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List of symbols and abbreviations 

ATL anterior trunk lean 

BW body weight  

CoMTD, CoMTO normalised centre of mass at touchdown and at toe-off 

Fz peak normalised vertical ground reaction force 

GRF ground reaction force 

kankle normalised ankle stiffness  

kknee normalised knee stiffness  

kleg  dimensionless leg stiffness 

lTD, lTO normalised leg length at touchdown and at toe-off 

Mankle peak normalised ankle extension moment  

Mknee peak normalised knee extension moment 

PTL posterior trunk lean 

STL self-selected trunk lean 

𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅  control step 

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   approach step 

step↓ stepdown 

t time 

ΔLmax dimensionless amount of maximum leg compression 

θleg(TD), θleg(TO) leg orientation at touchdown and at toe-off 

  1 
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Abstract 1 

The role of trunk orientation during uneven running is not well understood. This study compares the 2 

running mechanics during the approach step to and the stepdown of a 10-cm expected drop, positioned 3 

halfway through a 15-m runway, with that of the level step in twelve participants at a speed of 3.5 m/s 4 

while maintaining self-selected (17.7±4.2°; mean±S.D.), posterior (1.8±7.4°) and anterior (26.6±5.6°) 5 

trunk leans from the vertical. Our findings reveal that the global (i.e., the spring-mass model dynamics 6 

and centre-of-mass height) and local (i.e., knee and ankle kinematics and kinetics) biomechanical 7 

adjustments during uneven running are specific to the step nature and trunk posture. Unlike the anterior-8 

leaning posture, running with a posterior trunk lean is characterized with increases in leg angle, leg 9 

compression, knee flexion angle and moment, resulting in a stiffer knee and a more compliant spring-10 

leg compared with self-selected condition. In the approach versus level step, reductions in the leg length 11 

and stiffness through the ankle stiffness yield lower leg force and centre-of-mass position. Contrariwise, 12 

significant increases in the leg length, angle and force, and the ankle moment, reflect in a higher centre-13 

of-mass position during the stepdown. Plus, the ankle stiffness significantly decreases, owing to a 14 

substantially increased leg compression. Overall, the stepdown appears to be dominated by centre-of-15 

mass height changes, regardless of having a trunk lean. Observed adjustments during uneven running 16 

can be attributed to anticipation of changes to running posture and height. These findings highlight the 17 

role of trunk posture in human perturbed locomotion relevant for design and development of 18 

exoskeleton or humanoid bipedal robots.  19 
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Introduction 1 

Running is a low cost and easy accessibility form of physical activity that enhances health and increases 2 

longevity (Lee et al., 2017). The popularity of running continues to grow worldwide. In 2019 alone, for 3 

instance, millions of recreational participants around the world covered 1.3 billion total miles with an 4 

average distance of 4.1 miles per run (Strava, 2019). Running outdoor in a natural environment often 5 

entails a frequent negotiation of the terrain irregularities such as variations in ground compliance, 6 

slipperiness, or substrate height. In running over changing surfaces, human runners appear to use spring-7 

mass dynamics to help passively stabilise their locomotion (Blickhan, 1989; McMahon and Cheng, 8 

1990). The spring-mass model (Blickhan, 1989) is comprised of a mass-less spring and the body 9 

(represented by a point mass), and is simply described by: the leg stiffness (kleg), leg orientation (θTD) 10 

and leg length (lTD) at touchdown (TD) (Blickhan, 1989; McMahon and Cheng, 1990). Albeit the model 11 

does not account for the trunk movements, this is a simplistic approach to describe the basic mechanics 12 

of human locomotion.  13 

The mechanics of the body’s interaction with the ground is influenced by kleg, which is indicative of the 14 

average stiffness of the overall musculoskeletal system during the ground contact phase. For running 15 

on uneven ground, the θTD and the kleg appear to be adjusted relative to the nature of changes in the 16 

substrate height. This involves a flatter θTD and a more compliant leg when stepping up, whilst a steeper 17 

θTD and a stiffer leg when stepping down. For the latter situation, runners reduce the kleg in the preceding 18 

step, possibly to lower the centre of mass (CoM) in preparation for the safe negotiation of expected 19 

changes in substrate height, e.g. a drop (Ernst et al., 2014). As for traversing an obstacle, the kleg 20 

decreases in the penultimate step and increases in the final step prior to the barrier in order to accelerate 21 

the CoM upward and take-off velocity (Mauroy et al., 2014). Therefore, the fine adjustments of the leg 22 

properties not only in the perturbed contact, but also in the preceding contacts (Mauroy et al., 2014; 23 

Müller and Blickhan, 2010; Müller et al., 2012a; Müller et al., 2010) potentially enhance the stability 24 

in response to ground perturbations.  25 

The global kleg is determined by the combination of the local stiffness of the joints and the leg geometry 26 

at touchdown (Farley et al., 1998; Farley and Morgenroth, 1999; Günther and Blickhan, 2002). 27 

Adjustments in both joint stiffness and kleg during the stance phase seem to be governed by initial 28 

conditions like the lTD, θTD and landing velocity (Blickhan et al., 2007; Farley et al., 1998; Farley and 29 

Morgenroth, 1999; Grimmer et al., 2008; Mauroy et al., 2014), which are previously geared by a swing-30 

leg retraction throughout the second half of the swing phase prior to landing (Seyfarth et al., 2003). 31 

Therefore, the muscle pre-activation plays a major role in adjusting the leg posture in preparation for 32 

traversing, e.g., an obstacle. While adjustments in the leg mechanics have been widely proven key 33 

towards the accommodation of uneven ground, in such context, little is known about the role of trunk 34 

posture during uneven running. Given the ~50% contribution of the trunk segment to the total body 35 

mass (De Leva, 1996), mechanical demands of the lower limb can be potentially influenced by even 36 
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slight alterations in the trunk kinematics. On the other hand, the analysis of how the deviations from the 1 

cyclic motion (i.e., mechanical adaptations against an expected change in substrate height) are 2 

controlled can help further understanding of human locomotion. 3 

There are a limited number of studies that have addressed the influence of an anterior trunk lean on the 4 

knee joint energetics (Arendse et al., 2004; Teng and Powers, 2015), knee muscles activity (Teng and 5 

Powers, 2016), patellofemoral joint stress (dos Santos et al., 2019; Teng and Powers, 2014), and impact 6 

loading (Huang et al., 2019) during running over uniform ground surfaces. As for running along an 7 

uneven terrain, one study showed that runners adopt a more crouched posture and larger kleg (Voloshina 8 

and Ferris, 2015), possibly to facilitate adaptations to an unfamiliar environment. As recently shown by 9 

a study (Shih et al., 2019) on recreational runners, the modifications in the trunk orientation can be 10 

achievable with simple postural instructions following one-month training. However, it is unknown 11 

how the modification of sagittal plane trunk posture can potentially impact the lower limb operation 12 

during uneven running. In walking with increasing trunk flexion angles against changes in substrate 13 

height, we previously demonstrated that trunk plays a functional role through extending its angle during 14 

stepping down, necessary to control the angular momentum of the whole body (AminiAghdam and 15 

Blickhan, 2018; Aminiaghdam et al., 2017a). This contributed to an observed elevated CoM trajectory 16 

during the stepdown, presumably to ease the drop negotiation. 17 

An overall objective of our study is providing insight into the contribution of sagittal plane trunk lean 18 

to the running mechanics against an expected change in substrate height. Anticipation of changes to 19 

running pattern can facilitate the stability and manoeuvrability (Dhawale et al., 2019; Müller et al., 20 

2015; Qiao and Jindrich, 2012). Runners are expected to exhibit step-to-step modulations in local and 21 

global running mechanics to account for expected change in the substrate height. We hypothesize that 22 

runners would exhibit strategies in the global and local running mechanics that are task-specific, owing 23 

to anticipatory nature of the changes to posture and substrate height. Especially, running with a posterior 24 

versus anterior trunk lean is expected to be associated with greater compensatory kinematic 25 

adjustments, due to a further shift of the GRF’s line of action from the knee joint axis of rotation, 26 

resulting in augmented changes in the magnitude of lower limb local and global kinetic parameters. 27 

Materials and methods 28 

Participants 29 

A convenience sample of twelve (six females, six males) volunteer recreational runners (mean±standard 30 

deviation (S.D.); age = 28.5±5.7 years, body mass = 65.5±8.6 kg, body height = 168.9±6.4 cm) gave 31 

written, informed consent and participated in the study. The experimental protocol was approved by the 32 

local Ethics Committee of Friedrich-Schiller-University Jena and conducted according to the 33 

Declaration of Helsinki. 34 

https://www.sciencedirect.com/topics/medicine-and-dentistry/patellofemoral-joint
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Experimental design and protocol 1 

Data were collected on a 15-m long instrumented track halfway embedded with two consecutive force 2 

plates (1000Hz; 9281B, 9287BA, Kistler, Switzerland) and twelve infrared system cameras (250 Hz; 3 

MCU1000, Qualisys, Sweden). Force plates were set at a distance of one step from each other, allowing 4 

step lengths ranging from 1.40 to 2.30 m. Kinematics and ground reaction forces (GRF) data were 5 

synchronized by using the Kistler’s external trigger and BioWare data acquisition software (Kistler 6 

Instrument AG, Switzerland). A twelve-body segment model was defined using nineteen reflective 7 

markers. The International Society of Biomechanics joint coordinate standards (Wu et al., 2002; Wu et 8 

al., 2005) were applied. Trunk angle was defined by the angle sustained by the line connecting the 9 

midpoint between the L5–S1 junction (L5) and the seventh cervical spinous process (C7) with respect 10 

to the vertical. Following running with self-selected (STL) trunk lean (17.7±4.2°; mean±S.D.), 11 

participants were instructed to run with anterior (ATL; 26.6±5.6°) and posterior (PTL; 1.8±7.4°) trunk 12 

leans within a range in which they felt comfortable when running across (un)even runways (Fig. 1). 13 

Mean trunk flexion angle was calculated as the average sagittal plane trunk posture during the stance 14 

phase of running over the level step across all trials and all participants. The order of the ATL and PTL 15 

conditions was randomized for each participant. After running on the even, uniform runway, the 16 

variable-height force plate at the site of the second contact was visibly lowered by 10-cm and 17 

participants ran along the uneven runway (Fig. 1). Practice trials were permitted to allow participants 18 

to become familiar with the running velocity and with the desired trunk postures. The participants 19 

accomplished ten valid trials per condition in which each force plate was fully struck with a single foot, 20 

whilst the first force plate was set to be hit by the left foot. 21 

Parameters of interest 22 

The ensemble average of the following parameters in the sagittal plane during the stance phase across 23 

the level, unperturbed step (𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ ), approach step (𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and stepdown (step↓) were determined: 1) 24 

vertical position of the CoM relative to the ground determined by the body segmental analysis method 25 

relative to the laboratory coordinate system (De Leva, 1996; Gard et al., 2004); 2) leg length, defined 26 

as the length between the hip and the ball of the foot marker (Fig. 1); 3) leg angle, the angle between 27 

the leg and the ground (Fig. 1) calculated with respect to the negative x-axis; 4) knee and ankle joint 28 

angles; 5) peak vertical GRF (Fz); 6) maximum leg compression (Dlmax) by subtracting the minimum 29 

leg length between TD and toe-off (TO) from lTD; 7) leg stiffness (kleg) as the ratio between the Fz and 30 

Dlmax; 8) net knee and ankle joint moments calculated using a rigid linked segment model, 31 

anthropomorphic data, and an inverse dynamics analysis (Zatsiorsky, 1983); 9) knee (kknee) and ankle 32 

(kankle) joint stiffness calculated from the ratio of the change in net muscle moment to joint angular 33 

displacement between TD and the instant when the joints reached maximal flexion. A vertical GRF 34 

threshold of 0.03 body weight was used to determine the instants of TD and TO at each contact 35 
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(Aminiaghdam et al., 2017b). The leg length, Dlmax and CoM were normalised to the distance between 1 

the greater trochanter marker and the lateral malleoli marker at the instant of TD (l0). The Fz was 2 

normalised to the participant's body weight (N/BW). Each joint moment (Nm/kg) and joint stiffness 3 

(Nm/deg/kg) were normalised to the subject's body mass, respectively. 4 

Data processing 5 

For data analysis, we chose all those trials that were distributed in a narrow range of each participant’s 6 

running steady-state velocity (3.5 m/s). From the calculated mean horizontal velocity of the L5 marker 7 

for each of two force plates, we discarded the trials which contained two values differed by more than 8 

5%. Kinetic and kinematic data of all successful trials were analysed using custom written Matlab 9 

(Mathworks Inc., MA, USA) code. The raw coordinate data were filtered using a fourth-order low-pass, 10 

zero-lag Butterworth filter with 12 Hz cutoff frequency (Aminiaghdam et al., 2017b). Following 11 

confirming that the data were normally distributed, a two-way repeated measurements ANOVA was 12 

used to examine interactions between Posture (STL, ATL and PTL) and Step (𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ , 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and step↓) on 13 

the parameters of interest (outlined earlier) in SPSS (ver 21.0, IBMⓇ Co., USA). In case of a significant 14 

interaction, simple main effects were used to compare between-postures changes across each step as 15 

well as between-steps changes for each individual posture using one-way ANOVA and post-hoc 16 

comparisons with Bonferroni adjustments for multiple comparisons. In case of a non-significant 17 

interaction, the main effects of the Posture and Step were evaluated on each dependent variable of 18 

interest. Where Mauchly's test indicated a violation of sphericity, p-values and degrees of freedom were 19 

corrected using the Greenhouse-Geisser correction factor. Results were expressed as mean±S.D. over 20 

all participants and parameters. The statistical significance level of all tests was set to p=0.05. 21 

Results 22 

The data analyzed includes 720 trials with a total of 2160 step cycles. Participants were successful in 23 

maintaining their stability (no falls) on every trial while running across the level and uneven track. Table 24 

1 summarizes the kinematic and kinetics parameters (mean±S.D.) of uneven running with altered 25 

sagittal plane trunk orientations along with the the main effects of Step and Posture and their interaction 26 

effects. Fig. 2 illustrates ensemble-averaged global and local sagittal plane kinematic waveforms, and 27 

Fig. 3 illustrates ensemble-averaged joint moment and vertical GRF waveform of running with three 28 

various trunk orientations across 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ , 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and step↓. 29 

Two-way repeated measures ANOVAs indicated Step-specific effects of Posture on θankle(TD), ΔLmax, 30 

θankle(TO), θleg(TO) and tcontact (Table 1). Post-hoc comparisons (simple main effects) revealed significant 31 

changes in a few of kinematic parameters during the stepdown (step↓) as compared to those during the 32 

level step (𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ ) and the approach step (𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) with no between-posture changes across each step (Table 33 

1). In the step↓, the ankle angle demonstrated substantial increases in plantarflexion at TD for all 34 
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running conditions. Likewise, the maximum leg compression in the step↓ significantly increased by 1 

~35%, ~70% and 75% during ATL, STL and PTL postures, respectively compared with those of 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅  2 

and 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (Table 1). The ankle angle at TO of the step↓ increased by ~45% and ~60% during STL and 3 

ATL conditions, respectively, compared with that of 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (Table 1). Furthermore, the leg became more 4 

vertical across all running conditions by demonstrating significant decreases in leg angle (~4.5° during 5 

the STL and ATL conditions, and ~7° during the PTL condition), presumably in preparation to 6 

accelerate the body CoM for surmounting the drop. The contact time significantly decreased in the step↓ 7 

compared with the 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , irrespective to the trunk orientation (Table 1). 8 

Analyses considering the main effect of Posture revealed significant alterations in running mechanics 9 

due to changes in the sagittal trunk lean angle. Looking at the global leg parameters, the kleg significantly 10 

reduced during the PTL condition by 15% compared with the STL condition, and by ~12% compared 11 

with the ATL condition (Fig. 4A), whilst Fz remained unchanged. However, the kleg did not significantly 12 

differ during the ATL running compared with the STL condition (Fig. 4A). In addition, the PTL running 13 

was characterized with a slightly more vertical leg at TD as compared to the ATL condition (Fig. 4D). 14 

As for the local leg parameters, the knee flexion angle at TD was slightly higher in both PTL and ATL 15 

conditions when compared to the STL condition (Fig. 4E). The peak knee extension moment (Mknee) 16 

was significantly lower by ~7% during the ATL condition, and was significantly higher by ~15% during 17 

the PTL condition when compared to the STL condition (Fig. 4C). As compared to the STL condition, 18 

the knee stiffness (kknee) were significantly higher by ~13% during the PTL condition, whereas it 19 

remained unchanged during the ATL condition (Fig. 4B). At TO, the knee flexion angle was greater by 20 

~11% during the PTL condition when compared to the STL condition (Fig. 4F). 21 

Furthermore, analyses considering the main effect of Step revealed significant changes in kinetic and 22 

kinematic parameters of running during the 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and step↓ when compared with the 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ . In the 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 23 

runners reduced their kleg by ~24% (Fig. 5G), resulting in a ~13% decrease in the magnitude of Fz (Fig. 24 

5H). At the ankle level, kankle (Fig. 5I) and Mankle (Fig. 5J) were reduced by ~24% and 12%, respectively. 25 

At the end of the 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , runners lowered their CoM by ~6% (Fig. 5B) using an increased knee flexion 26 

(Fig. 5F). This was associated with a ~2% significant decrease in the leg length (Fig. 5D). At TD of the 27 

step↓, landing involved an increased leg length (Fig. 5C) and a more extended knee joint angle (Fig. 28 

5E), leading to a ~5% higher vertical position of the CoM (Fig. 5A). As compared to the 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ , the Mankle 29 

increased by ~40% (Fig. 5J), while the kankle demonstrated a ~36% decrease (Fig. 5I). The kleg reduced 30 

(Fig. 5G), despite of ~27% increase in Fz (Fig. 5H). However, the difference did not reach significance. 31 

This was mainly due to a much greater increase in the ΔLmax (Table 1) across all running conditions. At 32 

the end of the stance, the vertical position of the CoM was enhanced by ~4% (Fig. 5B), possibly in 33 

preparation to surmount the drop. 34 

Table 1. Kinematics and kinetics of uneven running with altered sagittal plane trunk orientations (mean±S.D). 35 
   Reference mean – trunk lean mean p-value/F-value 
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ES 

Variable Reference mean Step  Self-selected Anterior Posterior Step Posture  Interaction 

CoMTD (l0) 0.99±0.04 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.02±0.04 0.02±0.06 0.001/7.42 

0.41 

0.26/1.41 

0.11 

0.21/1.53 

0.12 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.05±0.09 0.05±0.07 0.03±0.08   
step↓ -0.04±0.04 -0.03±0.03 -0.02±0.05 

CoMTO (l0) 1.01±0.04 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.02±0.04 0.02±0.06 0.001/9.61 

0.46 

0.18/1.83 

0.14 

0.32/1.21 

0.09 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.08±0.09 0.09±0.07 0.06±0.07   
step↓ -0.04±0.05 -0.02±0.03 -0.02±0.05 

lTD (l0) 0.93±0.02 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.01±0.02 0.01±0.02 0.001/25.7 

0.71 

0.65/0.22 

0.02 

0.27/1.36 

0.11 

 

  
𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.01±0.01 0.01±0.02 0.01±0.05   
step↓ -0.06±0.03 -0.05±0.03 -0.06±0.06 

lTO (l0) 1.01±0.02 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.01±0.02 -0.01±0.01 0.001/6.68 

0.37 

0.53/0.43 

0.03 

0.39/0.88 

0.07 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.01±0.01 0.02±0.02 0.03±0.05   
step↓ -0.01±0.01 -0.01±0.02 0.01±0.05 

θleg(TD) (°) 65.9±2.45 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.37±3.43 -0.97±3.51 0.001/8.74 

0.44 

0.001/9.22 

0.45 

0.35/1.13 

0.09 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.05±2.94 0.88±3.95 -1.71±3.61   
step↓ -2.65±1.47 -2.13±1.83 -3.85±1.66 

θleg(TO) (°) 115±2.99 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

-1.11±2.91 -2.51±2.96 0.001/97.7 

0.89 

0.001/8.06 

0.42 

0.001/12.3 

0.52 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    -3.51±2.53 -3.97±2.61 -5.11±2.66   
step↓ 4.56±2.61a,b 3.31±2.46a,b 4.51±2.24a,b 

θknee(TD) (°) 24.1±4.88 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

-2.03±3.74 -4.81±5.21 0.001/15.5 

0.58 

0.001/34.1 

0.75 

0.06/3.11 

0.22 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    -1.41±4.62 -2.27±4.83 -5.69±6.06   
step↓ 3.91±3.97 1.83±5.11 2.63±4.21 

θknee(TO) (°) 17.9±5.32 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.26±5.98 -1.22±5.08 0.001/62.7 

0.85 

0.001/5.85 

0.34 

0.14/1.81 

0.14 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    -7.75±4.01 -9.16±5.61 -10.5±4.03   
step↓ 2.11±4.66 0.88±5.69 -0.64±4.84 

θankle(TD) (°) 4.71±7.42 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.11±7.12 1.56±7.21 0.001/84.5 

0.88 

0.03/4.05 

0.26 

0.001/7.72 

0.41 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    1.65±5.41 0.87±6.54 1.21±7.56   
step↓ -24.9±9.1a,b -23.5±11.7a,b -31.9±5.7a,b 

θankle (TO) (°) 30.7±6.19 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.74±6.51 -2.18±7.39 0.001/21.1 

0.65 

0.002/12.1 

0.52 

0.001/4.62 

0.29 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    7.07±4.26 9.06±4.92 3.24±7.02   
step↓ -3.77±6.37b -3.71±6.54b -5.07±6.91 

Fz (BW) 2.61±0.22 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.06±0.29 0.08±0.31 0.001/266 

0.96 

0.18/1.85 

0.14 

0.32/1.21 

0.09 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.35±0.21 0.39±0.21 0.39±0.26   
step↓ -0.68±0.29 -0.62±0.29 -0.64±0.32 

kleg (BW/l0) 36.9±10.8 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

2.07±11.8 5.34±11.1 0.04/4.74 

0.31 

0.001/17.6 

0.61 

0.15/1.77 

0.13 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    9.06±9.03 10.9±7.47 12.3±9.44   
step↓ 8.62±9.68 8.19±9.42 14.1±4.41 

ΔLmax (l0) 0.07±0.01 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

-0.01±0.01 -0.01±0.01 0.001/22.4 

0.67 

0.001/28.6 

0.72 

0.01/4.01 

0.26 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    -0.01±0.02 -0.01±0.02 -0.02±0.02   
step↓ -0.05±0.02a,b -0.04±0.02a,b -0.07±0.02a,b 

Mknee (Nm/kg) 2.18±0.52 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.16±0.51 -0.31±0.49 0.07/2.97 

0.21 

0.001/35.3 

0.76 

0.71/0.38 

0.03 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.13±0.44 0.22±0.48 -0.23±0.41   
step↓ -0.12±0.33 0.03±0.41 -0.42±0.44 

kknee (Nm/deg/kg) 0.11±0.02 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

-0.01±0.03 -0.01±0.03 0.12/2.25 

0.17 

0.001/6.51 

0.37 

0.07/2.29 

0.17 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.01±0.02 0.01±0.03 -0.01±0.02   
step↓ -0.01±0.02 -0.01±0.02 -0.01±0.02 

Mankle (Nm/kg) 3.26±0.52 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.05±0.57 -0.01±0.58 0.001/73.1 

0.86 

0.09/2.63 

0.19 

0.46/0.79 

0.06 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.41±0.42 0.46±0.43 0.33±0.45   
step↓ -1.33±0.85 -1.32±0.86 -1.34±0.89 

kankle 

(Nm/deg/kg) 

0.22±0.11 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.01±0.11 0.01±0.11 0.04/4.56 

0.29 

0.04/3.73 

0.25 

0.16/1.95 

0.15   
𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    0.05±0.05 0.06±0.05 0.05±0.07   
step↓ 0.07±0.11 0.07±0.08 0.11±0.04 

tcontact (s) 0.23±0.01 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅   
 

0.01±0.01 -0.02±0.02 0.001/51.6 

0.82 

0.001/9.33 

0.45 

0.01/5.11 

0.31 
  

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    -0.01±0.02 -0.01±0.02 -0.03±0.02   
step↓ 0.02±0.01b 0.02±0.01b 0.01±0.02a,b 

The last three columns outline the p-values, F-value, and effect size (ES, partial eta-squared) pertaining to the main effects of Step and Posture as 

well as Step×Posture interaction, respectively. In case of an interaction effect, significant differences (simple main effect) from 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅  and step↓ 

across each running posture are indicated by ‘a’ and ‘b’, respectively (p<0.05). The leg length (l), maximal leg compression (Dlmax) and centre of 

mass (CoM) were normalised to the distance between the greater trochanter marker and the lateral malleoli marker at the instant of TD ( l0). 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ , 

control step; 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , approach step; step↓, stepdown; k, stiffness; θ, angle; M, peak net joint moment; Fz; peak vertical ground reaction force; t, time; 

TD, touchdown; TO, toe-off. 

Discussion 1 

An overall objective of our study was providing insight into how changing the sagittal plane trunk 2 

orientation influences the running mechanics against an expected substrate change. It was postulated 3 

that runners would exhibit strategies in the global and local running mechanics that are task-specific, 4 

facilitated by anticipatory nature of changes to posture and substrate height. This was confirmed by the 5 

findings of the present study, as running with a posterior versus anterior trunk lean was associated with 6 
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greater compensatory kinematic adjustments resulting in augmented changes in the magnitude of lower 1 

limb local and global kinetic parameters. On the other hand, runners exhibited step-to-step modulations 2 

in local and global running mechanics to account for expected change in the substrate height. 3 

Interestingly, the control of body motion for the accommodation of expected substrate height changes 4 

appears not to be affected by trunk orientation in running humans. 5 

Posture-related adjustments in running mechanics 6 

When considering the main effect of Posture (averaging across the steps), we observe the posture-7 

specific adjustments in locomotor behaviour. These results are consistent with those of our previous 8 

studies analyzing trunk-flexed walking (with the same experimental setup), which revealed that leaning 9 

trunk forward up to 30° does not lead to between-steps changes in the kinematic (Aminiaghdam et al., 10 

2017a) and the kinetics of the braking phase of the stance (Aminiaghdam, 2017) in able-bodied gait. 11 

Running with ATL is characterized with a slightly more crouched configuration than that of the STL 12 

condition, induced possibly by a forward shift of the CoM. Further, along with an increased knee flexion 13 

at TD (Fig. 4E), the knee moment reduced significantly by ~7% (Fig. 4C), when compared with the 14 

STL condition. This finding is in agreement with a previous study by Teng and Powers (2014) showing 15 

a ~7% decrease in the knee extensor moment at the time of peak patellofemoral joint stress during level 16 

running when increasing sagittal trunk lean by ~7° from a self-selected trunk posture (Teng and Powers, 17 

2014). By contrast, the study by (dos Santos et al., 2019) revealed no significant decrease in the peak 18 

knee extensor moment (1.55±0.32 versus 1.62±0.36 Nm/kg) when runners increase the trunk inclination 19 

angle (by ~9°) from their self-selected trunk posture. Moreover, an anterior lean of the trunk does not 20 

induce significant changes in the joint stiffness across the knee and ankle joints and thus the leg stiffness 21 

tends to remain virtually the same as for the STL running (Fig. 4A, Table 1). Likewise, the ankle 22 

moment appears not to be influenced by an alteration in the trunk orientation. These results match those 23 

observed in an earlier study (Teng and Powers, 2014) that an increase of the sagittal plane trunk 24 

inclination redistributes the energetics across the hip and knee without imposing the biomechanical 25 

demands on the ankle plantar-flexor muscles during level running. 26 

On the other hand, a posterior lean of the trunk yields increases in the knee flexion at TD (3.4°) and TO 27 

(2.2°) as well as in the knee moment (~15%) when compared with STL running (Fig. 4). An increased 28 

extension moment implies a higher muscle activation of the knee extensors, leading to a higher kknee 29 

(Fig. 4B). Teng and Powers (2014) reported a ~5% increase in the peak knee extensor moment when 30 

running with a more extended sagittal trunk lean (Teng and Powers, 2014). A lower extent of the 31 

decrease in the extension moment compared with that of our study can be explained by the fact that the 32 

degree of a posterior lean in our study was profoundly greater. This, in turn, induces more compensatory 33 

kinematic adaptations in the leg posture. In another similar study, Teng and Powers (2016) 34 

demonstrated that weak hip-extensor muscles prompt adopting a more upright trunk posture during 35 

running (Teng and Powers, 2016). Such postural adaptation appears to reduce the demand on the hip 36 
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extensors; however, at the cost of imposing higher demands on the knee extensors. Moving trunk 1 

backward shifts the line of action of GRF away from the axis of rotation at the knee joint, and therefore 2 

the larger moment arms result in greater net external moments. This, in turn, increases the angular 3 

displacement at the knee joint, and subsequently the compression of the spring-leg. Runners 4 

demonstrate adaptations in the local stiffness by decreasing kankle by ~10% and increasing kknee by ~13% 5 

(Fig. 4B). The local regulation of the joint stiffness coupled with the combination of an increased leg 6 

compression and a decreased Fz yields a reduction in the kleg for the PTL condition (Fig. 4B). 7 

Consequently, the sagittal plane trunk posture has an influence on biomechanical demands (global and 8 

local) of the lower limb during running; however, independent of changes in the substrate height. 9 

Step-related adjustments in running mechanics 10 

It appears that the anticipation of substrate height change governs the control scheme of running. 11 

Runners exhibit substantial adjustments in body mechanics, namely feed-forward strategies to 12 

accommodate substrate height changes while adopting various trunk orientations. This includes changes 13 

in the spring-mass properties (i.e., lTD, θ leg(TD) and kleg) and local mechanics across knee and ankle joints. 14 

The properties of the spring-mass model are modulated with an attenuation bias in the preceding contact 15 

when coping with drops and downward steps, and with an augmentation bias in the lowered level 16 

(Müller et al., 2012a). These adjustments are utilized to smooth the CoM kinematics (Blickhan et al., 17 

2007). In our study, the analysis of the main effect of Step reveals the global and local adjustments in 18 

the locomotor behaviour specific to the step nature during uneven running. In the approach step, runners 19 

demonstrate a ~24% reduction in the leg stiffness in preparation to step down when compared with the 20 

control step (Fig. 5G). Likewise, the ankle stiffness reduces by ~24% (Fig. 5I). As a result, the global 21 

leg stiffness appears to be mainly adjusted locally at the level of the ankle joint. These modulations in 22 

local and global stiffness yield changes in the magnitude of the leg force, which decreased by ~13% 23 

(Fig. 5H). Given the joint stiffness also depends on the activation level of the muscles acting on the 24 

joint (Müller et al., 2010; Müller et al., 2012b), an attenuation of the global leg stiffness may be due to 25 

a decreased muscle activation, and a more flexed leg configuration. Here, runners demonstrate a 12% 26 

reduction in the ankle moment (Fig. 5J). On the other hand, as they approach the end of the stance, the 27 

knee flexion (Figs 2K and 5F) increases so that the leg length (Figs 2H and 5D) decreases by ~2% and 28 

subsequently the CoM is lowered by ~6% at TO (Figs 2E and 5B). As for an obstacle negotiation, the 29 

kleg decreases in the penultimate step and then increase in the final step prior to a 0.65 m-high barrier in 30 

an attempt to enhance the movement of the CoM while leaping the obstacle (Mauroy et al., 2013). It 31 

seems that the runners take resort to the spring-leg stiffness attenuation on the obstacle or upward step, 32 

but also in the preparatory step(s) prior to a drop or downward step (Müller et al., 2012a). The findings 33 

observed in our study mirror those of the previous studies that have reported decreases in the stiffness 34 

of the ankle joint proportional with the elevation of the next step during running (Grimmer et al., 2008; 35 

Mauroy et al., 2013; Mauroy et al., 2014; Müller et al., 2012a; Müller et al., 2010). The authors of these 36 
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studies (Müller et al., 2012a; Müller et al., 2010) suggested that the modulation of the leg stiffness 1 

appears to be actively achieved. 2 

In the stepdown (drop), the perturbed leg lands in a more vertical orientation with more extended knee 3 

and ankle joint positions, resulting in an elongated leg (Figs 2I and 5C). Similarly, (Müller et al., 2012a) 4 

demonstrated increases in the leg angle and the leg length when accommodating (un)expected drops 5 

and expected steps during running. However, they noted that the negotiation of the unexpected versus 6 

expected perturbations is associated with greater leg adjustments at TD, due possibly to the lack of feed-7 

forward control of motion prior to the perturbation. It seems that the modulation of the TD leg angle 8 

plays a crucial role in dynamics of stance following the perturbation. Such mechanical behavior appears 9 

to be also exploited by small birds as (Daley and Biewener, 2006) noted that the extended limb posture 10 

at TD of an unexpected drop accounts for 80% of their stance limb loading. Furthermore, given a 11 

relatively straight architecture of the human leg, the longer leg at TD is achieved greatly by the ankle 12 

plantar flexion (Müller and Blickhan, 2010; Müller et al., 2012a) and slightly by the knee extension. 13 

The coupling of these adjustments in the perturbed leg with a posterior motion of the trunk across all 14 

running conditions (Fig. 2C) slightly enhances the vertical position of the CoM at TD (Fig. 2F). 15 

(Seethapathi and Srinivasan, 2019) showed that runners adjust the leg force over the whole stance and 16 

foot placement in a manner to recover CoM trajectory back to steady state as they run. They further 17 

demonstrated the application of these control strategies for locomotion in simulation, showing the 18 

robustness of a simple biped against larger discrete perturbations or constant noise-like perturbations. 19 

Here, the peak leg force increased by 27% in the perturbed step whilst decreased by 13% in the 20 

preparatory step when compared with the level step. In agreement with (Seethapathi and Srinivasan, 21 

2019), running human exhibit adjustments in the leg loading and the CoM motion in the approach step 22 

and the stepdown (Figs 2D-F and 5A-B) to facilitate the traverse of expected substrate height changes. 23 

In locomotion, the foot segment enables a forward propulsion by serving as the link between the ground 24 

and the kinetic chain of the lower limb and trunk. Compared with other lower limb moments and forces, 25 

the primary contributor to the vertical GRF is the ankle moment (Chen, 2006). The ankle extensor 26 

moment exhibits a ~40% increase (Figs 3F and 5J), due potentially to a higher activation of the plantar-27 

flexor muscles, which stems particularly from an increased pre-activation of the M. gastrocnemius 28 

medialis (Müller et al., 2015). Our findings accord with those of previous studies in terms of modulation 29 

of the leg stiffness (Müller and Blickhan, 2010; Müller et al., 2012a) that have shown stepping down 30 

off an elevation (e.g., single drop of different elevations) is not associated with changes in the leg 31 

stiffness. This can be due to a great extent of the leg compression displayed across all running 32 

conditions. On the other hand, the duration of the ground contact during the lowered (perturbed) step is 33 

significantly shorter than during the level steps, irrespective to the running postures (Table 1). As 34 

approaching to the end of the drop, the CoM raises (by ~4%) through a greater plantar-flexion and a 35 

more vertical leg orientation (regardless of trunk posture), possibly in preparation to surmount the drop 36 
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(Figs 2F and 5B). The stepdown therefore appears to be dominated by CoM height changes, regardless 1 

of having a trunk lean.  2 

When interpreting the findings of this study, several limitations need to be acknowledged. First, the 3 

runway utilized in the present may not fully resemble running outdoors, which represents a wide range 4 

of (un)expected and/or varied magnitudes of surface perturbations, and thus possibly elicit different 5 

locomotor outputs. Secondly, the sample size of the study might be relatively small to reach a 6 

convincing conclusion. Thirdly, our results also do not exclude the possibility of being influenced by 7 

using an overly conservative Bonferroni correction for multiple comparisons which preserves type I 8 

error of the global null hypothesis. In overall, the step-to-step adjustments in various running 9 

mechanical parameters exhibit no dependency on the sagittal trunk orientation. It is most likely that the 10 

observed adjustments to be influenced by feed-forward control as both postural and environmental 11 

changes were imposed experimentally in an anticipatory fashion. The reliance of stability of running’s 12 

sagittal-plane dynamics on anticipatory strategies on rough terrains (i.e., slope and height variations) 13 

has also been validated by a simulation study (Dhawale et al., 2019). In agreement with a previous study 14 

(Qiao and Jindrich, 2012), our findings demonstrate that the human locomotion employs task-level 15 

strategies to account for either or both external and internal perturbations. Characterizing the 16 

mechanical behaviour governed by feed-forward control strategies could help better understanding of 17 

sensory-motor mechanisms underlying the stabilisation of human perturbed locomotion. By illustrating 18 

adjustments in the global leg-spring stiffness specific to alterations in the posture and ground 19 

configurations, our findings further support the notion of dependency of the stability of the spring-mass 20 

running through the global leg stiffness on the local joint elasticities, and on the leg geometry at TD 21 

(Arampatzis et al., 1999; Farley et al., 1998; Farley and Morgenroth, 1999; Günther and Blickhan, 2002; 22 

Mauroy et al., 2014). These findings may improve understanding of the role of posture in human 23 

perturbed locomotion relevant for design and development of exoskeleton or humanoid bipedal robots. 24 
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 1 

Fig. 1. Schematic illustration of drop-negotiation during running with altered trunk postures. The illustration depicts 2 
the definition of the trunk angle (θtrunk) and the spring–mass model properties as used in this study. A visible drop was created 3 
by lowering the the second force plate (stepdown; step↓) by 10 cm. Approach step (𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ); STL, self-selected trunk lean; ATL, 4 
anterior trunk lean; PTL, posterior trunk lean; CoM, centre of mass; kleg, leg stiffness; lTD; leg length at touchdown; θTD, leg 5 
angle at touchdown. 6 

  7 
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 1 

Fig. 2. Global and local sagittal plane kinematic waveforms. Shown are ensemble-averaged trunk angular displacement 2 
(A:C), normalized body centre of mass (D:F), normalized leg length (G:I), knee angular displacement (J:L), and ankle angular 3 
displacement (M:O) for STL (self-selected trunk lean), ATL (anterior trunk lean), and PTL (posterior trunk lean) running 4 
conditions across the stance phase of 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅  (control step), step↓ (approach step) and step↓(stepdown) (N=12). The contact time 5 
is normalized to 100%. The grey shaded area represents the corresponding S.D for the STL condition. 6 



18 
 

 1 

Fig. 3. Joint moment and vertical ground reaction force (GRF) waveforms. Shown are ensemble-averaged normalized 2 
knee extensor moments (A:C), ankle extensor moments (D:F), and normalized vertical GRF (G:I) for STL (self-selected trunk 3 
lean), ATL (anterior trunk lean), and PTL (posterior trunk lean) running conditions across the stance phase of 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅  (control 4 
step), step↓ (approach step) and step↓(stepdown) (N=12). The contact time is normalized to 100%. The grey shaded area 5 
represents the corresponding S.D for the STL condition. 6 
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   1 

Fig. 4. Main effects of Posture. The main effect of Posture 
(mean ± S.D.) on variables for whom two-way repeated-

measurement ANOVAs revealed no Step × Posture interaction 
(N=12). Significant differences from STL and ATL are 
indicated by ‘*’ and ‘**’, respectively (p<0.05; Bonferroni post-
hoc test). Error bars denote standard deviation. STL, self-
selected trunk lean; ATL, anterior trunk lean; PTL, posterior 
trunk lean; k, stiffness; M, peak net joint moment; θ, angle; TD, 
touchdown; TO, toe-off.  

 

Fig. 5. Main effects of Step. The main effect of Step 
(mean ± S.D.) on variables for whom two-way 
repeated-measurement ANOVAs revealed no Step 
× Posture interaction (N=12). Significant 

differences from 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅  and 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   are indicated by ‘*’ 

and ‘**’, respectively (p<0.05; Bonferroni post-hoc 

test). Error bars denote standard deviation. 𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ , 

control step; 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , approach step; step↓, stepdown; 
CoM, centre of mass; k, stiffness; l; leg length; θ, 

angle; M, peak net joint moment; Fz; peak vertical 
ground reaction force; k, stiffness; M, peak net joint 
moment; θ, angle; TD, touchdown; TO, toe-off. 


