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Abstract 

 

A matrix-fibril shear stress transfer approach is devised and developed in this paper to 

analyse the primary biomechanical factors which initiate the structural degeneration of the 

bioprosthetic heart valves (BHVs). Using this approach, the critical length of the collagen 

fibrils lc and the interface shear acting on the fibrils in both BHV and natural aortic valve 

(AV) tissues under physiological loading conditions are calculated and presented. It is shown 

that the required critical fibril length to provide effective reinforcement to the natural AV and 

the BHV tissue is lc = 25.36 µm and lc = 66.81 µm, respectively. Furthermore, the magnitude 

of the required shear force acting on fibril interface to break a cross-linked fibril in the BHV 

tissue is shown to be 38 µN, while the required interfacial force to break the bonds between 

the fibril and the surrounding extracellular matrix is 31 µN. Direct correlations are 

underpinned between these values and the ultimate failure strength and the failure mode of 

the BHV tissue compared with the natural AV, and are verified against the existing 

experimental data. The analyses presented in this paper explain the role of fibril interface 

shear and critical length in regulating the biomechanics of the structural failure of the BHVs, 

for the first time. This insight facilitates further understanding into the underlying causes of 

the structural degeneration of the BHVs in vivo. 
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Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer 

approach 

 

Background 

 

Bioprosthetic heart valves (BHVs) continue to be the dominant clinical solution in adult 

heart valve replacements. Their structural fabric is composed of biologically derived 

heterograft biomaterials, undergone chemical (glutaraldehyde) treatment to render minimal 

immunological reactions from the host body after implantation. Despite this favourable 

immunological attribute, biomechanical properties of BHVs have been shown to be 

significantly distinct to those of the native valve. Studies have characterised higher stiffness 

for BHV specimens compared with native aortic valve (AV) tissue samples under both 

uniaxial and biaxial tension (for example see references [1-3]), while reporting lower failure 

stresses/strains [4-6].  

 

Limited functional durability of the BHVs in vivo has also been well documented [7-9], 

with most of the BHVs showing failure often within the first 5-10 years after implantation. 

Combination of biotic and mechanical factors are thought to contribute to the underlying 

causes of this durability limitation [8, 10]. However, the latter is cited as the prominent cause, 

as approximately 90% of all BHVs fabricated from porcine AVs exhibit structural failure as a 

direct result of mechanical factors such as fatigue and mechanical damage [7, 11]. The main 

mode of failure has been shown to be the delamination between collagen fibre layers, i.e. 

disruption of the fibre architecture of the BHV tissue while the fibres themselves remain 

intact and retain their alignment as a whole [10, 12].  

 

These distinctions between the biomechanical properties of the BHV and the native AV 

are widely attributed to the increased density of crosslinks between collagen fibrils in BHV 

tissue, incurring as a result of glutaraldehyde fixation. However, quantitative analyses and 

descriptions to elucidate how these alterations in the microstructure may translate to the 

above-cited differences between the tissue-level properties of the two valve types are less 

well elaborated in the literature. In particular, analytical interpretations to explain the 

disparity in the failure characteristics of the BHV versus the native AV, both in terms of the 

reported values and the failure mode, based on the differences in their microstructural 

attributes resulting from fixation have been largely unaddressed. Such knowledge would 



provide a better understanding of the underlying biomechanics of the BHV structural 

degeneration in vivo, and would be a key contributor to the development of improved BHV 

tissue biomaterials to facilitate prolonged durability [7].  

 

A novel interpretation of the differences between the reported failure characteristics of the 

BHV and the native AV tissues in the literature is presented in this paper, by employing the 

theory of fibre-reinforced composite materials. In light of the concept of fibre critical length 

lc, the primary cause of these differences are shown to be linked to the altered shear at the 

collagen fibrils’ interface as a result of glutaraldehyde fixation and creation of new crosslinks 

between fibrils in BHV tissue compared with the native AV. Calculations are made to show 

how the ultimate failure stress of the fixed tissue is predicted from that of the natural tissue 

by taking the respective critical lengths into account. Based on these analyses, the underlying 

cause in initiating the fatigue-induced structural degeneration of BHV tissue in the form of 

delamination between collagen fibril layers is explained. To avoid the inherent and unwanted 

effects of fixation on the biomechanics of the failure of the BHVs discussed here, an 

alternative approach to the existing chemical-treatment based methods for BHV fabrication is 

suggested.    

 

Aortic valve as a fibre-reinforced composite material  

 

The native AV is comprised of three coapting soft collagenous connective cardiac tissues, 

referred to as leaflets, and is located between the left ventricle and the aorta. The AV 

essentially acts as a check valve to prevent the retrograde flow of blood from the aorta to the 

heart at each cardiac cycle. The anatomy of the valve along with an intact AV leaflet and a 

schematic of its structure is shown in Figure 1. Each leaflet consists of three morphological 

distinct layers, namely fibrosa, spongiosa and ventricularis. The predominance of the extra-

cellular matrix (ECM) elements of the AV is layer specific. Fibrosa mainly accommodates 

the collagen constituent of the valve, elastin is mainly localised in the ventricularis, and 

spongiosa is mainly comprised of glycosaminoglycans (GAGs).  

 

Given the significantly lower thickness (typically ranging from 0.5 mm to 0.7 mm [3, 16, 

17]) of the AV leaflet compared to its other two dimensions, and in particular the very low 

thickness of the fibrosa layer (0.2 mm [16]), it has been admissible from a biomechanics 

point of view to consider AV leaflet as a planar tissue [13, 17, 18]. Collagen fibres are also 



considered to have an in-plane distribution, primarily aligned in the circumferential direction 

(Figure 1d) of the leaflet [13, 18, 19], and embedded within GAGs (Figure 1e) which act as a 

gel-like viscous ground substance [17, 20, 21].  

 

This structure models a strong resemblance to fibre-reinforced composite materials. The 

application of the theory of fibre-reinforced composite materials to collagenous soft tissues 

has been devised and demonstrated through the works of Aspden (1994a), Aspden (1994b), 

and Goh et al. (2003) [20-22], amongst others. Same representation is adopted in the current 

study for the purpose of the analysis carried out and presented in this paper, with the caveat 

that the reinforcing elements in AV tissue are collagen fibrils. The collagen fibrils are 

considered analogous to reinforcing fibres in engineering composite theory, despite the 

variation in length scales where engineering fibres are typically two orders of magnitude 

larger than diameters (~100 nm) of collagen fibrils.          

 

Stress on a fibril and its critical length based on fibre composite materials theory  

 

Considering that fibrils assume a cylindrical shape when straight, the equations of 

elasticity describing displacement and stress fields in a fibril under equilibrium in the most 

general case are given by: 
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where r, ϕ  and z are the cylindrical coordinates, u, v and w denote the radial, circumferential 

and longitudinal displacements, σ  and τ  are the normal and shear stresses respectively, and

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(1) 



λ and µ  are Lame’s constants. Note that 0=
∂
∂

=
∂
∂

=
∂
∂

ϕϕϕ
wvu  due to the axis-symmetry of 

cylinder.  

 

The assumption of linear elasticity for collagen fibril is qualified by noting the relevant 

experimental stress-strain data in the literature and microstructural-based models which 

incorporate the behaviour of single fibrils. Studies investigating the mechanical properties of 

single collagen fibrils suggest that, while the fibril undergoes relatively large deformations 

before failure, linear regressions accurately characterise the relationship between the stress 

and strain of the fibrils, particularly at large strains [23-28]. Additionally, microstructural 

models of tissue behaviour based on gradual fibril recruitment have shown accurate 

characterisation of the tissue-level behaviour by considering fibrils as linear elastic units [19].  

 

Differentiating equation (1a) with respect to z and equation (1c) with respect to r, using 

the notation 2L for r
rrr ∂
∂

∂
∂ 1  and D2 for 2

2

z∂
∂ , equations (1a) to (1c) can be re-written as: 
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Eliminating 
z
u
∂
∂  between (2a) and (2c), one finds that all above three equations satisfy the 

general partial differential equation of the form:  
 

( ) 0V 222 =+ DL                                                                                                                      (3) 
 

This differential equation is equivalent to Laplace’s equation in cylindrical coordinate, 

partially differentiated with respect to r:  
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and therefore the same solution applies. Under the assumptions that:   
 

(i) the fibril is not subjected to torsion; 

(ii) the surrounding matrix can only generate shear stress on the lateral surface of the fibril; 

(a) 

(b) 

(c) 

(2) 



(iii)  the ensuing shear stress remains uniform along the fibril length; 

(iv)  the displacement field (as a result of the applied shear) is an odd function of fibril 

length; 

(v) the fibril is isotropic (despite the fact that the helical structure of collagen is likely to 

give rise to strong anisotropy); and 

(vi)  the ratio of fibril diameter to fibril length is very small; 
 

the above equation is solved to obtain the relationship between the longitudinal stress zzσ  of 

a fibril and the applied shear stress on its lateral surface rzτ  as [21, 29]:  
 

r
lrz

zz
 τ

σ =                                                                                                                                (5) 

 

where r and l  are the radius and length of a fibril, respectively. Maximum reinforcement is 

obtained when a fibril is capable of withstanding longitudinal stresses up to its ultimate 

failure stress, ( ) failurezzσ . This is achieved if the fibril is longer than a minimum length, also 

known as the critical length cl , which is calculated as:  
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We note that collagen fibrils are considered to endure only tensile tension, along their 

longitudinal axis. Therefore, while the fibrils may possess different mechanical properties in 

the transverse direction, this anisotropy is not considered to play a determining role in the 

contribution of the fibrils to the mechanical properties of the subject soft tissues. The 

assumption of elastic isotropy of collagen fibrils have been previously utilised and 

corroborated for various planar tissues, including the AV [19]. Equations (5) and (6) 

therefore provide admissible accuracy for preliminary analysis and application to collagenous 

soft tissues, as demonstrated in references [20] and [21]. 

 

Shear stress on a fibril in AV   

 

Shear stresses are generated at the interface between a residing fibril and the surrounding 

matrix (i.e. the lateral surface area of the fibril) when collagenous soft tissues are subjected to 

deformation, as a result of dissipative kinetics of fibril-fibril sliding [30] and viscous-like 

effect of the ground substance GAG [17, 20, 31]. In a recent study, we developed a 

rheological model to estimate those dissipative effects in AV tissue, using a Kelvin-Voigt 



based model by quantifying the equivalent viscous coefficient (η ) under various elongation 

rates )(λ  [17]. The calculated η  values in circumferential loading direction, as the prominent 

load-bearing direction of the valve tissue, are presented in Figure 2a. To estimate the 

corresponding value of η  under physiological loading condition where 5.2≈λ s-1 [32], a bi-

exponential function of the form λλλη  dcba expexp)( +=  was used to model the variation 

of η  versus λ , described in Appendix A, where a, b, c and d are coefficients calculated by 

fitting the function to the ( )ηλ,  data. Using MATALB® to perform the fitting procedure (see 

Appendix A), the value of η  at 5.2=λ  s-1 was approximated to be 0.0145 MPa s (Figure 

2a). The ensuing shear stress is calculated by Vητ 2= , where V  is the rate of deformation 

tensor, and in the case of uniaxial loading is given by 
λ
λ

=V  [17]. Noting that the in vivo 

value of λ for the functioning valve in the circumferential direction under physiological 

conditions is approximately 1.101 [33], the shear stress is calculated to be =τ 0.066 MPa.  

 

The fibril critical length in the natural AV is calculated using equation (6) and requires 

numerical values for the fibril radius r as well as the fibril failure stress. Fibril geometry was 

obtained from conventional light microscopy histological images of micro-sectioned samples 

of unloaded natural porcine AV specimens (prepared within 2 hours of slaughter from a local 

abattoir), stained with Picro Sirius Red for collagen. A customised code developed in 

MATLAB® was used to convert images into grey scale with enhanced contrast to facilitate 

the segmentation of the wavy fibrils from the background. Regions of interest were then 

specified in each processed image and individual fibril geometries were identified. Numerical 

data regarding the properties of interest of each fibril including its radius and crimped length, 

as well as the x and y coordinates of its wavy profile, were subsequently extracted. Using the 

data obtained from the overall regions of interest in processed images, histogram of the 

values of the radius and crimped length for the entire processed fibril population were 

produced. The average fibril radius and crimped length were calculated to be r = 275 nm and 

l0 = 56.39 μm, respectively. A typical histological and post-processed image is shown in 

Figure 3, including the reconstructed histograms of the radius and crimped length of the fibril 

population, along with the x and y coordinates of the profile of a representative fibril. 

 

The failure stress of collagen fibrils were found assuming that the stress-strain 

relationship of a fibril could be approximated by εσ E= , such that estimation of failureσ  can 



be made by knowing the values of E and failureε . The elastic modulus of collagen fibrils in 

AV has been reported to be E = 101.22 MPa [13]. We note that this elastic modulus value for 

AV fibrils is relatively low compared to fibrils obtained from other collagenous tissue 

sources such as from bone [27], but is consistent with values from other valve tissues [34]. 

The failure strain of a fibril has been reported to range from 4% up to 9% [24, 26, 35]. 

Assuming an average value of %6=failureε  [27], the failureσ  may be estimated as 

07.6=failureσ  MPa. Substituting these values into equation (6) gives a fibril critical length in 

AV tissue of cl = 25.36 μm.  

 

The effects of Glutaraldehyde treatment (fixation)   

 

BHV tissues undergo glutaraldehyde treatment (fixation) to minimise the provocation of 

immunologic reactions of the host body. However, this process also tightly crosslinks the 

extracellular matrix (ECM) proteins, through new covalent bonds that are created between 

the primary amine groups of proteins and the reactive aldehyde chains of the glutaraldehyde 

[12]. To quantify the effects of these microstructural changes on the shear stress acting on the 

interface of a fibril and on its critical length, we fitted our rheological model in [17] to the 

experimental data presented in various studies where the stress-strain curves were reported 

for both normal and fixed tissues, including that by Thubrikar et al. (1980), Lee et al. (1984), 

and Purinya et al. (1994) [2, 4, 5]. A typical fit is shown in Figure 2b. The modelling 

outcomes indicated that the resulting values for η  in fixed tissue were consistently up to 5 

times higher than that of a normal tissue. Since the fixation process does not affect the 

geometrical properties of the fibrils, the shear stress acting on fibril’s interface in BHV tissue 

is correspondingly up to 5 times higher than its equivalent in normal tissue. Therefore the 

value for fibril shear stress in BHV is assumed to be higher than the AV case at =τ 0.32 

MPa.  

 

The major collagen component in AV ECM is collagen type I, constituting approximately 

74% of the overall collagen content of the valve [36]. The mechanical properties of cross-

linked type I collagen fibril are reported to be E = 250 MPa to 500 MPa, while the failure 

strain ranges from %13=failureε  to %19=failureε  [23, 37]. Taking the average value for 

failure strain as %16=failureε , the failure stress of a cross-linked fibril may go up to 



80=failureσ  MPa. Therefore, the fibril critical length in the fixed BHV tissue is calculated 

using equation (6) as cl = 66.81 μm.  

 

A point of caution  

 

Characterisation of fibril length and radius, and hence the estimation of the critical length 

of cross-linked and natural AV fibrils presented here are based, in part, on the histological 

images of micro-sectioned samples obtained from the fibrosa layer of natural porcine AVs. 

An example of such images was presented in Figure 3. As discussed earlier, the AV tissue, 

and the distribution of the collagen fibrils within the tissue, are widely considered as planar. 

However, it may be the case that some fibrils may not be deposed in a single plane, and 

therefore the whole fibril length may not be captured in that optical plane. Should this be the 

case, the rationale of the presented analysis and the trend of the results remain unaffected, but 

rather the calculated numerical values may be scaled by the ratio of the whole fibril length to 

the length captured in the image. However, the values related to the fibril geometry presented 

in this study are well consistent with the reported values in the literature [26, 38, 39], 

reaffirming that the potential effects of non-planar fibrils on the presented calculations have 

been minimal.  

 

Failure characteristics of the BHV versus the native AV  

 

Glutaraldehyde fixation notably alters the fibril interface shear and subsequently the 

critical length. Change in the critical length affects the population fraction of the fibrils that 

would be able to provide effective reinforcement and load-bearing to the tissue. By assuming 

a Gaussian distribution for the straight length l of the entire fibril population in the natural 

tissue: 
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where lµ  and lσ   are the mean straight fibril length and the standard deviation, respectively; 

the fraction of the population of fibrils providing effective reinforcement to the tissue can be 

calculated by integrating the area underneath the distribution curve, from the critical length to 

the end tail of the distribution. Values for lµ  and lσ   can be determined by first finding the 

straight fibril length of the residing population. If the wavy profile of a fibril is represented by 



a mathematical function y, the straight length l of a fibril is established by  

∫ 





+=

0

0

2

1
l

dx
dx
dyl . Therefore, the straight length of the individual fibrils may be calculated 

by fitting the extracted x and y coordinates of the way profiles of the individual fibrils 

obtained from our image processing analyses (e.g. Figure 3e) to mathematical functions that 

accurately represent the shape of the fibrils. 

 

Using the coordinates of the initial and final points of the identified profile of a fibril, the 

angle θ  between the axis of that fibril and the horizontal axis was established. Using the 

rotation matrix 






 −
=

θθ
θθ

θ
cossin
sincos

)(R , the extracted coordinates of the points along the 

wavy profile of each fibril were transformed to new coordinates, in-line with the global x and 

y axes. This transformation is shown schematically in Figure 4a. The transformed x and y 

coordinates were then fitted to a cubic spline function constructed of a piecewise third-order 

polynomial of the form: 

                                            11   ,  23 −≤≤+++= nidxcxbxay iiiii                                    (8) 
 

where a, b, c and d are fitting parameters, i indicates the subset of the function fitted to each 

piece of the experimental dataset (note that each piece contains four sets of points), and n is 

the total number of points that the function iy  is fitted to on its entire domain. The fitting 

procedure was performed using a customised code in MATLAB®, and a typical output is 

presented in Figure 4a. Upon calculation of ai, bi, ci and di, the straight length l of each fibril 

was found by:  
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From this data, the mean straight length and the standard deviation of the fibril population 

were obtained to be lµ = 68.80 μm  and lσ = 13.00 μm, respectively.  

  

The distribution of the straight length l of the entire fibril population in the natural tissue 

may be retrieved by substituting the values of lµ  and lσ  into D(l), as 
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213
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π
 and is shown in Figure 4b. The difference between the 

fraction of the populations of fibrils effectively contributing to the load-bearing capacity of 



BHV and natural AV tissues may now be obtained by dllD  )(
81.66

36.25
∫ , which results in: 
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= 0.44.  

 

Calculations therefore indicate a reduction of 44% in the population of fibrils that 

provide effective reinforcement to the BHV tissue compared with the natural valve. Such 

reduction is expected to inevitably affect and reduce the ultimate strength of the BHV. 

Interestingly, Lee et al. (1984) and Purinya et al. (1994) report experimental data which show 

ultimate failure stress of fixed tissues reduces by 40% to 50% compared with the samples 

from natural tissue [4, 5]. This observation is in close accordance with the above calculated 

44% reduction in the population of load-bearing fibrils in the BHV tissue, underlining a 

direct correlation between the reduction in the ultimate failure strength and the fibril 

population that effectively contribute to the load-bearing capacity of the tissue. Therefore, the 

incurred changes on the magnitude of shear force acting on BHV fibril interfaces as a result 

of glutaraldehyde fixation (versus the natural tissue) alter the fibrils’ critical length. 

Consequently, the fraction population of the load-bearing fibrils is reduced, which in turn 

decreases the ultimate failure strength of the BHV. 

 

The fatigue-induced structural failure mode of the BHV tissue has shown to be of the 

form of delamination between collagen fibre layers, while the fibres themselves remain intact 

[10, 12]. This delamination implies that the shear forces acting on fibrils’ interface were 

insufficient to exceed the fibrils’ failure strength but sufficient to break the bonds between the 

fibril and the surrounding ECM proteins including the neighbouring fibrils. Therefore, 

quantitative estimations of the total bonding force acting on a fibril’s lateral surface along its 

length, and the fibril failure load, are required. A collagen fibril is typically bonded to its 

surrounding ECM proteins via electrostatic bonds with GAG chains, and covalent bonds with 

the neighbouring fibrils, shown schematically in Figure 5. The fibril-GAG bonding occurs 

every 68 nm along the length of the fibril [39], with each bond proficient to sustain forces in 

order of ~50 pN [20]. The bonding of a collagen fibril with the surrounding fibrils is thought 

to occur in specific sites in each D-period along its length (D = 67 nm), with each bond 

capable of withstanding ~6.1 nN before breaking [20]. The exact number of bonds and 

crosslinks between a fibril and its surrounding ECM proteins in native AV or fixed tissue 

along a fibril is unknown to the best knowledge of the authors. Aspden showed that 



considering one bond per each bonding site suffices for the transmission of stress from the 

matrix to a fibril [20].  Balguid et al. (2007) have shown a linear correlation between the 

number of fibrilar crosslinks and the elastic modulus of a fibril [40]. As the estimated value 

for elastic modulus of cross-linked fibril is up to approximately 500 MPa versus 101.22 MPa 

for a residing fibril in the natural valve, the number of cross-links in a fixed tissue is assumed 

to increase proportionally by a factor of 5. Therefore, assuming 5 covalent bonds per each 

bonding site along a fibril and that the fibril-GAG bonds are not altered, the total force f 

acting on a fibril’s interface (i.e. lateral surface) that is borne by the fibril-fibril and the fibril-

GAG bonds is calculated by: 
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Considering that the average length of fibril is 68.80 μm, f assumes a value of approximately 

f  = 31 μN.  

 

The shear force (F) acting on the lateral surface of a cross-linked fibril before failure, 

noting that failurefailure Eεσ =   and 
lateralA
F

=τ , is thus calculated using equation (5)  as             

F = 38 μN. It is observed that the force f required to fail bonds between fibrils is critically 

lower than the force F required to break a fibril. Weaker bonds must therefore progressively 

break in BHV’s functioning cycles, culminating in the so called fibril delamination from the 

matrix, while the fibril themselves remain intact.  

 

Conclusion and implication for BHV fabrication 
 

Fibril critical length, bonding forces, and load-bearing populations in both natural AV and 

BHV tissues were calculated and presented in this paper for the first time, to the knowledge 

of the authors. While some studies suggest that the fibrils residing in the different 

morphological layers of the native AV and the BHV may sustain various levels of shear 

under tissue-level deformations [41], the calculated values reported in the paper can be 

considered as typical whole-tissue values.  

 

It was shown that the microstructural changes incurred in the valve ECM as a result of 

glutaraldehyde fixation inevitably result in changes to the fibril interface shear and critical 

length. By calculating these changes, this paper provided a prediction of the tissue failure 



properties which corroborates the experimental observations. The presented analysis in this 

paper provides a quantitative insight into the biomechanics of the changes that occur in the 

fibril-level due to tissue fixation, and facilitates further understanding of the ensuing 

microstructural causes that initiate the degeneration of the BHVs in vivo.  

 

The results of these analyses suggest that BHV fabrication methods which include tissue 

fixation are potentially undesirable if the aim is to prolong the durability of the replaced valve 

function in vivo. Indeed, any chemical treatment of BHV tissue is highly likely to alter the 

nature of the fibril-matrix interactions, the ensuing shear stress and therefore the 

biomechanical properties of the valve as presented here. An alternative approach, as an initial 

concept, may be the utilisation of a flexible biocompatible nano-sheath film to cover the 

surface of a natural AV leaflet, in order to prevent any immunological and biological 

reactions, while maintaining the natural structure and properties of the native valve. The 

outcomes of this study may be used to recommend appropriate choice of objective functions 

in optimising the design of such sheath, and the modelling of the sheathed valve function. For 

example, designs to minimise the fibril interface shear in sheathed versus normal valve can 

be proposed. This approach therefore facilitates designing more desirable valve substitutes 

with prolonged functional durability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A 

 

Plotting λlog  versus ηlog  in Figure A1 for the three experimentally quantified ( )ηλ,  

data points, it may be observed that each two consecutive points have notably different 

gradients. This implies that at least two exponential terms may be required to adequately 

describe the behaviour of η  versus λ  via an exponential profile, over the whole range of the 

three existing points. This function may be mathematically expressed as:  

                                                λλλη  dcba expexp)( +=                                             (A1) 
 

where a, b, c and d are constants to be calculated by fitting this function to the data points.  

 

Setting the first exponential term in equation (A1) to describe the η -λ  behaviour of the 

first two points, and accepting fits with R2 0.99 using MATLAB®, domains for a and b over 

which acceptable fits may be achieved were obtained to be 740 ≤≤ a 850 and -200 ≤≤ b -140, 

respectively. These provided the numerical constraints for fitting equation (A1) to all three 

( )ηλ,  points:  

                             λλλη  dcba expexp)( += , 








−≤≤−

≤≤

140200

850740

b

a
                                      (A2) 

 

However, another constraint is derived from the rheological properties of GAG. The yield 

stress of GAG solutions has been reported to be lower than 105 Pa [42]. Assuming that τ  is 

in the range of 104 Pa ≤≤ τ 105 Pa, the model parameters in (A2) should provide the best fit 

to the three ( )ηλ,  points such that the corresponding value of η  at 5.2=λ  s-1 establishes that 

λ
λη


2104 ≤ . Therefore equation (A2) is rewritten as: 

                             λλλη  dcba expexp)( += , 

















≤

−≤≤−

≤≤

λ
λη


210

140200

850740

4

b

a

                                      (A3) 



Fitting equation (A3) to the data points, the set of a, b, c and d that provided R2 = 1 while 

satisfying those constraints were calculated to be: a = 778.7, b = -180.3, c = 24.89, and           

d = -2.97:  

                              ( ) ( )λλλη  97.2exp89.243.180exp7.778)( −+−=                                   (A4) 
 

where the lower bound for η  at 5.2=λ  was estimated to be 0145.0=η  MPa s.  
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Figure legends  

 

Figure 1- Schematic of AV anatomy and structure:  (a) schematic cross-section of heart; (b) 

AV located at the aortic root (adapted from [13] with permission); (c) AV cut open showing 

the valve’s three leaflets (adapted from [14] with permission); (d) an intact AV leaflet with its 

principal loading directions; and (e) schematic of the AV structure as a fibre-reinforced 

composite material: collagen fibrils are embedded in GAG as ground substance  (adapted 

from [15], with permission).   

 

Figure 2- (a) Variation in η  versus λ . The value of η  at physiological rate ( 5.2=λ  s-1) was 

estimated by fitting the existing ( )ηλ,  points to the bi-exponential function expressed in 

(A4). The ( )ηλ,  points were collated from [17]; (b) Representative example of variation in η  

for natural versus fixed tissue (experimental data collated from [2]). Note the approximately 

5-fold increase in the value of η  for the fixed tissue compared with the natural valve. 

.  

Figure 3- (a) A typical pre-processed histological image of natural AV specimens obtained 

using conventional light microscopy; (b) A typical post-processed image. A region of interest 

is designated by the dashed rectangle. For each region of interest, histograms of fibril radius 

(c) and crimped length (d) of the residing population of fibrils were obtained, along with the x 

and y coordinates of the profile of the wavy fibrils (e). The scale bar on the histological image 

indicates 100 μm.      

 

Figure 4- (a) The angle θ  between the axis of a fibril and the horizontal axis was calculated 

for each fibril, and used in the rotation matrix )(θR to transform the extracted coordinates of 

the points from the initial profile of the fibrils new coordinates in-line with the global x and y 

axes. The new points (shown by filled circles in the bottom panel) were then fitted to the 

function in equation (8), shown by continuous line. Using equation (9), the straight length of 

the fibrils was then calculated. For the specific fibril shown in the figure, l = 79.92 μm 

(indicated by dashed line); (b) The Gaussian distribution of the straight length of the fibril 

population in natural AV tissue. Dashed lines indicate the critical lengths of the natural 

versus fixed BHV tissue. The hatched area corresponds to the difference between the fraction 

of the populations of fibrils providing effective reinforcement and load-bearing to BHV and 

natural AV tissues.  

 



Figure 5- Schematic of the bonding between a fibril and the surrounding ECM proteins in 

AV, including GAG and a neighbouring fibril.  

 

Figure A1- η  versus λ  plotted in logarithmic scale. The connecting dashed lines between 
each two consecutive points highlight the respective gradients. Note the ~30% difference in 
the gradient values.  
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