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Summary This paper estimates the effects of non-pharmaceutical interventions –
mainly, the lockdown – on the COVID-19 mortality rate for the case of Italy, the first
Western country to impose a national shelter-in-place order. We use a new estimator,
the Augmented Synthetic Control Method (ASCM), that overcomes some limits of the
standard Synthetic Control Method (SCM). The results are twofold. From a method-
ological point of view, the ASCM outperforms the SCM in that the latter cannot select
a valid donor set, assigning all the weights to only one country (Spain) while plac-
ing zero weights to all the remaining. From an empirical point of view, we find
strong evidence of the effectiveness of non-pharmaceutical interventions in
avoiding losses of human lives in Italy: conservative estimates indicate the
policy saved in total about 21,000 human lives.

Keywords: COVID-19, non-pharmaceutical interventions, Augmented Synthetic Con-
trol Method, Italy.

1. INTRODUCTION

Exponentially growing threats require strong and early policy response. In the first wave
of the COVID-19 outbreak, the timing of confinement measures played a fundamental role
in flattening the contagion curve (Flaxman et al., 2020; Amuedo-Dorantes et al., 2020).
However, policy makers reasonably hesitate to take resolute measures when threats ap-
pear to be limited. This caution is reasonable, because if countermeasures work, it will
seem in retrospect as if the policy response was an overreaction, possibly causing a loss
of consensus (Pisano et al., 2020; The Economics, 2020). Once the curve is flattened, the
public will likely blame the incumbent government for the tremendous economic losses
caused by social distancing orders without fully grasping their essential role in halting
the spread of the viral disease.

This paper adds to this debate, estimating the effects of lockdown – or, in general,
of the so-called non-pharmaceutical interventions – on the propagation of COVID-19

1Any opinion, finding, and conclusion or recommendation expressed in this material are those of the
author(s) and do not necessarily reflect the views of the PBO.
2Corresponding author.
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with particular emphasis on the most relevant aspect: saving human lives. Its real-world
implications and its high level of socio-economic meaningfulness need no further expla-
nation. The task is particularly challenging from a methodological perspective due to
typical selection bias problems, and this explains the growing interest of econometricians
in this research question. At first instance, a natural candidate to face this challenge is
the SCM – first introduced by Abadie and Gardeazabal (2003) and the subsequent stud-
ies by Abadie et al. (2010, 2015).1 At its very essence, the SCM involves the comparison
of outcome variables between the treated unit, i.e., the unit affected by the intervention,
and a combination of similar but different unaffected units. Such a comparison would
reproduce an accurate counterfactual of the unit of interest in the absence of interven-
tion, commonly referred to as the synthetic unit. This method can be conceived as a
data-driven procedure to retrieve non-treated units sharing similar characteristics with
respect to the treated in the pre-intervention period. In the COVID-19 context, the treat-
ment consists of non-pharmaceutical interventions implemented at a given point in time
in a specific country or, so that the SCM lends itself as one of the most immediate tools
to face the problem empirically. For this reason, it has been (more or less successfully)
repeatedly applied in the very recent literature on COVID-19. Bayat et al. (2020) and
Friedson et al. (2020) have applied the SCM on US data, where the latter takes a spe-
cific focus on California, taking advantage of the timely enactment of the shelter-in-place
order. Friedson et al. (2020) extend the analysis of the impact to the unavoidable eco-
nomic drawbacks, such as the number of jobs lost. As far as the measurement of the
avoided virus spread is concerned, it is possible to mention Huber and Langen (2020),
who apply the SCM design to Switzerland, and Tian et al. (2020a, 2020b) to China. Some
authors have estimated the effect of particular prescriptions included in the more general
lockdown policy. Notably, Mitze et al. (2020) study the effect of wearing face masks in
Germany and Neidhöfer and Neidhöfer (2020) study the effect of school closures for Ar-
gentina, Italy and South Korea. Lee and Yang (2020) offer a purely economic perspective
focusing on the impact of contrasting COVID-19 measures on the labour market in South
Korea. As a peculiar case, Sweden is a country that has attracted a lot of attention in
this growing literature because it is one of the very few countries that has not enacted
a statewide shelter-in-place order (to date). Due to its unusual situation, Sweden offers
the researcher the opportunity to look at the case as if the treatment consisted in non-
intervening vis-a-vis a group of countries in which interventions took place (see Born et
al., 2020 and Cho, 2020).
Despite its popularity, however, some real-world circumstances can make this instrument
unapplicable, under penalty of biased estimates. This occurrence may be due to many
reasons, such as the employment of heterogeneous measurement methodologies whereby
the same phenomenon is measured in different countries. The case under scrutiny falls
exactly within these circumstances. To overcome this problem, we have followed a general
approach proposed by Ben-Michael et al. (2020), augmenting the SCM with the Ridge
regression model, therefore obtaining a Ridge ASCM, which can be written as a weighted
average of the control unit outcomes. To the best of our knowledge, the Ridge ASCM
has not been applied yet to assess the impact of non-pharmaceutical interventions for the

1Since its introduction, the SCM has been widely used in social sciences and applied to a broad spectrum
of topics, spanning from terrorism and crime to natural resources and disasters, political and economic
reforms, immigration, education, pregnancy and parental leave, taxation, as well as social connections
and local development. Athey and Imbens (2017) have defined it as the most crucial innovation in the
policy evaluation literature over the last fifteen years. For a recent survey see Abadie (2020).
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COVID-19 pandemic. It is possible to find just a couple of papers in the environmental
field (notably, forest fires in Colombia, Amador-Jimenez et al., 2020, and air pollution in
China, Cole et al., 2020).

Our contribution to the literature on the socio-economic effects related to the COVID-
19 pandemic is manifold. First, it sheds light on a controversial policy intervention that
has been and still is largely debated. The intervention’s effectiveness is evaluated in
terms of the most immediate and desired effect, namely avoided deaths. Secondly, from
a strictly methodological point of view, it uses one of the most recent advances of the
popular SCM, i.e., the Ridge ASCM. This advance allows one to overcome the non-
negligible limit of non-perfect pre-treatment fit, which, in turn, would generate a biased
estimate from the canonical estimator.2 Thirdly, the study focuses on Italy, which is
widely acknowledged as a paradigmatic case, owing to its pioneering role – immediately
after China – in facing the current pandemic disease. The first Italian COVID-19 cases
were registered quite early (January 2020 or even before) and contagion has accelerated
since its inception. In March 2020, Italy was the country with the highest number of
cases – apart from China – rapidly becoming the European epicentre of outbreak, with
207,428 confirmed cases and 28.236 deaths as of the beginning of May 2020 (Ministry
of Health). These figures represented approximately 14% of all confirmed cases and 20%
of deaths in Europe, 6% of confirmed cases and just over 11% of deaths worldwide.
Moreover, and even more interestingly from our standpoint, Italy was the first Western
country in which the government imposed restrictions on mobility, economic activities
and social interactions – the already mentioned strict lockdown. The lockdown order
was officially imposed in Italy from March 9 up to the May 18, 2020, 70 days. The
intervention was highly criticized at that time, possibly because it was the first among
Western countries, and it was not completely clear the importance of acting timely yet,
especially on the part of some media and politicians. Nonetheless, many other European
countries followed the Italian model within a few weeks, including the UK that initially
claimed to be against such a type of intervention. A long list of scientific contributions
witnesses the relevance of the Italian case for understanding the COVID-19 spread and,
consequently, the effectiveness of non-pharmaceutical interventions (see, e.g., Bonacini et
al., 2020; Cameletti, 2020; Eckardt et al., 2020; Lolli et al., 2020; Palladino et al., 2020,
Peracchi and Terlizzese, 2020). In particular, the works by Modi et al. (2020) and Cerqua
et al. (2020) deserve special mentioning because both use the standard SCM to assess the
plausibility of official figures, concluding that the true count of deaths due to COVID-
19 is supposed to be significantly higher than the official count. Given the very high
relevance of the issue at stake, we contribute to the debate over the effects of lockdown
measures by using the Ridge ASCM and enjoying all its methodological advances. To
the best of our knowledge, this is the first paper applying the Ridge ASCM to Italy’s
paradigmatic case and evaluating the effects of a lockdown in terms of public health.
Operatively, the task mentioned above is particularly challenging for at least a couple of
other reasons. First, all the other European countries (the most similar to the one under
scrutiny) were sooner or later treated. Secondly, the virus spread followed different paths
among countries at different points in time. Both features make constructing a credible

2Other recent advances pertain to multiple treated units (Robbins et al., 2017; Abadie and L’Hour,
2019), extensions of permutation methods (Dube and Zipperer, 2015), denoising the outcome variable and
imputation of missing values (Amjad et al. 2018, 2019 and Athey et al. 2018), inference (Chernozhukov
et al. 2019a, 2019b; Cattaneo et al. 2019), the role of covariances (Botosaru and Ferman, 2019; Ferman
et al., 2020) and bias correction (Powel, 2018; Arkhangelesky et al., 2019; Chernozhukov et al., 2019b).
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counterfactual series particularly difficult, and this pitfall is exacerbated by the limits
the standard SCM suffers from.
Our results show that the SCM cannot generate a valid counterfactual, collapsing all the
weights on one single unit, i.e., Spain, so that the lockdown effect would be calculated as
a naive difference between the two countries. Allowing for negative weights, we provide
evidence about the effectiveness of non-pharmaceutical interventions in saving human
lives and avoiding a collapse of the Italian health care system. The take-home message
from this study is twofold. From a methodological point of view, it suggests that the
researcher must compare the weights before choosing whether to apply the SCM or the
ASCM. A substantial distance of the two may be an indirect indicator of bias in the
SCM estimates. From a socio-economic perspective, it documents that non-
pharmaceutical intervention has led to around 21,000 lives saved over the
first 35 days of lockdown.
The remainder of the paper is organized as follows. Section 2 introduces the Ridge ASCM
as an extension of the canonical SCM and describes the dataset. Section 3 presents the
empirical set up paying particular attention to how the benchmark specification is chosen.
The main results obtained in Section 3 are put under testing in Section 4. Finally, Section
5 proposes some back-of-the-envelope computations based on the estimates and draws
some conclusions.

2. METHODOLOGY AND DATA

This section is devoted to the illustration of the Ridge ASCM procedure. To be self-
contained and provide a better understanding of this econometric method, we begin with
a brief description of the canonical SCM. In its very essence, the SCM aims to simulate
the outcome path of a country if it did not undergo a particular policy intervention.
Operatively, the synthetic control is built as a weighted average of the units in the
control group (donor pool), where the weights are chosen so that the synthetic control’s
outcome closely matches the treated unit’s trajectory in the pre-treatment period, while
also satisfying some constraints such as being non-negative or adding up to one.

2.1. Econometric framework

More formally, let Yit(0) and Yit(1) represent the potential outcomes for unit i, with
i = 1, . . . , N , at time t, with t = 1, . . . , T , under control and treatment, respectively. Let
Wi be an indicator that unit i is treated at time T0 < T , where units with Wi = 0 never
receive the treatment. In the SCM, one supposes that only one unit receives treatment
and for ease of reference this is listed as the first one, W1 = 1, the remaining N0 = N −1
units are possible controls, usually referred to as donor units. Without loss of generality,
for the time being, the post-treatment observation is limited to just one: T = T0 +1. The
observed outcomes are then

Yit =

{
Yit(0) if Wi = 0 or t ≤ T0
Yit(1) if Wi = 1 and t > T0

(2.1)

We also assume that control potential outcomes are generated as a fixed component mit

plus a mean-zero additive noise εit drawn from some distribution,

Yit(0) = mit + εit (2.2)



COVID-19: the sooner the better 5

It follows that the potential outcome under treatment can be written as Yit(1) = Yit(0)+
τit where τit represent the treatment effects – which are the objects of our estimation –
and are fixed parameters. Therefore, the treatment effects can be rewritten as τ = τ1T =
YiT (1)−YiT (0). The error terms in the post-treatment period are collected in the vector
εT = (ε1T , . . . , εNT ) and are assumed to be mean-zero and uncorrelated with treatment
assignment. That is, the treatment assignment Wi is ignorable given mit,

EεT [WiεiT ] = EεT [(1−Wi) εiT ] = EεT [εiT ] (2.3)

where EεT denotes the expectation taken with respect to the error term εT . It follows
that the noise terms for the treated and control units do not systematically deviate
from each other. Let Xit represent pre-treatment outcomes that are used as and along
with other covariates, X0 represents the N0 × T0 matrix of control units pre-treatment
outcome and covariates. Y0T is the N0 vector of control unit outcomes in period T .
With only one treated unit, Y1T is a scalar, and X1 is a T0-row vector of treated unit
pre-treatment outcomes and/or covariates. The potential outcome for the treated unit,
Y1T (0), is computed by the SCM as a weighted average of the control outcomes, Y′0T γ,
being γ = (γ1, . . . , γN ) the vector of weights. The elements of γ are chosen to balance
pre-treatment outcomes and other covariates.3 To our aim, the SCM can be formalized
as a solution with respect to γ of the following constrained optimization problem

minγ ‖(X1 −X′
0γ)‖22 + ζ

∑
Wi=0 f(γi)

s.t.
∑
Wi=0 γi = 1
γi ≥ 0 i : Wi = 0

(2.4)

where the constrains limit γ to the unit simplex and where
‖(X1 −X′

0γ)‖22 ≡ (X1 −X′
0γ)
′
(X1 −X′

0γ) is the L2-norm on RT0 . In the original
formulation the hyperparameter ζ is set to zero and the simplex constraint in (2.4) ensures
that the weights will be sparse and non-negative. If we allow ζ to take positive values,
we have a penalization of the dispersion of the weights, following a suggestion by Abadie
et al. (2015), and the optimization problem in (2.4) can be regarded as an approximate
balancing weights estimator. These weights achieve perfect pre-treatment fit, and the
resulting estimator has many attractive properties including a bias bound derived by
Abadie et al. (2010), when the treated unit’s vector of lagged outcomes and covariates,
X1, is inside the convex hull of the control units’ lagged outcomes and covariates, X0.
Due to possible high dimension, however, achieving perfect pre-treatment fit is not always
feasible with weights constrained to be on the simplex and in these cases Abadie et al.
(2015) recommend against using SCM. Thus, the conditional nature of the analysis is
critical to deploying SCM, excluding many practical settings. This drawback is overcome
by the Ridge ASCM of Ben-Michael et al. (2020), which is now discussed.
Let YiT (0) be the post-treatment control potential outcome and m̂1T its estimator, the
Ridge ASCM proposes modifying the problem in (2.4) as follows:

Ŷ aug1T (0) =
∑
Wi=0

γ̂scmi YiT +

(
m̂1T −

∑
Wi=0

γ̂scmi m̂iT

)
(2.5)

3Notice that since pre-treatment outcomes are included in the X0 matrix, “pre-treatment fit” and
“covariance balancing” are equivalent expressions.
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= m̂1T +
∑
Wi=0

γ̂scmi (YiT − m̂iT ) (2.6)

where γ̂scmi is the estimated i-th SCM weight. In this context, the canonical SCM is
a special case in which m̂iT is constant. Albeit fully equivalent, equations (2.5) and
(2.6) help us to look at the Ridge ASCM from two different points of view. From the
former equation, it is possible to see that the SCM estimate, i.e. the first term of (2.5), is
corrected by the term in parenthesis, which captures the imbalance in the function of the
pre-treatment outcomes m̂(.). The term in parenthesis can be regarded as an estimate
of the bias generated by imbalance, not far from the correction for inexact matching.
Therefore, the SCM and Ridge ASCM estimates will be similar if the estimated bias is
small. As far as the latter equation is concerned, its formulation recalls the one of the
standard doubly robust estimators (Robins et al., 1994), which adds to the outcome model
a re-weighting term in order to balance the residuals. Given these premises, the choice of
the estimator m̂(.) is important both to understand the properties of the procedure and
for practical performance. Notably, there are some attractive features of estimating m̂(.)
via Ridge regression which is linear in both pre-treatment outcomes and in comparison
units. This case is referred to as the Ridge ASCM. In this case, the estimator of the
post-treatment outcome is m̂(Xi) = η̂ridge0 + X′iη̂

ridge
, where η̂ridge0 and η̂ridge are the

coefficients of a Ridge regression of control post-treatment outcomes Y0T on centered
pre-treatment outcomes X0 with penalty hyperparameter λridge:

{
η̂ridge0 , η̂ridge

}
= argminη0,η

1

2

∑
Wi=0

(Yi − (η0 +X ′iη))
2

+ λridge ‖η‖22 (2.7)

The Ridge ASCM estimator is then:

Ŷ aug1T (0) =
∑
Wi=0

γ̂scmi YiT +

(
X1 −

∑
Wi=0

γ̂scmi Xi

)
· η̂ridge (2.8)

when augmenting with Ridge regression the implied weights are themselves the solution
to a penalized synthetic control problem, as in the standard SCM problem. Nevertheless,
while the original SCM constrains weights to be on the simplex, this does not occur with
the Ridge ASCM. Indeed, when the treated unit lies outside the convex hull of the control
units, the Ridge ASCM improves the pre-treatment fit relative to the SCM by allowing
for negative weights and extrapolating away from the convex hull. The Ridge ASCM
directly penalizes the distance from the sparse, non-negative SCM weights, controlling
the amount of extrapolation by the choice of λridge, and only resorts to negative weights
if the treated unit is outside of the convex hull. When the treated unit is in the convex
hull of the control units – so the SCM weights exactly balance the lagged outcomes – the
Ridge ASCM and SCM weights are identical. When the SCM weights do not achieve an
exact balance, the Ridge ASCM solution will use negative weights to extrapolate from
the convex hull of the control units. The amount of extrapolation is determined both
by the amount of imbalance and by the hyperparameter λridge. When SCM yields good
pre-treatment fit or when λridge is large, the adjustment term will be small and γaug

will remain close to the SCM weights, Ridge ASCM and SCM weights will be equivalent
and the estimation error will only be due to variance of the weights and post treatment
noise. It follows that λridge plays a crucial role and its value must be derived optimally.
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Operatively, one possibility is to follow the in-time placebo check proposed by Abadie et

al. (2015). Let Ŷ
(−t)
1k =

∑
Wi=0 γ̂

aug
i(−t)Yik be the estimate of Y1k obtained excluding time

period t from the sample. The idea consists in comparing the difference Y1t − Ŷ (−t)
1t for

some t ≤ T0 as a placebo check. We can extend this idea to compute the leave-one-out
cross validation Mean Squared Error (MSE) over time periods:

CV (λridge) =
∑

T0
t=1

(
Y1t − Ŷ (−t)

1t

)2
(2.9)

and the cross validation procedure chooses either the lambda that minimizes (2.9) or the
maximal value of λridge with MSE within one standard deviation of the minimal MSE,
as suggested by Hastie et al. (2009), among others. Such a choice trades off overfitting,
i.e. a too small λridge, and biased estimates, i.e. a too large λridge, indeed if λridge →∞
ASCM is equivalent to SCM.

2.2. Data sources and variables construction

As mentioned above, the ASCM4 procedure’s goal is to evaluate the impact of a lock-
down on the most immediate and desired effect, namely the number of avoided deaths.5

Specifically, the outcome variable Y is the mortality rate, which is defined as the cumu-
lative death counts per million population (dth) taken from the Epidemic Intelligence
team of the ECDC (European Center for Disease Prevention and Control). Since daily
reported figures for deaths tend to be challenging to compare and qualify across countries
due to possible confounding idiosyncratic socioeconomic differences related to health care
systems and population ageing. For this reason, we also consider several covari-
ates, X, that are expected to be linked to the outcome variable. Accordingly, among the
predictors, we include variables capturing the COVID-19 dynamics, such as cumulative
cases per million population (num), which are intuitive predictors of mortality rates. The
second group of predictors includes variables capturing the “resilience” of each country’s
health system. This subset includes the number of hospital beds per hundred thousand
population (hsp) under the assumption that the more developed the health system, the
less fatal the COVID-19 infection will be. As for the outcome variable, the source for num
and hsp is the Epidemic Intelligence team of the ECDC. Following Sá (2020) and Rocklöv
and Sjödin (2020), among others, we also include socioeconomic characteristics that are
likely to be (positively) related to mortality rates, i.e., the median age (age), as well as
the average household size (hld). All demographic variables are taken from the United
Nations report (United Nations, 2019). We also control for “mobility trends” across dif-
ferent categories of places and behavior changes derived from Google Mobility Reports,
which collect percentage changes in visits and length of stay at different places relative
to a baseline given by the median values of the same day of the week from January 3,

4For ease of reference, henceforth the simpler expression “ASCM” will be used referring to “Ridge
ASCM”
5Cho (2020) pointed out that identifying the most appropriate outcome variable to assess real epidemi-

ological effects is controversial. On the one hand, endogenous cross-country differences in testing rates
regarding eligibility and accessibility limit the usefulness of the cases of infection. On the other hand,
daily death counts might be affected by measurement problems because some jurisdictions include both
confirmed and probable cases of deaths, as opposed to others only reporting confirmed cases.
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2020, to February 6, 2020.6 Following Chernozhukov et al. (2021), we focus on four out
of six mobility sub-indices (namely, “Grocery and Pharmacy”, “Transit Stations”, “Re-
tail and Recreation” and “Workplaces”). “Parks” and “Residential” are dropped because
the former does not have clear implications on the spread of COVID-19, while the latter
shows an overly-high correlation with “Workplaces” and “Retail and Recreation”. We
distil the information content conveyed by the Mobility indicators into a synthetic index
(mob) by following a “nonmodel based” aggregation scheme, as discussed in Marcellino
(2006).7 The subsequent logical step is identifying the donor states to form the synthetic
control unit. The selection of the donor pool candidates should be carried out
by identifying countries sharing some key similarities to the treated one. In
the present context, geographical proximity is a crucial factor to be considered as the
spread of the pandemic has been not homogeneous across space and over time, moving
from Asia in late 2019 to Europe at the beginning of 2020 and, subsequently, to the
Americas. Given our focus on the Italian case, an obvious choice to select the donor pool
elements is to focus on European countries. Accordingly, we have included all members
belonging to the European Union (except Luxembourg) plus Switzerland, Norway, and
the United Kingdom (28 countries in total).
Since the daily evolution of the mortality rate at the individual country level reflects
different diffusion patterns at a given point in time, we have normalized the time unit
such that “day 1” refers to the day on which cumulative infection cases per million ex-
ceeds one in the treated country as in Cho (2020). In our case, “day 1” corresponds
to February 23, 2020, with the lockdown policy enacted on March 9. Therefore, in our
setup, the pre-treatment period consists of 15 daily observations. Because the treated
state contrasts to the control unit after treatment, the policy under scrutiny should not
be enacted in any donor pool state during the study. Accordingly, our sample’s ending
date is given by the date when lockdown measures have taken place in the synthetic coun-
terfactual. To identify such an average date, we have used an ad hoc index elaborated by
the Oxford COVID-19 Government Response Tracker, namely the Stringency Index, SI,
which collects daily standardized information on several different common government
responses for a large number of countries. More specifically, we have followed Cho (2020)
and defined the ending sample as the date on which the SI peaked in each donor country.
Therefore, our sample’s last observation occurs on “day 49”, corresponding to April 12,
2020, so our post-treatment period consists of 34 data points.

INSERT HERE FIGURE 1

As Figure 1 shows, the SI for Italy (dashed line) stands well above the average
one for the donors (continuous line) over the entire sample span, especially in
the pre-treatment period. Moreover, the ratios between individual countries
SI and the Italian index over the entire sample turn out to be well below
the unity, suggesting that on average no donor country has implemented

6This type of data is collected from smartphones with an initial level of “normal conditions” which
is set to 0. When this data is reduced from the base value, it suggests that some forms of mobility
constraints have been imposed in a specific area so that the average mobility decreases.
7Specifically, the four sub-indices are standardised to have zero mean and unit standard deviation. This

step helps avoiding the resulting (simple) average index to be dominated by variables with a
particularly pronounced degree of volatility or an incomparably high absolute mean.
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stronger lockdown policy than Italy over the temporal window covered by
the analysis.

3. EMPIRICAL SETUP

3.1. Specification searching

Resorting to the ASCM makes it possible to choose in a transparent way the weights to
build the counterfactual for the treated unit (Abadie et al., 2010 p. 494). Nonetheless,
such an advantage is weakened by a lack of consensus on how (and what) covariates
should be chosen. Due to this approach relative infancy, there are not enough papers to
formally test for specification searching (Brodeur et al., 2016). On the one hand, using
all lagged outcome variables avoids the problem of omitting potentially irrelevant co-
variates. Indeed, this practice eliminates all other predictors effects so that the synthetic
counterfactual is created regardless of the other predictors values (Kaul et al., 2018).
This specification is the one that minimizes the Root Mean Squared Prediction Error
(RMSPE) in the pre-treatment period, and that is not subject to arbitrary decisions.
On the other hand, makeing all the other covariates irrelevant, threatens the estimator
unbiasedness in the post-treatment predictions (Ferman et al., 2020). Given this lack
of guidance, focusing on the specification that uses all the pre-treatment outcome lags
as matching variables, is generally recommended (Ferman et al., 2020) unless there is
a strong prior belief that it is crucial to balance on a specific set of covariates (as in
the present context). Moreover, optimizing the dependent variable pre-treatment fit and
ignoring the covariates can be quite misleading. The more the covariates are truly in-
fluential for future values of the outcome, the larger a potential bias of the estimated
treatment effect may become.8 Therefore, economic theory and the researcher’s intuition
play a relevant part in the context of the ASCM as well. Building on the relevant litera-
ture on the topic discussed in the Introduction, we have considered the following sets of
covariates: variables related to the resilience of the health care system (captured by hsp),
to the demographic structure of the population (represented by age and hld), as well as
to the pandemic dynamics (epitomized by num and mob). Operatively, we first consider
the specifications that differ only in the combinations of pre-treatment outcome values
used as predictors. Specifically, we consider the following ones: (a0) all pre-treatment
outcome values; (a1) odd pre-treatment outcome values only; (a2) even pre-treatment
outcome values only; (a3) mean of all pre-treatment outcomes; (a4) the first half of the
pre-treatment outcome values; (a5) the first three-fourths of the pre-treatment outcome
values. We also consider a set of specifications from (a1) to (a5) where lagged depen-
dent values as defined in (a1)-(a5) are augmented by structural time-invariant covariates
(namely hsp, age and hld). Finally, in the third group of specifications from (c1) to (c5),
we extend the set of predictors by including time-varying predictors (namely, num and
mob) averaged over the entire pre-treatment period.
As a preliminary step, we compute the Average Treatment Effect on the Treated (ATT)
that is the average deviation of the counterfactual series from the actual one over the
treatment period (from March 9 2020, to April 11 2020) for each specification (a0)-(c5)
to identify the specifications with a negative and statistically significant gap in a way

8This result is essentially attributable to the fact that covariates are fitted rather poorly when all
outcome lags are used, introducing a bias that can be substantial even for reasonably long-treatment
time spans.
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which is consistent with our priors. Since there is more than one possible specification
that satisfies the conditions above, we follow the recommendation by Ferman et al. (2020)
of presenting results for many different specifications, and in particular, we include the
specification (a0) as a benchmark. The upper part of Table 1 presents an overview of all
the ASCM specifications that we consider in the analysis, while the last row reports the
associated p-value for the computed ATT of the corresponding specification.9

INSERT HERE TABLE 1

The results show that all of the ATTs are negative and statistically significant at the
5 percent level (or better), calling for a criterion to combine the test statistics for the
individual specifications to distil them into a summary test statistic (Imbens and Rubin,
2015). Expressly, we assume that the test function is simply a weighted average of the
test statistics for individual specifications. The same equally-weighted scheme is applied
to combine each specification into a synthetic statistic (Christensen and Miguel, 2018;
Cohen-Cole et al., 2009). In this vein, Figure 2 shows the treatment effects, defined as
the differences between the mortality rate in Italy and the synthetic control over the
evaluation period, averaged across all specifications (continuous black line), as well as
the benchmark specification (a0) (dashed line). As expected, the mean value of the treat-
ment effects suggests a strongly negative impact a few days after the intervention date.
Moreover, there is preliminary evidence of statistical significance for these deviations
from the actual path in the long-run, according to the confidence region computed as
±2.5 times the (median) absolute deviation from the median as suggested by Leys et al.
(2013).

INSERT HERE FIGURE 2

While this finding gives indirect support to the effectiveness of non-pharmaceutical
interventions in reducing the mortality rate, there is still a need for a criterion to se-
lect a given specification from a set of possible alternatives. It is well known that when
covariates are expected to be useless in explaining the outcome, the recommended spec-
ification should use all pre-treatment outcome lags, i.e., specification (a0) (Kaul et al.,
2018). However, if the control unit should also match several socio-economically relevant
covariates, attention should be paid to the specifications allowing external predictors.
Since b’s are a particular case of their corresponding c’s variant, we can safely restrict
the focus on the latter group. A logical criterion to discriminate among the five remain-
ing specifications with time-invariant and time-varying external predictors is given by
each specification’s lag structure. Since the pandemic dynamics are likely to affect the
mortality rate with a temporal lag, specification (c3) is not the most desirable choice.
Likewise, a lag structure based on either even or odd pre-treatment dates applied previ-
ously in SCM literature (see, for instance, Eren and Ozbeklik, 2016), is hard to rationalize
in our context, suggesting that (c1) and (c2) are second-best options to alternative lag
structures. This argumentation leads us to focus on the two remaining models: (c4) and
(c5). In what follows, we pick (c4) as our preferred specification, while specification (c5)

9In all the specifications, we select the hyperparameter λridge as the one that minimizes the cross-
validation placebo fit CV(λ) as discussed in Section 2.1 above. The results obtained under the alternative
rule of picking the minimal λ are almost identical to those reported in the main text.



COVID-19: the sooner the better 11

is used to check the robustness of our empirical findings. Accordingly, in our baseline
model, the set of predictors includes time-invariant covariates, as well as the first half of
the pre-treatment outcome values and time-varying covariates, averaged over the entire
pre-treatment period. As Figure 3 shows, the gaps for our baseline specification closely
resemble not only the one for specification (c5) but also the two summary statistics re-
ported in Figure 2. All in all, the temporal evolution of the treatment suggests a sort of
delayed effect which becomes progressively negative as the days pass by.

INSERT HERE FIGURE 3

3.2. Baseline specification: a primer

Though suggestive, the visual evidence presented above is insufficient to ensure proper
implementation of the ASCM. Its practical use calls for the fulfillment of three condi-
tions. As for the first requirement, only the treated unit is affected by the policy change
assessed over the post-treatment period (I). Secondly, the counterfactual outcome can be
approximated by a fixed combination of donor states (II). Finally, the policy change has
no effect before it is implemented (III). The procedures to align country-specific vari-
ables to a common starting date as well as the definition of a general rule to identify the
(average) treatment date for the donor set (i.e., the last observation of our sample) dis-
cussed in Section 2.2 above help to answer point (I). As for point (II), Figure 4 reports
the estimated weights according to both the ASCM and the canonical SCM for each
country belonging to the donor pool. It emerges that the structure of the donor pool
identified by the SCM consists of just one element (Spain) with weight zero attached
to the remaining 27 countries. In contrast, in the case of the ASCM, a richer structure
of the weights emerges. With regard to mortality rate this is in line with Cho (2020)
who observes that death counts might be affected by measurement problems because
some jurisdictions include both confirmed and probable cases of deaths, as opposed to
others only reporting confirmed cases. In the specific case of Italy, Cerqua et al. (2020)
claim that the official count of deaths due to COVID-19 is likely to under-report the
phenomenon. The mechanics behind ASCM allows us to extrapolate-out of the convex
hull and to assign non-zero weights to a higher number of countries. In more detail, there
is confirmation of a relevant role for Spain (0.909), along with France (0.718) and Poland
(0.603), with (relatively smaller) positive weights attached to several other countries as
well (namely Belgium, Bulgaria, Denmark, Greece, the United Kingdom, the Nether-
lands, and Slovenia). In contrast, Germany, Switzerland, and Ireland do not contribute
to the synthetic unit’s construction, while the remaining 15 countries are associated with
negative weights (ranging from -0.313 for Norway to -0.068 for Sweden). Overall, from an
applied viewpoint, the ASCM can identify three European countries where the pandemic
severity peaked compared to other donor pool candidate units. Simultaneously, resorting
to the ASCM seems like a legit choice because of the documented difficulty to build up
a donor pool by means of the canonical SCM. In such an occurrence, SCM and ASCM
estimates tend to diverge. Specifically, ASCM estimates are likely to rely heavily on ex-
trapolation from the convex hull of the control units in order to improve pre-treatment
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fit (Ben-Michael et al., 2020), by allowing for negative weights. Whereas, the standar
SCM imposes sparse and always non-negative weighting structure.10

INSERT HERE FIGURE 4

Turning to point (III), the synthetic outcome is expected to closely match the treated
outcome’s temporal profile during the pre-treatment period. Thus, as a preliminary step,
Table 2 reports the average values over the pre-treatment period of the predictors for Italy
(“actual”) and the counterfactual control (“synth”), where the latter is constructed with
the ASCM weights. Overall, the synthetic control unit provides a much better-
matched profile of Italy along the predictors, as compared to the simple
average of all countries in the donor pool (donor). This suggests that the
ASCM-based selection of weights is more appropriate, rather than choosing
subjectively the weights, for instance, by taking the simple average across all
the donor units.

INSERT HERE TABLE 2

Such a requirement is necessary to ensure that the comparison of the outcome paths
during the post-treatment period provides insight into the effect of the treatments. When
the dynamics of the synthetic control and the treated entity tend to diverge, then the
treatment presumably caused the difference. In contrast, if both paths display similarities
in the treatment period, the treatment does not appear to have affected the outcome.
Figure 5 compares the temporal profile of mortality rate for both actual and synthetic
Italy by disentangling pre- and post-treatment periods. The upper panel assesses the
quality of fit in the pre-treatment period and refers to the first 15 daily observations
since the case per million exceeds one (corresponding to the temporal window from
February 23, 2020, to March 8, 2020). The lower panel displays the difference of the two
series over the entire sample span which also includes the post-treatment period ranging
from March 9, 2020 (when the policy intervention took place) to April 11, 2020.

INSERT HERE FIGURE 5

While the cumulative mortality rate in the synthetic control unit closely overlaps the
actual series prior to the pre-treatment period, there is a visible divergence a few days
after the policy intervention date (vertical line in the lower panel) when the synthetic unit
starts following a much steeper path than the actual counterpart series. The resulting
gap, defined as the difference between the actual series and its synthetic control, turns
out to be negative and statistically significant with an ATT of -128.6 and a p-value of
0.000. In more detail, we find that the cumulative mortality rate in synthetic Italy exceeds
664 per million population roughly five weeks after the lockdown intervention, while the
corresponding figure for actual Italy is as low as 312. This evidence suggests that with a
(negative) gap of around 350 deaths per million, Italy’s mortality rate would have been
higher by over 113 percent had there not been the policy intervention. Moreover, the
gap from the actual series turns out to be statistically significant at the 95 percent level

10Moreover, resorting to a CV procedure makes it possible to obtain the optimal amount of extrapolation
through the choice of λridge of condition (2.9).
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according to the confidence interval computed by the jackknife+ approach of Barber et
al. (2019).

4. ROBUSTNESS CHECKS

Confidence intervals as those reported in Figure 5 have only recently been introduced
(see also Cattaneo et al., 2019) in the SCM literature so that the statistical significance
of the post-treatment gap is typically assessed by resorting to permutation techniques
(the so-called placebo test; Abadie et al., 2010). Nonetheless, permutation-based tests
can convey useful information to support our empirical findings. In what follows, we dis-
cuss three types of sensitivity tests: placebo in-space, placebo in-time, and leave-one-out
tests.
Under the “placebo in-space” test, the ASCM is sequentially applied to each country in
the donor pool as though it is a treated state, using the remaining members of the pool
as before.
The Root Mean Square Prediction Error (RMSPE) measures the gap be-
tween the variable of interest for the treated country and its synthetic coun-
terpart. It is possible to calculate a set of RMSPE values for the pre-and
post-treatment periods for each unit considered in the analysis. Consequently,
the RMSPE of the actual treated country after the treatment is expected to be large
relative to its value before treatment. On the other hand, placebo units should not see
a substantial increase in their RMSPE following the treatment. For this reason, Table 3
reports the RMSPE pre/post-treatment ratio of each donor country divided by the same
quantity computed for the treated country, Italy. Whenever the entry in the table is less
than 1, it indicates a relatively higher difficulty when forecasting future outcome values
for Italy. The share of RMSPEs above one is then used to obtain a p-value for Italy,
which measures the probability of observing a ratio as high as the one obtained for Italy
if one were to pick a country at random from the potential controls.

INSERT HERE TABLE 3

Overall, the RMSPE ratios turn out to be well below the unit threshold, suggesting
that the actual path of the treated countries tends to diverge away from the synthetic
control after the intervention in a much more substantial way than all countries belonging
to the donor pool. The resulting p-value is (1/29=) 0.034 as it ranks first out
of 29 countries, which falls within the conventional range of statistical signif-
icance used in the relevant literature. There is no evidence of a statistically
significant ATT for three entities of the donor pool, while for the remaining
cases, the estimated ATT ranges from -47.2 (for Norway) to 129.5 (for Bel-
gium).
As a further sensitivity test, we run the “in-time placebo” test, in which the donor pool
remains fixed and the treated unit is always Italy, but the treatment date is re-assigned
to occur during the pre-treatment period, as devised by Abadie et al. (2015). Moreover,
this placebo model’s sample period must end when the actual treatment occurred (day
15, in our context) to avoid capturing its effects. Operatively, the in-time placebo test is
conducted under the assumption that the treatment occurred on day 8, roughly in the
middle of our pre-treatment period. Apart from the lockdown date, we apply the baseline
setup’s exact setting to use the same predictor variables. As Figure 6 shows, our syn-
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thetic Italy for a placebo treatment on day 8 closely follows the path of actual Italy, not
only during the first half of the baseline pre-treatment period but also in the second part
of the sample with an estimated gap barely different from zero (continuous black line)
also according to the 95 percent confidence region. Similar results are obtained when the
fictitious treatment date is assigned to days 10 and 12 (corresponding to two-thirds and
three-fourths of the baseline pre-treatment period, respectively). According to the dotted
and dashed lines in Figure 6, significant reductions in the mortality rate for these two
fake lockdown dates cannot be found over the actual pre-treatment period. Overall, the
in-time placebo test assures that the placebo estimate resembles the actual pre-treatment
path closely enough to give us confidence that our main findings are not through chance,
ruling out the possibility that the above-discussed difference between the synthetic and
actual Italy arises for reasons other than the treatment.

INSERT HERE FIGURE 6

INSERT HERE FIGURE 7

The third sensitivity check we consider is the leave-one-out test (Abadie et al., 2015),
where the model is iterated over to leave out one selected donor country each time to
assess whether one of the donor units is driving the results. Figure 7 shows all leave-one-
out synthetic gaps (thin grey lines) and the mean value across all of them (dashed line).
It emerges that the average gap across all permutations closely matches the baseline gap
that includes all donor states in terms of ATTs (-127.7 and -128.6, respectively), giving
further support to the robustness of our findings.

Finally, the sharp decrease in deaths caused by the lockdown occurs be-
cause social interactions are banned and, consecutively, infection cases de-
crease. These two intermediate outcomes, social interactions and the number
of cases, act as mediators. Figure 8 presents the gap plot of weekly measure
of Google mobility indicator, Panel (a), and of cases per million population,
Panel (b). Both outcomes present a negative gap since the lockdown incep-
tion, consistently with the drift of cumulative deaths per million population.
This provides evidence of the channels through which the lockdown operates.

INSERT HERE FIGURE 8

5. CONCLUDING REMARKS AND FURTHER RESEARCH

This paper is the first contribution that uses the ASCM to evaluate the effectiveness
of non-pharmaceutical interventions against COVID-19. Evidence has been provided
for Italy, the first Western country which has implemented shelter-in-place orders after
China. The paper shows how the ASCM helps removing bias from a naive application
of the canonical SCM. Indeed, the latter estimator shrinks the donor pool to only one
country, i.e., Spain, generating de facto an estimate of the effect as a bare difference
between Italy and Spain. Constraining SCM weights on the unit simplex may be too
restrictive, especially when it is hard to reproduce accurate synthetic pre-treatment dy-
namics. Our empirical case falls precisely in this circumstance, and the ASCM overcomes
the problem by assigning negative weights to some donor units. As already pointed out
by Ben-Michael et al. (2020), since the ASCM removes the non-negativity constraint and
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allows for extrapolation outside of the convex hull, the pre-treatment fit from ASCM
turns out to be at least as good as the pre-treatment fit from the SCM alone. Our evi-
dence suggests that applied economists should compare weights obtained from the SCM
and the ASCM and opt for the former only if the two are not entirely different. The
socio-economic relevance of the issue analyzed in this contribution makes the importance
of such a comparison even more evident because the estimates may significantly diverge,
and different conclusions may be based on biased estimates.
The results report extensive evidence on the effectiveness of non-pharmaceutical inter-
ventions in avoiding human deaths and preventing health care systems from collapsing
in the present COVID-19 era. According to our benchmark estimate, for each life lost,
the policy has saved 1.13 lives. In other words, while the cumulative mortality rate has
recorded 312 lives lost per million population, without lockdown policy, it would have
been 664, that is 352 lives saved per million population. With 60 million as the 2020
Italian population in total, the policy has produced (60*352=) 21,120 lives saved. It is
important to stress that this figure can be considered conservative because the sample
span we can use for the econometric exercise is shorter than the total temporal horizon
over which the policy has been implemented, due to the lack of non-treated units from a
specific point in time onwards. Similar desirable results, albeit not comparable in mag-
nitude, have been found by Friedson et al. (2020) for California, while for the case of
Sweden, Cho (2020) estimates 25 percent of lives lost attributable to the non-treatment
decision. Due to limited external validity and different methodologies applied, the figure
by Cho (2020) is scantly comparable with ours. Nevertheless, a more substantial effect
in Italy is quite reasonable because of structural differences between the two countries in
terms of (lower) endowment of hospital beds, (older) median age of the population and
(larger) household average size (for Italy). As a possible extension, one could think of
extending and projecting the findings up to the last day of the policy (i.e., other 36 extra
days up to May 18, 2020) and re-calculate the total effect of the policy. One can also
consider relating the findings of this paper to economic damages caused by the lockdown
measure. Whereas, from a strictly methodological point of view, a further possible exten-
sion consists in constructing a formal test to test the equality of the weights generated
by the SCM and the ASCM. These issues are beyond the scope of the present work and
are left for further research.
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Figure 1: Stringency index plot
Note: The horizontal axis indicates the days after the death per million exceeds one. The
figure reports the Italian Stringency Index (hyphenated line) and average Stringency
index for the donor pool (black solid line). The vertical line represents the lockdown
date.
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Figure 2: Gap plot for the benchmark case
Note: The horizontal axis indicates the days after treatment. The dashed line is the
difference between mortality rate in Italy and the synthetic control from the specification
with all pre-treatment outcome values (a0). The solid black line is the gap plot obtained
by averaging the synthetic control over all the alternative specifications. The shaded area
is the confidence region computed as ±2.5 times the (median) absolute deviation from
the median as suggested by Leys et al. (2013)
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Figure 3: Gap plots for alternative specifications
Note: The horizontal axis indicates the days after treatment. The solid black line is the
difference between the mortality rate in Italy and the synthetic control (gap) from the
specification (c4) with the first half of the pre-treatment outcome values averaged over
time and structural time-invariant covariates (hsp, age, hld), as defined in Section 3.1.
The dotted and dashed lines represent the gap plot obtained by taking the average and
the median of all the alternative specifications, respectively. The hyphenated line is the
gap from the specification (c5) with the first three-fourths of the pre-treatment outcome
values averaged over time and structural time-invariant covariates (hsp, age, hld), as
defined in Section 3.1.
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Figure 4: Comparison between SCM and ASCM weights
Note: the picture reports the weights from the SCM (white) and from the ASCM (black)

Table 2: Balancing table

Actual Synth Donor

dth(1) 0.033 0.026 0.001
dth(2) 0.033 0.079 0.008
dth(3) 0.099 0.109 0.01
dth(4) 0.182 0.124 0.011
dth(5) 0.199 0.183 0.019
dth(6) 0.282 0.254 0.023
dth(7) 0.348 0.359 0.039
hsp 3.180 3.726 4.777
age 45.500 44.097 42.007
hld 2.400 2.400 2.449
num(*) 6.494 6.371 5.560
mob(*) 4.867 4.707 6.765

NOTE: dth(i): i-th lag of cumulative death counts per million population; hsp: number of

hospital beds per hundred thousand population; age median age; hld : average household size;

num: cumulative cases per million population; mob: mobility indicator; (*) stands for the

average value over the entire pre-sample period.
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(a) Pre-treatment period

(b) Pre- and post-treatment periods

Figure 5: Actual and synthetic Italy
Note: In both panels, the horizontal axis indicates days after the death per million exceeds
one. The profile of Italy is shown by the solid line while its synthetic counterfactual, the
dashed line. The vertical line in Panel (b) represents the lockdown date. The shaded area
is the confidence interval computed by means of the jackknife+ approach of Barber et
al. (2019).



COVID-19: the sooner the better 25

Figure 6: In-time placebo
Note: The horizontal axis indicates the days after the death per million exceeds one.
The black solid, dotted and dashed lines are the gap plot when the fictitious treatment
date is assigned to half, two-thirds and three-fourths of the actual pre-treatment period,
respectively. The shaded area is the 95 percent confidence interval computed by means
of the jackknife+ approach of Barber et al. (2019).
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Figure 7: Leave-one-out
Note: The horizontal axis indicates days after the death per million exceeds one. The
black dashed line is the gap plot of the baseline specification obtained with the entire set
of donor countries. The grey lines are the leave-one-out gap plots obtained by removing
one country at a time from the donor pool of the baseline specification.



COVID-19: the sooner the better 27

(a) Google mobility trend

(b) Number of cases

Figure 8: Alternative response variables
Note: In both panels, the horizontal axis indicates days after the death per million exceeds
one. The solid black line is the gap plot. The shaded area is the confidence interval
computed by means of the jackknife+ approach of Barber et al. (2019). Panel (a) reports
the gap plot for weekly averages of the Google Mobility Reports, while Panel (b) uses
weekly averages of infection cases per million population.
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Table 3: In-space placebo

RMSPE ratio ATT P-value
aut 0.009 0.2 [0.271]
bel 0.986 129.5 [0.000]
bgr 0.027 3.6 [0.000]
che 0.086 -11.5 [0.000]
cyp 0.054 -0.2 [0.393]
cze 0.014 -1.2 [0.008]
den 0.116 17.8 [0.000]
deu 0.044 5.6 [0.000]
esp 0.470 69.9 [0.000]
est 0.063 8.6 [0.000]
fin 0.180 -21.3 [0.000]
fra 0.194 27.5 [0.000]
gbr 0.113 8.9 [0.013]
grc 0.103 -14.1 [0.000]
hrv 0.007 -0.9 [0.000]
hun 0.148 -22.3 [0.000]
irl 0.185 -25.8 [0.000]
ltu 0.236 -36.5 [0.000]
lva 0.026 -3.3 [0.000]
mlt 0.042 -0.7 [0.342]
nld 0.058 9.3 [0.000]
nor 0.334 -47.2 [0.000]
pol 0.194 26.7 [0.000]
prt 0.137 20.2 [0.000]
rou 0.141 -20.5 [0.000]
svk 0.028 4.1 [0.000]
svn 0.227 -33.1 [0.000]
swe 0.238 28.4 [0.000]

Note: The column “RMSPE ratio” reports the post/pre-treatment RMSPE of each country of

the donor pool relative to the same ratio for Italy. Whenever the entry is less than one, the

relative difficulty in forecasting future outcome values after intervention for Italy is higher

than the one for the country considered. ATT= Average Treatment effect on the Treated.


