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1. Introduction

A basic organizing principle of social relationships is the tendency of people to associate with others

who are similar to themselves. This observed propensity towards homophily leads to different forms of

segregation, which have been long studied both from the economic literature (Jackson, 2007), and the

sociological literature (McPherson et al., 2001).

A prominent contribution to the understanding of the dynamics of segregation is that by Thomas Schelling

(Schelling, 1969, 1971a,b). The logic of Schelling’s argument offers a simple and subtle intuition to racial

residential segregation: homophily, in spite of individual preferences being characterized by the desire for

integration, generates a completely unexpected social equilibrium where individuals tend to live within

racially homogenous communities. The model devised by Schelling thus leads to the conclusion that radical

racial segregation is a robust and stable equilibrium even if individuals prefer moderate racial integration.

Building on this framework, large research has been conducted to document and understand the determi-

nants of racial and residential segregation across several European countries (Baerveldt et al., 2004; Vermeij

et al., 2009; van Ham et al., 2016), in the U.S. (Clark, 1991; Möbius and Rosenblat, 2001; Batty, 2013; Hen-

derson, 2014), and Israel (Hatna and Benenson, 2012). However, empirical findings rarely proved Schelling’s

prediction of extreme racial spatial separation and ghettos to be correct (Easterly, 2009; Ong, 2017). Also in

the United States, which ultimately inspired Schelling’s work1 and most of the research in this field, despite

ethnic segregation remains still prevalent in many cities (Logan and Stults, 2011), it has significantly de-

creased over the last forty years (Glaeser and Vigdor, 2012), and the conformation of cities and urban areas

is becoming as various as it possibly could be. US census data strongly confirms this pattern, as it is shown

in Figure 1. The figure reports a standard measure of urban segregation, the dissimilarity index, of the black

and white communities in the US metropolitan regions for each census year from 1940 to 2010. This metric

has a support that goes from zero (perfect integration) to one hundred (perfect segregation). Specifically, the

value reported in the figure is a weighted average of the dissimilarity index for all metropolitan regions in a

census year, with weights given by the total population in the regions (additional details are provided in the

caption of the figure). The trend in the value of this metric clearly shows that segregation has remarkably

weakened since the 1970s.

1 Quoting Schelling: “My ultimate concern of course is segregation by color in the United States” (Schelling, 1969, p.488).
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Figure 1: Ethnic segregation in the metropolitan regions of the United States
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Note: For each census year (x-axis), we report the value of the dissimilarity index for the Black and White communities residing in the United States (y-axis).

The index is obtained with the formula 0.5 ∗
∑

i |bi/B − wi/W |, where bi and wi indicate respectively the black and white population in census tract i,

while B and W registers respectively the black and white population in the metropolitan region to which i belongs. The value reported in the figure is the

weighted average of the dissimilarity index for all metropolitan regions in a census year, with weights given by the total population in the regions. Source:

Authors’ elaboration from US census data.

This evidence for a general pattern of mitigated segregation, still unexplained by Schelling’s work and

its extensions, cast doubts on the ineluctability of what the model posits, and calls for additional research.

Complementing Schelling’s rational, this paper proposes to contribute to fill this gap in the literature by

proposing a framework to unravel what forces might contrast dramatic population moves and produce the

emergence of limited segregation equilibria.

To this purpose, Schelling’s heuristic is put in interplay with a positive cost of moving and, more impor-

tantly, the presence of social linkages. This minimal departure from Schelling’s model provides the conditions

under which multiple equilibria (i.e. mixed segregation) arise. The reason is that social connections affect

how decisions are distributed within the society (Calvo-Armengol and Jackson, 2004, 2007), and introduce a

form of heterogeneity across agents which can change the pattern of equilibria dictated by Schelling’s model

(Jackson, 2007). In fact, provided that agents are sensitive to being located close to their social connections,

and not all of them might be formed within one’s group, different types of group compositions may be ob-

served in a neighborhood. However, if moving costs constrain relocation choices, and not all neighborhoods

are equally accessible to agents, we will observe the rise of zone of competition and contestation, making the

outcome of Schelling’s model uncertain (Silver et al., 2021), and dependent on the location of agents and

their sensitivity to others’ relocation decisions.

Therefore, while Schelling considers the case when people identify only with one of their characteristics

(e.g., ethnicity), we allow for the possibility that the force of attraction determined by homophily is affected

by different identities (e.g., ethnicity and social connections) and mitigated by the cost of moving. In what
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follows, we will show how this generalization provides a valuable insight on the formation of racially mixed

neighborhoods as they result from both local inertia, generated by the incidence of moving costs, and network

externalities, arising from the desire to live close to friends. In our setup, the interplay between moving costs

and social linkages generates a network externality that has an effect on the segregation patterns. When

the agent is able to move and simultaneously reduce the average distance from her friends, incentives to

relocate to a segregated area will decrease for everyone. After the move, incentives to modify their location

will decrease for friends close to the agent, and will increase for all the others. Consequently, the market

equilibrium in residential location and the subsequent level of social segregation will depend on economic

factors (the cost of moving), identity (groups and the importance of homophily) and social linkages (friends,

their choices and the willingness to minimize the spatial distance between individual residence and the

residence of friends).

The remainder of the paper is organized as follows. In Section 2, we discuss the literature related to

our work. In Section 3, we show how Schelling’s model can be expanded so to include the effects played by

network externalities and moving costs. The components of this model are further explicated in Section 4,

where we detail how they can be used to investigate segregation equilibria in a simulated setting. Section 5

presents the results of such simulations. Finally, Section 6 concludes.

2. Literature review

Outlined in a series of papers (Schelling, 1969, 1971a,b) and further elaborated in Schelling (2006),

Schelling’s theory provided the foundation for large research in economics (Lee, 2004; Sethi and Somanathan,

2004; Rosser, 2011; Benito-Ostolaza et al., 2015), sociology (Zhang, 2004; Benard and Willer, 2007; Benenson

et al., 2009; Fossett, 2011), and social network analysis (Henry et al., 2011; de Marti and Zenou, 2017;

Stadtfeld et al., 2020).

Schelling’s simple mechanism was originally framed as a heuristic process of strategic reasoning, in which

people leave their residence whenever they are a too small minority in their neighborhood.2 Both versions of

the Schelling model, the “chequerboard model” - in which a fixed number of agents belonging to two different

groups (the “reds” and the “blue” ones) choose where to locate on a grid (or on a line) as a consequence of

their heuristic – and the “neighborhood tipping model” - in which a small change in group composition of a

neighborhood can put the heuristic in motion, and leads to an accelerating and irreversible dynamic process

2 The same reasoning has been proposed using different setups and the main findings of the model were found consistent
regardless of the definition of the neighborhood and its topography (Taylor, 1984).
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bringing to racial segregation – are based on the same stringent logic in which observed macrobehavior clashes

with micromotives. We briefly recall Schelling’s reasoning through an illustrative example for the reader’s

convenience, and discuss the rational underlying it.

2.1. An example: Schelling “chequerboard model” without social linkages

Consider Figure 2, in which 74 individuals are located on a 10×10 grid. 37 of them are “reds”, and 37 are

“blues.” The 26 spots that are not occupied neither by reds nor by blues remain empty and can be occupied

in a subsequent round of play. Finally, the initial position of each individual is random.

Each individual has up to eight adjacent neighbors and has a preference over homophily. Following a

heuristic process, the generic individual remains in her location as long as at least a share x of her neighbors

are of the same type as she is. In this example, we set x = 1/3. Let’s now consider individual 23 in Figure

2.3 23 is red and is surrounded by six reds and two empty spots. Since empty cells are excluded from the

heuristic accounting, individual 23 compares 6/6 > 1/3 and she decides not to move from her position on

the grid. Individual 45, instead, is red as well but is surrounded by four blues, one red and three empty

spots. Since 1/5 < 1/3 she will move from her position on the grid. Similarly, all unhappy individuals will

move to an empty spot that satisfies the “at least one-third” heuristic. Segregation will rapidly emerge.4

2.2. Related literature

Schelling’s model has been also decontextualized, put in close analogy to concepts originated in other

disciplines (Vinković and Kirman, 2006), and extended so that its heuristic and other choice variables (Hen-

sher et al., 2005) could be included in a compact multivariate utility function. Among the many, Sethi and

Somanathan (2004) defines a framework in which agents care about both the racial composition and the

affluence of neighborhoods, showing that, in a context of multiple equilibria, a reduction in inequality can be

observed both with a rise in segregation or a fall in the level of affluence, depending on the speed of income

convergence. Zhang (2004) instead, considers the existence of a housing market and agents chose to move

according their heuristic and the price of an empty spot.5

3 In Schelling’s original settings all agents unsatisfied of their location simultaneously put their name on a list, and then they
move according to an empty space following some arbitrary order. Successively, a new list is drawn and the process repeats
until no agents have further incentive to move. Here, this process is simplified to avoid unnecessary complexities, and we select
one agent randomly.

4 All possible multiple-equilibria are stable and segregation can be reduced only introducing a distaste for uniformity,
corresponding to a heuristic > 1/3 and < 7/8, as an example. The formulation is analogous to Atkinson et al. (1970) inequality
aversion.

5 Our model can naturally encompass extensions that expand the choice set of individuals, such as those of the above
contributions.
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Figure 2: The Schelling “chequerboard” model.
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As in Pancs and Vriend (2007), we build our contribution around the original Schelling “chequerboard

model,” in which the number of individuals and their characteristics are well defined and the number of

neighborhoods is higher than one. Indeed, even if the two Schelling’s formalizations - the “neighborhood

tipping model” and the “chequerboard model” - can be combined into one single theoretical framework (see,

for instance, Young (2001) and Zhang (2011) and the excellent textbook treatment of the models by Ioannides

(2013) and Easley and Kleinberg (2010)), this approach would add unnecessary complexities to our work.

By contrast, we aim at keeping the details of this work as simple as possible.

Albeit analytically different, this line of research has strong connections with the literature originated

by the seminal contribution of George Akerlof and Rachel Kranton on the Economics of Identity (Akerlof

and Kranton, 2000) and summarized and popularized in Akerlof and Kranton (2012). In their framework,

agents make their choice according to the standard utility maximization apparatus - market prices, individual

income and preferences - and an identity variable, depending on individual characteristics (e.g. being female,

being white, being homosexual) and self-image, on the social context and on the behavior of others. Choices

depend therefore on economic incentives and identity issues.
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3. Schelling model with networked individuals

In our model, we consider a situation similar to that described in Figure 2. Agents are located at random

in space, and they are also similarly split in two different groups, the “reds” and the “blues,” but, with respect

to Schelling’s original formulation, they are also characterized by a fixed number of time-invariant friends.

This is represented in Figure 3. In this setting, individual 23 is friend with 47 and 8, and individual 45

is friend with 54 and 36. Conditional on the heuristic, they both prefer to live close to their friends, who

thus modifies their individual choices. Individual 23 will tend to move to get closer to 8 and 47. On the

contrary, individual 45 will now tend to stay, since her friends live nearby. The effect of friends is therefore

non-monotonic as far the choice of moving is concerned, and generates a variable network externality on

friends: e.g. individuals 47 and 8 will tend to stay where they are after the move by 23.

Figure 3: The Schelling “chequerboard” model with networked individuals.
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Note: The setup is similar to the one in Schelling (1969, 2006).

The main elements of this reasoning are detailed, generalized and formalized in the subsequent model.

For the sake of clarity, we proceed in a stepwise form.
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3.1. The framework

Consider a squared grid with side n, hence containing n2 cells. We denote the set of the cells as V .

Each cell of the grid is identified by its row and column, so that vrc ∈ V is the cell at the intersection

of row r and column c, for each r, c = 1, . . . , n. For the sake of simplicity and when needed, we will call

vrc = v, where v = (r − 1)n + c. Such a definition of v labels with a real positive number all the elements

of V , and it results that v = 1, . . . , n2. Hereafter, without loss of generality, we will use equivalently v ∈ V

and v ∈ {1, . . . , n2}.

To make every cell surrounded by an equal number of adjacent neighbors, we assume that the grid is

suitably recombined at its boundary to be shaped as a torus, so that - for every 0 < h < n - each v(n+h)c = vhc

and vr(n+h) = vrh, for each r, c, h = 1, . . . , n.

We introduce two different populations in the grid: the red individuals and the blue ones. For every

individual being blue or red is an immutable trait. The set collecting the reds and the blues are denoted by

A and B, with |A| = A and |B| = B, respectively. We assume that the entire population belongs to the set

P = A ∪ B. Each cell of the grid can be occupied by an element of P or it can be empty. Therefore, we

have A + B < n2. The generic elements of A and B will be denoted by a and b, respectively. We will refer

to them as agents, and denote the generic agents as i, j ∈ P.

All agents, also those sharing the same color, differ for the social connections they have. The social

connections of agent i are represented by a star-shaped graph with i playing the role of the central hub. By

merging together all the social connections of the agents in the grid, we have a unified graph composed by

the individual A+B (possibly interconnected) star-shaped subgraphs. We denote by G = (P, E) the graph

in the grid, where E represents the set of the edges of G.

Specifically, we say that (i, j) ∈ E if and only if there is a social connection between agent i and agent j,

for each i, j ∈ P. We define

Pi := {j ∈ P|(i, j) ∈ E}, ∀ i ∈ P.

The set Pi is the friendship set of the agent i, and j ∈ Pi is said to be friend of i. We assume that friendship

disregards colors and thus, in general, Pi ∩ A 6= ∅ and Pi ∩ B 6= ∅, for each agent i ∈ P.

Moreover, links are assumed to be undirected, so that j ∈ Pi if and only if i ∈ Pj , for each i, j ∈ P. At

the same time, links are not weighted. Briefly, i and j are friends.

3.2. Agents’ preferences in the grid

Agents move in the grid, and their movement is driven by their level of satisfaction in occupying a given

cell of the grid. Here, we discuss what are the criteria driving the preferences of an agent for a cell, while in
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the next subsections we will present agents’ movement rule and the random assignment mechanism used to

configure their initial position in the grid.

� Color. According to the classical Schelling model, we assume that agents prefer to be surrounded by

people of the same color, and have a disutility in being surrounded by a majority of agents showing a

color different from her own one. We formalize this assumption.

Given r̄, c̄ = 1, . . . , n and the cell v̄ = vr̄c̄ ∈ V , we define the neighborhood set of v̄ by

Nv̄ := {vrc ∈ V \ {v̄}|(r, c) ∈ {r̄ − 1, r̄, r̄ + 1} × {c̄− 1, c̄, c̄+ 1}}. (1)

By construction, we have that |Nv̄| = 8. For each v̄ ∈ V , we introduce two variables ξAv̄ and ξBv̄ which

describe the colors of Nv̄ as follows:

ξAv̄ :=
|Nv̄ ∩ A|

8
, ξBv̄ :=

|Nv̄ ∩ B|
8

.

In general, ξAv̄ + ξBv̄ ≤ 1.

For any agent i ∈ P, the color-based normalized utility function of i in being located in the cells in V

is U colori : V → [0, 1] such that U colori (v̄) is not decreasing (not increasing, respectively) with respect

to ξAv̄ when i ∈ A (i ∈ B, respectively).

� Friendship. Agents prefer to locate close to their friends. To explain this extremely reasonable assump-

tion, the introduction of a distance measure between couples of cells belonging to the squared grid is

required. Without losing generality, we employ the normalized Manhattan distance d : V 2 → [0, 1]

defined as

d(vr1,c1 , vr2,c2) =


|r1−r2|+|c1−c2|

n , if n is pair;

|r1−r2|+|c1−c2|
n−1 , if n is odd.

, (2)

where r1, r2, c1, c2 = 1, . . . , n and vr1,c1 , vr2,c2 ∈ V and n in the normalizing factor.

With a reasonable abuse of notation, we will refer to d(i, j) as the distance between two agents i, j ∈ P,

to be intended as the distance between the cells occupied by i and j and in accord to formula (2). In

the same way, we will refer to d(i, v) as the distance between the agent i ∈ P and the cell v ∈ V , which

represents the distance between the cell occupied by i and the cell v. If agent i occupies the cell v,

then d(i, v) = 0.
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Notice that when i and j are friends, then d(i, j) is the Manhattan distance between the cells repre-

senting the extremes of the edge (i, j). Moreover, by construction, d(i, j) ∈ [0, 1].

Given an agent i ∈ P, we can provide a measure of the friendship set Pi. Clearly, such a measure

depends on the specific cell v ∈ V from which i’s friends are observed. We denote such a measure as

∆(v,Pi).

The measure ∆ describes how an agent changes her closeness to her friends by modifying her position

in the graph. As already mentioned above, we naturally assume that agent i, located in cell v, feels to

be more satisfied about her connections (and surrounded by friendship) as the value of the ∆(v,Pi)’s

is lower.6

For any agent i ∈ P, the friendship-based normalized utility function of i in being located in the cells

in V is Ufriendi : V → [0, 1] such that Ufriendi (v) is not increasing with respect to ∆(v,Pi), for each

v ∈ V .

� Cost of moving. Agents spend an effort in moving from a cell to another one, and such effort generates

a disutility which does not decrease as the distance from the involved cells increases.

Thus, for any agent i ∈ P, the distance-based normalized utility function of i in moving from her

position to the cells in V is Umovingi : V → [0, 1] such that Umovingi (v) is not increasing with respect

to d(i, v), for each v ∈ V .

The utility function Ui : V → [0, 1] – which drives the movement of the agents in the grid – is a convex

combination of the utility functions described above, so that

Ui(v) := αcU
color
i (v) + αfU

friend
i (v) + αdU

moving
i (v), (3)

where αc, αf , αd ≥ 0 such that αc + αf + αd = 1. The selection of the values of the α’s explains in a clear

way the relevance of color, friendship and movement effort in implementing the decision of moving from a

cell to another one.

We stress that utilities have extreme zero (resp. unitary) value at the lowest possible (resp. highest

possible) level of satisfaction. The range of the utility functions plays a key role here. In fact, the values of

the utility function over the cells can be compared, and such comparison will drive the allocation procedure

of the agents in the cells of the grid.

6 In the simulation in Section 4, we will provide a specific form of the ∆ metric.
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3.3. The movement rule

The preferences described above represent the drivers of the movement of the agents in the grid. In this

section, we describe how agents change their positions among the cells.

Firstly, and without losing of generality, we assume that movements are on a sequential basis, that is

the location process of the agents is with discrete time: i.e. time t ∈ N. The way in which agents move is

straightforward: any moving agent changes her location cell with an empty one. In so doing, the graph G

does not change, in the sense that friendships are constant over time. The component of the model which

changes is represented by the set of the cells of the grid occupied by an agent and the empty ones. Given a

time t ∈ N, we denote the set collecting the empty cells at time t by Emt and the set of the occupied ones

by NEmt, so that V = Emt ∪NEmt, for each t ∈ N. By construction, Emt ∩NEmt = ∅.

We assume that only one agent moves each time.7

For a fixed time t ∈ N, we denote the configuration of the grid at time t by Vt = (EMt, NEmt). The

agents start to move at time 1. Thus, Vt represents the situation of the grid at the t-th move – i.e.: after

the moves of t agents – and identifies empty and occupied cells at time t.

We denote by initial configuration the grid at time t = 0, i.e. V0.

Of course, over time, the value of the utility functions of each agent in the cells of the grid may change.

In fact, the passage from a configuration to another one is obtained by changing the position of one agent,

and this might lead to a variation of the constitutive terms of the utility function Ui in (3) for some i ∈ P.

For any i ∈ P and t ∈ N, we denote the utility function of agent i of being located in the cell v at time t as

Ui(v, t).

We are now in the position of describing the mechanism of the movement.

An agent moves only if the change of her position leads to an improvement of her utility. The first moving

agent is the saddest one, i.e. the one with the lowest level of utility of being located in her current position.

The moving agent selects the empty cell which provides her/him the maximum level of utility.8

If more than one empty cell maximizes the utility, then the occupied one is randomly selected among the

utility maximizing cells. Analogously, if more than one agent is in the position of moving, then the moving

one is selected according to a uniform distribution over the available alternatives.

As an intuitive premise, we assume that any agent i ∈ P has a complete information at time t of the

7 The extension to the case of simultaneous movements of agents can be, of course, presented. However, it does not add
much to the single-moves case.

8 A movement rule where, at each stage, one agent is randomly selected and asked to choose a best-response was previously
used by Pancs and Vriend (2007).
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utility function Ui(v, t), where v is the cell occupied by i at time t or v ∈ Emt. Moreover, each agent is also

aware about the peculiar distribution at time t of the agents belonging to A and B. The agent moving at

time t will be labeled as j?t , whose definition is obtained according to the following two conditions: j?t ∈ argmin {Uj(v̄, t) | j ∈ P located in v̄ ∈ NEmt} ;

∃ v ∈ Emt |Uj?t (v, t) ≥ Uj?t (v̄, t)
(4)

The two conditions in (4) must be jointly verified: the former one indicates that the moving agent is that

with the lowest level of utility exerted from her position; the latter one specifies that the agent changes her

position only if she will improve her utility.

The mechanism admits hypothetically simultaneous movements of different agents at time t, meaning

that system (4) can be satisfied by more than one agent. By assuming that Q agents satisfy (4), with

Q = 1, . . . , A + B, we will label the Q moving agents by j?1,t, . . . , j
?
q,t, . . . , j

?
Q,t. A random extraction of one

element of the set {1, . . . , Q} identifies univocally q̄ ∈ {1, . . . , Q} such that the moving agent is j?t = j?q̄,t.

Once condition (4) is satisfied and the moving agent identified, we implement the selection of the empty

cell where agent j?t moves. As already mentioned above, this selection is driven by the agent’s utility function.

We model the utility of an agent to move to an empty cell v?t as follows:

v?t ∈ Φt := argmax
{
Uj?t (v, t) | v ∈ Emt and Uj?t (vt−1, t) < Uj?t (v, t)

}
, (5)

with the conventional agreement that v?t = vt−1 if Φt = ∅.

If |Φt| = C > 1, then there are C different cells in Emt which are indifferent – in terms of the utility

function – for the moving agent j?t . We will label such C utility maximizer cells by v?1,t, . . . , v
?
c,t, . . . , v

?
C,t.

In this case, we extract randomly one element of the set {1, . . . , C}, and identify accordingly c̄ ∈ {1, . . . , C}

such that the selected empty cell is v?t = v?c̄,t.

The movement of j?t induces a new configuration of the grid, which passes from Vt−1 to Vt. The movement

process then continues according to this mechanism. A new moving agent j?t+1 is identified, which changes

her original position with the empty cell v?t+1.

The process stops at the first time in which all the agents cannot improve their utility when moving from

their position to an empty cell. Clearly, the process can also never stop. For this reason, in the numerical

experiments we will stop the process also in presence of loops, i.e. in the circumstance of an agent moving

iteratively back and forth between two cells.
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4. Simulation

The dimensionality of the problem requires the model to be solved by simulation (Axelrod, 2013; Velupillai

and Zambelli, 2015). The basic elements of the model, described in Section 3, are articulated through

computation9 and mimic a process that, given basic exogenous conditions (i.e. the spatial dimension, the

density of agents, the relative share of the two populations) and the social context (Akerlof and Kranton,

2000), begin with agents’ moving choices and ends to the determination of stable equilibria, corresponding to

a certain level of individual and social utility and of racial residential segregation. The simulation procedure

can be seen as the numerical analogous to an experimental procedure (Bona and Santos, 1997), where the

parameters of the model are shocked to check the response of the system and evaluate the resulting levels of

utility and segregation.

In this section we details the main aspects of our simulation setup.

4.1. Generating starting positions and network connections

We consider an n×n torus with n = 10, and impose that A = B = 37, and 26 cells are left empty. Agents’

initial configurations are established at random.10 In order to avoid spurious results, the initial configurations

V
(h)
0 is permuted H times by using just as many random seeds, so that the h-th seed generates the h-th

initial configuration of the grid V
(h)
0 , with h = 1, . . . ,H. We set H = 100, to get a distribution of results.

The moments of said distribution are then summarized and plotted systematically.

Next, we create the graph G. For consistency with the literature of social networks (Newman (2010);

Barabási (2016) and Goyal (2009) and Jackson (2010) for applications to economics), we denote by k =

0, 1, . . . , 73 the degree centrality of each node, which in this case it is assumed to be fixed, i.e. we assume

a common degree k for the hub of the star-shaped subgraphs. By considering the random seed of initial

configuration, h and the degree k, we define G := Gh,k = (P, Eh,k) as composition of the regular star-shaped

graphs for the agents in P. Clearly, the cardinality of the set of arcs Eh,k depends on k, so that e.g. graph

Gh,2(m) will have 74× 2 arcs, and all the agents will have degree centrality equal to 2 – i.e., each agent has

two friends. For the sake of simplicity, and without loss of generality, we assume that Eh,k1
⊂ Eh,k2

with

k1 < k2: i.e. an arc in a graph Gh,k1 is also an arc in Gh,k2 . Consequently, Gh,k1 can be regarded as a

subgraph of Gh,k2
when k1 < k2.

9 All computation is programmed in R and is available upon request for replication purposes.
10This implies that agents are positioned in the torus without following any specific pattern (e.g. a situation of integration

or segregation). Instead, they are seamlessly located next to one another.
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4.2. The utility function

We now introduce the functional form of formula (3) assumed by the simulations.

To this purpose, we begin with the component of agent’s utility exerted from their location, U color. We

introduce a pre-specified threshold x ∈ (0, 1) which drives Schelling’s heuristic. We label x as Schelling’s

threshold. Specifically, x determines the maximum density of same-color neighbors required by i to be

satisfied by her residential location, so that

U colori (v̄) = U colori (v̄;x) =

 ξAv̄ · 1{ξAv̄ >x}, if i ∈ A;

ξBv̄ · 1{ξBv̄ >x}, if i ∈ B;
(6)

for each v̄ ∈ V and 1• is the indicator function of the set •. Formula (6) gives that when x = 0, i is

“color-blind” and does not benefit from any change of location when looking at the color of the surrounding

agents. By contrast, when x = 1, i will enjoy any marginal increase in the number of same-color neighbours.

Next, we define the utility obtained from friendship, Ufriend, as:

Ufriendi (v̄) = 1−∆(v̄,Pi), (7)

where ∆(v̄,Pi) is the average Manhattan distance in (2) between i and her friends, i.e.:

∆(v̄,Pi) =
1

k

∑
j∈Pi

d(i, v̄). (8)

Then, we formalize the cost of moving, Umoving, as:

Umovingi (v̄) = 1− [γc̄+ (1− γ)(1− c̄)(1− d(i, v̄))] (9)

Where c̄ ∈ (0, 1) is the cost of moving between two adjacent cells and γ ∈ {0, 1} determines whether costs

are fixed (γ = 1) or variable (γ = 0).

Finally, we turn to the responsiveness of i’s utility to a change in Ucolor, Ufriend and Umoving, and we

set:

αc = βα

αf = β(1− α)

αd = 1− β

(10)

where α ∈ [0, 1] and β ∈ [0, 1].

As a result, we can re-write formula 3 by using (6)-(10) and explicitating the Schelling’s threshold x of
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the utility dependent on the color as follows:

Ui(v̄) = Ui(v̄;x) = β

(
αU colori (v̄;x) + (1− α)Ufriendi (v̄)

)
+ (1− β)Umovingi (v̄). (11)

4.3. Measures of segregation

Measuring the level of segregation adds an additional layer of complexity to our analysis. The level of

agents’ dissimilarity in a location is traditionally studied at the neighborhood level, where the boundaries of

the residential area are exogenously defined (Massey and Denton, 1988). By contrast, here we are interested

in the agent’s level of segregation, which is endogenously determined by the agent’s own location. For this

reason, we prefer over standard metrics of segregation (Massey and Denton, 1988), the measurement provided

by the Freeman Segregation Index (FSI) (Freeman, 1978; Bojanowski and Corten, 2014), and the Moran’s

I index (Moran, 1950), which allow to assess the degree to which individuals with similar attributes are

located close to one another when the neighborhood is self-referenced.

Fagiolo et al. (2007) and Mele (2017) show that FSI can be profitably used to study agents’ contiguity

in a grid-like topological space, such as a torus, by using a graph perspective. Consistent with this approach

and according to the model outlined above, we consider two groups of agents – the red and the blue ones –

whose cardinalities are A and B, respectively, and label all the agents with an integer i = 1, . . . , A+B. We

consider the friendship graph G and introduce its randomized version Gh, where h = 1, . . . ,H is the seed,

as follows: agents represent the nodes and the generic entry w
(h)
i,j of the symmetric adjacency matrix Wh is

1 when the two agents i and j are adjacent in the grid – according to formula (1) – and 0 otherwise. The

maximum number of arcs N̄E in Gh does not depend on h and is given by:

N̄E =

(
A+B

2

)
=

(A+B)(A+B − 1)

2
,

while the maximum number of cross-group arcs is AB. Consequently, if agents are ”color blind” and arcs are

generated independently of each other, the probability of a given arc being a cross-group arc is:

p =
AB

N̄E
=

2AB

(A+B)(A+B − 1)

As a consequence, given the number of arcs in G, say NE , the expected number of cross-group arcs is E(N∗E)

defined as follows:

E(N∗E) = NEp

15



Given this formalization, FSI is obtained as:

FSI = arg max

{
0,
E(N∗E)−N c

E

E(N∗E)

}
, (12)

where N c
E is the observed number of cross-group arcs. FSI varies between 0 and 1, and it may be interpreted

as the proportion by which the expected number of cross-group links is reduced in observation. Specifically,

a value of 0 indicates full integration, while a value of 1 corresponds to full segregation. Put differently, when

FSI = 1, there is a positive autocorrelation in the spatial distribution of agents: i.e. blue and red nodes are

located in different and non-contiguous areas. On the contrary, when FSI = 0, there is no autocorrelation

present, i.e. blue and red nodes are distributed at random in the torus.

We complement the FSI, with the Moran’s I index, which is calculated as:

I =
( A+B∑A+B

i=1

∑A+B
j=1 wi,j

)(∑A+B
i=1

∑A+B
j=1 wi,j(zi − z̄)(zj − z̄)∑A+B
i=1 (zi − z̄)2

)
(13)

where zi is equal to 1 if i is red, and 0 if i is blue, and z̄ =
∑A+B

i=1 zi
A+B . The values of the Moran’s I range

in the interval [−1, 1]. When I = −1, then one has the maximum possible negative spatial autocorrelation:

e.g. red agents are adjacent only to blue agents. When I = 1, there is the maximum level of positive spatial

autocorrelation: e.g. each red agent is surrounded by red agents.

It is interesting to note that FSI and Moran’s I are both correlated with another well-known index,

that is Geary (1954)’s metrics G, a measure of spatial autocorrelation which goes from 0 (maximum level

of positive autocorrelation) to 2 (maximum level of negative autocorrelation). Specifically, G is equal to the

reciprocal of FSI, when G ∈ (0, 1) (Freeman, 1978), and it is inversely correlated with I (Anselin, 1995).

By virtue of this, FSI and Moran’s I are positively correlated when I ≥ 0. However, they are not identical.

The former is more sensitive to local patterns of segregation, while the latter is better suited for detecting

segregation at the global level. The reason is that FSI mimics the measurement of G, and Anselin (1995)

has shown that G is more susceptible than I to local structures of segregation. We expect this difference to

be preserved also when comparing FSI and I.

5. Simulation experiments, results and discussion

This section presents the simulation experiments, and discuss the results of our investigation. In order

to disentangle the effect exerted by the different components of the utility function, as formalized in formula

(11), a stepwise approach is adopted. First, we test plain Schelling’s model, without moving costs and

friendship connections. Next, we include the presence of moving costs, and then the presence of agents’
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connections. Finally, we present the case of Schelling’s model and friendship, without moving costs, and in

the extreme case of maximum Schelling’s threshold x = 1.

The results of the simulation are assessed by looking at six different outcomes: i) the number of iterations

required by the model in order to converge and produce the final configuration; ii) the number of agents who

are affected by the process in motion and leave their initial position during the iteration process; iii) the FSI

and iv) the Moran’s I index of the torus when model convergence is reached; v) the average and the vi) total

social welfare of the agents at the end of the iteration process. Formally, v) and vi) are the average and the

sum of individual agents’ utilities in the final configuration of the torus, as obtained from formula (11). For

each model setting, we report the second, the third, and the fourth quintile of these metrics obtained in H

different random initial configurations of the torus.

5.1. Schelling’s model

In this first array of experiments, moving costs and friendships are sorted out from the definition of the

utility function in (11), i.e. β = α = 1. The analysis is focused on agents’ responsiveness to the variation of

the Schelling’s threshold x.

This first simulation experiment sets the baseline to evaluate the other results. Results are shown in

Figure 4, which illustrates the change in each outcome (on the y-axes) for increasing levels of the Schelling’s

threshold x.

Model results are straightforward and consistent with the original Schelling model. When x = 0 (and,

we stress it, agents assign no value to social connections: i.e., α = 1), homophily play no rule in agents’

relocation choices. Agents are indifferent to the density of same-color people in the neighborhood, and they

have no incentives to move. As a result, the initial configuration remains unchanged and social welfare is

unaltered. By contrast, when there is a preference for neighborhoods characterized by a majority of same-

color agents, i.e. x ≥ 0.5, people begin to move, increasing the level of both segregation and social welfare.

Specifically, we observe that when x > 0.7, total segregation is almost reached, and approximately 50% of the

population is involved in a change of location, implying that our model is able to describe large population

movements.

5.2. Schelling’s model with moving costs

The role played by moving costs is to affect agents’ location choices by mitigating the attraction force

determined by their preference over homophily. In particular, this component of the agent’s utility function

discourages long movements and contrast the emergence of complete segregation. In order to show this effect,

we simulate how the model initial configuration is changed for different levels of agents’ responsiveness to
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Figure 4: No Moving costs (β = 1) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the
distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge for different x
values. Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom
left panel shows the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively
the average and the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component
βαUcolor

i (v̄; x) of the i-th agent utility function (equation (11)).

either fixed or variable moving costs, i.e. with respect to β in [0, 1]. Specifically, we set x = 1, α = 1, c̄ = 0.5

and the two extreme scenarios γ = 0 and γ = 1. The results of this exercise are presented respectively in

Figure 5, where we impose a fixed cost on agents’ moves, and in Figure 6, where we allow agent’s moving

costs to be variable. In both figures, the plots show the effect of a change in β, displayed on the x-axes, on

one of the six outcomes considered, reported on the y-axis.

Consistent with expectations, the results show a monotonic relation between agents’ responsiveness and

the number of individual movements: i.e., the lower the moving costs, the higher is the number agents

changing their location (bottom-left plots). Analogously, when moving costs decreases, the number of model

iterations (i.e. the number of steps before convergence) increases, and convergence timing is delayed (top-left

plots).

In addition, we see that when agents are left free to relocate (i.e. β decreases), the model tends to mimic

Schelling’s results: i.e., blue and red nodes move in different and non-contiguous areas, and segregation

increases in terms of both FSI and Moran’s I values (top-middle and right panel). This is not surpris-

ing, since network effects are null (i.e. degree centrality is equal to 0), and Schelling’s heuristic is the only
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Figure 5: Fixed moving costs (γ = 1, c̄ = 0.5) - Maximum value of the Schelling’s threshold x = 1 - No contribution of friendship to
utility (α = 1).
On the abscisses, the parameter β ranging in [0, 1]. Each simulation is repeated H = 10000 times by permuting the initial torus. Lines
indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the distribution
of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper middle and right
panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of
people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and the total social
welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of i-th agent’s
utility function (equation (11)).
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Figure 6: Variable moving costs (γ = 0, c̄ = 0.5) - Maximum value of the Schelling’s threshold x = 1 - No contribution of friendship
to utility (α = 1).
On the abscisses, the parameter β ranging in [0, 1]. Each simulation is repeated H = 10000 times by permuting the initial torus. Lines
indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the distribution
of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper middle and right
panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of
people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and the total social
welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of i-th agent’s
utility function (equation (11)).
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determinant of movements.

Finally, we witness a negative relation between moving costs and social welfare (bottom-middle and right

panel). Specifically, the highest levels of agents satisfaction are reached when β ≥ 0.75. Above this value,

Ui(v̄) remains somewhat constant.

The robustness of these results is confirmed by further analyses presented in the Appendices, where

we show that results are left qualitatively unchanged when replicating this exercise using low fixed costs

(Figure Appendix A.1, with γ = 1 and c̄ = 0.01), low variable costs (Figure Appendix A.2, with γ = 0 and

c̄ = 0.01), high fixed costs (Figure Appendix B.1, with γ = 1 and c̄ = 0.99), and high variable costs (Figure

Appendix B.2, , with γ = 1 and c̄ = 0.99).

5.3. Schelling’s model with moving costs and networked individuals

In the third experiment, we test the different effects between having no friends, or having some friends,

while moving costs are at work. To this purpose, we set agents’ degree centrality k equals to 3, and we test

the scenarios for α = 1 (utility does not depend on friendship) and α = 0.5 (agents assign equal weights to

neighborhood composition and friends’ distance), while fixing the value of the parameters relative to moving

costs (β and γ) to a constant (and positive) value to make a correct comparison. Specifically, the value of β

is set to 0.5, to represent a fair introduction of the moving costs in the utility. The impact of this parameter

on the model outcome is alternatively tested by setting γ = 0 (i.e. fixed costs) and γ = 1 (i.e. variable

costs). Moreover, we also investigate changes in the model outcome when moving costs are removed by

taking β = 1. The simulation experiments are performed by taking into account the sensitivity with respect

to Schelling’s threshold x.

We first refer to results in Figure 7. The introduction of the friendship network has a dramatic impact

on the results. The force of attractiveness generated by the homophily preferences is now bonded by the

different characteristics with which agents identify (i.e. the color and the social connection). Moreover,

agents’ movements are constrained by the tension exerted by friends’ position, who are in turn attracted

by their friends. We first focus on this latter element. When neighborhood composition is irrelevant, i.e.

x = 0, friendship drives homophily and generates two competing forces. The first is an attractive force, like

a spring, which brings agents that are linked closer together. The second is a repulsive force, generated by

the presence of multiple connections, which prevents long movements of people to the same area, and forces

friends apart from each other. Put differently, network externalities are at play, and their effects cascade

quite dramatically. As a result, agents act as if they were steel rings linked by springs, and any radical change

in the original status quo is prevented: i.e., less than 25% of the population choose to change location and
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model convergence is reached with few iterations. It follows that total segregation is far from being reached

in this setting.

However, when agents begin to care about the characteristics of their neighbors, x > 0, a significant

change occurs on their preferences over the composition of their neighbors. This results in a reduction of

the local inertia determined by network externalities, and the set of individual relocation choices expands.

This produces an increase of both segregation and social welfare, but interestingly, both outcomes remain

significantly lower than those achieved in Figure 4, meaning that the introduction of the network has the

simultaneous effect of reducing segregation and producing sub-optimal levels of welfare.

This finding provides an interesting insight. When homophily requires to combine multiple characteristics,

agents find it difficult to find a neighborhood that improves her levels of welfare: e.g. a racially mixed

neighborhood where the majority is composed by people of her own color, and the minority is represented

by her social connections.
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Figure 7: No Moving costs (β = 1) - fair utility from friendship and Schelling’s heuristics (α = 0.5) - 3 friends (k = 3)
Each simulation is repeated H = 10000 times by permuting the initial torus and network connections. On the abscisses, the Schelling’s
threshold x ranging in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper
ticked line) quintile of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to
converge. Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom
left panel shows the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively
the average and the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s
utility function (equation (11)). The color of the area indicates the two components of agent’s utility after convergence is achieved:

βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄) (darker-colored area).

When we set β = 0.5, then we observe a contribution to our analysis, regardless of whether we consider

network effects or not. In fact, significant changes are registered neither when costs are fixed (Figures 8 and

9), nor when costs are variable (Figures 10 and 11), and results remain qualitatively the
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Figure 8: Fixed moving costs (β = 0.5, γ = 1, c̄ = 0.5) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of
the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function
(equation (11)).
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Figure 9: Fixed moving costs (β = 0.5, γ = 1, c̄ = 0.5) - fair utility from friendship and Schelling’s heuristics (α = 0.5) - 3 friends
(k = 3).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of
the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function
(equation (11)). The color of the area indicates the two components of agents’ utility after convergence is achieved: βαUcolor

i (v̄; x)

(lighter-colored area) and βαUfriend
i (v̄) (darker-colored area).
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same.11 All in all, the introduction of moving costs only produces a shift in the outcomes value.

The only difference found is when we consider the combination of high fixed moving costs and no friends

(γ = 1, α = 1 and c̄ = 0.99, see Figure Appendix B.3). In fact, in this case there is no incentive to move,

convergence is achieved after 1 iteration and the original status quo remains unchanged. In other words, we

observe a different mechanism for the configuration of a system of local inertia, where the effect of homophily

is nullified by moving costs. It should not be surprising that the same does not apply to the case of variable

costs (γ = 0, α = 1 and c̄ = 0.99, see Figure Appendix B.5). While in the former case any movement has the

same cost, in the latter setting the cost of changing location is mitigated by distance, and short movements

are still possible.
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Figure 10: Variable moving costs (β = 0.5, γ = 0, c̄ = 0.5) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of
the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function
(equation (11)).

11Additional evidence is reported in Appendix A, where we test the effect of reducing fixed costs (γ = 1 and c̄ = 0.01, see
Figures Appendix A.3 and Appendix A.4) and variable costs (γ = 0 and c̄ = 0.01, see Figures Appendix A.5 and Appendix A.6).
Similarly, in Appendix B, we test the effect of increasing fixed costs (γ = 1 and c̄ = 0.99, see Figures Appendix B.3 and
Appendix B.4) and variable costs (γ = 1 and c̄ = 0.99, see Figures Appendix B.5 and Appendix B.6).
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Figure 11: Variable moving costs (β = 0.5, γ = 0, c̄ = 0.5) - Fair utility from friendship and 3 friends (α = 0.5, k = 3).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of
the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function
(equation (11)). The color of the area indicates the two components of agents’ utility after convergence is achieved: βαUcolor

i (v̄; x)

(lighter-colored area) and βαUfriend
i (v̄) (darker-colored area).

5.4. An extreme case of Schelling’s model and the networked individuals

The effect of the network on agents’ location choice when neighborhoods composition matters is further

investigated in this section. In the experiment summarized in Figure 12, Schelling’s threshold is stressed

by setting x equals to 1, meaning that agents are sensitive to any marginal change in their neighborhood

composition. Moving costs are removed, by taking β = 1, while α = 0.5, which means that there is a fair

contribution of Schelling’s heuristics and friendships. Degree centrality k is let to vary iteratively, from 0 to

73. Therefore, now the abscisses of the plots reports the level of degree centrality, while the y-axes are used

once again to register changes in the outcome values. For illustrative purposes, Figure 13 shows also various

instances of the final torus configuration when increasing degree centrality.

As expected, when degree centrality is 0, the model replicates the last observation registered in the plots

of Figure 4. Then, when agents form a friendship, a significant change occurs in the formation of individual

homophily preferences. As a result, the utility exerted from positioning close to an agent is now equivalent

to the utility obtained by locating in a neighborhood where all agents have the same color. In other words,

we observe the configuration of a peculiar physical system unconstrained by the repulsive forces generated

by the composition of the neighborhood or by multiple friendships. If agents choose a location close to their

friend, this in turn has no need to relocate. Consequently, the utility obtained by the composition of the
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neighborhood suddenly drops, and we observe a significant decrease in the segregation indices.

The externalities produced by the combination of Schelling’s heuristic and social linkages are an important

component of our model, because they show how competing identities modify homophily effects. As agents

reach a neighborhood, others who are in the neighborhood might decide to remain regardless of their color,

and the composition of their neighbors. This mechanism generates limited segregation equilibria and suggests

an explanation for the existence of racially mixed neighborhoods. This is somewhat the case described in the

upper-right panel in Figure 13: agents 69 and 79 are friends living in adjacent cells, so even if the latter does

not enjoy the composition of the neighborhood, they decide not to move. A similar behavior is observed

for agents 18 and 36. Since 36 benefits from the new composition of the neighborhood, and she has not

incentives to move, 18 decides to remain in the starting position, which is relatively close to 36, even if no

blue agents are in the surroundings.

10

20

30

0 20 40 60
Degree

# 
Ite

ra
tio

ns

Degree vs iterations

−1.0

−0.5

0.0

0.5

1.0

0 20 40 60
Degree

M
or

an
's

 I 
in

de
x

Degree vs Moran's I index

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Degree

F
re

em
an

 in
de

x

Degree vs Freeman index

0

20

40

60

0 20 40 60
Degree

# 
M

ov
in

g 
P

eo
pl

e

Degree vs Moving People

0

20

40

60

0 20 40 60
Degree

S
oc

ia
l W

el
fa

re

Degree vs Social Welfare

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Degree

A
ve

ra
ge

 S
oc

ia
l W

el
fa

re

Degree vs Average Social Welfare

Figure 12: No moving costs (β = 1) - Fair utility from friendship and Schelling’s heuristics (α = 0.5) - Maximum value of the
Schelling’s threshold x = 1
Each simulation is repeated H = 10000 times by permuting the initial torus and network connections. On the abscisses, the degree
centrality (number of friends) k, ranging from 0 to 73. Lines indicate respectively the second (lower ticked line), the third (bold line),
and the fourth (upper ticked line) quintile of the distribution of values obtained. Upper left panel indicates the number of iterations
required for the model to converge. Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after
model convergence. Bottom left panel shows the number of people who moved at least once in a simulation. Bottom middle and right
panels display respectively the average and the total social welfare of the agents at the end of the iteration process. Social welfare
is obtained from agents’ utility function (equation (11)). The color of the area indicates the two components of agents’ utility after

convergence is achieved: βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄) (darker-colored area).

However, when k increases, agents begin to look for an equilibrium in between the distance from their

friends and the neighborhood where they live in. In this attempt to manage multiple preferences, agents

seem to give more importance to the composition of their neighborhood than to their friends location, since

the utility obtained by the former factor increases, while the latter decreases. This might be due to the fact
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that agents find easier to locate in a neighborhood with specific characteristics and close to few friends, than

finding a place that is suitable for all her friends. This is for example the case of agents 9 and 36, in the

middle-left panel of Figure 13. Both of them are relatively close to one of their friends, and located in a

neighborhood where all agents share her own color.

This is another important finding of this study. Competing characteristics do not equally matter in

forming agents homophily preferences. Rather, certain characteristics featured by the agent tend to prevail

in the definition of her own identity because it is easier to locate close to someone with that same charac-

teristics (e.g. color over social linkages). Hence, even when agents assign the same importance to all their

characteristics (e.g. α = 0.5), some of them will have a stronger impact on relocation choices.

This mechanism is even clearer if we consider the case where each individual is connected with more

than a relatively small proportion of the population (c.a. 5-8%). In fact, when the number of friendships

becomes too high, there is an increasing disutility in locating close to few friends: e.g. when degree centrality

is 73, even if i is surrounded by all friends of her color, she is still far from 65 friends. This implies that

as the degree increases, the location of friends becomes somewhat indifferent to agents, because for each

friend found in one place, there will be many others left far apart, and most of the utility is obtained by the

composition of the neighborhood: this is for example the case of agent 44, who despite the increase in her

degree centrality, she remained consistently in her starting locations, next to 3 blue nodes, in all panels of

Figure 13.

Moreover, it is worth stressing that because α = 0.5, competing characteristics counteract each other,

even if one of them is producing a disutility (e.g. social connections). Put differently, agents are able to cope

with the disutility derived from one of their characteristics and maintain social welfare constant by letting

Schelling’s heuristic prevail over other utility’s components in their relocation choices.

5.5. Robustness checks

We now test the robustness of our results when: i) considering agents heterogeneous moving cost, and ii)

choosing a different method to generate the initial position of agents in the torus.

Exercise i) allow us to mimick the situation when moving to certain areas is more expensive than moving

to other areas, and thus consider the relationship between the price of moving to a house (included in the

cost of movement) and the buyer’s ability to pay for it. Specifically, we consider the following setting.

Moving costs are very small for 70% of the cells in the torus (i.e. c̄ = 0.001 (i.e. these are the areas of

the torus where the cost of the houses are relatively cheap), as in Appendix A), and they are very high
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for the remaining 30% of the cells (i.e. c̄ = 0.99, as in Appendix B) (i.e. these are the areas of the torus

where the cost of the houses are relatively expensive). The cells associated to higher costs are organized

in two areas (neighborhoods). Both neighborhoods are formed by the same number of cells (i.e. 15 cells).

Observe that moving costs are assumed to be fixed (i.e. γ = 1). We then compare the results obtained

using this setting to those presented in the Appendix A of the paper, where we consider small moving costs

(i.e. c̄ = 0.001). Complementing the analysis presented in Sections 5.2 and 5.3, the scenarios investigated

are those when agents’ utility does not depend on friendship (α = 1), Figure Appendix C.1, it assigns equal

weights to neighborhood composition and friends’ distance (α = 0.5), with k = 3, Figure Appendix C.2,

or when increasing agents’ responsiveness to moving costs (β ranging in [0, 1]), Figure Appendix C.3. In

the figures, light and dark gray lines indicate respectively the outcome of simulations of the baseline results

(those from Appendix A), and the outcome of simulations when considering heterogeneous moving costs.

We find that the introduction of heterogeneous moving costs decreases significantly the number of moving

agents, since now they have an additional constraint in the choice of a new location. As a consequence,

we register that simulations take a shorter time to converge, i.e. model iterations reduces, and agents’

movements converge to a lower segregation status at the end of the process, i.e. both Moran and Freeman

index reduce by approximately 30%. Consistently, also social welfare (both total and average) decreases.

Results are qualitatively unchanged when considering variable costs (i.e. γ = 1), and they are respectively

presented in Figure Appendix C.4, Appendix C.5, and Appendix C.6.12

Results from exercise ii) are presented in Appendix D. These are obtained by generating a torus describing

highly segregated or highly integrated situations. Using this method, we simulated 1000 instances of the

torus featuring a Moran’s I within a specific bound. Specifically, we generate instances of the torus with an

initial value of Moran’s I comprised between: i) -0.50 and -0.40; ii) -0.40 and -0.30; iii) -0.30 and -0.20; iv)

-0.20 and -0.10; v) -0.10 and 0.00; vi) 0.00 and 0.10; vii) 0.10 and 0.20; viii) 0.20 and 0.30; ix) 0.30 and 0.40;

and x) 0.40 and 0.50. In doing so, we obtained 10000 instances of the torus.13 A number of interesting facts

emerge.

First consider the case when moving costs and friendship are not included in the agents’ utility function

(i.e. α = 0 and β = 1). Results from this setting are presented in Figure Appendix D.1, where darker lines

12Observe that results are qualitatively unchanged when considering a single neighborhood composed by 30% of the cells in
the torus. Results are available upon request.

13The minimum and maxim values of the Moran I that we were able to obtain in this case is -0.4807 and 0.4980, respectively.
Observe that it is impossible to create a torus mimicking a situation of perfect integration or perfect segregation (i.e. a torus
with Moran’s I approximating the value 1), because not all positions are occupied by an agent.

28



indicate the results obtained when considering a more and more initial integrated status. When there is a

low incentive to move close to agents with the same color type (i.e. Schelling’s threshold is set lower than

0.5), the initial situation of the torus is almost unchanged at the end of simulations. Of course, this implies

that differences in the segregation status among the instances of the torus will be preserved at the end of

the simulations. Interestingly however, when we increase the propensity for locating in a neighborhood with

same-color agents, final segregation increases very rapidly when considering an initial integrated situation,

and very slowly when starting from an initial segregated situation. As a result, the final segregation status

of all the instances of the torus, rapidly converge to similar values. It follows that, at least when Schelling’s

heuristics is significantly at play, the choice of the initial status mainly affects the number of iterations and

moving agents in this context (i.e. these values will be higher for an initial integrated status, and lower for

an initial segregated status), but our main results are substantially unchanged.

Now consider when fair moving costs are introduced in the utility function (i.e. c̄ = 0.5), there is no

contribution of friendship to utility (α = 1), Schelling’s threshold is set at its maximal value (x = 1), and

we progressively increase the responsiveness of agents to moving cost (β ranging in [0, 1]). Results from this

exercise are presented in Figure Appendix D.2, and Appendix D.3, and represent the scenario when moving

costs are fixed or variable, respectively. When responsiveness to moving costs is high (i.e. 0.8 ≤ β ≤ 1),

differences in the initial status of the instances of the torus are preserved after simulations. However, in all

other cases (i.e. β ≤ 0.8), again we observe that all simulations rapidly converge to a similar segregation

status regardless of the initial torus considered. This implies that when moving costs are considered, only

when the responsiveness to them is very high then the choice of the initial torus matters in determining the

final segregation status. Since this situation is hard to observe, we focus on the scenario where there is a fair

responsiveness to moving costs (β = 0.5), and we test the robustness of our results to the choice of the initial

status of the torus when increasing Schelling’s threshold value (x). This is presented in Figure Appendix D.4

and Appendix D.5, respectively for fixed and moving costs. Consistent with our previous finding, we observe

that simulations returns significantly different results only when Schelling’s heuristics plays a small role in

the determination of agents’ utility. Instead, when x becomes larger, the choice of the initial status mostly

determine a different number of iterations and moving agents, but the final status of segregation and the

value of welfare rapidly converge to similar values. Of course, whereas in the case of no moving costs the

final outcome of simulations is very similar, in this situation still some differences are observed. The reason

is that friction to movements are now at play.

Finally, consider the inclusion of friendship in agents’ utility function. In our first experiment, we investi-
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gate how our results are affected by the choice of the initial torus when increasing Schelling’s threshold value

considering the scenario where we introduce a fair utility from friendship (α = 0.5), and disregard moving

costs (β = 1), assuming that k = 3, Figure Appendix D.6, and where a fair responsiveness to fixed or variable

moving costs is considered (i.e. β = 0.5 and c̄ = 0.5), respectively Figure Appendix D.7 and Appendix D.8.

Since now agents have less interest in being located close to those sharing their color type, because they are

equally attracted by the position of their friends, they tend to reduce their movements and maintain the sta-

tus quo in the torus. Consequently, this is the only case when differences in the segregation status observed

at the beginning of simulations are always preserved at the end of the simulations: i.e. depending on their

initial status, agents will end up in a situation of smaller or higher segregation. Also in this case however,

we do not find that the initial position of the torus affects the behavior of agents. When increasing the

parameter of the model controlling for the preference of agents for being located close to agents of the same

color type, agents will all behave in the exact same way, that is they will end up in a situation characterized

by a higher segregation, and such increase in the segregation of the torus will be the same regardless of the

initial torus chosen. In other words, since friendship reduces the incentive to movements, the initial status

of the torus has the only effect to shift the magnitude of segregation metrics registered.

In our second experiment, we test how our results are affected by the choice of the initial torus when

increasing the degree centrality of agents (k). Similar to the situation when we increase friction to movements

determined by moving costs, we observe that the choice of the initial status mostly determine a different

number of iterations and moving agents, but the final status of segregation and the value of welfare rapidly

converge to similar values when increasing the number of friends.

The takeaways from this exercise are three then. First, regardless of the level of segregation, agents

always move in our setting, even when the simulation begin with a situation of high segregation. Second,

the initial position of agents does not significantly affect the final segregation status of simulations with

or without considering moving costs (unless the responsiveness to these is extremely high). Third, moving

costs and friendship are relevant elements of friction against Schelling’s heuristic, which can prevent radical

changes in the torus. However, they do not affect the reaction of agents to an exogenous increase of their

preference toward segregation.

6. Discussion and Conclusions

This paper presented an extension of the original racial and residential segregation model by Schelling.

Specifically, the aim was to investigate whether and how model’s predictions can be improved in order to
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incorporate solutions of limited segregation equilibria.

The evidence provided by our simulations suggests that a possible explanation for the formation of racially

mixed areas might be the presence of moving costs and the effect of social linkages. Moving costs, regardless

of whether they are fixed or variable, consistently determines phenomena of local inertia, preventing agents

to leave their neighborhood for another that better suits with their set of preferences. Interestingly, a similar

outcome is observed when agents have a stronger preference for social linkages over Schelling’s heuristic. In

this case, agents’ movements are constrained by the tension exerted by friends’ position, who are in turn

constrained in their movements by their friends. Perhaps unexpectedly, local inertia is found also to be

associated with lower levels of social welfare.

Another interesting insight provided by our study is that, whenever homophily effects are constrained

by the existence of competing characteristics with which agents equally identify (e.g. ethnicity and so-

cial connections), certain characteristics tend to prevail in the formation relocation choices. The reason is

straightforward. It is easier for agents to identify a neighborhood where only one characteristic is predomi-

nant. Future research should be dedicated to understand what are these characteristics that tend to define

one’s own identity and drive relocation choice.

This investigation has also highlighted that whenever homophily requires to combine multiple character-

istics, the generic agent finds it difficult to find a neighborhood that will improve her levels of welfare: e.g.

a racially mixed neighborhood where the majority is composed by people of her own color, and the minority

is represented by her social connections. This suggests that suboptimal levels of welfare might be endemic

in context where multiple elements concur to the definition of one’s own identity.

The very general setup of the model allows many interesting extensions that we leave for future research.

In the present model we kept Schelling’s heuristic and the structure of the friendship network separated.

This was done on purpose in order not to mix the effects of the two, but this modeling choice implies

that the process shaping the racial distribution of friends is purely random and is not determined by a

preference for homophily. Evidence is at odd. As recalled by (Jackson, 2019, p.109), simple accounting

tells us that individuals in the minority group will end up having more friends from the majority group on

average than individuals from the majority have with ones in the minority group. Considering homophily this

effect would be magnified, rationalizing the striking evidence reported by Jackson: “Guess how many black

friends the typical white person in the U.S. has - where a friend is someone with whom that person ‘regularly

discussed important matters’? Zero.” If friendship formation is lead by homophily, the two processes shaping

Schelling’s heuristic and friendship formation interact. A condition worth exploring in future research.
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A second aspect that could add new insights to the model would be the possibility of forming or dissolving

friendship at every movement on the chequerboard. Moving implies costs but also offers opportunity to create

new friends and confirm the old ones. When social linkages varies with location changes, the new friends

in the neighborhood reinforce the propensity not to further move. On the contrary, if past social linkages

remain relevant, the incentive to go back to the previous location persists. This change in the model’s setup

would allow to study the role of past and present social linkages of migrants and the ultimate effect on

segregation and welfare in the new location and in previous one.

Finally, the evidence of power laws, fat tails, Pareto and scale free degree distributions is typical of

social networks (Newman, 2005; Goyal, 2009). The model’s assumption of a uniform distribution of friends

is purely exemplificative and can be modified at no particular cost. In this case, centrality and degree

heterogeneity would start to influence the segregation equilibria, since the network externality is associated

to node centrality and the movement of central nodes brings a greater influence on the decision of poorly

connected nodes. Similar extension can be applied to a social linkages that are directed and or weighted.

32



Appendix A. Figures: Low moving costs

This appendix extends the results presented in Section (5) by using lower levels of moving costs (c̄ = 0.01)

with respect to the main analysis (c̄ = 0.5). Footnote 10 details the rest of the parameter set.

In Figures Appendix A.1 and Appendix A.2, we progressively increase the responsiveness of i’s utility to

a change in moving costs (β), when these are respectively fixed and variable. The results show that model

outcome remains qualitatively unchanged with respect to the main analysis (see for comparison Subsection

5.2, and Figures 5 and 6): i) there is a monotonic relation between agents’ level of responsiveness and the

number of individual movements; ii) model outcome tends to mimic Schelling’s result when the role of moving

cost becomes least significant (i.e. high values of β); iii) there is a negative relation between moving costs

and social welfare; iv) when agents are least subject to the constraints of moving costs, because β exceeds

a certain threshold value, simulations always reproduce the same segregation dynamics in terms of both

number of iterations and moving people, and of segregation and welfare indexes: i.e., the final configuration

of the grid is unaffected by any further increase of β. Only a significant change occurs in our findings, and

that is when considering the case of fixed costs. Here we register a dramatic downshift in the threshold

value of β over which considered metrics become constant: i.e. from β > 0.75 in the main analysis to

β > 0.10. The reason is that moving costs are fixed and close to zero, hence they have substantially no

impact on the relocation choices of the agent: i.e. agents are free to choose every empty cell regardless of its

distance, because their utility level remains substantially unaltered by moving costs. The same is not true

when considering variable moving costs. This is because costs increases with distance, and thus they still

represents a constraint for agents. As a result, the model outcome when considering low variable moving

costs mimics the case considered in the main analysis, and no meaningful changes are observed.

In Figures Appendix A.3 and Appendix A.5, we progressively increase the responsiveness of i to neighbor-

hood composition (x), when moving costs are respectively fixed and variable. This complements the analysis

presented in Figures 8 and 10 in Section 5.3. Results remain unaffected with respect to the main analysis.

The responsiveness of the model outcome to a change in x is the same in the two set of exercises. When

agents do not care for the level of homophily in the composition of their neighborhood (x < 0.5), there is no

incentive to move and convergence is achieved in one iteration as a result of the presence of moving costs.

The same logic applies when we replicate the previous exercise and we increase the degree centrality from

k = 0 to k = 3, comparing Figures Appendix A.4 and Appendix A.6 with respectively figure 9 and 11. All

in all, segregation dynamics observed in this context remains unaltered when decreasing the level of moving

costs.
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Figure Appendix A.1: Low fixed moving costs (γ = 1, c̄ = 0.01) - Maximum value of the Schelling’s threshold x = 1 - No
contribution of friendship to utility (α = 1).
Each simulation is repeated H = 100 times by permuting the initial torus. On the abscisses, we have parameter β ranging in [0, 1]. Lines
indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the distribution
of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper middle and right
panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of
people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and the total social
welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of i-th agent
utility function (equation (11)).
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Figure Appendix A.2: Low variable moving costs (γ = 0, c̄ = 0.01) - Maximum value of the Schelling’s threshold x = 1 - No
contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have parameter β ranging in
[0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the
distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper middle
and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the
number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and the
total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of
i-th agent utility function (equation (11)).
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Figure Appendix A.3: Low fixed moving costs (β = 0.5, γ = 1, c̄ = 0.01) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x)
of i-th agent utility function (equation (11)).
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Figure Appendix A.4: Low fixed moving costs (β = 0.5, γ = 1, c̄ = 0.01) - Fair contribution of friendship to utility and 3 friends
(α = 0.5, k = 3).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x)
of i-th agent utility function (equation (11)). The color of the area indicates the two components of agents’ utility after convergence is

achieved: βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄) (darker-colored area).
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Figure Appendix A.5: Low variable moving costs (β = 0.5, γ = 0, c̄ = 0.01) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x)
of i-th agent utility function (equation (11)).
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Figure Appendix A.6: Low variable moving costs (β = 0.5, γ = 0, c̄ = 0.01) - Fair contribution of friendship to utility and 3
friends (α = 0.5, k = 3).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x)
of i-th agent utility function (equation (11)). The color of the area indicates the two components of agents’ utility after convergence is

achieved: βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄) (darker-colored area).
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Appendix B. Figures: High moving costs

This appendix extends the results presented in Section (5) by using higher levels of moving costs (c̄ = 0.99)

with respect to the main analysis (c̄ = 0.5). Footnote 10 details the rest of the parameter set.

In Figures Appendix B.1 and Appendix B.2, we progressively increase the responsiveness of i’s utility to a

change in moving costs (β), when these are respectively fixed and variable. As in the case of Appendix A, the

results show that most model outcome remains qualitatively unchanged with respect to the main analysis

when considering fixed moving costs (see for comparison Subsection 5.2 and Figure 5). There is only a

significant difference with respect to the main analysis, and this is the level of responsiveness of the model

outcome when β is low and agents are most subject to moving costs. In these cases, there are no incentives to

move: i.e. the process stops after one simulation and the initial configuration of the grid remains unaltered.

When considering the case of variable moving costs instead (see for comparison Subsection 5.2 and Figure

6), things change radically. The choice to relocate has such a negative impact on agents’ utility in this

context, that relocation constraints are substantially the same regardless of the value of β. Agents move

in the same way, and the same segregation dynamics are observed whenever β > 0: i.e., both number of

iterations and moving people, and of segregation and welfare indexes remain constant regardless of the value

of the parameter. A discussion about the rest of the figures is contained in Section 5.3.
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Figure Appendix B.1: High fixed moving costs (γ = 1, c̄ = 0.99) - Maximum value of the Schelling’s threshold x = 1 - No
contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have parameter β ranging in
[0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the
distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper middle
and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the
number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and the
total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of
i-th agent utility function (equation (11)).
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Figure Appendix B.2: High variable moving costs (γ = 0, c̄ = 0.99) - Maximum value of the Schelling’s threshold x = 1 - No
contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have parameter β ranging in
[0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the
distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper middle
and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the
number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and the
total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of
i-th agent utility function (equation (11)).
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Figure Appendix B.3: High fixed moving costs (β = 0.5, γ = 1, c̄ = 0.99) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x)
of i-th agent utility function (equation (11)).
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Figure Appendix B.4: High fixed moving costs (β = 0.5, γ = 1, c̄ = 0.99) - Fair contribution of friendship to utility and 3 friends
(α = 0.5, k = 3).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x)
of i-th agent utility function (equation (11)). The color of the area indicates the two components of agents’ utility after convergence is

achieved: βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄) (darker-colored area).
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Figure Appendix B.5: High variable moving costs (β = 0.5, γ = 0, c̄ = 0.01) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x)
of i-th agent utility function (equation (11)).
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Figure Appendix B.6: High variable moving costs (β = 0.5, γ = 0, c̄ = 0.01) - Fair contribution of friendship to utility and 3
friends (α = 0.5, k = 3).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, we have Schelling’s threshold x ranging
in [0, 1]. Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained. Upper left panel indicates the number of iterations required for the model to converge. Upper
middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows
the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and
the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x)
of i-th agent utility function (equation (11)). The color of the area indicates the two components of agents’ utility after convergence is

achieved: βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄) (darker-colored area).

Appendix C. Figures: Heterogeneous moving costs
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Results Baseline With mark up

Figure Appendix C.1: Fixed moving costs (β = 0.5, γ = 1) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Dark Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained of results obtained assuming the presence of two neighborhoods (each comprising 15% of the cells
in the torus) where moving costs are subject to a mark up (c̄ = 0.99). Light Lines indicate respectively the second (lower ticked line),
the third (bold line), and the fourth (upper ticked line) quintile of the distribution of values obtained of baseline results, where moving
costs are equal for all cells in the torus (c̄ = 0.001). Upper left panel indicates the number of iterations required for the model to
converge. Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom
left panel shows the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively
the average and the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s
utility function.
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Results Baseline With mark up

Figure Appendix C.2: Fixed moving costs (β = 0.5, γ = 1) - fair utility from friendship and Schelling’s heuristics (α = 0.5) - 3
friends (k = 3).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Dark Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained of results obtained assuming the presence of two neighborhoods (each comprising 15% of the cells
in the torus) where moving costs are subject to a mark up (c̄ = 0.99). Light Lines indicate respectively the second (lower ticked line),
the third (bold line), and the fourth (upper ticked line) quintile of the distribution of values obtained of baseline results, where moving
costs are equal for all cells in the torus (c̄ = 0.001). Upper left panel indicates the number of iterations required for the model to
converge. Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom
left panel shows the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively
the average and the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s
utility function. The color of the area indicates the two components of agents’ utility after convergence is achieved: βαUcolor

i (v̄; x)

(lighter-colored area) and βαUfriend
i (v̄) (darker-colored area).

10

20

30

0.00 0.25 0.50 0.75 1.00
β

# 
Ite

ra
tio

ns

β vs Iterations

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
β

M
or

an
's

 I 
in

de
x

β vs Moran's I index

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
β

F
re

em
an

 in
de

x

β vs Freeman index

0

20

40

60

0.00 0.25 0.50 0.75 1.00
β

# 
M

ov
in

g 
P

eo
pl

e

β vs Moving People

0

20

40

60

0.00 0.25 0.50 0.75 1.00
β

S
oc

ia
l W

el
fa

re

β vs Social Welfare

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
β

A
ve

ra
ge

 S
oc

ia
l W

el
fa

re

β vs Average Social Welfare

Results Baseline With mark up

Figure Appendix C.3: Fixed moving costs (γ = 1) - Maximum value of the Schelling’s threshold x = 1 - No contribution of
friendship to utility (α = 1).
On the abscisses, the parameter β ranging in [0, 1]. Each simulation is repeated H = 10000 times by permuting the initial torus.
Dark Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the
distribution of values obtained of results obtained assuming the presence of two neighborhoods (each comprising 15% of the cells in the
torus) where moving costs are subject to a mark up (c̄ = 0.99). Light Lines indicate respectively the second (lower ticked line), the
third (bold line), and the fourth (upper ticked line) quintile of the distribution of values obtained of baseline results, where moving costs
are equal for all cells in the torus (c̄ = 0.001). Upper left panel indicates the number of iterations required for the model to converge.
Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left
panel shows the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the
average and the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component
βαUcolor

i (v̄; x) of i-th agent’s utility function.
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Figure Appendix C.4: Variable moving costs (β = 0.5, γ = 0) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Dark Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained of results obtained assuming the presence of two neighborhoods (each comprising 15% of the cells
in the torus) where moving costs are subject to a mark up (c̄ = 0.99). Light Lines indicate respectively the second (lower ticked line),
the third (bold line), and the fourth (upper ticked line) quintile of the distribution of values obtained of baseline results, where moving
costs are equal for all cells in the torus (c̄ = 0.001). Upper left panel indicates the number of iterations required for the model to
converge. Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom
left panel shows the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively
the average and the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s
utility function.
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Figure Appendix C.5: Variable moving costs (β = 0.5, γ = 0, c̄ = 0.5) - Fair utility from friendship and 3 friends (α = 0.5, k = 3).
Each simulation is repeated H = 10000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Dark Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile
of the distribution of values obtained of results obtained assuming the presence of two neighborhoods (each comprising 15% of the cells
in the torus) where moving costs are subject to a mark up (c̄ = 0.99). Light Lines indicate respectively the second (lower ticked line),
the third (bold line), and the fourth (upper ticked line) quintile of the distribution of values obtained of baseline results, where moving
costs are equal for all cells in the torus (c̄ = 0.001). Upper middle and right panels report respectively the Moran’s I and the FSI value
obtained after model convergence. Bottom left panel shows the number of people who moved at least once in a simulation. Bottom
middle and right panels display respectively the average and the total social welfare of the agents at the end of the iteration process.
Social welfare is obtained from i-th agent’s utility function. The color of the area indicates the two components of agents’ utility after

convergence is achieved: βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄) (darker-colored area).
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Figure Appendix C.6: Variable moving costs (γ = 0) - Maximum value of the Schelling’s threshold x = 1 - No contribution of
friendship to utility (α = 1).
On the abscisses, the parameter β ranging in [0, 1]. Each simulation is repeated H = 10000 times by permuting the initial torus.
Dark Lines indicate respectively the second (lower ticked line), the third (bold line), and the fourth (upper ticked line) quintile of the
distribution of values obtained of results obtained assuming the presence of two neighborhoods (each comprising 15% of the cells in the
torus) where moving costs are subject to a mark up (c̄ = 0.99). Light Lines indicate respectively the second (lower ticked line), the
third (bold line), and the fourth (upper ticked line) quintile of the distribution of values obtained of baseline results, where moving costs
are equal for all cells in the torus (c̄ = 0.001). Upper left panel indicates the number of iterations required for the model to converge.
Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left
panel shows the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the
average and the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from the component
βαUcolor

i (v̄; x) of i-th agent’s utility function.

Appendix D. Figures: Different initial segregation status
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Figure Appendix D.1: No Moving costs (β = 1) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 1000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Lines indicate the average value of each simulation results. Different colors indicate different initial segregation statuses of the
torus. Upper left panel indicates the number of iterations required for the model to converge for different x values. Upper middle and
right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number
of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and the total social
welfare of the agents at the end of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of the i-th agent
utility function.
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Figure Appendix D.2: Fixed moving costs (γ = 1, c̄ = 0.5) - Maximum value of the Schelling’s threshold x = 1 - No contribution
of friendship to utility (α = 1).
On the abscisses, the parameter β ranging in [0, 1]. Each simulation is repeated H = 1000 times by permuting the initial torus. Lines
indicate the average value of each simulation results. Different colors indicate different initial segregation statuses of the torus. Upper
left panel indicates the number of iterations required for the model to converge. Upper middle and right panels report respectively the
Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of people who moved at least once
in a simulation. Bottom middle and right panels display respectively the average and the total social welfare of the agents at the end
of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of i-th agent’s utility function.
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Figure Appendix D.3: Variable moving costs (γ = 0, c̄ = 0.5) - Maximum value of the Schelling’s threshold x = 1 - No contribution
of friendship to utility (α = 1).
On the abscisses, the parameter β ranging in [0, 1]. Each simulation is repeated H = 1000 times by permuting the initial torus. Lines
indicate the average value of each simulation results. Different colors indicate different initial segregation statuses of the torus. Upper
left panel indicates the number of iterations required for the model to converge. Upper middle and right panels report respectively the
Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of people who moved at least once
in a simulation. Bottom middle and right panels display respectively the average and the total social welfare of the agents at the end
of the iteration process. Social welfare is obtained from the component βαUcolor

i (v̄; x) of i-th agent’s utility function.
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Figure Appendix D.4: Fixed moving costs (β = 0.5, γ = 1, c̄ = 0.5) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 1000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Lines indicate the average value of each simulation results. Different colors indicate different initial segregation statuses of the
torus. Upper left panel indicates the number of iterations required for the model to converge. Upper middle and right panels report
respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of people who
moved at least once in a simulation. Bottom middle and right panels display respectively the average and the total social welfare of
the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function.
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Figure Appendix D.5: Variable moving costs (β = 0.5, γ = 0, c̄ = 0.5) - No contribution of friendship to utility (α = 1).
Each simulation is repeated H = 1000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Lines indicate the average value of each simulation results. Different colors indicate different initial segregation statuses of the
torus. Upper left panel indicates the number of iterations required for the model to converge. Upper middle and right panels report
respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of people who
moved at least once in a simulation. Bottom middle and right panels display respectively the average and the total social welfare of
the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function.
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Figure Appendix D.6: No Moving costs (β = 1) - fair utility from friendship and Schelling’s heuristics (α = 0.5) - 3 friends (k = 3)
Each simulation is repeated H = 1000 times by permuting the initial torus and network connections. On the abscisses, the Schelling’s
threshold x ranging in [0, 1]. Lines indicate the average value of each simulation results. Different colors indicate different initial
segregation statuses of the torus. Upper left panel indicates the number of iterations required for the model to converge. Upper middle
and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the
number of people who moved at least once in a simulation. Bottom middle and right panels display respectively the average and the
total social welfare of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function. The
color of the area indicates the two components of agent’s utility after convergence is achieved: βαUcolor

i (v̄; x) (lighter-colored area)

and βαUfriend
i (v̄) (darker-colored area).
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Figure Appendix D.7: Fixed moving costs (β = 0.5, γ = 1, c̄ = 0.5) - fair utility from friendship and Schelling’s heuristics
(α = 0.5) - 3 friends (k = 3).
Each simulation is repeated H = 1000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Lines indicate the average value of each simulation results. Different colors indicate different initial segregation statuses of the
torus. Upper left panel indicates the number of iterations required for the model to converge. Upper middle and right panels report
respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of people who
moved at least once in a simulation. Bottom middle and right panels display respectively the average and the total social welfare
of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function. The color of the area

indicates the two components of agents’ utility after convergence is achieved: βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄)
(darker-colored area).
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Figure Appendix D.8: Variable moving costs (β = 0.5, γ = 0, c̄ = 0.5) - Fair utility from friendship and 3 friends (α = 0.5, k = 3).
Each simulation is repeated H = 1000 times by permuting the initial torus. On the abscisses, the Schelling’s threshold x ranging in
[0, 1]. Lines indicate the average value of each simulation results. Different colors indicate different initial segregation statuses of the
torus. Upper left panel indicates the number of iterations required for the model to converge. Upper middle and right panels report
respectively the Moran’s I and the FSI value obtained after model convergence. Bottom left panel shows the number of people who
moved at least once in a simulation. Bottom middle and right panels display respectively the average and the total social welfare
of the agents at the end of the iteration process. Social welfare is obtained from i-th agent’s utility function. The color of the area

indicates the two components of agents’ utility after convergence is achieved: βαUcolor
i (v̄; x) (lighter-colored area) and βαUfriend

i (v̄)
(darker-colored area).

10

20

30

40

0 20 40 60
Degree

# 
Ite

ra
tio

ns

Degree vs iterations

−1.0

−0.5

0.0

0.5

1.0

0 20 40 60
Degree

M
or

an
's

 I 
in

de
x

Degree vs Moran's I index

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Degree

F
re

em
an

 in
de

x

Degree vs Freeman index

0

20

40

60

0 20 40 60
Degree

# 
M

ov
in

g 
P

eo
pl

e

Degree vs Moving People

0

20

40

60

0 20 40 60
Degree

S
oc

ia
l W

el
fa

re

Degree vs Social Welfare

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Degree

A
ve

ra
ge

 S
oc

ia
l W

el
fa

re

Degree vs Average Social Welfare

Initial Segregation Status
(Moran Index)

[−0.5, −0.4)

[−0.4, −0.3)

[−0.3, −0.2)

[−0.2, −0.1)

[−0.1, 0)

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

[0.3, 0.4)

[0.4, 0.5)

Figure Appendix D.9: No moving costs (β = 1) - Fair contribution of friendship and Schelling’s heuristics to utility (α = 0.5) -
Maximum value of the Schelling’s threshold x = 1
Each simulation is repeated H = 1000 times by permuting the initial torus and network connections. On the abscisses, the degree
centrality (number of friends) k, ranging from 0 to 73. Lines indicate the average value of each simulation results. Different colors
indicate different initial segregation statuses of the torus. Upper left panel indicates the number of iterations required for the model to
converge. Upper middle and right panels report respectively the Moran’s I and the FSI value obtained after model convergence. Bottom
left panel shows the number of people who moved at least once in a simulation. Bottom middle and right panels display respectively
the average and the total social welfare of the agents at the end of the iteration process. Social welfare is obtained from agents’
utility function. The color of the area indicates the two components of agents’ utility after convergence is achieved: βαUcolor

i (v̄; x)

(lighter-colored area) and βαUfriend
i (v̄) (darker-colored area).
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