
croprocessing and Microprogramming 21(1–5), 223–230 (Aug 1987)

5. Bowen, J.P. (ed.): Proc. Z Users Meeting, 1 Wellington Square, Oxford. Oxford University
Computing Laboratory, Oxford, UK (Dec 1987)

6. Bowen, J.P.: Formal specification in Z as a design and documentation tool. In: Proc. 2nd
IEE/BCS Conference on Software Engineering. pp. 164–168. No. 290 in Conference Publi-
cation, IEE/BCS (Jul 1988)

7. Bowen, J.P.: POS: Formal specification of a UNIX tool. IEE/BCS Software Engineering
Journal 4(1), 67–72 (Jan 1989)

8. Bowen, J.P.: X: Why Z? Computer Graphics Forum 11(4), 221–234 (Oct 1992)
9. Bowen, J.P.: Glossary of Z notation. Information and Software Technology 37(5–6), 333–

334 (May–June 1995)
10. Bowen, J.P.: Formal Specification and Documentation Using Z: A Case Study Approach.

International Thomson Computer Press (1996)
11. Bowen, J.P.: Experience teaching Z with tool and web support. ACM SIGSOFT Software

Engineering Notes 26(2), 69–75 (Mar 2001)
12. Bowen, J.P.: Z: A formal specification notation. In: Frappier, M., Habrias, H. (eds.) Software

Specification Methods: An Overview Using a Case Study, chap. 1, pp. 3–20. ISTE (2006)
13. Bowen, J.P.: Alan Turing. In: Robinson, A. (ed.) The Scientists: An Epic of Discovery, pp.

270–275. Thames and Hudson (2012)
14. Bowen, J.P., Fett, A., Hinchey, M.G. (eds.): ZUM’98: The Z Formal Specification Notation,

11th International Conference of Z Users, Berlin, Germany, 24–26 September 1998, Lecture
Notes in Computer Science, vol. 1493. Springer (1998)

15. Bowen, J.P., Gimson, R.B., Topp-Jørgensen, S.: Specifying system implementations in Z.
Technical Monograph PRG-63, Oxford University Computing Laboratory, Oxford, UK (Feb
1988)

16. Bowen, J.P., Gordon, M.J.C.: A shallow embedding of Z in HOL. Information and Software
Technology 37(5–6), 269–276 (1995)

17. Bowen, J.P., Hinchey, M.G.: Ten commandments ten years on: Lessons for ASM, B, Z and
VSR-net. In: Abrial, J.R., Glaesser, U. (eds.) Rigorous Methods for Software Construction
and Analysis. Lecture Notes in Computer Science, vol. 5115, pp. 219–233. Springer (2009)

18. Bowen, J.P., Hinchey, M.G.: Formal methods. In: Gonzalez, T.F., Diaz-Herrera, J., Tucker,
A.B. (eds.) Computing Handbook, vol. 1, chap. 71, pp. 1–25. CRC Press, 3rd edn. (2014)

19. Bowen, J.P., Hinchey, M.G., Janicke, H., Ward, M., Zedan, H.: Formality, agility, security,
and evolution in software development. IEEE Computer 47(10), 86–89 (Oct 2014)

20. Breuer, P.T., Bowen, J.P.: Towards correct executable semantics for Z. In: Bowen, J.P., Hall,
J.A. (eds.) Z User Workshop, Cambridge 1994. pp. 185–209. Workshops in Computing,
Springer (1994)

21. Ciancarini, P., Cimato, S., Mascolo, C.: Engineering formal requirements: An analysis and
testing method for Z documents. Annals of Software Engineering 3, 189–219 (1997)

22. Copeland, J., Bowen, J.P., Sprevak, M., Wilson, R.J., et al.: The Turing Guide. Oxford Uni-
versity Press (2016), to appear

19

23. Cristia, M., Hollmann, D., Albertengo, P., Frydman, C., Monetti, P.R.: A language for test
case refinement in the test template framework. In: Formal Methods and Software Engineer-
ing, ICFEM 2011. Lecture Notes in Computer Science, vol. 6991, pp. 601–616. Springer
(2011)

24. Gimson, R., Bowen, J.P., Gleeson, T.: Distributed computing software project. In: 2nd Work-
shop on Making Distributed Systems Work. pp. 1–3. ACM (Sep 1986)

25. Gnesi, S., Margaria, T.: Formal Methods for Industrial Critical Systems: A Survey of Appli-
cations. IEEE Computer Society Press, Wiley (2012)

26. Hall, J.A.: Z word tools. SourceForge (2008), http://sourceforge.net/
projects/zwordtools/, accessed 28 September 2015

27. Henson, M.C., Reeves, S., Bowen, J.P.: Z logic and its consequences. CAI: Computing and
Informatics 22(4), 381–415 (2003)

28. Hinchey, M.G., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Software engi-
neering and formal methods. Communications of the ACM 51(9), 54–59 (Sep 2008)

29. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10), 576–580 (Oct 1969)

30. Hoare, C.A.R.: Communicating Sequential Processes. Series in Computer Science, Prentice
Hall International (1985)

31. Hörcher, H.M.: Improving software tests using Z specifications. In: Bowen, J.P., Hinchey,
M.G. (eds.) ZUM’95: The Z Formal Specification Notation. Lecture Notes in Computer
Science, vol. 967, pp. 152–166. Springer (1995)

32. ISO: Information technology – Z formal specification notation – syntax, type system and
semantics. International Standard 13568, ISO/IEC (Jul 2002)

33. Jones, R.B.: ICL ProofPower. BCS-FACS FACTS Series III, 1(1), 10–13 (Winter 1992)
34. Morris, F.L., Jones, C.B.: An early program proof by Alan Turing. IEEE Annals of the His-

tory of Computing 6(2), 139–143 (Apr 1984)
35. Nicholls, J.E.: A survey of Z courses in the UK. In: Nicholls, J.E. (ed.) Z User Workshop,

Oxford 1990. pp. 343–350. Workshops in Computing, Springer (1991)
36. Nicholls, J.E. (ed.): Z User Workshop, York 1991. Workshops in Computing, Springer (1992)
37. Saaltink, M.: The Z/EVES system. In: Bowen, J.P., Hinchey, M.G., Till, D. (eds.) ZUM’97:

The Z Formal Specification Notation. Lecture Notes in Computer Science, vol. 1212, pp.
72–85. Springer (1997)

38. Smith, G.: The Object-Z Specification Language, Advances in Formal Methods, vol. 1.
Springer (2012)

39. Spivey, J.M.: The Z Notation: A reference manual. Series in Computer Science, Prentice Hall
International (1989/1992/2001), http://spivey.oriel.ox.ac.uk/mike/zrm/

40. Spivey, J.M.: The fUZZ type-checker for Z. Tech. rep., University of Oxford, UK (2008),
http://spivey.oriel.ox.ac.uk/mike/fuzz/

41. Stocks, P., Carrington, D.: A framework for specification-based testing. IEEE Transactions
on Software Engineering 22(11), 777–793 (1996)

42. Turing, A.M.: On computable numbers with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society 2(42), 230–265 (1936/7)

43. Turing, A.M.: Checking a large routine. In: Campbell-Kelly, M. (ed.) The early British com-
puter conferences. pp. 70–72. MIT Press, Cambridge, MA (1949/1989)

44. Vilkomir, S.A., Bowen, J.P.: Formalization of software testing criteria using the Z nota-
tion. In: Proc. 25th Annual International Computer Software and Applications Conference
(COMPSAC’01), Chicago, Illinois, USA. pp. 351–356. IEEE Computer Society Press (8–12
October 2001)

45. Vilkomir, S.A., Bowen, J.P.: From MC/DC to RC/DC: Formalization and analysis of control-
flow testing criteria. Formal Aspects of Computing 18(1), 42–62 (Mar 2006)

20

APPENDICES

A Glossary of Z Notation

A comprehensive glossary of the Z mathematical and schema notation as used in this
chapter is included here for easy reference. Earlier versions of this Z glossary have been
distributed to students on Z courses delivered by the author and others. These have also
been made available online and in published form [9]. The notation is only explained in
summary form. For more detailed information on the formal meaning of Z constructs,
see [32, 39].

Z Glossary

Names

a ,b identifiers

d ,e declarations (e.g.,
a : A; b, ... : B ...)

f ,g functions
m ,n numbers
p,q predicates
s ,t sequences
x ,y expressions
A,B sets
C ,D bags
Q ,R relations
S ,T schemas
X schema text (e.g., d , d |p or S)

Definitions

a == x Abbreviation definition

a ::= b | ... Free type definition (or
a ::= b〈〈x 〉〉 | ...)

[a]
Introduction of a given set (or
[a, ...])

a Prefix operator
a Postfix operator
a Infix operator

Logic

true Logical true constant
false Logical false constant
¬ p Logical negation
p ∧ q Logical conjunction
p ∨ q Logical disjunction

p ⇒ q Logical implication (¬ p ∨ q)

p ⇔ q
Logical equivalence
(p ⇒ q ∧ q ⇒ p)

∀X • q Universal quantification
∃X • q Existential quantification
∃1 X • q Unique existential quantification
let a == x ; ... • p Local definition

Sets and expressions

x = y Equality of expressions
x 6= y Inequality (¬ (x = y))
x ∈ A Set membership
x /∈ A Non-membership (¬ (x ∈ A))
∅ Empty set
A ⊆ B Set inclusion

A ⊂ B
Strict set inclusion
(A ⊆ B ∧ A 6= B)

{x , y , ...} Set of elements
{X • x} Set comprehension
λX • x Lambda-expression – function
µX • x Mu-expression – unique value
let a == x ; ... • y Local definition
if p then x else y Conditional expression
(x , y , ...) Ordered tuple
A×B×... Cartesian product
PA Power set (set of subsets)
P1 A Non-empty power set
FA Set of finite subsets
F1 A Non-empty set of finite subsets
A ∩ B Set intersection
A ∪ B Set union
A \ B Set difference⋃

A Generalized union of a set of sets⋂
A Generalized intersection of a set of

sets

21

first x First element of an ordered pair
second x Second element of an ordered pair
#A Size of a finite set

Relations

A↔ B Relation (P(A×B))
a 7→ b Maplet ((a, b))
domR Domain of a relation
ranR Range of a relation
idA Identity relation
Q o

9 R Forward relational composition

Q ◦ R
Backward relational composition
(R o

9 Q)
AC R Domain restriction
A−C R Domain anti-restriction
R BA Range restriction
R −BA Range anti-restriction
R(| A |) Relational image
iter n R Relation composed n times
Rn Same as iter n R

R∼ Inverse of relation (R−1)
R∗ Reflexive-transitive closure
R+ Irreflexive-transitive closure

Q ⊕ R
Relational overriding
((domR −CQ) ∪ R)

a R b Infix relation

Functions

A 7→ B Partial functions
A→ B Total functions
A 7� B Partial injections
A� B Total injections
A 7→→ B Partial surjections
A→→ B Total surjections
A�→ B Bijective functions
A 7 7→ B Finite partial functions
A 7 7� B Finite partial injections
f x Function application (or f (x))

Numbers

Z Set of integers
N Set of natural numbers {0, 1, 2, ...}

N1
Set of non-zero natural numbers
(N \ {0})

m + n Addition
m − n Subtraction

m ∗ n Multiplication
m div n Division
m mod n Modulo arithmetic
m ≤ n Less than or equal
m < n Less than
m ≥ n Greater than or equal
m > n Greater than

succ n
Successor function
{0 7→ 1, 1 7→ 2, ...}

m . . n Number range
min A Minimum of a set of numbers
max A Maximum of a set of numbers

Sequences

seqA Set of finite sequences
seq1 A Set of non-empty finite sequences
iseqA Set of finite injective sequences
〈〉 Empty sequence
〈x , y , ...〉 Sequence {1 7→ x , 2 7→ y , ...}
s a t Sequence concatenation
a/ s Distributed sequence concatenation
head s First element of sequence (s(1))

tail s
All but the head element of a
sequence

last s Last element of sequence (s(#s))

front s
All but the last element of a
sequence

rev s Reverse a sequence
squash f Compact a function to a sequence

A � s
Sequence extraction
(squash(AC s))

s �A
Sequence filtering
(squash(s BA))

s prefix t
Sequence prefix relation
(s a v = t)

s suffix t
Sequence suffix relation
(u a s = t)

s in t
Sequence segment relation
(u a s a v = t)

disjoint A Disjointness of an indexed family
of sets

A partition B Partition an indexed family of
sets

Bags

bagA Set of bags or multisets (A 7→ N1)
[[]] Empty bag
[[x , y , ...]] Bag {x 7→ 1, y 7→ 1, ...}
count C x Multiplicity of an element in a bag

22

C] x Same as count C x

n ⊗ C Bag scaling of multiplicity
x in C Bag membership
C v D Sub-bag relation
C]D Bag union
C −∪ D Bag difference
items s Bag of elements in a sequence

Schema notation

S
d

p

Vertical schema.
New lines denote ‘ ; ’ and ‘∧’.
The schema name and predicate
part are optional. The schema
may subsequently be referenced
by name in the document.

d

p

Axiomatic description.
The definitions may be non-
unique. The predicate part is
optional. The definitions subse-
quently apply globally in the
document.

[a]
d

p

Generic constant.
The generic parameters are op-
tional. The definitions must be
unique. The definitions subse-
quently apply globally in the
document.

S [a]
d

p

Generic schema.
Generic version of schema defi-
nition.

S =̂ [X] Horizontal schema
[T ; ... | ...] Schema inclusion
z .a Component selection (given z : S)
θS Tuple of components
¬ S Schema negation
pre S Schema precondition
S ∧ T Schema conjunction
S ∨ T Schema disjunction
S ⇒ T Schema implication
S ⇔ T Schema equivalence
S \ (a, ...) Hiding of component(s)
S � T Projection of components
S o

9 T Schema composition (S then T)

S>>T
Schema piping (S outputs to T
inputs)

S [a/b, ...]
Schema component renaming (b
becomes a , etc.)

∀X • S Schema universal quantification
∃X • S Schema existential quantification

∃1 X • S
Schema unique existential
quantification

Conventions

a? Input to an operation
a! Output from an operation

a
State component before an
operation

a ′ State component after an operation
S State schema before an operation
S ′ State schema after an operation
∆S Change of state (normally S ∧ S ′)

ΞS
No change of state (normally
[∆S |θS = θS ′])

23

B Altran Z Course Description and Extracts

Here an overview of the material is given, together with sample pages from the Altran
Z Course, which are reproduced with permission as examples of the style of the course
material. The examples are intersperse with some commentary on the various parts
of the course. Note that all the material reproduced from the Z course itself in this
Appendix is Copyright c© Altran. The sample pages are designed to give a feel for the
style of the course. For the full Z course and its delivery, contact Altran UK.

Altran has two overlapping Z courses for Z “readers” and a longer course for Z
“writers”. The extracts included here are from the more widely delivered Z Readers
Course. Introductory slides on questions such as what is a specification, what is a formal
specification, what is a Z specification, and what is taught during the main part of the
material are presented at the start of the course.

The course starts with a gentle introduction to specifications in general, followed
by formal and Z specifications in particular. In summary, a specification covers what
a system does as opposed to how it does it. The specification documentation provides
an interface between the specification team and the implementation team. A “black-
box” specification concentrates on the external behaviour, as visible from outside the
system. A specification must cover how the system affects its environment. Of course,
the specification can only cover the immediate environment relevant to and controlled
by the system.

The system being specified needs a model of the environment. This system can
use information within the model and also change the model’s state. This model is an
abstract view of the actual world environment. It is an engineering judgement to decide
what model is reasonable and appropriate for a given system. It should include all the
relevant features of the real world in a simplified manner, but not so simple that pertinent
information is not included in the model.

A formal specification is based on mathematics. This is useful because of various
properties of mathematics, such as the ability to abstract, its power to specify in a simple
and universal way with the soundness that mathematics can provide, enabling formal
reasoning for example. One widely used approach is “model-based” specification. For-
mal notations and methods appropriate for a model-based approach include ASM, B,
VDM, Z, etc. [17]. This type of approach includes a mathematical model of the state
associated with the system and operations that change the state of that system. This in
operation, there is an initial state, followed by the first operation, a modified state after
that operation, another possibly different operation, yet another modified state, and so
on.

Such a specification covers functional attributes of the systems behaviour. Non-
functional aspects such as availability of the system, performance, reliability, usabil-
ity, size aspects, etc., are normally covered in alternative ways. More implementation-
oriented aspects such as features like concurrency and real-time issues, may not be
covered by all formal notations in a convenient manner. This is certainly true of the Z
notation, which is a general purpose specification language. A formal specification does
not normally cover design aspects of the system. In fact, it is quite possible to produce
a specification that cannot be implemented in practice (by introducing false into the

24

specification, typically through some incompatible logic, e.g., P ∧ ¬ P), obviously
something to avoid in a real engineering situation.

The Z notation is normally used in a model-based style, although this is by con-
vention and for convenience rather than being a built-in aspect of the notation. A Z
specification includes mathematics (logic and set theory), a structuring approach (using
the schema box notation), some conventions for the model-based aspects, and accom-
panying interleaved natural language text (typically English). Typically the informal
description is of a similar length to the formal specification, providing an aid to the
understanding of the mathematics and emphasising the connection with the real world.

The mathematics employed by Z is relatively simple, being based on first-order
predicate logic and set theory. The sets in Z are strongly typed with basic sets (also
known as given types) and simple constructors. More complex sets can be created, such
as relations (normally sets of pairs), functions (relations where at most one element in
the range is associated with each element in the domain) and sequences (modelled as
finite functions mapping a contiguous set of natural numbers from one upwards to the
elements in the sequence). All of these are thus modelled as sets in Z. Many Z operators
can be applied across these different set structures.

Both infinite and finite sets may be specified in Z, although practical implemen-
tations of the specification will be finite of course. The Z notation has a relatively few
number of constructs that are fundamental to the language. There is a library (a “toolkit”
[39]) of generally useful notation that is formally defined in Z. Additional constructs can
be formally defined for a particular specification in a similar way if desired.

The mathematical notation of Z alone would be adequate for a very small specifi-
cation but a structuring technique is needed for a specification of any size. Z has such a
mechanism in the form of schemas, which use a box-like visual notation to encapsulate
the mathematical description. Schema boxes have names and can thus be referenced
later in the specification. Common fragments of specification can be formulated and
explained once, then used through reference to their schema name subsequently. This
allows partial specifications to be formulated and then combined by including schemas
within other schemas and also using a calculus of schema operators that match the
logical operators in Z. Conjunction for building up specifications and disjunction for
dealing with error cases are the most useful operators in practice.

There are a number of conventions in Z that make both writing and reading Z easier
once they are understood. These conventions are used in the naming of both variable
components and schemas. They aid in the concise specification of operations with state
changes and also the identification of inputs and outputs for such operations.

25

B.1 Approach Sequencing Case Study

The Altran Z course includes an extended case study for approach sequencing of air-
craft for an airport. This is gradually developed with features to introduce aspects of
the Z notation in a measured manner. Initially sets and their associated operators are
introduced.

First the informal requirements are presented, using an English description covering
messages that can be sent and simple diagrams, such as a system context diagram to aid
in analysing the requirements and an entity-relationship diagram to help in modelling
the world under consideration. Next the operations that the system must perform are
considered. Once a list of operations has been formulated, it is possible consider a
formal specification of the system in terms of an abstract state and operations on that
state. Each operation has inputs, a starting state, a finishing state, and outputs.

To formulate any specification in Z, sets are needed, so the course first introduces
the simplest form of sets available, with no internal structure. Venn diagrams are used
to introduce the standard set operators of union (∪), intersection (∩), set difference (\).
The concept of the size of a set using the “#” operator is also introduced. In Z, the
set of integers (Z) is assumed to exist for all specifications. Additional basic sets can
also be introduced (e.g., [X] to introduce a set called X). More complex sets can be
constructed using sets of sets (P for infinite sets, F for finite sets, and F1 for finite
sets with the empty set excluded), sets of pairs (using ×), and also schemas for more
complex internal structure where needed. Sets can contain sets themselves, and so on
in a nested manner if desired.

Using simple sets, a system state is specified, with a specific initial state for the
system when it starts. Operations with before and after states, as well as inputs, are also
defined. The conventions for schema operations are introduced informally (e.g., ∆ for
change of state schemas, ′ appended for after-state components, and ? appended for
inputs).

26

²²²²²² ð ððððððð ððððððððð ðððððððððððð

�ðð�ðððððð�ððððððð���ðð�ð�ð�ð�ðððð�ð	ðð�ððð��ð
� �ðððððððð

�	ðð

Ò ÒÒÒÒÒÒÒÒÒÒÒÒ

���ððð�ððð ð�ð
�ð �ðð �ð�ðð
ð
ð �ðð ð�ð� �ð�ð �ð
ð��� �ð �ð��ðð�ð ð�ðð��ð���ððð �ððððð ��ð �ðððð�ð�ð ðð��

ð�����ðð�ð�ð��ð�ð�ð�ðð�ð�ðððð��� ��ðð
ðððð�ððð��ðð�ð�ð�ð����ð��ððððð�����ðð�ðð��ð
ð�ð
ð
ð�ð�ð�ð
ð

��ððð�ððð�ððððððð ��ððð�ð
�ððð��ð�ðð�ðð���ððð���ð	ð����ððð�ð�ðð�ð�ðð�ðððððð�ðð�ð�ðð
ððð
�ð�ð
ð��ðð

ððð
ð�ððð�ðð�ð�ð��ð�ðððð��ððð�ð�ð�ðð�ðð���ðð��ð�ð���ð�ðð�ððð�ð� ðð�ððððð��ðð�ððð��ððððð�ð���ð	ð�

ððð���ðð�ðð��ð���ðð�ð�ðð��ð��ðð��ð�

ððð ��ð �ð
ð���ð	ð�ð�ðððððððð���ð�ðð�ð�ððððð��ðððð��ðð
ðððð����ðððððð��ððð�ð�ð�ðð���ðð

�ðð ��ð �������ð�ðð
ð�ðððð�ðð���ðððð���ð�ðð��ðð�ð����ððððððð��ððð�ð�ð�ð�ðð�ððð�ðð��ð
�ð�ðð�ð��

�ðð��ððð����ððð�ððð�ðððð

ðð ��ð ððð������ðððððð�ð��ðð �ðð
ð�ðð�ð �ð
ðð����ð��ðð ����	ð���ððð �ð
ð �ððððð�ð�ððð�ððð �ðð ��ð

�ðððð���ðð���ð�ðð�ðððððð�ð�ðð�ðð�ðð

ððð ��ð �������ð�ðððð�ðððð��ðð�ð��ððð�ðð��ð���ððð���ð�ðð��ðð
�ððð�ðð�ððððððð��ðð�ð
ð�ð����ððð

�ð
ð�ðððð�ðððð����ð��ððð�ðð��ð���ððð��ðð��ðð�ðð�ðð��ððð����ð�ðððð��ðð�ð
ð

ð����ððð�ð�ðð�ðð�ðððð���ðð���ð�ðð�ðððð��ðð�ðð��ð��ð�ð
ð�ðð�ð�ðð
ðð�ðð�ð�ð���ð�ðððð�ð	ð�ðð�ððð�ððð

�ð��ð
ððð����ððð
ð�ð�ðð
ððððð��ððð�ðð���ðð�ððð�ððððððð��ððððð�ðð��ð���ðððð��ððð�ðð��ð���ððð�ðð��ðð

�ð���ðð�ð�ðððð�ðð�����ð ð����ððððð�ð�ðð
ððððð��ð ��²� �ð
ðð�ð�ðð�ð� ��ð� ð�ðð�ððððð
ð�ðð�ð��
ð�

ð����ðð�ð
ð�ðððð��ð�ðð��ððð�ð�ð�ððð����ððððð�ð�ðð
ðððð ²�²²²��²� �ð
 ��²�²��²� �ð
ðððððð��ð�ð�ð

ðð�ððððð�ð�ðð�ðð��ðððððð ��ððð��ðð�ðð �ðð��ðð�ð
ð�ððð����ððððð
ðððð��ððð�ðð�ðð���ð��ð
ðððððððð��ðð�

��ð �����²�� �ð
ððð���ð�ððð ��ðððð��ð�ðð�ðððð ��ððð�ðð��ð���ððððð����ððð�ð
ðððð��ððð ��ðð�ð	�ð��

��ð	ð�	ðð����ð�ððððð
ð�����ðððð�ð
ðð�ð�ðð�ð� �� �ð ððð
ð�ðð�ð��ðððð����	ðððððð�ðð��ð���ðððð�ð

�ððð��ððððð�ð
ð ���ð�ð��ðð�ðððð�ðð�ððððððð	�ð
�ð	ð��ðð�ðð�ððð�ð����ððððððð��ððð�ð�ð�ððð����ððð�

ð�ð�ðð�ð� ��ððððð���ðð��ððððððð��ððð�ðð��ð���ðððð�ðð�ððððð
ð�ðððð�ðððð��ðð�ð��ðððððððð�ððððð�ð

ðð���ð�ððððð�ð�ð�
�ð	ð�ðð��ððð�ð��ð�
ðð���ð���ððððððððððððð�ð
ð�ðð�ð��	�ð�ð�ð� ðð �ðððð�ðððð�ðð��ð

ðð�ððð���ððððððððð��ðð�ð��ðð�ðð��ð���ððð

����ðð	�ð���ð��ðððð����ðððððð
ð�ðð��ððð�ðð��ð���ððð�ðð�ð�ðð
ððð
ð�ð
ð
ðððð��ð
�ð��ð�ðððð�ðð��ðð�ð

����ð��ðððð�
ððð����ð���ð
���ð��ð�ð�ððð���ð��ðððð����ððð�ððððð�ð
�ððððððð��ð� ��ðð
ð����ððððð���ð��ð

ðð�ððð�ð	ðð�ð�ð�ðð�ð�� �ð �ð�ð
ð����ððððð	�ð
ð����ð�ðð	��ðð �ð ���ð ��ððð�ð�ðððððð�ðð��ð���ððð�ð

�ð���ð�ðð ���ðð���ððð �ð �ð��ð ��ðð ðð�
ðð� � ðð���ð�ð ððð ���ð ��ðð ðð����ððð ððð
ð �ðð �ðð�ð
ð
ð �ðð �ð

���ðð
��ð

� ���ð�ðð�ðð
 ���ðð�ð�ð�ð�ðððð�ð	

27

B.2 Relations and Functions

Sets are the most basic form of structuring abstract data in Z. For more structure where
pairs of elements are associated with each other, relations are available, with further
specific operators available for handling them. Elements in the domain and range of a
relation may be related in arbitrary ways (i.e., a many-to-many mapping). Functions are
a special sort of relation in Z where elements in the domain map to at most one element
in the range (i.e., a many-to-one mapping). This allows standard function application
for example in the form f (x) (or even just f x in Z), where f is a function and x is
an element in the function’s domain. Care must be take if f is a partial function (i.e.,
the entire domain is not necessarily mapped) to ensure that x is in the domain of f
(formally, x ∈ dom f). Otherwise f (x) will be undefined, resulting in an arbitrary
value in the two-state (true/false) logic of Z.

Pairs of elements using the Cartesian product operator (×), together with the “maplet”
notation (7→) are introduced. Relations (↔) are explained using simple diagrams with
a domain(“ dom”), range (“ran”), and mappings between elements in the domain and
range. Additional operators that only apply to relations are introduced, such as domain
restriction, C), domain subtraction (or anti-restriction (−C), range restriction (B), and
range subtraction (or anti-restriction, −B), are covered. These operators are not so com-
mon in standard set theory, but have been found to be useful for manipulating relations
in practical Z specifications so are included as part of the standard language. The use of
infix relational operators (such as ∈ and ⊂) in Z is explained.

Next functions, a special sort of relation in Z, are covered, including function ap-
plication (e.g., f (x)). Relational overriding (⊕), often used with functions, is also ex-
plained. This operator is another more unusual feature of Z, but is very useful in cases
where a function needs a part of it modifying in some way.

With some basic aspects of relations and functions covered, the course material
continues with the case study, adding a state component that uses a partial function
(7→), using schema inclusion, which is also explained. The concept of a state invari-
ant (a predicate in a state schema that applies to all possible states in the system), is
introduced. The initial state and operations schemas previously defined using sets are
augmented with the newly defined partial state schema using schema inclusion, together
with additional inputs and predicates as needed.

28

²²²²²² ð ððððððð ððððððððð ðððððððððððð

�ðð�ðððððð�ððððððð���ðð�ð�ð�ð�ðððð�ð	ðð�ððð��ð
� �ðððððððð

�	ðððð

� Ò���ÒÒÒÒ���ÒÒ��ÒÒÒÒÒÒÒ�

��Ò� Ò�	
��
�	���

�ðð ð�ðð �ðð ���ðð ðððð�
ððð
ð ðð�ðð ��ðððð �ð��ðððð ���ðð ðð �ð�ððð��ð ð�ððð�ððð�ð ðð�ðððð ��ð� �ðð

��ð�ðð��ððððð�ððð���ðð���ð�ððððð �ðð�ð
ð�ð ðð�ððððððð����ððð ððð�ð�ðð��	��ð�ð�ð�ð ��ð
ðððððð�ð�ð��ð �ð

ðð���ðð ���ð	ðð �ð	ð��ððð �ð ð�ð�� ����ð ��ðð�ð ��ðð ���ð��ð�ððð ððð �ð ��	��ð ððð�ð �ðð ��ðð ��� ðð ��ð

ðð����ððð���ð�ð��ðððð�ðð���ðð�ð�ððð�ðððððð�ð
ð��ðð��	��ðð�ðð��ðð�ð
ð ���ðð�ððððð
ð�ððð� ���ððð

�ð��
�ð	ððð�ð�ð��ð����ð	ð��ð�ððð�ððð �²�²� ðððð��ðð�ððð�ðððð�����ðð�ððððð�
ð���ð � ðð�ð��ððð

�ð��ðððð �ððð 		�		²		 �²²	 ���ðððð �ðð ðð ððð�ð ðð�ðð �ððð ð���ð
 ²�²²²��²�ð � ��²�²��² �ðð ðð �ðð �ðð�ð �

ð�ðð���ð��ð
ðððððð����ððð

ðððððð
��ððð�ð
ðð�ð�ðð��ðð
ðð
ðð�ð
�ðð��ðð

�ðð
ðð��ððð�ð��ð����ðð���ð�ððð�ððððð�ðð ��ðð ð�ð	�ðð���ððððð�ð��	��ð����ð ��ðð����ð�ððððð
ð ��ðððð�

���ð�ðððð���ððð���ð�ððð���ðð���ðððððð��	��ðð����ð���ðð���ðð�ðð��ð �²²²���²²	�²����² ððð���%��

���� Ò �ð
ð�ðð�ð���ðð

���%�� l Ò

�ðð�ðð�ðð
ðð��ðð

��	�����ð�ð���%�� l Ò

��ðð 	�		²
²² ð�ðð���ð � ���ððð���ð

(��ððð ðððð

)��ððð �ðð�ðððð���ð�ðððð
ð�ðððð�ððððð�ð�ð���ð�

+ l , �ð �ðððððððð
ð,ð�ð�ðð��ðð�ðð
ðð�ðððð+ð����ð,,ðððð,ðð�ðððð���ðððððð�ð+ð�ð
ð,,

�ðð ð�����ð�

/��ð�/ l /ð�ð
/ð/ð/� ð�ð�
�ð� ð�ð�
/

ðððð�ð ���� � ðð����ððð�ð

� ðð����ððð�ðð�ððð� ðð�ððð��ððð
ðððð���ððððððð�ð�ðð�ððððð�ð��ð ð��ððððð�ðð

� ðð����ððððð�ð��ðððð��ð ðð�ðð+ð�ð
ð,ð�ðð��
ððð�ððððð�ð�ðð�ððððð��ððððð�

� �

��ððð

� �+ �ð
ð� �,

+ ,

� ��ð�ð�ððð����ðððððð�ðð�ðð��ðð	��ðððð�ðð�ð��ð����ð� �����ð	�ððð����ð	ðð�ð�ðð�ððððððððððð�ð�ð

� ���ð�ðð�ðð
 ���ðð�ð�ð�ð�ðððð�ð	

29

B.3 Sequences

Sequences in Z are modelled as a special sort of function where the domain consists of
natural numbers from one up to the size (length) of the sequence. Further operators are
available specifically for sequences, notably concatenation of two sequences to form a
new sequence.

The sequence notation of Z (“seq” and “〈...〉”) is introduced and an example is
presented. Injective sequences (“iseq”), in which all the elements of the sequence are
different, are also covered. Sequences can be concatenated (a). It is also possible to
select from (or filter) a sequence using a set of elements that may be in the sequence
(�), resulting in a new sequence with potentially fewer elements in it.

The state for the case study example is augmented with an injective sequence, re-
lated to an existing state component with an invariant predicate.

There are a significant number of further operators for use with sequences in Z, as
listed in Appendix A. Perhaps the most useful are the functions head for returning the
first element in a non-empty sequence, tail for returning all except the head of a se-
quence as a new sequence, last for returning the last element in a non-empty sequence,
and front for returning all but the last element of a sequence as a new sequence. In
addition, rev can be used to reverse any sequence, even the empty sequence.

A further but less-used feature of Z is a “bag” (also known as a multiset), which
is like a set but used where multiple copies of the same element are needed. This is
modelled in Z as a partial function from the type of the elements in the bag (e.g., X), to
strictly positive natural numbers (N1, i.e., all natural numbers except zero), indicating
the number of elements in the bag. If this number as always one, the bag would act like
a normal set. There are various built-in operators in Z for handling bags, as listed in
Appendix A. Some of these have counterparts with operators on standard sets, such as
bag membership, the sub-bag relation, bag union, and bag difference, but need different
definitions to handle the multiplicity of elements appropriately.

Most of the operators used in Z are defined formally within Z using generic defini-
tions, as part of a mathematical “toolkit” [39]. It is often the case for large specifications
that some additional operators will also be specified in this way, to enable a shorter and
more understandable specification overall. Some could be deemed generally useful and
form the basis for an augmented toolkit at an organisation that produces many Z speci-
fications.

30

²²²²²² ð ððððððð ððððððððð ðððððððððððð

�ðð�ðððððð�ððððððð���ðð�ð�ð�ð�ðððð�ð	ðð�ððð��ð
� �ðððððððð

�	ðð��

� ���Ò�ÒÒ��

ðð� ���ð ��ðð �ðððð����ððð ��ðð�ð ��	��ðð ��
ð �ðððð �ð
ð��ð
�ð ��ð ��ðð ���ðð �ðð �ðð�ð ��ð ��ðð ���ðð�ð�

ðð�ðððððð��ðð�ðð ��ððð�ðð�ð�ð
ð�ðð�ð
ð�ð���ð�ð�ð�ðð���ð
���ð��ð	ð�ðð�ðð�ðð�ððððð�
ð�ð
ð�ð��ð�ðð�

���ð ��ðððð����ððð����ððð���ð�ð
ð��ðððððððððð�ð��ð�ð�ðð
ðð�ð	ð�ð���ðð��

ð
�ð�������ðð��ð

�ð
ð�ððððð�
ð����ð��ðð�ð����ð��	��ðð�ðððððð���ð
ð �ðð��ðð���ðð�ð�ððð�ðððððð��ð����ð	ð�ð��ð����

ðððð��ðððððð�ð���%��ð�ðð�

ð
�ð�������ðð�ðð(ð�ð�ðððð��ðððððð��ðððð��ðð�ðððð�ðð��ð���ð

���ððð�ðððð�����ð�ð�ðð��ðð	��ð�ðððð	��ð�ðð�ðð���ðð�ðð�ð
ð�ð��ð �²��² ððð��	��ðð�ðð��ðððð�ðððððð

��ðððððððð�ððð�ðððð
ð
ððððð���ðð�ðð��ð �����²��ð

��Ò� Ò�� � ������������
�����

� ðð�ðððððð�ðð�ðððð
ððð
ððð��ðð��ððððððð��ðð�ððð��ðð��ð�ðð�ðð�ððð�ðððððð�ððððð��ððð
ðððð�ððð�ð

ðð

�ððð�ð�ððð�ððððððððð���%��ðð�ðð�ðð�ð�ððððð��ðððððð�ð��ððð��ðð��ððð��ðððð�ðð���%��� ��ðððð��ð

ð���ððððð��ðððððð��ððð�ðð��ðððð��ððððððð�ððð�ðð��ðð�ðð	��ðððð��ðððð�ðððððð

,ðð ð�ðð�ð��ð

ð�ðð�ððð�ð���%��

���ð�ð�ðð���ð �ð���ð	

ð�ðð� Ò ���%��

����ð��ððð��ð�ððððð�ð��ð�ðððð��ðð
ð���ððððð��ðððððð��ððð

ðððððð ðð����ðð

��ðððð�ðð�ðð�ðð���ððð����ððð�ðð��
ð
ð�ðð�ðððð�ðð�ðð�ð���ð�ðð�ð��ðððð�ððððððð

�ð	�ðð�ð�ð�ð�ðð�ðððððð
ð�ðð
�ð����ððð�ðððððð�

9����ð9

�ðð�ððð�ððððððððð��ðððð��ð�ðððð��ððð
ððð�ðð

���ð�ðððð�
ðð�ð����ð�ðð
�ð����ð
ð����ðð�ððð�ðððððððð����ððð�ð

/ð ��ð� ��ð
 ð/

��ððð����ððð�ðððððð�ðð�ð���ððð99ð

� ð����ðð�ðð�ð����ðððððð����ððð��	��ð���ðð��ðððð��ð��ð	ðððð�ðð�ð�

9 �ððð�ðð�

�ð�ðð
ðð��ðð�

ððð�ðð�ð�

ð����ðð�

�ð
ð� 9

� ���ð�ðð�ðð
 ���ðð�ð�ð�ð�ðððð�ð	

31

B.4 Logic

As well as sets in Z, first order predicate logic is also used as the main form of detailed
specification, with standard logical operators on predicates. Note that the logic of Z is
two-valued, with only true or false possible. There is no “undefined” logical value,
unlike some other logics. If any expressions are undefined in a predicate, Z handles
this by allowing the predicate to take either a true or false value. This is normally
something that is not desirable in real specifications, so it is avoided in practice through
careful formulation of the specification, with appropriate error handling where needed.

The course initially introduces propositional logic in which statements are true or
false . The standard logical connectives of negation (“not”, ¬), conjunction (“and”, ∧),
disjunction (inclusive “or”, ∨), implication (“implies”, ⇒), and equivalence (“equiv-
alent”, ⇔) are introduced using truth tables. The binding powers (strongest binding
first in the list above) and use of brackets to override this if needed are explained. An
example of a truth table for a more complex expression is also presented.

Next predicate logic is covered, in which variables are also included. In Z, variable
components are typed, so predicates and expressions in them must respect this typing.
Existential quantification (∃), universal quantification (∀), and the nesting of quantifi-
cations are introduced. All quantified variables in Z must be declared with a type when
introduced since Z is a typed language. Selective quantification is explained, in which
a predicate is included after the declaration part (separated by “|”) to restrict the quanti-
fied variables further before the main predicate of the quantification (separated by “•”)
is stated.

Next, set comprehension (of the form {... | ... • ...}) is explained, with a number of
examples. This has a similar form to quantification in Z. Set comprehension can always
be used to define a set in Z if there is no other more convenient way to do it.

The case study is then used to demonstrate an axiomatic description that introduces
a global constant to the specification, a typical use of this construct. Then a concept of
time is introduced to the state, using a natural number that increases as time progresses.
Next an illustration of how a quantified predicate may be determined and added as an
invariant for the state is explained, as several possible candidate invariants. An operation
to model time passing is presented, including a change of state to the system that may
occur as time passes. This is an operation that the user cannot directly control, but will
be interleaved with other user operations.

The schema operations are augmented to handle the additional state now being mod-
elled in the system. The complete state, and initial state, and final versions of the oper-
ations are presented.

32

²²²²²² ð ððððððð ððððððððð ðððððððððððð

�ðð�ðððððð�ððððððð���ðð�ð�ð�ð�ðððð�ð	ðð�ððð��ð
� �ðððððððð

�	ðð
ð

� �Ò�ÒÒ

�ððð�ð�ðð�ðð��ðððððð�ðð�ð�ð�ð�ððð
ðððð��ð
ð�ðð��ðð��ð	ð�	ððððð�ð	�ðð

�ððð�ð��ð�ð�ðð��ðð��ðð�
�ð�ðððððð�ð	ððð�ððððð���ðð��ð	ð�	ððð��ðð����ð	ð����ð���ð�ððð�ð�ð� ��ðð��ðð

�ðð�ððð�ð��ð�ðð�ððð�ð�ð�ððð��ðð��ðððððð�ð	�ð��ðð���ð�ðð�ððð���ð
ð�ðð
�ð��ðððð�ððð�ðð�ðð��ððððð
ððð��

ð����ðð�ðð
�ð��ððð���ð

ð���ð/ðð�� � /��	��/ ðð����//

ðð

ð�ððð�ð � ��	��ð

�ð�ð�ðð�ð �ð ð��ððððð ��ðð ðð�ððð ��ðð�ð ��ðð ���ð �ðð ����ð ���ðð �ð ðððð �ðððð ðð���ð� �ð	�ð��

ð��ðððð�ðððð

��Ò� �
�����	�����������

� �ðð�ðð���ððð�ðð�ðð���ð�ðð�ð���ð�ð�ððð���ððð�ððððððð���ððð

ð < ð / �

ð � /ð�ðð�ð�/

� < � / ð

ð�ð���ð�ðð�ððð������ð

=�ð� ððð�ðððððð�ðð ²�² �ðð�ðð���ððð�

�ððð�ððð�����/

%ðð����

�

ð�ð�ððð

� ���ð�ðð�ðð
 ���ðð�ð�ð�ð�ðððð�ð	

33

B.5 Analysing the Specification

Once a specification has been formulated, it is possible to reason about it. This may be
informally in the head of the engineer or more formally. The former if most typical in
industrial use of Z. The Altran Z course illustrates some of the thought processes and
the techniques that are helpful in such reasoning.

Proofs associated with a specification can check a number of properties. Firstly an
initial state must exist for the system to be able to start at all. Then preconditions of
operations can be checked. If they are not true , it is normal to add schemas to cover
the error conditions (the negation of the precondition for the successful operation) so
a complete “total” operation can be produced that has an overall precondition of true
and typically an output that indicates if an error occurred. Any invariant predicates are
consistently applied to the state are all times. If these or other predicates reduce to false ,
operations may not be implementable.

Finally, challenge theorems demonstrating desirable properties are beneficial when
checking a specification. If true, they increase confidence in the specification since our
understanding is compatible with the mathematical description. If false, it indicates a
possible misunderstanding and may necessitate a change in the specification. Even with
all these checks, the specification may still not be “correct” with respect to informal
notions of what the system should do. For that, engineering judgement, expertise, and
experience is needed.

The course material provides examples of checking these issues using the case study
specification. It also includes its own summary of the Z notation.

34

²²²²²² ð ððððððð ððððððððð ðððððððððððð

�ðð�ðððððð�ððððððð���ðð�ð�ð�ð�ðððð�ð	ðð�ððð��ð
� �ðððððððð

�	ððð

� �Ò����ÒÒ��Ò������ÒÒ�ÒÒ�ÒÒÒÒ

ðððððð��ðð�ððð��ððððð�ðððð���ððð����ððð�ðð����ð�ððð�ðð�ð�ð����ð�ðð�ðð����ð�ðð�ðð��ð���ððð��ðð��ð

�ðð�ðð��ððð�ððð��ðð�ðð �ð �ðð�ððððð�ð	ð�ððð����ðððððð������ ð���ððð���ðð�ðð�ð�ðð
ð�ð�ð�ð�
ð�ð�ð��ðð

�ðð ���ðð ððð���ðð �ððððð ð���	���ððððð �ðð �ðð
�ðð��ð	ðð ��ðððð ð���	���ðððð ��ð �ðð��ð	ð ��ðð ðð�ð�ðð

��ðððð�ðð��ððð�ðð	ð�ð�ð�ððð��ð�ð�ð�ððð�ðð
ðð�ð���ðð�ðð�ðð��ððððððððððð�ðð��ð���ððð

��Ò� �
����������������	���

ðððððð���	���ðððððððððð�ðð��ðððð��ð��ð	ð�ðð�ð�

> ðððð�ð�ððð� ðð ð���ðð�ð��ð��ð�ð�

> ð��ð�ðððððððð�ð�����ðð���ð�

> �ððððð
���ðððððððð���ððð�ðð���ððð�

> �ð������ððððð���ððð�ðð���ððð�

>
ð�ððð�ð���ðððððð
ðð�ðð
ð�ðð�ðð��ððð

��ðð �ðð�ð ððððð ���ððð ððð �ððððð ð���	���ððð 	ð�ð�ð�ððð ����ð ��ðð ð�ðð��ð���ððð ððð ðððð ð�ð�ð�ð �ðð ðð�

ðððððððððð �ð ��ððð���ðð�ð��ð��ð�ð�ðð�ððððð�ð�ðð��ð��ðððð�ððððð���ðððððð��ðð�ð
ð�ð�ðð��ððð����ððð�ð)�ð

��ððð�ð ðð ð���ðð���ð�ðð�ððð���ðð�ð��ððð���ðð�ð��ð��ð��ð�ð
ð���ðð�ðððð�ð�ðððððð�ðð�ðð��ð���ððð %��ðð

����ð��ðð�ð�����ðð���ððð��ð�ð�ð�ðð�ðð�ð��ðððð�ð� ����ðð�ð�ðð�ðð���ðððððð�ð�ð	�� ð���ððð�ðð�ðð
ðððð�

�ð	�� �ð�ð��ð	ðð���ðð

�ðð���ð��ðððð�ðððððð���	���ðððð�ððð�ð��ð��ðð�ð
ð�ð�ðð�ððððð���ðððððð ���ðð
ðððð�� ðððððð�ð���ð�����

����ð��ðð�ð
ð�ðððð��ðð���ððð��ð ²����²�� �ð����ððð�ð��ð�ððð��ð�ð�ððð����ð��ðð�ð
ð�ð�ððððð�ð�ðð���

�ð���ðððð�ððð�ð
ð�ððð������ ���� �ð����ððð�

��ððð������ðððððððððð��ððð�ð�ð�ð�ð�ð	ðð�ðð��ð
ð���ð�ðððððððððð
ð��ðð�ð�ððððððððð�ð�ððð�ðð��ððð

ððððð���ð � ð�ðð��ð���ðððððð�ð��ð	ðððð���ð� ð�ð�ð�ð���ððð�ð
ð�ððð�ð��ðð��ðð
ðð�ðð
ð�ðð�ðð��ððð�ð

�ðð ð���ðððð ��ððððð �ð
ð ��ð ���ð ��ððð �ðð ðððððð�ð�ð �ðð
ðð��ðð �ðððððð ððð ððð�ð �ðð�ðð��ððð ððð�ð ��ð

ð�ðð��ð���ðððð ðð�ð ����ð��ðððð�ðððððð�ððððð�ððð����ð�ðððððð���	���ðððð�ðððð�ðð����ðððð�ð�ðððððð
ð

ðð�ð 	��ðð ðð �ð�ð �ðððð ðð�ðððð�ðððð ����ð ��ðð �ð
ð�ð �ðð ðððð���ð�ð �ð�ð�ðð ��ð�
ð ðð�ððððððððð ����

	ðððð��ððð�ð�ðð�ðð�ððððð�ð�ðððð�ð�ðððð���ð�ð
ð��ð��ððð�ðð��ð���ððð

� ���ð�ðð�ðð
 ���ðð�ð�ð�ð�ðððð�ð	

35

B.6 Exercises

On the following page is part of a sample exercise from the Altran Z course. Matching
model answers are also available for both presentation by the course teacher once the
exercises have been attempted by students and also distribution to the students after that
have tackled the questions.

Exercises cover sets, relations, functions, propositional logic, and predicate logic.
The exercise on sets includes questions on the understanding of enumerated sets, the
use of set operators in expressions, predicates involving sets, and the selection of given
sets for a specification. The exercise on relations covers the understanding of nota-
tion relevant to relations, expressions using relations, and the understanding of a small
specification involving a relation. The exercise on functions includes questions on the
difference between a relation and a function, followed by the understanding of a small
specification involving a number of functions.

The exercise on logic has questions on propositional logic and predicate logic.
Propositional logic questions include determining the truth value of propositions, choos-
ing a value to make propositions true, explicitly adding brackets to complex logical
statements, and producing truth tables for logical statements. Questions on predicate
logic cover rewriting logical statements using quantifiers, determining if quantified
predicates are true or false, and expressing informal sentences as formal quantified
predicates.

36

²²²²²² ï ïïïïïïï ïïïïïïïïï ïïïïïïïïïïïï

ïï����ïïï�ï�ïïï��ïïï �ïïïïïïïï

���ïï�

Í ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

ïïï

�� ïï�ï�ïï
ïïï�ï
ï

ï�
ïïïï�

ïï
ïï�ï
 l � �

�ïï ��
���ï
ï�
 l � �ï
ï
� � �ïïïïï���ï
ï

�ï

�ïï �ïïïï�
ï� �ïï
ïïïïï�ïï�ïï
ï�ï�
��ï�ïï�ï�ï�ï

�

���ï��ï�

��ï��ï� ��ï��ï

�ï��ïïï��ïï�ï��ï��ï� ��ï��ï

�ïïï�ïï�
ï
ï�ï���ïïïïïï�ï��ïïï��ïï�ïï�
ïïïï��ï��ï�ï�ïïï��ïïïï

ïï �ï �
ïï �ïïï�
��ïïï �
��ï �
ïï ïï��ï��ï�ï �ïïï ���ï ï��ïïï ïïï
ïï
�ï�ï �
�ï
ï ïïï �
ï

ïï��ï��ï�ïïïï�
ï
ïï�ï�
ïïïïïïï�ï��ïïï��ï�

�ïï �ïïï �#�ï

��ïï �ïïï #�ï

���ïï �ï
ï l �ïïï

��ï #�ï

�ïï �ï
ï ����

��ïï �ï
ï #�ï

&ïï �����ïï
ïïï�ïïï
ïï��ï�ï�ï�ïïï�
ïï
����ïï�ïïï ��ï&ïïïï �
ïï
ïï��ïïïï �ïï�ïï
ïï�
ïï
ï� �ï

(ï���
ïïïï��ï�ïïïïï�ï�����ïïïïïï�
��ï�
ïïï�ïï�
ïï�ïïïïï�ï�ïïïï�
ïï
ïï
����ï��
ïïïïï��ïï��ï�ï

ïï�ïïïïï�
�ïï�ïï
��ïïïïïï���ïïï�ï�����ïïï�
(�ïïï�ï�ïïïïï���ïïï�
ïïïï

)
ïï
ïï
����ïï
ïï��ï���ïïï�ïï�ï
ïïï�
ïï���ïï ïï�ï�)�ï�)�)��ï�ï
ï�
ïïïï����ïï

ï�ïïï��ï���
ïïïï �ï)�ï�)�)� �)�ïï�)�)�ï �
�ï
ï �ï
ï�ïï �
ïï
ïï
ïï�
ï **ï�ïïï�ï
ï

�
(�ïïï���ï

�
�ï��ïï��ïï�ï
ïï�ïïïï�ï
ïï��ïï
ï��ïï���
ï�
ïïïïï�ï�����ïïï�
��ï�ïïï�ï�ï���
ï�
(�ïïï�ï�ïïïïï

�ïï�
ïï� �
��ï �ï�ï�ï
ï�ïï ï�ï�����ïïï �
��ï �
ïï�ïï
��ïï�ï
�ïï
��ïï
ï�
(�ïïï�ï �ïïïïïï�ïï�
ïïï �ï

�ïïïïï
ïïï
ïï��ïïï�ï

ïïïï�
ïïïï�ïï�ïïï����ïïïï���ï
ï**
ïï��ï�� �ï
ï���ï�ï�
ïïï�ï�����ïïï �ï

�
ïï�ïï
��ïï��ï
ïï��ïï�
��ï�ïïï�ï�ï���
ïïï��ï�ïïïïïï�ïï�
ïï�

ïï��ïï�ï)�ï�)�)��)�ïï�)�)�

.��ïï �
�ïï
ï�ï���ïïï ïïï �
ïï ïï����ïïï **
ïï��ï�� ï�
ï �
��ï �ïï �ï�ï�ï

ï �
ïï ïï��ï��ï�

ï�
ïïïï�ïïïï

�ïï
ïï��ï � ï�ïïï��ï���
ïïïï�ï�ï�

ïï ï�ïïï��ï���
ïïï 2
ïï��ïï�ïï�ïïï��ï���
ïïï

3 ���ï�ïï�ïï� ïï����ïïï

37

B.7 Introduction to Schemas

This part of the Z course covers the schema as a structuring concept, schemas in use as
abstract state, schema inclusion enabling the building up of a specification, and schemas
as operations involving relating a before state with an after state.

First the idea of schemas is introduced informally. A schema box has a name, a
declaration part, and a predicate part (which may be omitted if the predicate is true):

Name
Declaration part...

Predicate part...

Some examples of schemas are explained, based around the well-known “Birthday
Book” example in Z [39]. A schema can specify the abstract state of a system and this
is explained in terms of the state components and invariant predicates that can constrain
those components, normally by relating them together in some way.

Generic schemas are also introduced briefly, although these are less used within Z
in practice. Next the important concept of schema inclusion is covered, explaining how
declarations are merged (especially if component names match) and how predicates are
conjoined.

As well as being used for specifying state, schemas can also be used to specify
operations, with both a before state and a matching after state (in which the components
are decorated with primes, ′). In fact schemas can be decorated with arbitrary subscripts
and superscripts if desired, but the use of primes for decoration is but far the most
common style of decoration with Z schemas in typical specifications.

An example of schema inclusion is given, including the expansion of the overall
schema to include all the constituent state components. It is important to be able to
do this mentally when using Z, so an understanding of schema inclusion is critical
when reading most Z specifications. The technique is a key part of Z and may be used
to specialise an existing partial specification for a particular specification, potentially
multiple times even in a single overall specification.

As well as specifying abstract state, an important use of Z schemas in practice is
to specify a change of state (with before and after states), in which typically some
state components change their values and others remain the same. The standard naming
convention for state components in an operation schema is that undecorated state com-
ponents are in the before state, matching primed (or “dashed”) components (′) are in the
after state, inputs have a “?” appended, and outputs have a “!” appended to their names.
These conventions are extremely common in Z specifications in the standard model-
based style. Subscripts and superscripts can also be used for decoration if desired for a
special purpose, although this is less common in practice.

An operation schema will typically have a number of predicates conjoined together
(often implicitly on separate lines). Normally preconditions are included first and post-
conditions afterwards, but the order is logically immaterial since logical conjunction (∧)
is commutative and conjunction is assumed between lines of predicates by default if no
other logical operator is included since it is the most common connective for predicates
in Z specification in practice.

38

Preconditions are constraining predicates that only involve before-state unprimed
components and inputs. Postconditions also include after-state primed components and
outputs. It is normally very important to check that all after-state components and out-
puts are constrained in some way since it is unusual for these to be allowed to take on
any value after an operation has been performed.

Often an after-state component is constrained deterministically in terms of a func-
tion involving the matching before-state component (e.g., x ′ = ...x ...). If no change
of state is required, this must be explicitly specified (e.g., x ′ = x), although often it
is possible to do this conveniently using the Ξ convention with included schemas that
adds this constraint for all the components in the relevant schema.

It should be noted that it is possible to include hidden preconditions in what appear
to be postconditions. For example, x ′ ∈ xs implicitly assumes that xs 6= ∅ (i.e., xs is
not an empty set), which is thus a precondition if this is included in an operation. Thus,
formally the precondition in a schema should be calculated (by existentially quantifying
all the after-state components and outputs), although in practice this can often just be
done mentally.

The important ∆ and Ξ conventions for state schemas are covered. ∆ may be pre-
fixed to a state schema name to produce a schema with a before state and matching
primed after state. Ξ is similar, but adds the constraint that all the after-state compo-
nents have the same value as the matching before-state components (e.g., x ′ = x , etc.).

There are associated exercises with questions on schemas, together with model an-
swers. Aspects of schemas covered include understanding of the purpose of schemas,
their constituent parts, and conventions associated with schemas. Example state and
operations schemas are provided and questions explore their meaning and use. Finally,
a more advanced question covers the use of a generic schema. These are less used in
simple Z specifications, but can be more useful in larger specifications, as found in
industrial-scale examples.

39

²²²²²² ë ëëëëëëë ëëëëëëëëë ëëëëëëëëëëë

�ë�ëë�ëë��ëëë�ëë�ë�ë��ë�ë	ëë�ëëëëëë�ëë �ëëëëëëëë

�
ëëë

­­­­ ­­­­­­­ ­­­­­­­

� ëë�ë��ëë�ëë�ëë�ë���ëëë�ëëëëëëëëë��ë ëëë�ë�

��ë������ëë�

�ëë�ëë� Ð ë���

��ë�����ë�ëë��� ����

�ëë�ëë�ë�ë�ë��ë�����

ëë

��ë������ëë�ë��

��ëë�ëë� Ð ë����

��ë�����ë�ëë��� ����

�ëë�ëë�ë�ë�ë��ë������

��ëë���ëëëëëë�ë�ëë��ëë�ëë��ë���ëëë��ë�ë�ëë�ë�ëë�ëë��ëë�ëëë�ë��ëëëë��ë�ëë��ëëëë�ë��ë

��ëë�ëë��ë��ëëë�ëë��ëë�ëë��ë��ëë��ë�ëëëëë�ë��ëë��ëë���ëëëë���ë�ë��ëë�ëë��ëë�ë��ë����ëëë���ë���ëë

�ëëëë �ëë �ë ë�ëë��ëë ë�����ëë ëëë �ë ��ë�����ë �ëë�ë ���ë�ë ë���ë�ëëë ��ëë ëëëë�ë��ë�ëë ���ëëë�ë ��ë ��ë

ëë�ë���

�ëë�ëë�ë��ëë�ë��ë�� �ëëë�ë�

��ë�����ë�ë��ëë ��ë���ë��ë� ��ëëë�ë�ëëë�ë �ë
ë��

(���ë�ëë�ëëë �ë�ë)�*ë��)ëë�) �ë�����

40

B.8 Schema Calculus

There are matching logical operators on schemas such as conjunction (∧) and disjunc-
tion (∨) that allow larger specifications to be constructed from earlier schemas. This is
a very important aspect of Z that allows large specifications, potentially thousands of
pages long, to be created and used effectively. If only the mathematical aspects of Z
were available, it would not be possible to use it on an industrial scale.

First the most used schema operator, namely schema conjunction (∧), is introduced
and explained. This is used for building up specifications from constituent schemas that
have specified part of the overall system. Declarations are merged and predicates are
logically conjoined, in a similar way to schema inclusion.

If schema components have the same name and are type-compatible, they map on
top of each other. This is a useful feature but some care is needed because Z declara-
tions can and often do include additional constraints as well as type information. If the
component is declared in exactly the same way, the issue is easy. However, say there is
a declaration of x : N (a natural number of zero or more) in one schema and x : Z (an
integer of arbitrary value) in another. These are type-compatible since N is a subset of Z
but when logically conjoined, the value of x must be a natural number, not an arbitrary
integer.

Thus an important aspect of combining schemas using schema operators (or schema
inclusion) is the normalisation of the types of components. In the example above, x : N
is normalised to x : Z with the constraining predicate that x ∈ N. The same issue
applies to functions, which are a constrained form of relation. Thus f : X 7→ Y nor-
malises to f : P(X ×Y), for example, with the constraint that f ∈ X 7→ Y , assuming
that X and Y are given sets and thus already normalised. Remembering that X ↔ Y
is the same as P(X ×Y) is a useful fact to memorise to understand typing in Z.

Components with the same name must be type-compatible (i.e., have the same nor-
malised types) for the specification to be meaningful. Components with different names
are just merged in the declaration part of the new schema. Note that component dec-
laration order is immaterial in a schema. A common mistake is to try to relate two
schema components in the declaration part, but this is invalid since the declarations are
only meaningful in the predicate part of the schema, which is where such relationships
should be specified.

Schema disjunction (∨) is covered next since this is also an important way that
schemas can be combined, especially when dealing with error cases. The declarations
are combined in exactly the same way as for schema conjunction, with the same nor-
malisation of types needed when combining components with the same name. However
in this case the predicates of the two schemas are combined using logical disjunction.

Robust (or “total”) operations can be produced using disjunction to give an overall
precondition of true . Typically if there is a precondition P in a successful operation
schema (e.g., Op), an error schema (e.g., Err) with a precondition ¬ P can handle the
error case, and Op ∨ Err gives a total operation schema with a precondition of true .
If an operation schema has two preconditions P ∧ Q , there can be two error schemas
with preconditions ¬ P and ¬ Q , and so on.

Typically error schemas output an error result of some sort (e.g., report !). For ex-
ample, the successful operation schema could output report ! = ok (perhaps specified

41

once is a single schema, e.g., Success , for reuse later) and the error schema could out-
put report ! = error . Further error reports can be introduced as needed. A robust total
operation (TotalOp in this case) could be specified in the form of combined schemas
as follows:

TotalOp =̂ (Op ∧ Success) ∨ Err

In a typical Z specification with total operations, there would be a number of such total
operations specified in this form.

There is also a schema negation operator (¬), although this is less used in prac-
tice. However it is included for completeness and is covered by the Z course. Again,
the schema is first normalised with respect to all the declarations and then the entire
predicate part is logically negated, including any predicates introduced through nor-
malisation. For example, if the declarations in a schemas S included x : N, the negated
schema¬ S would include a declaration of x : Z and a predicate of¬ x ∈ N (or x /∈ N).
Thus the x component in ¬ S would be constrained to be a negative integer (x < 0).
An example of schema negation is included in the course. A schema normalisation ex-
ample where a similarly named component has different but compatible declarations in
the two schemas that are to be combined (using disjunction) is also included.

Z includes a facility to rename individual schema components if needed. If a schema
S includes a component variable old , it is possible to create a new schema T with that
component renamed to new as follows:

T =̂ S [new/old]

This is not used much in small specifications, but can be useful in industrial-scale speci-
fications, allowing reuse of a schema in a different context. Several component variables
can be renamed simultaneously and renaming can also be combined with a generically
defined schema for even more possibilities of reuse. An example is given in the course
material.

Again, there are associated questions on schema calculus with model answers.
These include a general question on schema operators and their use. An example of
schema disjunction is given for explanation. A more complex example with schema
conjunction and disjunction must also be understood and explained informally.

42

²²²²²² ë ëëëëëëë ëëëëëëëëë ëëëëëëëëëëë

�ë�ë��ëë��ëë�ëëë��ë�ëë�ëëëëëë�ëë �ëëëëë	ëë

�
ëë

Í ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

�ë�ë��ëëë�ëë
ëëëë��ëëë�ëëë�ë
ë��ë�ëëë��ëë�ëëëë�ëëë��ëë�ë�ë�ëëë
���ëëë�ëëëë

���ëë�ëëëëëëë�ë�ëë
ë����ë
ëëë���ë� ë�ë�ë�ëëëëë�ëë����ëëëëë��ëëëë�ëë

�ëëë�ë
�ë��ëë�ëë��ëëë�ëëëëë�ëëë��ëë�ë�ëë��ëëë����ëë�ëë�ëëë���ëë�ëë�ëë�ë���ë ëë�ë��ë�ëë�ëë�ëëë

�����ë���ëë��ë��

��ë������ëë� G ���ëëëë�ëë�

�����ë���ëë��

��ë������ëë�

���ëëëë�ëë�

Í��Í �������Í�	Í
���
�
�����

�ëëëë�ëëë�ëëëë�
�ëëë��ë ëë�ë��ëë����ë�ë�ë
�ë��ëë�ëë��ëë� ëë �ëë�ë�ëëëëëëëë�ë��ë�����ëë�ëë��ëë�

��ë�ëë�ëë��ë���ëëëë�ëë�ë
ëë�ëë
ë�
�ëë

���ëë�ëëë�ë�ë�ëë��ëëëë�ëëëëëë��ë��
�ëëë��ëëëëë��ëëë�ëë�ë� ëë ��ëëëë�ë�ë��ëë�ëë
ë�ëëë�ë�ëë��ëëë�ëë�

��ëëëë�ëëëëëë��ëëëë�ëëëëë�ëë��ë���ëëëë

�ëë�ë��ë��
�ëëë��ëë�ëëë��ëë��ë�ë�ë�ëë�ë��ëëëë�ëëëëë�ëë��ë���ëëëë�ëëë�ëë
ë�
�ëëëë��ë�ëë��ëë
�ëëë���ë

ëëë��ëëëë��ëëë��ë��
�ëë�ëë��ëëë��ëë�ëëë�ë�ëëë�ë �ëë�ëëëëëëëë��ëë�ë���ë��ë�ë�ëë��ë���ëëëë�ëëëë���ëë�

�ëë��ëë�ëë
ë�ëëë�ë

� �ëë��ë���ëëëëëë�ë��ë��
�ëë�ëë�ëëë�ë��ë���ë�ëë�ë�ëë�ëëëë����ëëë�ëë������ëëë�ëë��ëë
�ëëë���ëëë���ë

�ëëëë����ëëë�ëë�ëëë�ë���ëëë
ëë���ëëë����ë��ë��ëëëëë�ë
ë�ë
�ë��ëë�ëë���ëëëëëëëëë�ë��ëë

Í�ÍÍ Í���
�����Í
��
���
�
�����

��ëëë�
ë��ëëëëëëë�ë��ë��
�ëë�ëë��ëëë��ëëëëë��ëë��ë��
�ëë�ë
ë��ëëë����ë��ëëëë�ëë���ë
ë���ëë

� ë�
ë��ëëëë�ëë�ë�ëë�ëëë�ë
�ë�ë�ëë��ë���ëëë

��ëë�ëë��ë���ëëë���ë��ëëë�ëë�ë�ëë������ëë��ë�ëë��ë��ëëë ��ëëë�ëë���ëëëëë �����
Í����
���
����

���ëëëëëë�ë�ëë��ë��ëëëë����ë���

��ë������ëë�

�ëë�ëë� Ð ë���

�ë�����ë� Ð $ë��� � %���%

�ë����� �ë��� %���

�ëë�ëë�ë�ë�ë
�ë�����

'ëëëë��ëë�ëë��ë���ëëëëëë
�ë�����ë�ë'ëëëë��ëë
�ëëë���ëëë��ëëë��ë�ë�ëëëë����ëëë����ë��ë�ëë�ëëëëë��ëë

$�ë�ëëë�ë�ë
ëëëë��ëëë����ëë%ë�ëë�ëë�ë�ëë��ëë�ëë��ë��ëë��ë�ëëëë��ëëëë�ë��ë

��ëë�ëëëëëëë��ëë���ëë �ëë ��ëëëëëë�ëë���ëë��ëë���ë �ë�ëë�ëëë��ë��ëëëë��ëë�ëë��ë���ëëë�ëë�ë�ëëë��ë

) ���ë�ëë	ëë) �ë'���ëë��ë+�+�ë�

43

B.9 Schemas as Types

Z is a typed language and standard types are built up from basic types (or given sets)
that are unstructured. Of course, relations, functions, sequences, etc., can be specified
as well. For more complex structuring, the use of schemas as types is helpful. Schemas
can be used somewhat like records in many programming languages, with the named
state components in the schema identifying different parts of the structure.

An example of a simple schema being used in a type declaration is explained. It
should be noted that the ordering of declarations in schemas is unimportant, unlike a
Cartesian product where the ordering is meaningful. Even if two schemas have different
predicates, they can still be type-compatible since it is the normalisation of the schema
components that matters.

If a component variable has a schema type, components in that schema can be se-
lected. For example, with a declaration of s : S where S is a schema with components x
and y in its declaration, s.x and s.y can be used to refer to those components. With two
variables declared using type-compatible (or identical) schema types, they can be made
equal in a predicate. E.g., with declarations s, t : S using a schema S , the predicate
s = t is valid.

If the variables of S are in scope within a schema (e.g., it has been included in
another schema), then θS is an instance of the schema type S with all the components
have the values in the current context. The schema may be decorated, so θS ′ is also
meaningful. This is especially useful in specifying the meaning of ΞS (for example)
formally:

ΞS =̂ [S ; S ′ |θS ′ = θS]

The technique of schema promotion is also covered. This is very important in larger
specifications since it allows a smaller specification to be embedded in a larger speci-
fication in a convenient manner, especially if the rest of the larger system is to remain
unchanged while the smaller subsystem is updated in some way. An example of this ap-
proach is provided by the course. The approach is particularly useful in industrial-scale
Z specifications. First the course material explains a specific example and then this is
generalised. The template can be used in many real examples of the specification of
large systems and solves the framing problem of dealing with a small update of a large
system in a convenient manner in the context of Z.

Associated questions and model answers are available. Firstly a schema is provided
and the compatibility of this with other schemas when used as a schema type must be
determined. This especially checks schema normalisation skills. Then a more complex
example is presented including two schema component variables declared using schema
types with a complex predicate relating the two. The relationship that this conveys must
be explained in English.

44

²²²²²² ð ððððððð ððððððððð ððððððððððð

�ð�ð��ðð�ðð���ðð�ð�ðð	ðððððð	ðð
ððððð�ðð

���ððð

� ÍÍ�Í�ÍÍÍÍÍÍÍ��ÍÍ

�ð�ð�ð�ð�ð��ðð�ðð�ðð��ð�	�ððð

��ððð	ððð	ððððððð�ððð�ð��ð	��ð

��ðð�ð�ð�ð�ðððð�ððð�ð��ð	��ð

ðð��ðððð	ððð�ðð	�ðð

��ð���	�

ðððð	ððð	�ð�ð�ðð	�ðððð

��ÍÍ ���	
 Í��
���Í�	Í�
��������	�

� ðð�ð��ð ðððððððððð ð�ðð �ðð ððð�ð �ðð 	�ðð ð��ðððð�ððð ððð 	�ðð ð���	ð ��ð�ð ð��ðð ððð 	�ðð ðð�ððð �ðð �

�ðð��ð�	�ðððð��ðð�ðð��ðð�ð��ð����ðð�ðð	�ððð�ðð�ðð	�ððððððð	�ðððð�ð��ð	��ðð

ðð
ðð
ð�	ð

� � ��ð	�����ðð�

ðð �ð�ðð 	��	ð �ð �ðð �ðð �ðð	�ðððð ððð �ð ��ð	����ð �ðð�ðð
	ð �ðð �ðð ð��ðð	ð �ð���ð�ð � ��²��²��
��ð�

�ðððð��	ððð	�ðð��ðð	��ðð �²��²
�	�ð�ð��ð	�ðð��ðððð	 ðððð���ðð�ð�ð	�ðð��ðð	��ðð ��²²��²�
�	�ð�

��ð	�ðð��ðð ðððð	�ððð ððð�ð ð���ð 	ðð �����ð ðð��ðð	ð 	ðð 	�ðð ððð��	�ððð 	��	ð 	�ðð ðð	 �²��² �ðð 	�ð

�ð���ððððð	�ðððððð	�ðð ��²²��²�ð

���Í Í�
 Í�������
 �� � Í��
��ÍÍ��

��		�ððð��ðð�ð�ð��ð	�����ðð�

��ðð	��ððððð��		�ððð��ðð�ð�ð 	²�²�	²	� �ð� ²²�	�ð

#ððððð��ð	�����ðð�ð�ððð#� 	�ðð	��ð

Ð ð��� l Ð �ð��� l �����

ðððð�ðð��ð	�����ðð�ð	�ððð��ðð	��ðð�ð�

��	ð#ð��ð	��ðð�

�ðð
ðð� Ð ð���

��	ð#ð��ð	�ð�ðð��� ����

�ðð
ðð�ð�ð�ð��	ð#ð��ð	�

�ð	ð�	ð�ðð	�ððð��ðð�ð

�ðð���ð	����

��ð	����ð�ðð��� ����

�ðð
ðð� Ð ð���

& ��	ð�ðð�ðð& �ð#����ð��ð�(���

45

B.10 Syndicate Exercise

An extended Z specification is available for students to learn how to discuss and use
a more realistic formal specification. This is an optional but useful part of the course,
taking around half a day. Example questions are provided, but this part of the course
is more open-ended and the course teacher can lead a discussion with students on the
course once they have studied the case study material.

The specification is provided with Z and associated English explanation in a way
that is typical for a Z specification. A number of operations are covered. The example
questions start with detailed technical issues, why certain features have been selected in
the Z specification, and what effect these have in practice. The questions become more
general as they proceed, allowing more discussion. Further questions could easily be
formulated and discussed either by the course leader or by more able participates on the
course.

Those participants who are able to provide sensible input to the discussions on this
specifications are the ones that are likely to be more productive in reading Z speci-
fication on a real project. This could be helpful in deciding the roles of participants
subsequently on a subsequent project involving Z specification.

46

²²²²²² î îîîîîîî îîîîîîîîî îîîîîîîîîîî

��î��î��îî��îîî�îîîîîîî�	î�îîî��î��î
îî�îîîîîîî �îîîîîîîî

�
îî

Ì ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Ì�ÌÌ Ì�����������

���îî î�îî��î���îîî �îîîî��îîî �î ��î�î��î�î�î î�î�î�î î���î�î î���îî î���î îî��îî�îî �î îî��îîî îî

�î�î����îîîîîî �îî��î
î îîî �î îî��îîî�îî�îî�î îîî�î��î �îî ��îî î�îî���îîî îîî �îî���î �îî�îî�î �îî ��î

�î
�î��î����î�îîî�î�îî�î�����î��î��î��îîî�îîîî�î��î��îî�î�î����îîîîî�î�î�î�î
îî�îî�î��î��îî�î���î�

�îî îî�î îîî�î ��îîî���î ��î �î�îîîî �î�î îîî�îîî �îî �î îî�îî��îî�î îîî �îî�îî�����îî �îîîî����îîî �î�î �

�îîîîîîîîî îîîî �îî�îî�î ��î�
î�îî�î �î�î î�îî��î
î ��îî î�îî��î���îîî �îîîî �î�îîîî �î� � î���

�îî�îî�î�îîîîî�
îîî�î
��îî � îî��îî��îîîîîîî���îîîî�îîîî�î�î�îî�î����îîîî

��îîî���î�î�î����îîîîî�î��îîîî��îî��î��î��îî�î�î� îî �î�����î��î�î�î
îî�îî�î��î��îîîîî�î
�î�îîîî

î�����î�î�îî�îî�î��î��îî��îî�î�����î��î��î��îî�îîî�î�îî�î�îî�î����îîî

��îîî���îîîîî��îî��î��îîîîî�î�î�î�îîîî���îî�

îîî ��î îî�îî���î
î��î���îî

îîî �
îî�îî�î��î��îîî�î�î�îîî��îîîîîî�î�����î��î��î��îîî

îî �îîîî����îî �î�î�î
î �î� ��îî
îî�îî�î �î�î �î�����î��î ��î��îîîî �îîî ����î�î îî�îî ��î

��î���îî

!îî �îîîî����îî �î�î�î
î���î�îîîîîîî�îîî���îî��î�î�îî���î�î�î�����î��î��î��îîî

Ì�	Ì Ì
����� Ì�
������ÌÌ������
����

îîîîîî "��îî îî�î

��îî îî��î��î
î îî�îî �îîî �îîî�î�î �îî �îî
��îî�î �î�î ��î�îî �î�îîî��î î�îîî�îîîî �îî î���îîî �îîî�î��î�î îî

�îîîî��î�îîî��î�îîîî������

###î#�����#î�î��î#�î�î���î	��î#

##î#�����#îî ���î �îî ��îîîî�îîîî�îî�î����îîîîî�î�îî�î����îîî�îî�î���îîî�îî�
î�î�î�îîîîîîîî

�î�îîîîîî�î�îîî�îîî�î��îîî�î�î�î����î�îîîî�îîîî�����îî�îî��î�î

��î#�îî ���î �îî��îîîî�îîîî��î��îîîîîî�����îîîîîîîîîî�îî
îî�îî�î��î��îîîî îî��îîî����î�

î���îîîî�îîî�îîîî���î�î��î��î��îî�îîîî�î�î�îî�î����îî�îî�îî ��îî
�î��î���î�î

����î�îî�î�îîîî��îîî��îî��îîîîîîî��î���îîî

��î ���î �îî��îîîî�îîîî���î�î�����î��î��î��îîîîî�îî�îî����î��îîîî�îîîîîîîî�îîîîî�îîî�

�î îîî
îî�îî�î��î��îîî�î �îî�îîîî ��îîîî �îî îî��î îîîî�îîî�îî�îî�î
î��îî îî�î ��

î�îî �îî ��îî
��î îîî �îî ��îî �î�î�î�î î��îî�î îîîî ��îî �î�����î��î ��î��îîî�

îîîî��î�î��îîî��îî�î�����î��î��î��îîîî�îîîîîî��î�î

	��îî ���î �îî��îîîî�îîîî���îî���îîîîîîîîîî���îî�îî�îî�î

îîîîîî ��î î���îîîîî��îî��î��îîîîî�î�î�î�

��î�î� ���îî ��îî��î��îîîîî�î�î�î�îîîî���îîî�î îî�îîîî�îî�î����îîîî�î�îî���îîîî�îîîî �î��î �î�î�

îîîî�îî�î����îîî�î�îîîîîî���îîîî�îîî �� �îî�îîîî���îîî��î���îîîîî
îî�îî�î��î��îîî�î�î��î�î�î�

îîîî�î�����î��î��î��îîîî��îî
îî�îî�î��î��îîî�îî�î�îî���îî��î�î�îî�îî���îîîî�îî� �î�î�î�����î��

��î��îîîî�îî�î���î�îî���îî��î�î�îî�îî�î����îîîîî��îî�îî�îî�î���î���îî�îîî�îîîîî���îîîî�îîî�î�î�

��îî
îî�îî�î��î��îîî���î�îî�î�î� îîî�îîîîî�îî�îî��îî� �î�îîî��îîîîîî���îîîî�îîî�îî�îîîîîî��î�

���îîî îî�î ����î �î �îî�î����îîî î�îî ���îî �îîîî ���îî îîîî �î�����î��î ��î��îîî îîî ��î ���î ���îî �î

î��îîîîî�î�îî��îîîî�î��î��î��îî��îîî

, ���î�îîîîî
 �-î.�î���î�/�îî���

47

B.11 Summary

As well as material for distribution to students on the Altran Z course, there are also
matching teaching notes with an expanded form of the material. Slides are available
with reduced material for presentation by the course teacher on a screen during lectures.
The exercises have full associated model answers in general.

An expanded version of the Z Readers Course is available, the Z Writers Course,
designed for people who are going to need to write specifications. On a typical industrial
project using Z, the number of people who need to be able to read Z vastly outnumbers
the team needed to write Z. Typically the Z specification may be used to guide the
software tests that are undertaken, by partitioning the specification for the various tests
that are required. It will always be used to guide the implementation by programmers.
Both these large teams only require engineers that are able to read Z, a much easier task
than writing good Z specifications.

For more information on Altran, see http://www.altran.com. For specific
information on “Formal Computing” from Altran, see:

http://intelligent-systems.altran.com/technologies/
software-engineering/formal-computing.html

48

