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ABSTRACT

Celiac disease (CD) is an immune-mediated enteropathy triggered by exposure to gluten and similar proteins,
affecting genetically susceptible persons, increasing their risk of different complications. Small bowels mucosa
damage due to CD involves various degrees of endoscopically relevant lesions, which are not easily recognized:
their overall sensitivity and positive predictive values are poor even when zoom-endoscopy is used. Confocal
Laser Endomicroscopy (CLE) allows skilled and trained experts to qualitative evaluate mucosa alteration such
as a decrease in goblet cells density, presence of villous atrophy or crypt hypertrophy. We present a method
for automatically classifying CLE images into three different classes: normal regions, villous atrophy and crypt
hypertrophy. This classification is performed after a features selection process, in which four features are extracted
from each image, through the application of homomorphic filtering and border identification through Canny and
Sobel operators. Three different classifiers have been tested on a dataset of 67 different images labeled by
experts in three classes (normal, VA and CH): linear approach, Nave-Bayes quadratic approach and a standard
quadratic analysis, all validated with a ten-fold cross validation. Linear classification achieves 82.09% accuracy
(class accuracies: 90.32% for normal villi, 82.35% for VA and 68.42% for CH, sensitivity: 0.68, specificity 1.00),
Nave Bayes analysis returns 83.58% accuracy (90.32% for normal villi, 70.59% for VA and 84.21% for CH,
sensitivity: 0.84 specificity: 0.92), while the quadratic analysis achieves a final accuracy of 94.03% (96.77%
accuracy for normal villi, 94.12% for VA and 89.47% for CH, sensitivity: 0.89, specificity: 0.98).

1. INTRODUCTION

Celiac disease (CD) is one of the most frequent immune-mediated enteropathy that affects genetically susceptible
persons triggered by exposure to gluten and similar proteins. This disease is a hidden epidemic: most of the
celiac patients will in fact remain undiagnosed during their life. Exposure to gluten causes variable damage to the
small bowel mucosa: mild damage include cases with increased number of intraepithelial lymphocytes and the
presence of Crypt Hyperplasia (CH), while severe forms of the lesions involve various degrees of endoscopically
relevant lesions such as villous Atrophy (VA).1 Overall sensitivity and positive predictive values of VA and CH
are poor even when zoom endoscopy is used,2 implying that these two alterations of the mucosa are not easily
recognized during endoscopy. Thus, in everyday practice, the identification of CD is made on the basis of a
positive diagnostic intestinal biopsy and of the concomitant presence of a positive celiac serology.3 The gold
standard in the diagnosis of CD is the demonstration of VA in duodenal biopsies.4 VA is investigated extensively
in the medical community,5–7 and image processing methods as well as quantitative computational methods are
highly needed, required and recommended from the community for the characterization of the small intestinal
mucosa in suspected and known CD patients.8 At variance with zoom endoscopy, confocal laser endomicroscopy
(CLE) is a relatively novel endoscopic method that permits on-site microscopy of the gastrointestinal mucosa
after the application of a fluorescent agent, allowing the experienced endoscopists to diagnose VA, CH as well
as intraepithelial lymphocytes with high accuracy.9 Images originating from CLE, as Fig. 1 shows, are very
informative about the status of small bowel mucosa: villi, crypts and goblet cells can be clearly discerned,
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Figure 1. Three images from the dataset, one for each class: (a) normal epithelium, with visible goblet cells; (b) villous
atrophy; (c) villous atrophy with crypt hypertrophy.

depending on the region of the mucosa under analysis and the staging of the patient. Villous atrophy, along
with crypt hyperplasia and goblet cells density in the duodenal epithelium, is an important marker of mucosa
damage,10–12 and a useful factor for staging CD severity: hence, an automatic tool able to differentiate features
and distinguish images based on those features would be very important for the process of staging and grading
the severity of the disease. This work proposes four simple features, extracts them, compares the performances
of three different classifiers and serves as a first approach for estimating the difficulties that needs to be overcame
to achieve satisfying automatic classification of confocal endomicroscopy images.

To our knowledge, no previous work has been published on image processing methods with the purpose of
automatically classify and stage celiac disease from images of confocal endomicroscopy. This is not a trivial
process: villi are highly textured and present high variability in appearance, shape and dimension. In CLE
images, they can exhibit smooth and fuzzy borders among (and between) villi and inter-villous space. Among
villi, vessels can be found in inter-villous space, with goblet cells. In severe CD stages, a possible collapse of all
villi into a uniform mucosa that is depleted of villi can be observed. Other than this, possible presence of crypts
and fluorescine leakage can prevent accurate detection with standard image processing methods.

This work’s main purpose (to be inserted in our ongoing development effort of developing a CADSS for CLE
studies13,14) is to develop an automatic pipeline to classify images from CLE studies, since images acquired from
patients suffering from mucosa alteration such as villous atrophy or crypt hypertrophy are sensitively different
from ones in the normal situation, as shown in Fig. 1.

Normally (Fig. 1, left), villi are distinguishable one from the other. If Villous Atrophy is present (Fig. 1,
center), the mucosa is flattened, resulting in villi disappearing in the focal plane. When Crypt Hypertrophy is
present, cells volume increase, resulting in bridges among different villi and more visible crypts (Fig. 1, right).
Automatic grading of such problems could potentially result in in-vivo virtual biopsies or in targeted biopsies
(instead of using the four-quadrant protocol), decreasing the need for potentially dangerous multiple biopsies to
grade the disease.

2. MATERIALS

In this study, 67 images (class distribution: 31 normal images, 17 with VA and 19 with CH) confocal images were
obtained from clinical examinations conducted at the Gastroenterology and Liver Services of the Bankstown-
Lidcombe Hospital (Sydney, Australia).15 Each patient underwent a confocal gastroscopy (Pentax EC-3870FK,
Pentax, Tokyo, Japan) under conscious sedation and with a IV aliquots of fluorescein sodium and topical acri-
flavine hydrocloride to enhance images. Each image represent a mucosal region of 0.5×0.5mm, with an in-plane
resolution of 2 pixel/µm, resulting in images of 1024 × 1024 pixels. Each image was labeled by an expert as
Normal, VA or CH. All the images used in this work show a mucosal region entirely filled by villous folds, with
negligible inter-villous space.



Figure 2. Original image from the dataset (left) and processed image through homomorphic filtering (right), with greyscale
negavite rescaled intensities for visualization purposes.

3. METHODS

The first part of the work is based on the extraction of four features. Two features are extracted from images
processed via edge-based filtering, while the remaining two depends from homomorphic filtering.

3.1 Homomorphic Filtering

Every image can be represented, using a multiplicative noise model, as a 2D function:

I(x, y) = L(x, y)R(x, y),

where the first term represents the illumination (low frequencies) and the latter represents the reflectance (high
frequencies). Homomorphic filtering is a technique16,17 that can remove multiplicative noise responding to
certain characteristics. Transposing the above model in the logarithmic domain, the multiplicative components
are represented as additive components. Then, a high-pass filter needs to be applied to decrease the low-pass
illumination component and enhance the reflectance high-frequency component. To do this, a DFT is applied
to each image, to operate in the frequency domain. A high-pass filter can be obtained starting from a Gaussian
filter, a Butterworth filter or a Chebychev filter. We chose to use a modified Butterworth filter, given its property
of soft slope in the cutoff frequency. Butterworth high-pass filter has a transfer function H(u, v) defined as

HB(u, v) =
1

1 + ( D0

D(u,v) )
2n

where D0 is the cutoff frequency, D(u, v) represents the distance from the center and n is its order. If we
edit the numerator to take into account the low- and high-frequency gain (γL e γH respectively), we obtain a
homomorphic filter as

HH(u, v) =
γH − γL

1 + ( D0

D(u,v) )
2n
.

After applying this filter, the resulting image is anti-transformed into spatial coordinates and from log-space back
into its original domain, obtaining the image Ib(x, y). At this point, all the average greyscale intensity values ih,



Figure 3. Sobel (left) and Canny (right) edge detection methods applied to the same image from the dataset as in Fig. 2.

one for each image in the dataset, were stored as first feature. An example of an image from the dataset with
homomorphic filter applied, is shown in Fig. 2.

A second image, Ie, has been computed as such:

Ie = I + Ih,

by computing the pixel-wise sum of the original image with Ih. The second feature is the average intensity of
such image, ie. An example of this is shown in Fig. 2.

3.2 Edge-based features

Two operators widely used in image processing for edge detection algorithms are the Sobel-Feldman operator
and the Canny operator. The Sobel operator is a discrete differentiation operator that approximates the gradient
of the image intensity function through convolution of two predetermined 3 × 3 masks. Canny edge detection,
instead, calculates the gradient using the derivative of a Gaussian filter, using two thresholds to detect local
strong and weak edges, being therefore less affected by noise, and its output is a binary image. The two features
extracted from this pipeline are the mean intensities of the Sobel approximation of the gradient and the mean
intensity obtained from Cannys edge approximation binary image. An example of these two images is shown in
Fig. 3.

3.3 Classification

The four features are used to train three different classifiers. Under the hypothesis of multivariate normal
distribution, the linear approach models each class with the same covariance matrix, while the mean varies
in each class. For both quadratic approach, both mean and covariance are considered varying in each class.
Classification is achieved in by inferring mean and covariance parameters of each class. As first step, the sample
mean is computed for each class. Then, the sample covariance is computed by subtracting the sample mean of
each class from all the samples belonging to that class, taking the empirical covariance matrix of each class (or
of all the classes, in the linear case). The difference between the two quadratic classifiers is how the covariance
matrix is treated: Nave Bayes approach uses only its diagonal, to account for possible singular covariance
matrices, using the pseudo-inverse if necessary. This, because it is assumed that all variables are conditionally



independent given the class label (therefore the name Nave Bayes). Standard quadratic classification instead uses
the full covariance matrix, hence being available only with non-singular covariance matrices. All classifications
are validated using a standard 10-fold cross validation scheme. Total and per-class accuracy are computed, along
with sensitivity and specificity for each case.

4. RESULTS

A total of 67 images (class distribution: 31 normal images, 17 with VA and 19 with CH) have been processed and
classified with the algorithms described above. All images were obtained from previous clinical trials conducted
at the Gastroenterology and Liver Services of the Bankstown-Lidcombe Hospital (Sydney, Australia). The
implementation has been carried out using MATLAB R2015a. Accuracies (overall and for each class), sensitivities
and specificities are shown in Table 1 and the three confusion matrices are shown in Fig. 4.

Accuracy* Acc-Normal* Acc-VA* Acc-CH* TPR TNR
Linear 82.09 90.32 82.35 68.42 0.68 0.98

Nave Bayes Quadratic 83.58 87.10 76.47 84.21 0.84 0.94
Quadratic 94.03 96.77 94.12 89.47 0.89 0.98

Table 1. Total and per-class accuracies, sensitivity and specificity for each classification complexity. *Accuracies are
reported as percentages, while TPR and TNR are reported on 0-1 scale.

We can note how overall results reflect the complexity of the classification analysis. Generally, all classifiers
show good performances, with the standard quadratic obtaining the best scores in all situations. Although, it
can be noted that linear classification is more accurate in detecting both normal and Villous Atrophy images if
compared with quadratic Nave Bayes. The lower overall accuracy of the linear classifier is due to inaccuracies in
the classification of images labeled as CH, implying the need for a quadratic formulation to better cluster images
belonging to that, and other, classes.

Figure 4. Confusion matrices for three-class comparison (Normal, Villous Atrophy and Crypt Hypertrophy for three
different classifiers: (Left) Linear (Middle) Nave Bayes (Bottom) Quadratic. Overall accuracies and error can be found
in each bottom-right cell, while overall accuracies are found in the bottom row of each sub-figure.

5. CONCLUSIONS

Our method, albeit simple, proves to be effective for the detection and classification of confocal endomicroscopy
images. The main drawback of the method is that it requires a presence of villous folds in the full field of view,
since it extracts global features. As future works, our group is focusing on editing this algorithm to work locally
instead of globally: this will improve the reliability of our tool in case of images with partial occlusions, variable
depth or mucus in the field of view. In our ongoing development of a CADSS for the purpose of Celiac Disease
staging from Confocal Laser Endomicroscopy images, this work achieves good results with solid, widely used and
robust image processing techniques.
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