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Abstract—Software fault prediction (SFP) is a quality as-
surance process that identifies if certain modules are fault-
prone (FP) or not-fault-prone (NFP). Hence, it minimizes the
testing efforts incurred in terms of cost and time. Supervised
machine learning techniques have capacity to spot-out the FP
modules. However, such techniques require fault information
from previous versions of software product. Such information,
accumulated over the life-cycle of software, may neither be
readily available nor reliable. Currently, clustering with experts’
opinions is a prudent choice for labeling the modules without any
fault information. However, the asserted technique may not fully
comprehend important aspects such as selection of experts, con-
flict in expert opinions, catering the diverse expertise of domain
experts etc. In this paper, we propose a comprehensive framework
namedEkmEx that extends the conventional fault prediction
approaches while providing mathematical foundation through
aspects not addressed so far. The EkmEx guides in selection
of experts, furnishes an objective solution for resolve of verdict-
conflicts and manages the problem of diversity in expertise of
domain experts. We performed expert-assisted module labeling
through EkmEx and conventional clustering on seven public
datasets of NASA. The empirical outcomes of research exhibit
significant potential of the proposed framework in identifying F P
modules across all seven datasets.

Index Terms—Expert opinion, Labeling datasets, Software
fault proneness, Software metrics

I. INTRODUCTION

A fault is an error that causes non-conformity [1] with
software requirements. In software systems, fault is an
unavoidable problem incurred by internal defects. Software
faults can cause huge losses and catastrophies. For example,
Mariner 1 destroyed due to code error [2]. In 2003, the
blackouts of the North-Eastern United States were also
caused by software fault [3]. Software fault is closely related
to security, reliability and maintainability of thesystem. In
software projects, it is quite difficult for testers to find all
the software faults. The program debugging process has
been employed for fault identification in software systems.
However, debugging is a costly activity in terms of time and
effort exerted [4]. In recent years, complexity of software
programs has increased manifold in terms of lines of code.
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Such complexity in software systems has made the software
faults almost unavoidable. This gives rise to a major concern
i.e. fault identifcation consumes nearly 80% of the total budget
of a software project. These costs can be diminished if faults
are identified earlier in the development process. Therefore,
researchers are focusing on software fault prediction activities
for estimating the number and distribution of faults.
Software fault prediction is a discipline that predicts fault
proneness of certain modules using certain metrics and
historic fault data. Software fault prediction refines the
process of testing while identifying modules to be refactored
in maintenance phase. Hence, it reduces the effort and time
required to review the code [5-8].

The research community has proposed numerous fault
prediction approaches, such as supervised learning models,
unsupervised models, transfer learning models, and supervised
learning/ active learning. These approaches help to determine
the fault-prone FP and not fault-prone NFP modules.

SFP works on data of metrics that elaborate the description
of software under test. The description can be related to
design, code, complexity, or volume of the software artifact.
These metrics can be at method level, class level, or even
file-level. However, the metrics that capture the method-level
details are dominant in use (60%) followed by class level
metrics, which is 24% [9]. The comprehensive discussion
on software metrics can be found in [10, 11]. According to
the studies, [9, 12-18], Halstead [19], LOC, and McCabe
cyclometic complexity [20] metrics are the most frequently
used metric in non Object Oriented (OO) paradigm. Whereas
in OO paradigm, Catal Systematic (CK) metric suite is used
most frequently[9, 12—18].

The complexity-based software metrics reflect the cognitive
complexity which is the main cause of fault [21-23] as
shown in figure 1. The second important requirement of
SFP approaches is the availability of labeled data. The label
comprises of fault information, that could be binary such as
FP or NFP, ordinal as the severity of faults, or a numerical
that shows the number of faults in the software modules.



SFP research community is more inclined towards classifying
FP and NFP modules [24, 25]. Unfortunately, such fault
information is not always available, because of two main
reasons: Firstly, similar software are not developed all the
time; secondly, there is lack of fault tracking systems in
similar software. Training the SFP model in such scenarios
is quite challenging, which is addressed by many studies
[26-28].
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Fig. 1. Association of coupling complexity with software faults

Common approaches to resolve the stated challenges are
Cross-product defect prediction (CPDP) [26, 29, 30], Bad
Smell based defect labeling[31, 32], Clustering with expert
opinion[33], Heuristic-based approaches[34-37], Rule-based
approaches, and Threshold-based approaches[38, 39].

In this paper, we proposed a fault labeling framework named
EkmEx that extends the conventional approaches i.e. clustering
with expert opinion [33, 40]. The base technique uses a clus-
tering technique for making two clusters of all the unlabeled
modules. Later, the centroid of each cluster is presented to
domain experts for labelling each of them as FP or NFP.
Instead of analysing and labeling each module one by one,
experts examine only the centroid and assign a label to all data
points within same cluster. A major contribution of current
research is to present a more systematic, reliable and robust
approach in identifying FP modules. A comparison has been
performed on seven public datasets of NASA to measure the
effectiveness of proposed approach.

The rest of the paper is organized as follows: Section II
presents the literature review of current research. The proposed
framework has been discussed in Section III wherein the
process of dataset development is elaborated followed by
Section IV that compares the proposed framework with the
existing one. Threats to the design of an experiment and results
are stated in Section V. We conclude the paper and provide
possible future directions in Section VI.

II. LITERATURE REVIEW

In the supervised software fault prediction, labeling is a
challenging task. Information about faults is generally stored
in the software archives. The task of associating fault to
the modules is challenging even in the presence of the
archives. Kim Herzig and Sascha [41] analyzed five open-
source projects and reported that about 40% of reports are
inaccurately classified. Consequently, about 40% of modules
that were classified as FP, never had a bug. Likewise, Bird et
al. analyzed 24 thousand fixed bugs, wherein only 10 thousand
could be accurately linked to the bug dataset[42]. The reason
for such discrepancy is that bug archives do not explicitly state
which version the patch file is applied. Likewise, sometimes

bugs are associated with classes that are generated at run-time.
This would lead to the erroneous association of the bugs to
static classes. This is the reason research community moved
to other techniques for labeling the dataset [26, 43, 44]. This
section briefly discussed these techniques.

CPDP is a Cross product defect prediction approach dis-
cussed by many researchers [26-28, 43, 44]. In this approach,
the machine learning (ML) model is trained on the labeled
dataset, which is then used to predict the label of unlabeled
dataset. However, varying distributions between training and
test dataset would not make it useful. Efforts have been made
on solutions to improve the predictive performance of CPDP
models, like transfer learning solution [45], data transforma-
tion [28], relevant instances filtration [46], etc. Still, a lot of
work yet to be done to make it practically viable. Zhang et
al. [47] employ Cross version Data Selection (CDS) technique
to resolve the version selection problem. The proposed CDS
framework applied clustering to existing files for detecting the
similar and most noisy instances for training while applying
the Weighted Sampling Model (WSM) to the new files. The
results are quite appreciable by applying the framework to
28 versions across 8 software projects. Amaski et al. [48]
suggested that the latest prior release is the better choice
for the selection of training instances. The authors claim
that CPDP approaches could improve CVDP (Cross-version
defect prediction). Likewise, the project’s latest release has
an imperative advantage of usage as compared to the older
releases.

Bad smell based approach was first used by Beck to describe
22 particular structures in code that have a negative effect on
software and should be avoided.These rules originated from
human expertise by interpreting information [31] [49]. Human
experts usually convert the problem into a set of condition
action rules which usually constituteif-then. In addition to that
Metadata, metrics, and other necessary projects artifact-related
information is fed into the rules. Sometimes such rules are
automated to solve the process. Hall et al. [32] reported that
coding rule violations have a small but significant effect on the
occurrence of faults at file level. Likewise, Li and Shatnawi
[50] studied the relationship of six smells with faults. Olbrich
et al. [51, 52] studied three smells in the software system.
Whereas, Sjoberg et al. [53] focused on the size of these
effects, hence reported the effect of 12 smells. Gupta and Singh
[54] employ metrics and rules to demonstrate the effectiveness
of code smell in JAVA code. The aim was to detect temporary
field code smell based on the selected metrics. The selected
metrics are computed through data and control flow graphs.
The empirical results advocate the effectiveness of temporarily
filed code smell detection.

Clustering with experts’ opinion develop clusters out of data
and declare partial data as FP or NFP. Clusters are devel-
oped through expert-based approaches or non-expert based
approaches. The base assumption is that modules that are
coherent in their structure are likely to share the quality
parameters (i.e. fault-proneness). Zhong et al. [33] used K-
means [55] and Neural-Gas [56] clustering methods to cluster



hundreds of software modules into a small number of coherent
groups. Subsequently, essential data statistics from each cluster
were presented to experts having 15 years of experience in
software engineering. The experts labelled the representative
instances as FP or NFP based on their domain knowledge.
However, the quality parameters were not resented to the
experts. Finally, the labels of representative modules were
assigned to all the data points of corresponding cluster. Fol-
lowing a similar pattern Seliya et al. [40] performed clustering
of datasets from software projects by NASA through k-means
and labelled the centroids through domain experts.
Rodriguez et al. [57] exploited two algorithms, the SD al-
gorithm, and the CN2-SD algorithm to generate rules to
determine the FP modules. They evaluated the generated rules
on three datasets from NASA projects [58] and DAmbros
et al. repository [59]. They use object-oriented metrics for
generating clusters and identifying rules. Yuan er al. [60]
introduced Fuzzy clustering, which was a regression model,
to estimate the number of faults. The authors illustrate the
method on large scale telecommunication systems and reported
significant outperformance. The most recent work is performed
by Yang et. al [37]. The authors propose a cluster ensembles
labeling approach (CEL) and perform an experiment on 15
different datasets from three different repositories. CEL first
makes multiple sub-optimal clusters and then combines into
a single better cluster. The clustering and labeling are done
through Access Control Lists (ACL) [61].

Heuristic based approach uses some cognitive logics to
determine the FP instance. Nam and Kim [34] propose
CLA/CLAMI, which neither requires prior fault data nor is
influenced by the varying distribution of data. It is actually
composed of two techniques CLA and CLAMI. The first two
steps of both techniques are clustering modules and labeling
modules in clusters. The technique named CLAMI has two
more steps to overcome mislabeling i.e. Metric selection and
Instance selection. The techniques are evaluated on seven
open-source datasets and produced significantly viable results.
However, the technique drops a significant number of instances
and metrics, thus makes it nearly useless. Another heuristic-
based approach is ACL, proposed by Yang et al. [35] in which
labeling is based upon certain beliefs supported by some other
researchers. Like, highly distributed change is more likely
to be a defect inducing change. Likewise, larger change has
a higher likelihood of being a defect-inducing change. The
approach is four steps; the first step is getting the average of
each metric. In the second step, for a certain instance, if the
value of metric is greater than the half average of that very
metric then the instance is preliminarily labeled as FP. Based
on the violation score (MIVS) instances are further pruned in
the last two steps. Andrew et al. [36] labeling is based upon the
heuristic that ”For most metrics, software entities containing
defects generally have larger values than software entities
without defects.”. They took three datasets with 26 projects
in total and proved that the connection between faulty and
clean is smaller than the connection between faulty instances
and the connection between clean instances. Yan et al. [62]

used both supervised and unsupervised learning approaches on
file level defect prediction and conclude that within the project
later is not better however, across the project later is better.
Labeling is done based on the experiment of [35].
Threshold based approaches: B. Ralf [38] take threshold
through experience [63] and hints from literature, tuning ma-
chine, and analysis of multiple versions. Catal et al. [39] make
clusters using X-means and then computes the mean vector
of each cluster which is then compared with the thresholds
vector. The complete cluster is predicted as FP if at least one
metric of the mean vector is higher than the threshold value
of that metric. X-means need k,,;, and k,,., value. It uses
a posterior probability to select the right number of clusters.
The threshold for different metrics are;

1) LOC=65
2) v(g) =10
3) nl =25
4) n2 =40
5) N1 =125
6) N2 =70

Values are taken from Integrated software metrics (ISM).
Currently, the website is not working.
Non-clustering-based approaches have very narrow coverage
due to a limited metrics’ coverage. Similarly, they lack in
accommodating newly developed software metrics. The ap-
proaches wherein clustering techniques are employed without
expert opinion face the limitations as mentioned by [37, 39, 57,
60, 64, 65]. The reasons for shortcomings are static thresholds
that have been predefined or non-availability of a labeled
dataset for computing thresholds. On the other hand, clustering
based approaches have no such limitations for considering
expert opinions. Conclusively stating, these techniques hold
following disadvantages:

1) Ignores clusters’ quality assessment

2) Depends upon experts’ availability

3) Ignores diverse experts’ expertise

4) Ignores difference in experts’ opinion

5) Does not compute the labelings’ reliability
We tried to improve this approach while resolving the associ-
ated limitation by proposing a new framework EkmEXx, that is
elaborated in the forthcoming section.

III. EKMEX - AN EXTENDED FRAMEWORK FOR FAULT
LABELING

EkmEx, Extended k-means with Experts’ opinion extends
the conventional approach i.e. clustering with experts opinion
[33]. The base technique makes two clusters of the un-labeled
dataset that comprises of complexity metrics. After that, the
centroid of each cluster is presented to the expert, who labels
each centroid as FP or NFP. Subsequently, the given label is
assigned to all the data points of the corresponding cluster. As
discussed in prior sections, conventional approaches may not
cater some important aspects. These aspects have been well-
addressed by proposed framework i.e. EkmEx. In this section,
proposed framework has been applied to seven datasets used
in NASA projects.



A. Selected datasets
As a case study, seven public datasets by NASA [58]

TABLE III
STATISTICAL DESCRIPTION OF THE SELECTED SEVEN DATASETS

have been selected. Originally, NASA datasets consisted of Dataset Parameter igcs V(%) ngg) e;(?’) ';11 3’;24 112\2)12 N2 br-lgnt
. . . mean 8] 7.3 1|19 . 20 77
13 .softw.are projects in PROMISE version and 14 'software G0 1562195644293 1383 151 9551163
projects in MDP version. There was a considerable difference min TT1T 21 1 1 1413 7] 4 3
in the number of feature-sets of both the projects[66]. The CM1 25% |18 3 |2 ] 1 J13]13]38 |22 ] 5
. . 50% 28 | 4 3 1 171221 68 | 40 7
datasets had fev&f quality problems [6§]. Still, these datasets 75% ST 8T 6 7 123142 365925115
are used most widely by SFP community [67]. Table I shows max 13503196163 [ 30 | 72 [31411229] 793 | 162
a brief description and fault ratio in the selected datasets. mean [46.5| 8 | 7.1 ] 4.6 [13.9124.8/98.6|59.4| 15
std 51.1184|75]52 | 8 [21.8[109.7| 66.7 | 16.9
min 0 1 1 1 0] 0 0 0 1
TABLE 1 KCl1 25% 3 1 1 1 T4 11 5 1
BRIEF DESCRIPTION OF SEVEN DATASETS BY NASA 50% 33|54 [ 1 |[15[22] 71 |44 9
75% T2 |12 11| 7 [20]36] 136 | 84 23
Dataset | n NFP | FP_| %FP | Description max | 262 | 45 | 45 | 26 | 37 |120| 678 | 428 | 89
CM1 498 449 49 9.83 ’I?Ig’SA spacecraft instrument written in mean 369493724 192(145/57.6 37 8.8
KCI 2109 | 1783 | 326 | 15.45 | KCI is a "C++" system implementing riltl(:l 771'9 ]11 Si] 6i7 6i4 2%)'1 141l3 9%4 2]1'9
storage management for receiving and
processing ground data KC2 25% 4 L L L 3 2 4 2 L
KC2 522 | 415 | 107 | 2049 | Data from C++ functions. Science data 0% [13[2 12 [ 1 [8[7]165] 11 ] 3
processing; another part of the same 5% 4515 4 1 14120 64 | 41 9
project as KC1; different personnel. max 1275180 | 143 | 125 | 47 [325]2469 1513 | 361
KC3 458 415 43 9.39 Program written in Java mean |32.6]6.4 (5.5 2.7 |16.1|29.3|]117.8] 69 | 10.8
MC2 161 109 52 32.29 | Program written in C++ std 34215648 3 [4.9]25.5[126.7] 78 | 10.1
MW1 434 403 31 7.14 Program written in C++ min 4 2 1 1 7 4 13 5 3
PC1 1109 | 1032 | 77 6.94 Data from C' functionsi flight software KC3 25% 1131 2 2 1 13113 [41.3] 22 3
for earth orbiting satellit 350% 20 | 4 7 I 16 1 20 16951 39 7
75% 43 178|168 3 | 19 [40.5/151.3|88.5| 13
. max 242136 | 34 [ 20 | 31 |[159] 857 | 556 | 59
We selected these datasets for three main reasons ean 44 893144 1156 24 11838691163
1) These versions are widelyused in several empirical stud- std  [527] 11 |37 ] 7.4 [6.6| 21 [147.3[104.5] 21.7
ies on SFP min 2 2 1 1 3 1 3 1 3
h . . . . MC2 25% 123 1 1 [11[10] 27 | 20 5
2) The datasets arepublicly and freely available which makes 50% 27 (5] 2 | 1 |[1I5[17]66 | 50 | 9
it easy for external validation of our empirical results by 75% | 57T [10] 3 | 4 [20 ]33] 156|120 | 19
other researchers max 30663 | 21 | 39 [ 32 ]98] 864 | 615 | 125
: mean 31 |7.7|44 3.6 |16.5/ 27 |89.9|689| 13.8
3) The datasets comprise the information of fault along with std  |41.3]105| 7.8 | 6.8 | 8 [33.7/130.6/99.5 | 19.3
numerous software complexity metrics. min OJ 1T 1] 14727673 3
4) The datasets allow the label to be binary by just labeling PCl g(S)ZOJ ié g % i } é }g Zg ;g g
FP for the erroneous module, otherwise NFP. Since 75 36 T8 15 15 (200351021 77 1 15
the binary labels are the most used category by SFP max | 602 136|123 | 123 | 99 [538]1641[1144] 236
. mean [26.8| 6 |4.5]| 2.5 |13.5/25.8/59.3|46.7| 10.3
community [24, 25]. Sid 19852 4132 [65(172[48.7 384 9
Table IT shows a brief description of the metrics in the selected min 4 12T |1 [4]3]6 1473
datasets MW1 25% 123 2 1 9 [ 13] 25 19 5
’ 50% 20 | 4 3 1 12|21 ] 43 33 7
75% 3717 5 3 | 17|36 80 | 61 13
TABLE II max 11228 [ 26 | 23 | 4494|303 [ 226 | 50

DESCRIPTION OF THE METRICS IN THE SEVEN DATASETS

Class of metric Symbol | Description

loc McCabes Lines of code

v(g) Cyclomatic complexit
MeCabe[20, 68] eVg(g) Ezsemial compleI:(ity :

iv(g) Design complexity

nl Unique Operators
Halstead [19] n2 uniqOperands

N1 totalOperators

N2 Total Operands
Branch Br. Cnt | Total number of branches of the flow graph
Label 1 Presence of fault

0 Absence of fault

The label shall act as a testing of our framework and
comparison with the base technique. The brief statistical
description of each metric in all selected datasets is shown
in Table III.

B. Labeling through EkmEx

This subsection explains the proposed framework, EkmEx.
We apply all the steps of EkmEx on the seven datasets
shortlisted along with the elaboration of each step. The block
diagram of EkmEx is shown in figure 2.

1) Clustering through k-means: In the first step, we
made two clusters in all three selected datasets using
k-means clustering algorithm [55]. It is an optimization
algorithm that aims to minimize the mean-squared error.
The k-means aims to split data instances into k clusters
wherein each instance belongs to the cluster with the least
mean-squared error. We selected this algorithm because of
following two main reasons; (a) We can set the number
of required clusters, which is two in our case i.e. FP and
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Fig. 2. Detailed EkmEx labeling framework

NFP. (b)We can easily select the most candidate instance that
represents the whole cluster, which is the centroid in k-means.

TABLE IV
DETAIL OF CENTROIDS IN SEVEN DATASETS WITH SILHOUETTE SCORE
Datasets| loc |v(g)|iv(g)lev(g)| nl | n2 | NI | N2 |br.Cnt|Silhouette
oy [3LI15 [34[22 [168[242] 74 [463] 87 | o
150.6/22.815.3 8.8 [34.1 [109.8 425 2794 415] *
ey Z82[211[183(12.2(23.6 5892799 [170.1[ 414 |
2701494427 (11051671 553 (329187 ]
3841 [31] 2 | 9 [132| 482 | 31 [ 73
KC2 15905103753 6T [333[176.8[1276 5[815.3[2028| O
900 [15.2]12.9] 6.1 | 22.7 | 72.8 | 338.7 [204.5] 26.5
KC3 55674539 2 (147204 725|412 76| 7O
3267|2728 148|214 873 [6538] 12
MC2 500141488 (276273 [61.6 57183946/ 81.6 | %7
17914132 19 [11.1]183] 369 [292 7
MWL 5 ST1731 86 [45 (213 [50.1 (1314 1028 21 ] 64
por |228156(33 (28 [152(207] 608 [46.11 99 | oo
TI83[30.4]16.8[ 12,5 29.8 [94.1 [ 396.7 [3099[ 556 ]

The quality of the clusters is evaluated through Silhouette
score [69]. Silhouette score ranges from -1 to 1 representing
a worst to the best clustering respectively. We recommend
dropping the dataset if Silhouette is less than 0.8. The reason
is significant disjointness that can lead to reliable labeling.
The proposed framework was used to develop two clusters
on each of seven datasets. So, a total of 14 clusters were
generated. The initial instance and random seed was modified
to attain as much high Silhouette score as possible. It implied
to have more coherent and least coupled clusters. The details
of the centroid for each cluster has been presented in Table I'V.
Out of the seven datasets, MW1 cannot achieve a satisfactory
silhouette score, therefore we do notmake it a part of the
labeling process. While the rest of the six projects successfully

achieved a sufficient silhouette score. The outcome of this
phase is a pair of clusters in each project which is least coupled
and strongly coherent with its neighboring cluster.

2) Selection of experts’: Expert refers to the individual
having experience in software development (SD) or software
quality assurance (SQA). It is desirable to have more than
three experts and all the experts should share any of these two
qualities while vary in the following five traits

1) Qualification

2) Years of experience

3) Domain of experience

4) Organization type

5) Followed software development model
This diversity shall provide resilience in committing common
mistakes. In our selected dataset, we designed an online and in-
person survey to approach experts from diverse backgrounds.

3) Computing experts’ score: All the experts are not equal
in not their verdicts about declaring any centroid as FP or
NFP. The verdict from more experienced personnel deserves
more importance. To achieve this, we derive an equation to
assigneddifferent score to each participating expert. For this
we have collected two traits of expertise from each respondent:

1) Years of experience in software quality assurance -
E(SQA)

2) Years of experience in software development - E(SD)
Collected information against each expert is shown in Table
V. The values of E(SD) and E(SQA) are scaled using Minmax
that becomes £(SD) and E(SQA). The scaling is performed
to void the impact of large values (see Equation 1 and 2).

E(SD); = Minmax(E(SD);) (1)



E(SQA); = Minmax(E(SQA);) (2)

After that, the values of E(SQA) is multiplied by a factor
of two. The value of two is taken as the heuristic constant to
assign more importance to experience in SQA than experience
in SD. Finally, the overall score of the expert is computed by
adding both of these values. Mathematically it can be written
as:

Score(E;) = E(SD); +2 x E(SQA); 3)

In Table V, last column shows the scores assigned by experts
selected.

TABLE V
DETAIL OF EXPERTS WITH THEIR CORRESPONDING SCORE

i [E(SQA)E(SD)E(SQA)2 x E(SQA)E(SD)|Score
] 2 3 0.06 0.11 01 [021
2] 1 3 0.03 0.06 01 |0.16
3] 2 3 0.06 0.11 01 | 021
4 0 8 0 0 0.27 | 0.27
5 0 3 0 0 0.1 0.1
6 8 2 0.23 0.46 0.07 | 0.52
7 20 0 0.57 1.14 0 1.14
8 20 3 0.57 1.14 0.1 1.24
9] 10 0 0.29 057 0 057
0 2 12 | 006 0.11 04 | 051
1 2 6 0.06 0.11 02 |03l
12 35 30 1 2 1 3
13 0 12 0 0 0.4 0.4
14 3 15 0.09 0.17 0.5 0.67
50 20 0 0 067 | 067
6] 3 8 0.09 0.17 027 [ 044
7] 0 7 0 0 023 (023
8 14 20 0.4 038 067 | 147
I 20 | 023 0.46 067 | 112
0] 12 5 034 0.69 017 | 085
21 8 0 0.23 0.46 0 0.46
22 10 12 0.29 0.57 0.4 0.97

4) Collecting response for preliminary labeling: The cen-
troid constitutes the metrics with their corresponding values.
Preliminary labeling is performed by providing such centroid
information to the expert. The outcome of this phase is the
experts’ label to one centroid as FP and another as NFP, which
we named as preliminary labeling.

5) Computing centroid scores: Since there must have mul-
tiple experts and can have conflict in responses the question
arises, which label should we assign to a centroid? We address
this issue by first assigning score to each expert in section
III-B3, based upon which, we assigned score to the centroid
which is labeled by the experts. The score of a centroid Cj; is
computed using equation 4.

Score(C) = Z Score(E;) x L; ()]
i=1

Where, L; is the label assigned by an i*" expert to Cj

centroid, which is one in case of FP and zero in case of NFP,
and n is the total number of centroids, which is 12 in our case.

6) Computing difference of opinion: We evaluated the
labeling quality by computing Differerence of oPinion (DoP)

using equation 5.

min{Score(C1), Score(Cs)}
max{Score(Cy), Score(C2)}

Where, C; and (5 are two centroids of a datasets. Score of
the centroids were computed using equation 4. The computed
DoP for in CM1, KC1, KC2, KC3, MC2, and PC1 are 0.2,
0.1, 0.12, 0.13, 0.11, 0.17, and 0.15 respectively, which is less
than 20%, therefore we disregard the difference of opinion
amongst experts.

DoP =

x 100 5)

7) Permanent labeling:  For  permanent labeling
to the centroid, we use the following simple
rule.

if Score(Cy) > Score(Cy) then

C,=FP

Co=NFP
else

Cy=FP

Ci,=NFP
end if

Using the above rule, we declared one centroid as F'P, while
the other as IV F'P, and then the label of a centroid is assigned
to all data points of the corresponding cluster.

IV. COMPARATIVE ANALYSIS

EkmEXx extends the base technique of Clustering with expert
opinion while overcoming its associated shortcomings. We
believe that the EkmEx could improve the labeling process by
making the process more structured and thus reliable. For the
validation and evaluation purpose, we build a ML model using
Random forest implementation of Weka [1]. An experiment is
performed tocompare the performanceof EkmEx and the base
approach for labeling the six datasets. The obtained results
are shown in Table VI. The Table VI concludes the following
results

1) The results show outperformance of EkmEx in F1 score
in five datasets with mild underperformance in KC3
dataset.

2) EkmEx achieves the higher Recall in all the six datasets.

TABLE VI
PRECISION, RECALL, AND F 1 SCORE COMPUTED IN EKMEX AND THE
BASE TECHNIQUE

Datasets [Approaches | TP |FN| TN [ FP | Recall |Precision|F-1-Score
oMl EkmEx 4019 | 412 |37 |4 082 052 14063
Base approach | 37 | 12 | 379 | 70 0.76 0.35 0.47

KC1 [EkmEx 312| 14 [1544]|239 |4 096 057 4071
Base approach |300| 26 [1010|773 0.92] 0.28 0.43

KC2 [EkmEx 79 128 (400 | 15 |4 074 R084 4079
Base approach | 53 | 54 | 394 | 21 0.50) 0.72) 0.59

Key  [EkmEx 40 |3 (39718 |® 093] {lo.69] *0.79
Base approach | 37 | 6 [ 402 | 13 0.86) 0.74 0.80)

M EkmEx 40 [12] 95 [ 14 |#® 0771 ®074 14075
Base approach | 37 [ 15| 56 | 53 0.71 0.41 0.52]

PC1 [EkmEx 70 [ 7 [919 [113|# 091 4038 4 0.54
Base approach | 67 [ 10 [ 756 |276 0.87] 0.20) 0.32]




V. THREATS TO VALIDITY

The results of our experiment allow us to compare the
proposed labeling framework EkmEx with the base technique.
Before we could accept the result, we would have to consider
possible threats to its validity.

1) We show the results against only six datasets. If we would
include more datasets for labeling, the results will even
be more generalizable. Hence, the general applicability
of the results remains unrevealed.

2) With regard to the size of the projects, sufficient
comprehensible project size is taken. The projects of a
very large size or very small size were ignored.

3) With regard to the metrics, we have used only available
metrics parsed by the other researcher, which heavily
influence the clustering process. If we add more metrics
or different metrics the cluster may get change and leads
to a difference in results just reported.

VI. CONCLUSION AND FUTURE WORK

Information about the FP and NFP instances are primary
requirements in supervised SFP activity. However, acquiring
the fault information about software products is not a normal
practice. The SFP research community performed a valuable
effort for labeling the modules as FP or NFP. Existing
techniques suffer the issues of narrow coverage, dropping
instances or least reliable labeling results. This gives rise to
the need of proposed approach named EkmEx in labeling
the unlabeled instances and thus performing supervised SFP
without prior fault information. A comparative evaluation of
EkmEx was performed with base technique on seven datasets
by NASA. We observed that EkmEx has a mild difference
in identifying faulty instances as FP instances w.r.t. its con-
temporary technique. A significant performance improvement
has been observed in asserting the clean instances as NFP.
Similarly, EkmEx achieves a higher F1 score and precision
in all the three versions than its counterpart, while mild
underperformance in terms of precision and F1 score in KC2
dataset.

In future, we look forward to analyse the performance of
labeling via multiclass labels as fault severity, using EkmEx.
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