
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 5, No. 3, July 2011. pp. 209-217.
Accepted 25 November 2009

Improving Particle Swarm Optimization Convergence
with Spread and Momentum Factors

Idris Abd Latiff1 and M. O. Tokhi2

Department of Automatic Control and Systems EngineeringUniversity of Sheffield, Sheffield S1 3JD
United Kingdom, E-mail: 1cop06ia@sheffield.ac.uk, 2o.tokhi@sheffield.ac.uk

Abstract: Particle Swarm Optimization (PSO) is a swarm intelligence search method based on the behavior of birds flocking
and fish schooling. It is known for its ability to perform fast computation compared to other evolutionary computational
methods like Genetic Algorithms. Several parameter control methods have been developed to make the PSO algorithm faster
and more accurate such as linearly decreasing inertia weight (LDIW) and time-varying acceleration coefficients (TVAC).
This paper presents an improvement over existing techniques by introducing spread factor and momentum factor into the
PSO algorithm. Test results show that the PSO with these two factors produce superior performance and suitable for
applications where speed and precision are important.
Key words: Particle Swarm Optimization, Spread Factor, Momentum Factor.

1. INTRODUCTION

Particle swarm optimization (PSO) was introduced
by James Kennedy and Russell Eberhart in 1995
[1-2] as a population-based search method. In PSO,
individuals in the population learn from the
member at the best position to reach the group
objective. As the population moves towards its
objective, each individual will adjust its position
according to its own and the neighbor’s
experiences.

PSO is made up of a population of potential
solutions called particles. These particles move in
the search space of the objective function towards
its optimum point. The main steps in the PSO
algorithm are velocity update, position update and
fitness evaluation. The ith particle in a d-
dimensional search space can be represented by

Xi = (xi1, xi2,..., xid) (1)
The velocity update equation and position

update equation are given respectively as
vid = wvid + c1r1(pid – xid) + c2r2(pgd – xid) (2)

xid = xid + vid (3)
where vi is the velocity of particle i, xi is the position
of particle i, w is the inertia weight, c1 is the
cognition factor, c2 is the social factor, r1 and r2 are

uniformly distributed random numbers between
0 and 1, pi is personal best (pbest), i.e. the best
position of particle i so far, and pg is global best
(gbest), i.e. the best particle position in the
population so far. The coefficient c is also known
as the acceleration factor or learning factor. The
second part of Equation (2) is called the cognitive
part where particles learn from their own
experience, and adjust themselves accordingly.
The third part of Equation (2), called the social
part, describes how particles interact with their
leader to find the objective.

The PSO algorithm can be summarized as
follows:

(1) Initialize the position and velocity for each
particle.

(2) Evaluate function fitness to determine each
particle’s personal best and global best
particle.

(3) Update personal best if it is better than
previous one.

(4) Update global best if it is better than
previous one.

(5) Calculate particle velocity using Equation (2).

(6) Update particle position using Equation (3).

(7) Repeat steps (2)-(6) until termination criteria
satisfied

mailto:1cop06ia@sheffield.ac.uk
mailto:tokhi@sheffield.ac.uk

2. PARAMETER SELECTION

The behavior of particles in a swarm and its
performance are influenced by several factors,
which can be classified as follows:

1. Population size or the number of particles
in a swarm. More particles mean higher
calculation cost but greater chance of
finding the global optimum faster. The
number of dimensions generally has no
effect on performance since each dimension
is independent from each other, except in
cases where some values are interchanged
between dimensions [3].

2. Type of neighborhood, or topology, which
can be either global or local.

3. Values, or range of values of inertia weight,
constriction factor, acceleration coefficients,
and random numbers.

4. Constraints such as velocity limit,
maximum number of iterations and desired
level of precision,

5. Type of objective function landscape. Some
test functions are unimodal with only one
global optimum while others are
multimodal. Most test functions have local
optima.

This paper analyzes the effect of inertia weight
and acceleration coefficient on the performance of
PSO algorithms. Basically, there are two ways of
applying these parameters: fixed and time-varying.
Original PSO used the values of w = 1 and c1 = c2 =
2 [1]. A constriction factor, κ, which modifies all the
terms in the velocity equation was introduced by
Clerc [4]. In this case, fixed values of κ = 0.729 and
c1 = c2 = 2.05 are used according to the following
equation:

1 1 2 2(() ())id id id id gd idv v c r p x c r p x= κ + − + − (4)
Time decreasing inertia weight was suggested

by Shi and Eberhart [5] to improve the exploration
and exploitation phases of the search. PSO
algorithms with linearly decreasing inertia weight
(LDIW) using an initial value between 0.7 and 0.9,
and a final value between 0.1 and 0.6 have been
proposed and tested in many empirical studies [6]
[7] [8]. Time-varying acceleration coefficient
(TVAC) was suggested by Ratnaweera,
Halgamuge, and Watson [9]. Both LDIW and
TVAC employ the format of linear equation as
described by

1 2 2
max_()

max_t
t tw w w w

t
−= − + (5)

1 1 1 1()
max_t f i i

tc c c c
t

= − + (6)

2 2 2 2()
max_t f i i

tc c c c
t

= − + (7)

where wt is the current value of the inertia weight,
w1 is the initial value of the inertia weight, w2 is the
final value of the inertia weight, ct is the current
value of the acceleration factors, cf is the final value
of the acceleration factors, ci is the initial value of
the acceleration factors, t is the current iteration
value and max_t is the maximum iteration.

3. AN ADAPTIVE APPROACH TO INERTIA
WEIGHT MODIFICATION

In this paper, a method of influencing the behavior
of particles during exploration and exploitation is
proposed. The idea of linearly decreasing inertia
weight is that w is supposed to assume a high value
during exploration and a small value during
exploitation. However, decreasing the value of w
linearly is a slow process and does not consider the
positions of particles in its calculation. The choice
of initial and final values in equations (5), (6) and
(7) is based on empirical studies which may be
suitable in some applications but less effective in
others. Hence, an adaptive method employing a
parameter called the spread factor (SF) has been
used.

SF measures the distribution of particles in the
search space called spread, and the distance
between average particle position and the global
best position called deviation. These two data are
measured at every iteration and used to increase or
decrease the inertia weight. The performance of PSO
using the spread factor can be further improved by
adding another parameter called the momentum
factor, m. This factor maintains the search
momentum even though the spread and deviation
of the swarm is approaching zero. A combination
of these two factors is expected to produce a level
of performance comparable to existing PSO
algorithms. To verify the effectiveness of this
approach, PSO algorithms using the spread and
momentum factors were tested and compared to
popular versions of PSO algorithms.

Tests are performed on five benchmark
functions, namely:

2

1. Sphere:
f(x) = x2, x = [–100, 100]

2. Rastrigin:
f(x) = x2 – 10 cos(2πx) + 10, x = [–5.12, 5.12]

3. Griewank:

21() cos() 1
4000

f x x x= − + , x = [-100, 100]

4. Ackley:

()2() 20exp 0.2f x x= − −

exp(cos(2)) 20 ,x e− π + + x = [-20, 20]

5. Schwefel:

()1/2() 418.9829 sinf x x x= − , x = [0, 600]

The tests are done using 20 particles in 1
dimension with maximum iteration of 1000. The
stopping criterion used is epsilon = 10-9 i.e. the
particles are considered to have successfully
converged when the maximum spread and
deviation from gbest were less than epsilon. The
algorithm is run 100 times for each test function,
and the results are averaged and presented in
respective tables.

3.1. PSO Algorithm with the Spread Factor
The spread factor (SF) was introduced to balance
the behavior of particles during exploration and
exploitation phases [10]. This factor continuously
measures the distribution of particles during the
search process and modifies the inertia weight
according to the equation

w = exp(–iter/(SF × iteration_max)) (8)
where iter and iteration_max represent current
iteration and maximum number of iterations
respectively. Equation (8) is an exponentially
decreasing function with a maximum value of 1. The
decreasing rate is proportional to the value of SF,
which in turn is influenced by the spread and
deviation of particles in the search space. Initial
applications using PSO with SF have shown some
promising results [11-12], but further improvements
are necessary to make it more effective.

Four different algorithms were compared. For
PSO algorithm with SF, three variants were tested.
The first one was with c1 = c2 = 2. The second one
was with c1 linearly decreasing as described by
Equation (5) and c2 = 2. The third one was with both
c1 and c2 linearly decreasing according to Equation

(5). For PSO algorithm with linearly decreasing
inertia weight (LDIW), two variants were tested.
The first one was with c1 = c2 = 2 and the second
one was with both c1 and c2 linearly decreasing as
described by Equation (9). The third PSO algorithm
used Clerc’s constriction factor κ = 0.729 and c1 = c2
= 2.05. The fourth PSO algorithm used w = 0.5 +
Rand/2 and c1 = c2 = 2. The results are presented in
Tables 1-5.

c = 2 × (1–(iter/iteration_max)) (9)
Table 1 shows that for the Sphere function, PSO

algorithm with SF and both c1 and c2 linearly
decreasing was the fastest with 101 iterations.
However, PSO algorithm with LDIW and c1 = c2 = 2
achieved the smallest value of global minimum of
1.97650x10-14. All PSO algorithms achieved 100%
convergence except the one with w = 0.5 + Rand/2,
which achieved only 89%.

Table 2 shows that for the Rastrigin function,
PSO algorithm with SF and both c1 and c2 linearly
decreasing was the fastest with 122 iterations. PSO
algorithm using w = 0.5 + Rand / 2 and c1 = c2 = 2
was able to obtain the smallest global minimum of
5.34999 x 10-12 but its success rate was only 90%
while with others it was 100%.

Table 3 shows that for the Griewank function,
PSO algorithm with SF and both c1 and c2 linearly
decreasing was the fastest with 176 iterations. The
smallest global minimum of -1.35105x10 -10 was
found by PSO algorithm with LDIW and both c1 and
c2 linearly decreasing. All PSO algorithms achieved
100% convergence except the one with w = 0.5 +
Rand/2, which achieved only 50%.

Table 4 shows that for the Ackley function, PSO
algorithm with SF and both c1 and c2 linearly
decreasing was the fastest with 98 iterations. PSO
algorithm with LDIW and both c1 and c2 linearly
decreasing gave the smallest global minimum of -
4.61136x10-16. In this case, the success rate of all PSO
algorithm was 100% except with that using w = 0.5
+ Rand/2 which was 96%.

Table 5 shows the result for the Schwefel
function. It is important because it proves that only
PSO with SF, linearly decreasing c1 and constant c2
was able to maintain 100% success rate under the
given test conditions. The algorithm, however,
required 522 iterations against 260 needed by PSO
with SF and both c1 and c2 linearly decreasing.

A few observations can be made from the test
results. The most important one is that employing

3

the spread factor ensures fast convergence in all
cases. The effects of linearly decreasing the
acceleration coefficient can be seen from both the
speed and success rate. By linearly decreasing the
cognitive factor only, the number of iterations can
be reduced significantly. Tables 1-5 show the
reduction of 7.8%, 12.6%, 18.6%, 7.3%, and 0.95%
respectively. By linearly decreasing both cognitive
and social factors, further reduction of 4.7%, 7.6%,
14.5%, 3.9%, and 50.2% can be achieved. In the case
of the Schwefel function (Table 5), linearly
decreasing both c1 and c2 does not guarantee
convergence. As such, the recommended variant of
PSO with SF is with c1 linearly decreasing as per
Equation (9) and c2 is kept constant at 2. This

parameter set allows fast convergence and avoids
the trap of local optima at the same time.

Overall, the results show that PSO with SF is 3
to 5 times faster than PSO with LDIW, and twice
as fast compared to PSO with Clerc’s constriction
factor, while PSO with random values of inertia
weight is the slowest in all cases. This
demonstrates the importance of proper parameter
selection as arbitrary values cannot guarantee
convergence at global optima. In any case,
convergence at global optima can hardly be
guaranteed in stochastic algorithms, but the
approach proposed in this study increases the
probability of achieving it.

Table 1
Performance Comparison on Sphere Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF 2.0 2.0 115 2.29778x10-06 100%
SF LD 2.0~0.0 2.0 106 -8.69872x10-05 100%
SF LD 2.0~0.0 LD 2.0~0.0 101 -1.34283x10-05 100%
LDIW 2.0 2.0 573 1.97650x10-14 100%
LDIW LD 2.0~0.0 LD 2.0~0.0 431 -3.93630x10-14 100%
0.729 2.05 2.05 273 2.81290x10-14 100%
0.5+ Rand/2 2.0 2.0 661 8.32025x10-14 89%

Table 2
Performance Comparison on Rastrigin Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF 2.0 2.0 151 1.14157x10-06 100%
SF LD 2.0~0.0 2.0 132 -1.09228x10-09 100%
SF LD 2.0~0.0 LD 2.0~0.0 122 2.45155x10-08 100%
LDIW 2.0 2.0 557 1.57899x10-11 100%
LDIW LD 2.0~0.0 LD 2.0~0.0 414 -1.12254x10-11 100%
0.729 2.05 2.05 265 1.49099x10-11 100%
0.5 + Rand/2 2.0 2.0 623 5.34999x10-12 90%

Table 3
Performance Comparison on Griewank Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF 2.0 2.0 253 1.50445x10-08 100%
SF LD 2.0~0.0 2.0 206 4.54612x10-05 100%
SF LD 2.0~0.0 LD 2.0~0.0 176 3.66301x10-05 100%
LDIW 2.0 2.0 663 -3.62390x10-10 100%
LDIW LD 2.0~0.0 LD 2.0~0.0 489 -1.35105x10-10 100%
0.729 2.05 2.05 390 1.38939x10-10 100%
0.5 + Rand/2 2.0 2.0 795 -1.11569x10-10 50%

4

3.2. PSO Algorithm with the Spread and
Momentum Factor

Although the PSO with SF enables fast convergence,
the algorithm cannot achieve the global best values
obtained by other algorithms. As the particles
converge towards global optimum, the value of
inertia weight is quickly reduced to zero, and the
velocity update equation is effectively given by

vid = c1r1 (pid – xid) + c2r2 (pgd – xid) (10)
Since the value of c1 is reduced by Equation (9),

the swarm is mainly affected by the location of gbest.
The gbest particle is itself a pbest. As a result, the
global best position can hardly be improved
without additional term included in the velocity
equation. To keep the swarm exploiting the global
optimum, the momentum factor, m, has been added
to the velocity equation given as [13]

vid = c1r1(pid – xid) + c2r2(pgd – xid) + m (11)
With the addition of the momentum factor, the

global best particle has more chances of improving
its value. Many PSO algorithms with linearly
decreasing inertia weight (LDIW) employ the final
value between 0.1 and 0.4 for w. As such, PSO
algorithm with SF and m were tested using those
values. For each value of m, three variants or
different sets of acceleration coefficients were

applied. The first variant used a constant value of
c1 = c2 = 2. The second variant used a linearly
decreasing value of c1 as per Equation (9), and a
constant value of c2 = 2. The third variant used a
linearly decreasing value of c1 and c2 as per Equation
(9). The results are presented in Tables 6-10.

Table 6 shows that for the Sphere function, the
smallest global minimum of -2.21778x10 -15 was
achieved by PSO with m = 0.2 and c1 = c2 = 2 in 237
iterations. All variants gave 100% success rate.

Table 7 shows that for the Rastrigin function,
the smallest global minimum of 1.88836x10-12 was
achieved by PSO with m = 0.4 and c1 and c2 linearly
decreasing in 505 iterations. This variant, however,
performed at only 94% success rate while all other
variants gave 100% success rate.

Table 8 shows that for the Griewank function,
the smallest global minimum of -2.73812x10-11 was
achieved by PSO with m = 0.2 and c1 and c2 linearly
decreasing in 275 iterations. The variants with m =
0.1 and m = 0.2 gave 100% success rate. For PSO
with SF and m = 0.3, the variant with c1 and c2
linearly decreasing gave only 97% success rate.
For SPO with m = 0.4, only the variant with
c1 linearly decreasing and c2 = 2 achieved 100%
success rate.

Table 4
Performance Comparison on Ackley Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF 2.0 2.0 110 -2.82560x10-06 100%
SF LD 2.0~0.0 2.0 102 1.97982x10-07 100%
SF LD 2.0~0.0 LD 2.0~0.0 98 3.81296x10-07 100%
LDIW 2.0 2.0 548 6.82203x10-14 100%
LDIW LD 2.0~0.0 LD 2.0~0.0 403 -4.61136x10-16 100%
0.729 2.05 2.05 238 -7.62216x10-15 100%
0.5 + Rand/2 2.0 2.0 574 -2.33674x10-15 96%

Table 5
Performance Comparison on Schwefel Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF 2.0 2.0 527 420.9687469906 66%
SF LD 2.0~0.0 2.0 522 420.9687466007 100%
SF LD 2.0~0.0 LD 2.0~0.0 260 420.9688283726 55%
LDIW 2.0 2.0 804 420.9687463651 26%
LDIW LD 2.0~0.0 LD 2.0~0.0 568 420.9687463606 20%
0.729 2.05 2.05 594 420.9687463561 66%
0.5 + Rand/2 2.0 2.0 846 420.9687463808 10%

5

Table 6
Performance of PSO with SF and m on Sphere Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF, m=0.1 2.0 2.0 168 -2.24054x10-13 100%
SF, m=0.1 LD 2.0~0.0 2.0 155 -8.81966x10-14 100%
SF, m=0.1 LD 2.0~0.0 LD 2.0~0.0 142 -1.17257x10-13 100%
SF, m=0.2 2.0 2.0 237 -2.21778x10-15 100%
SF, m=0.2 LD 2.0~0.0 2.0 201 4.20601x10-14 100%
SF, m=0.2 LD 2.0~0.0 LD 2.0~0.0 194 -2.54793x10-14 100%
SF, m=0.3 2.0 2.0 322 4.32646x10-15 100%
SF, m=0.3 LD 2.0~0.0 2.0 289 -3.61217x10-14 100%
SF, m=0.3 LD 2.0~0.0 LD 2.0~0.0 267 2.68441x10-13 100%
SF, m=0.4 2.0 2.0 479 -3.83559x10-15 100%
SF, m=0.4 LD 2.0~0.0 2.0 431 4.49156x10-14 100%
SF, m=0.4 LD 2.0~0.0 LD 2.0~0.0 426 1.33057x10-14 100%

Table 7
Performance of PSO with SF and m on Rastrigin Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF, m=0.1 2.0 2.0 198 -4.97260x10-11 100%
SF, m=0.1 LD 2.0~0.0 2.0 179 2.73054x10-11 100%
SF, m=0.1 LD 2.0~0.0 LD 2.0~0.0 163 -5.84345x10-11 100%
SF, m=0.2 2.0 2.0 256 1.25788x10-11 100%
SF, m=0.2 LD 2.0~0.0 2.0 231 -3.95348x10-11 100%
SF, m=0.2 LD 2.0~0.0 LD 2.0~0.0 215 -1.01258x10-11 100%
SF, m=0.3 2.0 2.0 365 3.65821x10-12 100%
SF, m=0.3 LD 2.0~0.0 2.0 325 3.46362x10-11 100%
SF, m=0.3 LD 2.0~0.0 LD 2.0~0.0 301 -2.27230x10-11 100%
SF, m=0.4 2.0 2.0 613 -9.44993x10-12 100%
SF, m=0.4 LD 2.0~0.0 2.0 546 5.89153x10-12 100%
SF, m=0.4 LD 2.0~0.0 LD 2.0~0.0 505 1.88836x10-12 94%

Table 8
Performance of PSO with SF and m on Griewank Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF, m=0.1 2.0 2.0 291 -1.77771x10-10 100%
SF, m=0.1 LD 2.0~0.0 2.0 236 2.12403x10-09 100%
SF, m=0.1 LD 2.0~0.0 LD 2.0~0.0 225 2.87126x10-10 100%
SF, m=0.2 2.0 2.0 365 2.05594x10-10 100%
SF, m=0.2 LD 2.0~0.0 2.0 294 -4.01041x10-11 100%
SF, m=0.2 LD 2.0~0.0 LD 2.0~0.0 275 -2.73812x10-11 100%
SF, m=0.3 2.0 2.0 470 7.21318x10-11 100%
SF, m=0.3 LD 2.0~0.0 2.0 372 -2.36606x10-10 100%
SF, m=0.3 LD 2.0~0.0 LD 2.0~0.0 363 3.37012x10-10 97%
SF, m=0.4 2.0 2.0 696 -1.54714x10-10 98%
SF, m=0.4 LD 2.0~0.0 2.0 584 1.86966x10-10 100%
SF, m=0.4 LD 2.0~0.0 LD 2.0~0.0 516 -1.39092x10-10 53%

6

Table 9 shows that for the Ackley function, the
smallest global minimum of -1.07054x10 -14 was
achieved by PSO with m = 0.3 and c1 = c2 = 2 in 318
iterations. All variants gave 100% success rate.

Table 10 shows the result for the Schwefel
function and once again proves that PSO with SF,
linearly decreasing c1 and constant c2 is very
effective under the given test conditions. For m
values of 0.1, 0.2 and 0.4 the success rate was 100%
while for m = 0.3, the success rate was 99% able to
maintain 100% success rate. All other variants failed
to obtain satisfactory results.

An important observation that can be made
from the results presented here is that an increase
in the value of m form 0.1 onwards increases the

number of iterations significantly without greatly
improving the quality of global optimum.

Similar pattern in the reduction of the number
of iterations by linearly decreasing the acceleration
factor as mentioned in Section 3.1 illustrates how
Equ. (9) affects the behavior of particles in the swarm.

Further comparison between PSO with SF only
and PSO with SF and m is illustrated in Figures 1-5
where the function fitness values of the global best
particle are plotted for two values of m, 0.0 and 0.2.
Figure 1 shows that for the Sphere function, PSO
with SF and m=0.0 converges to fitness value of
1.1394x10-27 in 101 iterations while PSO with SF and
m=0.2 converges to the fitness value of 1.4128x10-34

in 183 iterations.

Table 9
Performance of PSO with SF and m on Ackley Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF, m=0.1 2.0 2.0 167 -9.15084x10-14 100%
SF, m=0.1 LD 2.0~0.0 2.0 148 8.95291x10-14 100%
SF, m=0.1 LD 2.0~0.0 LD 2.0~0.0 141 7.67943x10-14 100%
SF, m=0.2 2.0 2.0 222 4.73380x10-14 100%
SF, m=0.2 LD 2.0~0.0 2.0 200 -2.04945x10-13 100%
SF, m=0.2 LD 2.0~0.0 LD 2.0~0.0 187 -1.03670x10-13 100%
SF, m=0.3 2.0 2.0 318 -1.07054x10-14 100%
SF, m=0.3 LD 2.0~0.0 2.0 281 -1.29007x10-14 100%
SF, m=0.3 LD 2.0~0.0 LD 2.0~0.0 274 2.52440x10-14 100%
SF, m=0.4 2.0 2.0 561 -2.95623x10-14 100%
SF, m=0.4 LD 2.0~0.0 2.0 469 1.09656x10-13 100%
SF, m=0.4 LD 2.0~0.0 LD 2.0~0.0 458 -5.74111x10-14 100%

Table 10
Performance of PSO with SF and m on Schwefel Function

Inertia Weight c1 c2 No of Iterations Global Best Success Rate

SF, m=0.1 2.0 2.0 494 420.9687463585 63%
SF, m=0.1 LD 2.0~0.0 2.0 550 420.9687463635 100%
SF, m=0.1 LD 2.0~0.0 LD 2.0~0.0 309 420.9687463738 42%
SF, m=0.2 2.0 2.0 565 420.9687463486 64%
SF, m=0.2 LD 2.0~0.0 2.0 558 420.9687463560 100%
SF, m=0.2 LD 2.0~0.0 LD 2.0~0.0 323 420.9687463543 43%
SF, m=0.3 2.0 2.0 649 420.9687463672 58%
SF, m=0.3 LD 2.0~0.0 2.0 588 420.9687463612 99%
SF, m=0.3 LD 2.0~0.0 LD 2.0~0.0 368 420.9687463691 26%
SF, m=0.4 2.0 2.0 708 420.9687463494 42%
SF, m=0.4 LD 2.0~0.0 2.0 739 420.9687463513 100%
SF, m=0.4 LD 2.0~0.0 LD 2.0~0.0 500 420.9687463604 16%

7

Figure 2 shows that for the Rastrigin function,
PSO with SF and m=0.0 converges to fitness value
of 0 in 109 iterations while PSO with SF and m=0.2
converges to the fitness value of 0 in 301 iterations.

Figure 3 shows that for the Griewank function,
PSO with SF and m=0.0 converges to fitness value
of 0 in 137 iterations while PSO with SF and m=0.2
converges to the fitness value of 0 in 269 iterations.

Figure 1: Fitness of gbest particle with m=0.0 (diamond) and
m = 0.2 (cross) for Sphere Function

Figure 4 shows that for the Ackley function, PSO
with SF and m=0.0 converges to fitness value of
6.4668x10-12 in 75 iterations while PSO with SF and
m=0.2 converges to the fitness value of 7.9048x10-14

in 192 iterations.

Figure 5 shows that for the Schwefel function,
PSO with SF and m=0.0 converges to fitness value
of 1.27276x10-05 in 343 iterations while PSO with SF
and m=0.2 converges to the fitness value of
1.27276x10-05 in 560 iterations.

Figure 2: Fitness of gbest particle with m=0.0 (diamond) and
m = 0.2 (cross) for Rastrigin Function

Figure 3: Fitness of gbest particle with m=0.0 (diamond) and
m = 0.2 (cross) for Griewank Function

Figure 4: Fitness of gbest particle with m=0.0 (diamond) and
m = 0.2 (cross) for Ackley Function

Figure 5: Fitness of gbest particle with m=0.0 (diamond) and
m = 0.2 (cross) for Schwefel Function

8

A few observations can be made from the plots.
Both algorithms do not require so many iterations
during the exploration stage to find the region
where the global optima are located. Secondly, the
effect momentum factor in delaying convergence
can be seen in all plots except in Figure 4. The
momentum factor causes the inertia weight to be
high for better exploration. It also allows the
algorithm to keep fine tuning the fitness value
before termination criteria are reached. This results
in better fitness in higher numbers of iterations.

4. CONCLUSION

An improvement to the existing PSO algorithms has
been proposed by the introduction of the spread
and momentum factors. This paper described how
these two factors can be used to modify the inertia
weight of the velocity equation, and thereby
improve the performance of PSO. Tests results have
proven that only proper parameter selection can
ensure convergence at global optima and consistent
performance of the algorithm. However, the
experiments done in this study is not
comprehensive as it covers only five test functions
in 1 dimension. This is due to software limitation.
To verify the true effectiveness of the proposed PSO
model, more difficult and thorough tests should be
conducted.

Alternative methods of keeping the momentum
of the global best particle, other than simply
assigning a specific momentum factor, should be
explored. One consideration is to assign the
momentum factor to the gbest particle only.
Alternatively, the gbest particle can be made
responsive to the other particles with certain
property e.g. having the highest velocity, thus
making the algorithm truly adaptive.

REFERENCES
[1] J. Kennedy and R. Eberhart, “Particle swarm

optimization”, Proceedings of the IEEE Conference on
Neural Networks, Perth, Australia, 1995, 1942-1948.

[2] R. Eberhart and J. Kennedy, “A New Optimizer using
Particle Swarm Theory”, Proceedings of the Sixth
International Symposium on Micro Machine and human
Science, Nagoya, Japan, 1995, 39-43.

[3] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar,
“Comprehensive Learning Particle Swarm Optimizer
for Global Optimization of Multimodal Functions”,
IEEE Transactions on Evolutionary Computation, 10,
2006, 281-295.

[4] M. Clerc, “The Swarm and the Queen: Towards a
Deterministic and Adaptive Particle Swarm
optimization”, Proceedings of the Congress on
Evolutionary Computation, Washington DC, USA, 1999,
pp. 1951-1957.

[5] R. C. Eberhart and Y. Shi, “Comparing Inertia Weights
and Constriction Factors in Particle Swarm
Optimization”, Proceedings of the Congress on
Evolutionary Computation, La Jolla, USA, 2000, 84-88.

[6] Y. Shi and R. A. Krohling, “Co-evolutionary Particle
Swarm Optimization to Solve Min-max Problems”,
Proceedings of the Congress on Evolutionary Computation,
Honolulu, USA, 2002, 1682-1687.

[7] R. Brits, A. P. Engelbrecht, and F. van den Bergh,
“Locating Multiple Optima using Particle Swarm
Optimization”, Applied Mathematics and Computation,
189, 2007, 1859-1883.

[8] B. Niu, Y. Zhu and X. He, “Multi-population
Cooperative Particle Swarm Optimization”, Lecture
Notes in Computer Science, 3630, 2005, 874-883.

[9] A. Ratnaweera, S. K. Halgamuge and H. C. Watson,
“Self-organizing Hierarchical Particle Swarm
Optimizer with Time-varying Acceleration
Coefficients”, IEEE Transactions on Evolutionary
Computation, 8, 2004, 240-255.

[10] I. Abd Latiff and M. O. Tokhi, “Fast Convergence
Strategy for Particle Swarm Optimization using
spread Factor”, IEEE Conference on Evolutionary
Computation, 2009, 2693-2700.

[11] S. F. Toha, I. Abd Latiff, M. Mohamad and M. O.
Tokhi, “Parametric Modeling of a TRMS using
Dynamic Spread Factor Particle Swarm
Optimization”, Proceedings of 11th International
Conference on Computer Modeling and Simulation ,
Cambridge, UK, 2009, 95-100.

[12] S. Julai, M.O. Tokhi, M. Mohamad and I. Abd Latiff,
“Control of Flexible Plate Structure using Particle
Swarm Optimization”, IEEE Conference on Evolutionary
Computation, 2009, 3183-3190.

[13] I. Abd Latiff and M. O. Tokhi, “Improving Particle
Swarm Optimization Convergence with Spread and
Momentum Factors”, The Second International
Conference on Control, Instrumentation and Mechatronic
Engineering, 2009, 406-413.

9

