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A Comparative Analysis of Deadlock Avoidance and Prevention
Algorithms for Resource Provisioning in Intelligent Autonomous

Transport Systems over 6G Infrastructure

Emeka Ugwuanyi, Member, IEEE, Muddesar Iqbal, Member, IEEE, and Tasos Dagiuklas, Member, IEEE,
6G is the future of intelligent connectivity artefacts with Artificial Intelligence (AI) at its backbone. The Multi-Access Edge

Computing (MEC) based 6G enabled infrastructure helps in achieving the required zero latency for autonomous Intelligent Transport
Systems (ITS) with features of low power consumption, lower end-to-end latency, minimal processing/transmission overheads, higher
throughput and reliability. MEC are prone to a deadlock due to the limited amount of available computational resources, resulting
in fatal delays in Vehicle-to-Vehicle (V2V), Vehicles to Road Side Unit (RSU) and RSU to ITS communication. The unresolved
deadlock may entail higher energy consumption that can adversely affect the Quality of Service (QoS) in terms of safety and
reliability with potential threats of causing fatal accidents. Therefore, it is almost imperative to resolve the deadlocks from MEC
to comply with the QoS parameters of MEC based autonomous vehicles. The asserted goals can be achieved by employing an
intelligent and adaptive deadlock resolution strategy. In this paper, a deadlock-aware, and collaborative edge decision algorithm has
been proposed for facilitating the seamless communication of autonomous vehicles over MEC. Additionally, deadlock avoidance and
prevention schemes have been evaluated using Bankers resource request avoidance algorithm, wound wait algorithm and wait-die
algorithms for resource provisioning in collaborative MEC. Furthermore, the effectiveness of deadlock avoidance and prevention
algorithms in real-time scenarios has been analyzed in MEC systems. The metrics used for a comparative analysis in this research
include Round-trip time, Queue wait-time and CPU utilization. The proposed algorithm shows promising results when compared
with prevalent techniques.

Index Terms—Intelligent Autonomous Transport Systems, Collaborative Edge, MEC, deadlock, real-time algorithms, Banker’s
algorithm

I. INTRODUCTION

MULTI-ACCESS Mobile Edge Computing (MEC) is
one of the 6G enabling technologies proposed to

meet the advertised ultra-low latency standards. According
to [1][2] MEC is a hub of access points that has storage
and computational capacity for a wide range of consumer
devices such as Blockchain, terrestrial networks, IoT devices
and autonomous vehicles (AVs) [3]. Low latency is crucial
for the emerging AV networks that require ubiquitous user
connectivity and real-time computational offload response. To
achieve Ultra-reliable Low Latency Communication (URLLC)
in 6G networks, QoS parameters of reliability and availability
exhibit higher precedence.

These factors play an important role in ensuring the smooth
delivery of time-critical applications and have been widely
accepted as key concerns of network service providers [4]
when coupled with AVs [5], [6]. In the current research, it is
assumed that the AV network requires optimal computational
and storage resources [7],[8]. Hence, a large portion of their
workload is offloaded. Due to the proximity of MEC to end-
users, the workload of these devices are offloaded to the
nearest MEC [9][10].

A substantial increase in such resource-constrained AVs, in
turn, increases the number of devices sharing and competing
for the limited resources provided by the MEC platform[11].
Due to the limited amount of resources available on the
edge node, there is a need to effectively manage MEC and
AV resources to prevent over-provisioning of resources and
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deadlock[6]. Deadlock may arise as a process requests for
resources that are held by another waiting resource, thereby
leading to a circular wait state[12]. Such an unplanned circular
wait would increase the energy consumption during offloading.
It has been proved in our prior research endeavours[13][10]
[14]. Additionally, it has been proved that the MEC platform
is prone to a deadlock due to limited resource constraints.
Therefore, effective precautions need to be used to avoid over-
provisioning of the edge node to AV clients. Such that low
latency can be maintained and deadlock in the AV network
is eradicated. Deadlock is an undesirable phenomenon in
real-time systems that hosts time-critical applications which
are sensitive to latency. In [12], deadlock is defined as an
event that happens in a multi-programming environment where
several processes compete for a finite number of resources.
During this, a process enters a waiting state when it requests
resources that are not available at the time of the request.
If the waiting process is never able to change state, because
the resources it has requested are held by another waiting
process, then the system is said to be in a deadlock. Deadlock
has been studied extensively [15] [16] [17] in various multi-
programming environments which can be applied to AVs.
However, there is limited research on deadlock management
in real-time systems in the context of MEC for AVs.

According to [12], real-time algorithms are used when a
rigid time requirement has been placed on the operation of a
processor or the flow of data. Therefore, it is used as a control
mechanism in dedicated applications. IoT systems are usually
real-time driven because the data obtained by the IoT sensors
must be analyzed at a given time for timely and accurate
decisions to be made. Therefore, it is important to consider
the effect of deadlock strategies on a real-time system.
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One of the most important aspects of offloading is choosing
the best candidate to offload a given task. This decision is
crucial as a suitable candidate needs to be selected to avoid
missing the task deadline. This decision must be optimized
considering the computational resources of the MEC and
network constraints to avoid re-offloading, overprovisioning of
resources and deadlock in AV networks. This paper addresses
the highlighted problems by proposing a deadlock aware col-
laborative edge computing offloading algorithm to effectively
select the best candidate for offload within an AV network.
The proposed algorithm ensures reliability and low latency
network communication. Furthermore, the current work aims
to provide a comparative analysis of different strategies that
can be used in building a real-time and reliable 6G network
system by minimizing the chances of deadlock during resource
provisioning for AVs/IoT devices in MEC. Hence, an eval-
uation and comparison of different deadlock avoidance and
prevention algorithms have been made. In this regard, six
algorithms have been examined using three deadlock strategies
(Bankers algorithm, wound wait, and wait die) and 2 real-
time schemes (Earliest Deadline First and Rate Monotonic
Scheduling). These algorithms were examined due to their
effectiveness and competitive time complexity. Experiments
have been conducted to compare the CPU utilization, waiting
time, round trip time and offload handling performance. Each
algorithm has been evaluated based on their key performance
indicators and the algorithms that performed better based on
the experimental constraints were discussed.

The paper is structured as follows. An extensive review
of relevant and related literature is presented in Section II.
Comparative analysis has been done in section III, which
includes the system model, communication and computation
model. Section IV details the experimental setup used for
comparison. Section V shows the outcome of the experiments.
Section VI concludes the paper. Finally, future works have
been presented in Section VII.

II. LITERATURE REVIEW

A. Resource Provisioning in MEC

Resource provisioning in MEC is a challenging problem
for Internet Service Providers due to the impact it has on the
efficiency of the system and the Quality of service (QoS). Re-
searchers have previously addressed this resource provisioning
problem in cloud computing. However, resource provisioning
in MEC is more challenging mainly because the edge servers
have more resource constraints than the cloud servers and the
edge servers would be deployed as a distributed environment
compared to the centralized cloud. Enabling distributed com-
puting and storage capabilities at the edge of the network
will benefit delay-sensitive and computation-intensive mobile
applications.

There has been a considerable amount of work done in
the area of resource provisioning in MEC. Badri et al [18]
have proposed a risk-based optimization for resource provi-
sioning in MEC. In their work, they have assumed that the
resource requirements of mobile applications are stochastic.
Therefore, they formulated a chance-constrained stochastic

program problem. They have resolved this using the Sample
Average Approximation method.

Kherraf et al [9] have studied resource provisioning and
workload assignment in MEC and formulated the problem
as a mixed-integer program to jointly decide on the number
of nodes, the location of MECs and applications to deploy.
They have solved this by decomposing it into two problems,
a delay aware load assignment sub-problem and dimensioning
edge servers sub-problem. They have proposed optimized pro-
visioning of edge computing resources with a heterogeneous
workload in IoT networks. They concluded that the proposed
tool could be used by network operators to develop cost-
effective strategies for edge network planning and design.

Chang et al [19] have studied resource provisioning in
MEC in the area of minimizing energy consumption of
cellular networks. In their research, they investigated both
the communication and computation aspect of resource pro-
visioning to improve energy efficiency. They modelled the
system as tandem queues and studied the trade-off between
the subsystems on energy consumption and service latency.
Based on this, they proposed an algorithm to determine the
optimal provisioning of both communication and computation
resources to minimize the overall energy consumption without
sacrificing the performance of service latency.

Yu et al [20] have proposed a collaborative computation
offloading framework for MEC. The authors have considered
an offloading scenario where multiple mobile users offload du-
plicated computation tasks to the edge servers. Hence, creating
an opportunity for edge servers to share computational results.
The aim is to develop an optimal collaborative offloading
strategy with data caching enhancements to reduce end-user
latency. The problem has been formulated as a multi-label
classification in which a Deep Supervised Learning approach
has been employed to address the issue. Numerical results have
shown that the proposed scheme achieves reduced delay and
energy consumption compared to other schemes.

Zhou et al [21] have proposed a resource provisioning
scheme for heterogeneous IoT applications on cloud-edge
platforms. The scheme has been aimed at minimizing long-
term operational costs while guaranteeing both hard and soft
deadlines for heterogeneous IoT applications. The proposed
framework employs a Lyapunov optimization technique to
make online resource provisioning greedy decisions without
prior knowledge of the resource statistics of the edge system.
The authors have evaluated the efficiency of the proposed
approach using realistic traffic and cost traces.

Ma et al [22] have proposed a mobility-aware and delay-
sensitive service provisioning scheme for mobile edge cloud
networks. The authors have formulated two novel optimization
problems of user service request admissions with the focus of
maximizing the accumulative network utility and throughput.
The authors have utilized a constant approximation algorithm
and an online algorithm to address the formulated problems.
The authors have demonstrated the efficiency of the proposed
scheme using experimental simulations.

There have been other proposals for resource provisioning
techniques to offload mobile application workloads on MEC
[23]. Nevertheless, none of the previous works on MEC con-
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siders deadlock during offloading and resource provisioning
which is a concern for distributed systems such as MEC [13].

B. Deadlock Handling Strategies
In a trusted computing scenario using edge nodes and IoT

devices, high availability and reliability are crucial factors for
a good user experience. Therefore, deadlock-free operations
are important in achieving this goal. The absence of deadlock
strategies to detect, recover or eradicate deadlock in such a
system might cause deterioration of the system’s performance
and ineffective use of energy as deadlock might occur but
the system has no way of recognizing what has happened.
The standard toolset for deadlock detection is the Wait for
Graph (WFG). The WFG models the relationship between
the processes and the resources involved. Here, each node
represents a process and an arc is originated from a process
waiting for a resource to a process holding the resource.
There are 4 main ways of handling deadlock. This includes
(i) ignore, (ii) detect and recover, (iii) prevention and (iv)
avoidance. Furthermore, there are 4 main conditions necessary
for a deadlock to occur. These include (i) mutual execution, (ii)
hold and wait (iii) no preemption and (iv) circular wait [12].
A simultaneous occurrence of these four conditions leads the
system to an unsafe state where the system suffers from a
probability of getting stuck due to unmanaged distribution of
resources. Therefore, each of the deadlock handling strategies
offers solutions to eradicate deadlock by ensuring that at least
one of these conditions does not hold.

1) Deadlock Detection
In the design and development of a multi-threaded system,

deadlock detection could be chosen as a way of handling
system deadlock. If the employed algorithm detects a dead-
lock, the next step would be to recover the system from
the deadlock. Therefore, deadlock detection and recovery go
hand in hand. In this scenario, an algorithm is employed to
examine the state of the system to determine if a deadlock has
occurred. After this, another algorithm is used to recover the
system from deadlock. To detect the presence of deadlock, a
resource allocation graph and a corresponding WFG are used
for a single instance for each resource type. Note that in this
strategy, deadlock can happen, after which the system then
detects the occurred event and attempts to recover itself. This
causes an overhead of the run-time costs of maintaining the
necessary information and executing the detection algorithm.
Additionally, there might be potential losses inherent in recov-
ering from a deadlock [12].

To detect deadlock for a single instance of each resource
type using the WFG, an edge from Ei to Ej implies that
process Ei is waiting for the process Ej to release a resource
that Ei needs. The edge Ei → Ej only exists in a WFG if the
corresponding resource allocation graph contains two edges
Ei → Rq and Rq → Pj for some resource Rq . A deadlock
exists in the system if there is a cycle in the WFG. Using
this, the detection algorithm requires a runtime order of n2

operations where n is the number of vertices in the graph.
For several instances of a resource type, the runtime order to
detect a deadlock would be m× n2 where m is a vector that
indicates the number of available resources of each type [12].

There is extensive research on deadlock detection schemes.
Farajzadeh et al [24], have proposed a distributed dead-
lock detection algorithm based on history-based edge chas-
ing which resolves the deadlock as soon as its detected.
According to their research, this action reduces the average
persistence time of the deadlock compared to other detection
algorithms. Akikazu et al [25] have proposed a deadlock
detection algorithm for distributed processes. In their research,
they have formulated a deadlock detection scheduling problem
with the presence of system failures and derived a deadlock
detection time that minimizes long-run average cost per unit
time. They have concluded that the number of distributed
processes and the system failure probability give a great
effect on the long-run average message-complexity per unit
time, but not the deadlock scheduling time. Other research on
deadlock detection includes Lamport’s algorithm [26] which
is a mutual exclusion algorithm that uses logical clocks for
event synchronization and the Chandy-Misra-Hass algorithm
[27] which uses messages called probes to detect the presence
of deadlock in a system.

2) Deadlock Prevention
Deadlock prevention algorithms handle deadlock in a sys-

tem by trying to prevent one of the previously mentioned
four conditions required for a deadlock to occur. In a typical
distributed system, there is at least one non-sharable resource.
Therefore, the mutual exclusion condition must hold. Due to
this, deadlock cannot be prevented by denying the mutual
exclusion principle. To prevent deadlock by eliminating hold
and wait, two possible protocols could be used. A protocol
that requires that all resources a process needs are allocated to
the process before the start of execution. This will eradicate
hold and wait but might lead to the under-utilization of the
system. Another protocol could allow a process to request
new resources only after releasing the current set of resources.
However, this protocol may lead to starvation.

Deadlock can also be prevented by preempting resources
from a process if the resources are required by a higher priority
process. This strategy of process termination during execution
is inappropriate for real-time systems in which the elapsed
execution time of the process must be predictable [28]. The
final method of preventing deadlock is by eliminating the
circular wait condition. To ensure that this condition never
holds, a protocol can be used to impose a total ordering
of all resource types and require that each process requests
resources in increasing order of enumeration. Example, if
R = {R1, R2..Rz} is a set of resource types which has been
assigned unique integer numbers from 1 to z. A process can
only request resources in increasing order of enumeration.
Therefore, if a process request Ri then it can only request
for another resource Rj ⇔ F (Rj) > F (Ri) [12] here F (x)
is the order of enumeration of x.

There have been many deadlock prevention strategies pro-
posed by different researchers in different computer science
fields to eradicate deadlock by preventing one of the necessary
four conditions required for a deadlock to occur. In the field
of Service-Oriented Architecture (SOA) infrastructure, Lin
Lou et al [29] have proposed a deadlock prevention strategy
to eradicate the possibility of deadlock caused by resource
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locking based on two-phase commit protocol. This requires
that each transaction obtains all needed locks before the second
commit phase. To solve this, they have utilized a timestamp-
based restart policy for global resource allocation.

In the context of web SOA where the competition of
web resources by web services could lead to deadlock. Ding
et al [30] have proposed a method to analyze and verify
the deadlock prevention solutions using trace semantics of
communicating sequential processes. The proposed formal
modelling approach has proved useful in the verification of
deadlock solutions analyzed in the paper. Furthermore, in the
context of Grid systems with resource sharing capabilities,
simultaneous requests of co-allocation of resources by multiple
applications could lead to deadlock. To address this problem,
Chuanfu et al have [31] proposed a deadlock prevention
method for fast allocation of grid resources based on an atomic
transaction. Utilizing this method, all resources required by a
process at the time of the request are specified. The request
succeeds if all the resources required are available.

In this research, two preventive algorithms that have been
investigated are wound-wait and wait-die. Both algorithms
use timestamp-based techniques and they favour the older
processes with an older timestamp. These algorithms have
been used due to their efficiency, competitive time complexity
and practical applications, especially in database systems [32].

a) Wound-wait algorithm: Wound-wait deadlock preven-
tion algorithm is a non-preemptive technique. Here, when an
older process requests a resource that is currently held by a
younger process, the younger process is rolled back. However,
when a younger process requests a resource that is held by an
older process, the younger process waits. If Pi and Pj are both
processes and Pi requests for a resource held by Pj . Then Pi

is rolled back if t(Pi) > t(Pj) i.e Pi is younger, else Pi can
wait. Here, t(Pi) and t(Pj) are timestamps.

b) Wait-Die algorithm: The wait-die deadlock prevention
algorithm is a preemptive technique. In this scenario, when an
older process requests a resource that is held by a younger
process, the older process waits. However, when a younger
process requests a process that is held by an older process, it
dies. If Pi and Pj are both processes and Pi requests for a
resource held by Pj . Then Pj is rolled back if t(Pi) < t(Pj)
i.e Pi is older. Where t(Pi) and t(Pj) are timestamps, else Pi

can wait.
3) Deadlock Avoidance

The drawbacks of using a deadlock prevention method
include low device utilization and reduced system throughput.
Alternatively, the deadlock avoidance mechanism could be
used. In contrast to the prevention method, this works by
requiring additional information on the complete sequence
of the resource request. With this prior information on the
requests and resources, the system decides if a process should
run or wait with the motive of avoiding a possible deadlock.
For the avoidance method to work, the simplest model requires
that the maximum amount of resources for each resource
type is declared. With these data, the model ensures that
a circular-wait condition never exists during the dynamic
resource allocation. Any potentially unsafe resource request
is denied. The system is said to be in a safe state if the

maximum number of resources requested for each process
can be allocated and there exists no possible sequence of
future requests in deadlock. If a safe sequence exists, then
the system is said to be in a safe state. There is a safe
sequence of processes [P1, P2, P3...Pn], if the resource request
that would be made by each process Pi can be satisfied by the
currently available resources including resources held by all
Pj with j < i [12]. A system is said to be in an unsafe state
if it is not guaranteed that all possible sequences of future
requests will not lead to a deadlock. Not all unsafe states are
deadlocks, but an unsafe state may lead to a potential deadlock
in a system. There are two well-known deadlock avoidance
algorithms which are the resource allocation graph algorithm
and the banker’s algorithm.

a) Resource Allocation Graph: The resource allocation
graph is only used if the resource allocation system has
only one instance of each resource type. While using the
resource allocation graph for deadlock avoidance, if a process
Pi requests for a resource Rj ,(Pi → Rj), the request is only
granted if Rj → Pi does not lead to a cycle in the resource-
allocation graph. Safeness of the system is checked by using
a cycle-detection algorithm which requires an order of n2

operations where n is the number of processes in the system.
b) Banker’s Algorithm: Resource-allocation graph can-

not be applied to a resource allocation system with multiple
instances of each resource type due to limitations. However,
Banker’s algorithm could be used. If the Banker’s algorithm is
applied, then each process must declare the maximum amount
of resources for each resource type that it will require to
complete execution. This declared number must not exceed
the total amount for each resource type in the system, else the
system would be in an unsafe state. Four data structures must
be maintained while using the Banker’s algorithm.

• Available: This is a vector of the number of available
resources for each resource type. The length of the vector
is m where m is the number of available resources.

• Max: This is a matrix of the maximum resource demand
for each process. The matrix size is mn where m is the
number of available resources and n is the number of
processes.

• Allocation: This is a matrix of the number of resources
currently allocated for each process. The matrix size is
mn where m is the number of available resources and n
is the number of processes.

• Need: This is a matrix of the remaining amount of
resources that each process needs. The matrix size is mn
where m is the number of available resources and n is
the number of processes. Need = Max+Allocation

The time complexity to determine if a state is safe or not
is mn2 [12]. There has been a great deal of research done
on the improvement of banker’s algorithm over the years. In
each case, the algorithm is extended, improved or applied
in a different area in computer science. The most notable
adjustments have been made in 1999 [33], 2000 [34] and 2006
[35]. Sheau-Dong Lang [33] has assumed that the control flow
of the resource-related calls of processes forms rooted trees.
Based on this, a quadratic-time algorithm has been proposed.
The algorithm decomposes trees into regions and computes
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the associated maximum resource claims before the process
execution. The information collected is used at runtime to
verify the safety of the system using the original banker’s
algorithm. Tricas et al [34] have applied Banker’s algorithm
in the field of flexible manufacturing systems. They have
modelled the problem employing Petri nets and proposed two
improvements based on the knowledge of process structure.
Their research has proven that the improved algorithm has
much more concurrency than the original banker’s algorithm.
Other deadlock avoidance algorithms that have been developed
includes the graphical deadlock avoidance algorithm proposed
by El-Kafrawy [36]. The improvement solves the deadlock
avoidance problem in sequential resource allocation systems
using a polynomial graphical solution. The graph updates
dynamically each time a new resource is requested. Another
example is the deadlock avoidance algorithm for streaming
applications proposed by Li et al [37] using both a propagating
algorithm and a non-propagating algorithm.

C. Real-Time Scheduling

In a trusted computing environment where high availability
and reliability are important factors, often there is a specific
response deadline time constraint that the system must meet. If
this is the case, the system is said to be a real-time system. The
system may or may not meet this time demand. This depends
mainly on the capacity of the system to perform computations
at a given time. In a real-time application, there are multiple
tasks with different criticality levels. The tasks could either
be soft real-time, hard-real-time or firm real-time. For a given
set of tasks T = {t1, t2, t3...tn}. Task ti is said to be a hard
real-time task if the execution of ti must be completed by
a given deadline Di and Wi ≤ Di where Wi is the worst-
case execution time of ti. Task ti is said to be a soft real-
time task if the penalty it pays increases as the ri increases.
Here, ri is the time elapsed between the deadline of ti and
the actual completion time. The penalty function P (ti) = 0
if Wi ≤ Di else P (ti) > 0. The task ti is said to be a firm
real-time task if an increase in reward depends on how early
ti finishes its computation before the given deadline Di. The
Reward function R(ti) = 0 if Wi ≥ Di else R(ti) > 0. In this
research, two optimal Real-time scheduling algorithms have
been studied. These are Rate Monotonic Scheduling Algorithm
(RMS) and the Earliest deadline First algorithm (EDF). These
algorithms were selected because they are well-known baseline
scheduling algorithms for real-time systems [38] and they also
have a competitive time complexity.

1) Rate Monotonic Scheduling Algorithm
The Rate Monotonic Scheduling (RMS) Algorithm is a

priority-driven algorithm with priorities well known before the
arrival of the task. These priorities are determined by the time
period of each task and are the same for all instances of the
same task. RMS is the most widely used and studied real-time
algorithm [38]. Some assumptions are made while using the
RMS algorithm, these assumptions include: (i) The tasks have
no precedence constraints and all tasks are independent. (ii) it
is assumed that only processing requirements are significant.
(iii) it is assumed that the tasks have no non-preemptable

section and the cost of preemption is negligible. (iv) it is also
assumed that the tasks are periodic and that ti has a higher
priority than tj ⇔ i > j. The shorter the period, the higher
the priority. If a lower priority task tj is running and a higher
priority task ti is waiting to run, ti will preempt tj . RMS
assigns higher priority to tasks that use the CPU more often.
The algorithm complexity is n(21/n − 1). RMS is referred
to as an optimal real-time algorithm because if a given set
of processes cannot be scheduled by RMS, then it cannot be
scheduled by any other algorithm that uses static priorities
[12].

2) Earliest Deadline First Algorithm
The Earliest Deadline First (EDF) algorithm [38] is also

a priority-driven algorithm which assigns priorities according
to tasks deadline. EDF gives a higher priority to a task ti
that has an earlier deadline di. ti will always preempt a task
with a lower priority tj which have a higher deadline dj . EDF
uses a dynamic priority assignment. The priority of the tasks
are assigned as the tasks arrive based on the task’s deadline
requirements. The priorities of other tasks are adjusted to
reflect the deadline of newly runnable processes. The follow-
ing assumptions are made when using the EDF scheduling
algorithm: (i) The tasks have no precedence constraints and all
tasks are independent. (ii) it is assumed that only processing
requirements are significant. (iii) it is assumed that the tasks
have no non-preemptable section and the cost of preemption
is negligible. The EDF algorithm has a worst-case runtime of
O((N + α)2) where α is the number of aperiodic tasks and
N is the total number of requests in each hyper-period of n
periodic tasks in the system [39]. EDF is referred to as an
optimal uniprocessor real-time scheduling algorithm because
it schedules tasks so that they meet their deadline requirement
with 100% CPU utilization. If EDF cannot feasibly schedule
a set of tasks on a uniprocessor then no other algorithm can.
This is proved using the time slice swapping technique [38].

D. Research Contributions

The main contributions of this paper are listed as follows:
• Using a case study for AVs as a real-time system, to

compare how deadlock avoidance and prevention mecha-
nisms will perform in real-time scenarios using RMS or
EDF in prioritizing workloads. In this analysis, different
metrics have been considered including Round-trip time,
Queue waiting time, CPU utilization and Ratio of Local
execution to collaborative MEC to cloud.

• An emulation testbed for multi-access mobile access
computing and Software-defined Networking based on
the GNS3 platform for experimental purposes.

• A deadlock aware Collaborative decision offloading
scheme for MECs during resource provisioning in AVs.

III. COMPARATIVE ANALYSIS

In this paper, a comparative study is carried out for deadlock
avoidance and deadlock prevention algorithms for multi-access
mobile edge computing environments. Here 6 case study algo-
rithms have been considered based on the structure proposed
in our previous study on deadlock in multi-access mobile edge
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Fig. 1. The adapted algorithm workflow structure for modelling the task sequence from the end device to the MEC node for processing.

TABLE I
ALGORITHMS USED DURING EXPERIMENT

Deadlock Prevention Schemes Wait-die Algorithm
Wound Wait algorithm

Deadlock Avoidance scheme Bankers resource request algorithm

Realtime scheduling Schemes Rate monotonic scheduling algorithm
Earliest Deadline First Algorithm

TABLE II
COMPARED ALGORITHMS

Alias Compared Algorithms
ALG1 RMS and Banker algorithm
ALG2 EDF and Banker algorithm
ALG3 RMS and Wound Wait
ALG4 RMS and Wait die
ALG5 EDF and Wound Wait
ALG6 EDF and Wait Die

computing for industrial IoT [13]. Each compared algorithm is
composed of a deadlock algorithm and a real-time scheduling
algorithm. The algorithms used for this design can be seen in
Table I.

The 6 compared algorithms that have been produced as a
result can be seen in Table II. The algorithm workflow for

each of the six algorithms is the same structure as is in Figure
1. Tasks are sent from the RSU to the local edge node for
resource provisioning. In the MEC node, tasks are put into
a job queue and the queue is prioritized using a real-time
scheduling algorithm. Then a deadlock algorithm is employed
to reduce or eradicate the chances of deadlock. Thereafter,
the waiting time is calculated for each task received and an
assumed finishing time Pti for each task ti is predicted. If
Pti < Dti where Dti is the deadline for task ti, then a MEC
Mi is identified that meets the deadline requirement using a
collaborative decision algorithm. This algorithm is detailed
in subsection F. If such MEC is not found, then the tasks
are sent to the central cloud to be executed and the MEC
node acts as a proxy. For each of the compared algorithm,
this structure remains the same but an appropriate real-time
algorithm and deadlock algorithm is utilized. Further details
about the algorithm structure are detailed in our previous study
[13].

A. Deadlock in distributed MEC
To describe the deadlock condition in distributed MEC,

let’s assume a set of processes P = {p1, p2.., pn} and a
set of resources R = {r1, r2.., rm}, where n and m are
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TABLE III
MEANING OF PARAMETERS

Notation Meaning
M Denotes a cluster of MEC nodes
Mj Denotes a MEC node
U Set of end devices
ui Denotes end device
Wui The total workload for an end device ui

T
ui
j The task for the end device ui

REQ Requirement vector
SMj

CPU frequency
fi The execution time of the task Tu

i
WT Waiting time
Ki Processing Delay
Hi Communication cost
transi Transmission delay
propi Propagation delay
trMj

Transmission rate of Mj

RES Required resource type
|RT | number of resource-type
MAX max resource for each RES
ti time period for EDF
Di Deadline
E Constraints for EDF
Ww Constraints for wound-wait
Wd Constraints for wait-die
BA(x) Bankers algorithm function
TC Total Time cost (Ki +Hi)
Ms

j Edge status vector
ClstatusMj

set of all Ms
j in the edge cluster

the number of processes and resources respectively. These
resources and processes are present in the collaborative MEC
space. However, they might not reside in the same MEC.
Deadlock occurs if a process pi is waiting for a resource ra
that is currently held by another process pj . Additionally, pj
is waiting for a resource rb that is currently held by pi. If
neither pi nor pj can be preempted while in waiting state, the
system would be in a deadlock.

B. System Model

In this research, a distributed architecture which consists
of a pool of MEC nodes is considered as a platform for
resource provisioning. Let’s consider a cluster of edge servers.
A finite non-empty set of edge servers in the same cluster
is denoted as M = {M1,M2..,Mn}. Let’s assume that a
finite non-empty set of end devices U = {u1, u2.., un} are
connected to the edge network such that ui ∈ U and Mj ∈M
maintains a disjoint many-to-one cardinality. Here an edge
server is connected to many end devices, but no end device
is connected to multiple edge server. Each ui has a workload
Wui

= [Tui
1 , Tui

2 , ..Tui
n ] which contains an array of tasks to be

executed. For each Tui
j in Wui the ui computes an offloading

decision aj ∈ {0, 1}, where aj = 0, aj = 1 represents
“execute locally” and “offload”, respectively. It is assumed
that the end device makes an offloading decision based on
its battery life and computational resources. Let’s assume that
each ui is connected to the closest Mj and hence offloads all
Tui
j ∈Wui s.t aj = 1 . For each Tui

j that is offloaded, the ui

also sends a requirement vector REQ = {cimi, li, si}. REQ
is characterized by number of CPU cycles, memory, maximum
latency and data size respectively.

C. Computational model

Let’s denote the computation capacity of each MEC Mj in
M as SMj . This is the CPU frequency. Let’s assume that each
Mj maintains a queue QMj = [Tu

1 , T
u
2 ..T

u
n ] of tasks offloaded

to Mj . The execution time of a task Tu
i offloaded to Mj is

fi =
ci

SMj

(1)

The waiting time for a newly added task Tu
n+1 is

WTn =

n∑
i=1

fi (2)

Therefore, the total processing delay Ki for Tu
i is

Ki = WTn + fi (3)

D. Communication model

For a task Tu
i offloaded to an edge node Mj , the communi-

cation cost of offloading the task Hi can be expressed as the
following

Hi = transi + propi (4)

Where transi and propi are the transmission delay and
propagation delay respectively. The transmission delay can be
expressed as

transi =
si

trMj

(5)

Where trMj is the transmission rate of Mj . Substituting eq
(5) in eq (4), the communication cost can be expressed as

Hi =
si + (propi × trMj )

trMj

(6)

E. Modelling of the algorithms in table II

While using any of the algorithms in Table II, an iden-
tification id is required to uniquely identify each process. To
define the requirements for a set of processes P , for any of the
defined algorithms, the variable constraints for the algorithm
components are first defined.

1) Bankers Algorithm
In using the Banker’s algorithm, for each process sent to

the MEC for resource provisioning, two vectors are required.
These are the resource type required RES by the process
and the maximum resource for each resource type MAX .
Therefore, for each process the resource type constraint

RES = {resi ∈ 0, 1 | i ∈ {0...(|RT | − 1)}} (7)

where, |RT | is the number of resource-type. When ri = 0,
the resource type at the ith position is not required otherwise
ri = 1 specifies that the resource type is required. It is assumed
there are three resource types (CPU, Memory and Storage)
that can be claimed by each process. Likewise, the maximum
resource for each resource type is defined as
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MAX = {maxi | ∀ i ∈ RESr} (8)

where

RESr = {resi ∈ RES | resi = 1} ⊆ RES (9)

2) RMS
While using the RMS algorithm, for each process that is

sent to the MEC for resource provisioning the computation
time or capacity Ci and the time period ti will be required.

ti =

[
1

fi
| ∀ i ∈ {1..|P |}

]
(10)

Therefore, variable constraints needed for RMS

REQi = {[Ci, ti] | ∀ i ∈ {1..|P |}} (11)

3) EDF
While using the EDF algorithm, for each process sent to

the MEC for resource provisioning the computation time or
capacity Ci, time period ti and the deadline Di will be
required. Therefore, variable constraints needed for EDF

E = {[Ci, ti, Di] | ∀ i ∈ {1..|P |}} (12)

4) Wound-wait /Wait die
For each process sent to the MEC for resource provisioning

while using the wound-wait or wait die, the resource type
required RES and the time stamps Ts for each process are
required. Here, RES is obtained the same way as in eq 7 and
Ts = {ti | i ∀ {1...|P |}}. Therefore, the variable constraints
for Wound wait Ww and Wait die Wd

Ww = Wd = {RESi, T si | i ∀ {1...|P |}} (13)

F. Deadlock constraint of the algorithms in Table II

1) Rate Monotonic Scheduling and Banker algorithm
In this algorithm for a set of processes P , combining 7 and

9

P = {Pi | ∀ Pi ∈ (id,RES,MAX,REQ)} (14)

Let RMS(x) and BA(x) be functions of RMS and
Banker’s algorithm respectively. Then,

RMS(P )→ Prt ⊆ P (15)

Where, Prt is a set of tasks that can be executed in real-
time. Then putting Prt in the Banker’s function,

BA(Prt)→ Psafe (16)

Where, Psafe is the deadlock-free safe sequence.

2) Earliest Deadline First and Banker algorithm
In this algorithm for a set of processes P , combining 7, 9

and 12

P = {Pi | ∀ Pi ∈ (id,RES,MAX,E)} (17)

Let EDF (x) and BA(x) be a function of the EDF algo-
rithm and Banker’s algorithm respectively. Then,

EDF (P )→ Prt ⊆ P (18)

Where, Prt is a set of tasks that can be executed in real-
time.

BA(Prt)→ Psafe (19)

Where, Psafe is the deadlock-free safe sequence.
3) Rate Monotonic Scheduling and Wound Wait

In this algorithm for a set of processes P , combining
equations 11 and 13

P = {Pi | ∀ Pi ∈ (id,Ww, REQ)} (20)

Let RMS(x) and WW (x) be a function of the RMS
algorithm and Wound wait algorithm respectively. Then,

RMS(P )→ Prt ⊆ P (21)

Where, Prt is a set of tasks that can be executed in real-
time.

Ww(Prt)→ Psafe (22)

Where, Psafe is the deadlock-free safe sequence.
4) Rate Monotonic Scheduling and Wait die

In this algorithm for a set of processes P , combining
equations 11 and 13

P = {Pi | ∀ Pi ∈ (id,Wd, REQ)} (23)

Let RMS(x) and Wd(x) be a function of the RMS algo-
rithm and Wound wait algorithm respectively. Then,

RMS(P )→ Prt ⊆ P (24)

Where, Prt is a set of tasks that can be executed in real-
time.

Wd(Prt)→ Psafe (25)

5) Earliest Deadline First and Wound Wait
In this algorithm for a set of processes P , combining

equations 12 and 13

P = {Pi | ∀ Pi ∈ (id,Ww, E)} (26)

Let f : EDF (x) and f : Ww(x) be a function of the EDF
algorithm and Wound wait algorithm respectively. Then,

EDF (P )→ Prt ⊆ P (27)

Where, Prt is a set of tasks that can be executed in real-
time.
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Ww(Prt)→ Psafe (28)

Where, Psafe is the deadlock-free safe sequence.
6) Earliest deadline First and Wait Die
In this algorithm for a set of processes P , combining

equations 12 and 13

P = {Pi | ∀ Pi ∈ (id,Wd, E)} (29)

Let f : EDF (x) and f : Wd(x) be a function of the EDF
algorithm and Wait die algorithm respectively. Then,

EDF (P )→ Prt ⊆ P (30)

Where, Prt is a set of tasks that can be executed in real-
time.

Wd(Prt)→ Psafe (31)

Where, Psafe is the deadlock-free safe sequence.

G. Collaborative offloading decision

In this sub-section, the collaborative offloading decision
making for the proposed algorithm has been described. In
the proposed algorithm, the offloading decision is made by
considering the time constraint of a task Tu

i and the deadlock
constraint of the MEC resource. For the time constraint, the
following must be satisfied for execution

TC < li (32)

Where TC is the time cost and is a summation of the
computational cost and communication cost.

Ki +Hi < li (33)

Substituting 3 and 6 in 33

WTn + fi +
si + (propi × trMj

)

trMj

< li (34)

The deadlock constraint is determined using one of the
algorithm models in the previous section. For simplicity let’s
assume that the constraint is determined by the BA(x) in 16.
BA(x) returns a safe sequence or false if the system is not
in a safe state. Mj makes an offloading decision ai for each
newly added task Tu

i . ai ∈ {0, 1, 2}, where ai = 0, means
execute locally, ai = 1 means send to another edge node and
ai = 2 means offload to the central cloud.

(TC < li) and (BA(x)→ Safe) (35)

If 35 is True, then ai = 0. Otherwise, an MEC that fits
the description is sort after. If such MEC exists, then Tu

i is
offloaded to it else it is offloaded to the cloud. To ensure that
an edge node Mj can calculate 35 for another edge node Mk,
each Mj multicasts its status Ms

j to the MEC cluster after
each update to WTn. To reduce the communication overhead,
the number of MECs in a cluster is minimized.

Fig. 2. Time Complexity Analysis for algorithms in Table II

TABLE IV
TIME COMPLEXITY COMPARISON OF EACH COMPONENT ALGORITHM

Algorithms Complexity

Deadlock
Banker’s algorithm O(mn2)
Wound wait O(mn)
Wait-die O(mn)

Scheduling RMS O
(
n(21/n − 1)

)
EDF O(n log2 n)

Ms
j = {SMj

,WTn,MemMj
, } (36)

Where MemMj is the memory utilization of Mj . Therefore,
each Mj maintains the following

ClstatusMj
= {Ms

1 ,M
s
2 , ..M

s
n} (37)

The collaborative algorithm is presented in algorithm 1

H. Time Complexity

The differences in the time complexity of the algorithms
used in this research to design each algorithm can be seen
in Table II. Comparing the deadlock algorithms, banker’s
algorithm has the highest order of time complexity. However,
comparing the scheduling algorithms, the EDF algorithm has
the highest order of complexity. The Time complexity graph
in Figure 2 compares the time complexity of each of the
compared algorithms. The graphs show the scalability of each
of the compared algorithms with an increase in the number
of processes and resources. The graph illustrates that ALG1

and ALG2 are the most scalable case study algorithms with
increase in the number of processes and number of resource
types. On the other hand, ALG3 and ALG4 is the least
scalable algorithm out of the six algorithms.

IV. EXPERIMENTAL SETUP

In this section, the experimental setup is presented and
how the compared algorithms are tested is outlined. The
components that make up the system and the associated tools
are discussed. The objective of this section is to evaluate the
performance of the algorithms using two different environmen-
tal setups and evaluate the results obtained to better understand
the strengths and limitations of the algorithms.

This section is broken down into two subsections as two
different experimental setups have been used to evaluate and
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Fig. 3. High Level Deployment Architecture that has been adapted for experimentation. The figure consists of the RSU, edge components, the SDN control
plane and the cloud abstraction.

Algorithm 1 Collaborative Offloading Decision Algorithm
Input Tu

i , {cimi, li, si},Ms
j , {SMj

,WTn,MemMj
, }

Output ai
1: tk ← ((TC < li) and (BA(x)→ Safe))
2: if tk = True then
3: ai ← 0
4: return ai
5: else
6: while Mj in ClstatusMj

do
7: Substitute Ms

j and determine tk
8: if tk = True then
9: ai ← 1

10: return ai
11: end if
12: end while
13: if suitable Mj not found then
14: ai ← 2
15: return ai
16: end if
17: end if

compare the case study algorithms. Both experiments have
been carried out using Graphical Network Simulator-3 (GNS3)
platform [40]. GNS3 is a network software emulator first
released in 2008 that can be used to emulate complex networks
with a combination of virtual and real devices. GNS3 has been
used because it provides a platform to emulate real networks

using virtualization concepts in contrast to simulation plat-
forms like cloudsim [41] or ns-3 [42].

A. Deployment Architecture

Figure 3 illustrates the high-level diagram of the experimen-
tal deployment. The Edge layer consists of the network and
application plane. The Edge layer extends the conventional
infrastructure by providing compute and storage capacities
to the RSU for resource provisioning. Compute and storage
decisions made in the Edge layer are made through the
edge application plane. The Edge servers in the MEC layer
collaborate among themselves using the network plane to
support the demand from the IoT devices/UE. Routing and
forwarding decisions are made by the SDN controller in
the control plane. The MEC uses multicast for cooperative
communication. In the experimental setup, MQTT broker-
based [39] multi-cast communication is used. MQTT is used
to simulate multicast cooperative communication between the
RSUs during experiments. Other cooperative communications
mediums could also be used. Comparisons between these
mediums are outside the scope of this research. The RSU
reach the edge layer through a cellular communication link.
Tasks are sent to the cloud if they cannot be scheduled in
the edge layer. In the experimental setup in GNS3 platform
[43], the MEC leverages the cloud-native philosophy using
containerised Open VSwitch hosts communicating through an
SDN controller. Each of the algorithms is implemented using
python [43] and is deployed as an MEC service on each MEC
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Fig. 4. Task Distribution adapted for Exp1 and Exp 2

node. To avoid time stealing during the experimentation, the
CPU and Memory utilization of each MEC host has been
configured to be limited to the Table V. The experiment has
been conducted using two physical compute nodes whose
specifications can also be seen in the Table V. Each of the
compute nodes has an Intel(R) Core(TM) i7-8550U processor.
The compute 1 (C1) runs the GNS3 emulator software and
GNS3 VM1 while GNS3 VM2 runs on compute 2 (C2).

TABLE V
SYSTEM SPECIFICATIONS DURING EXPERIMENTS

Name Operating System CPU cores Memory
Compute1 (C1) Windows (x64) 16 32GB
Compute2 (C2) Windows (x64) 8 16GB
MEC Ubuntu (x64) 0.5 512MB
End device Alpine (x64) 0.4 400MB
GNS3 VM1 (C1) Ubuntu 18.04 (x64) 8 16GB
GNS3 VM2 (C2) Ubuntu 18.04 (x64) 4 8GB
Software GNS3 Emulator

During the experiment, each node in the MEC layer runs
one of the algorithms listed in Table II. The end devices
are emulated using ubuntu linux containers. The end device
generates tasks based on predefined experimental task profiles
and sent to the MEC for processing. The task profile includes
the CPU, memory, data size and latency constraints. The
MEC then applies the scheduling algorithm followed by the
deadlock algorithm for each task. The task is either executed
locally, re-offloaded to another MEC or cloud depending on
the result from Algorithm 1. A cluster of linux servers running
the task processing application simulates the cloud service.

A pair of experimental setups have been used to evaluate the
algorithms. For each of the setups, the experiment has been
conducted with 4, 7 and 10 MECs. Additionally, each MEC
receive 2600 requests where each request contains |Ti| number
of tasks where, |Ti| ∈ {1, 2, ..n}. The higher the value of n, the
more load on the MEC and the more difficult it is to meet the
deadline. n has been set to 3 in the following experiments. The
task arrival at each MEC node is assumed to follow the Poisson
arrival process with a varying arrival rate λt(t ∈ {1, 2..n}).
The difference between the two experimental setups is the
client request distribution.

B. Experimental Setup 1 (Exp1)
In this experiment, each MEC node receives the same

number of total requests in each run. Figure 4 Exp1 depicts

the request distribution used for experiment setup 1. This setup
simulates a scenario during co-operative offload where MECs
are equally busy.

C. Experimental Setup 2 (Exp2)

In this experiment, each MEC node receives an unequal
amount of requests in each run. Figure 4 Exp2 depicts the
request distribution used for experiment setup 2. This setup
simulates a scenario during co-operative offload where MECs
are unequally busy.

V. PERFORMANCE COMPARISON RESULTS

In this section, the performance of the compared algorithms
obtained during the experiment has been evaluated. The met-
rics used for these comparisons are listed below.

• CPU Utilization of the MEC node
• Round Trip time
• The waiting Time
• The ratio of tasks re-offloaded or executed locally on the

MEC

A. Experimental Setup 1 Results

This section contains experimental results obtained during
experimentation using the Exp1 setup.

1) CPU Comparison
The CPU utilization for each of the algorithm obtained after

the experiments have been presented in Figure 5. From the
results obtained it can be deduced that the CPU utilization
of the MEC platform decreases gradually with an increase in
MEC nodes. This occurs because the task loads are balanced
among MECs while the number of tasks remains the same.
Thereby, reducing the number of tasks processed per MEC
node. The ALG4 achieves the best CPU utilization conver-
gence as depicted in Figure 5. The least convergence CPU
utilization is the ALG1.

2) Round Trip Time
Figure 6 shows the round-trip time comparison of each al-

gorithm during the experiment. Each MEC (Mi), periodically
monitors the round-trip time to reach each of its neighbouring
MECs. Mi would not check the round-trip time (RTT) to
itself, therefore each MEC would monitor N − 1 MEC nodes
during the experimentation. Where N is the total number of
MECs in the cluster. The RTT is used to approximate the
communication delay between two MECs. The round-trip time
ranged from an average of 0.89 to 2.13 milliseconds.

3) Waiting Time
The waiting time is crucial during the algorithm run time

because it is one of the factors used by each MEC to determine
which of the neighbouring MEC is suitable for task re-offload
if need be. The waiting time here is obtained for each of
the MEC periodically, similar to how the RTT is obtained.
The waiting time WTmi→mj = rttmi→mj + Qmj . Where
rttmi→mj is the round-trip time from Mi to Mj and Qmj is
the queue waiting time for Mj . During reoffloading, a MEC
with the lowest waiting time is always selected to evenly
balance the load across the MEC platform. The waiting time
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Fig. 5. The CPU utilization for each of the algorithm during the experiments in percentage and the average CPU utilization for Exp1 is displayed.

Fig. 6. The RTT obtained for each of the algorithm during the experiments in milliseconds and the average RTT for Exp1 is displayed.

for all six algorithms shown in Figure 7 for each of the
experimental runs is approximately the same which guarantees
experiment fairness. Averaging the results of the 3 sub exper-
iments with 4, 7 and 10 MECs, ALG4 achieves the lowest
waiting time.

4) Offload vs Local

The comparison between the ratio of tasks re-offloaded,
tasks that are executed locally on the MEC and tasks executed
on the cloud has been made in this section. This is shown in
Figure 8. According to the figure, the maximum percentage

of tasks executed locally on the MEC is 78%. The outcome
displayed on the graph depends on the scheduling algorithm
employed. There are some noticeable similarities and differ-
ences among the six algorithms. An increase in the number of
nodes has very little effect on ALG1 and ALG6. However, for
ALG2 and ALG5 (both use EDF), an increase in the number
of nodes increases the number of tasks re-offloaded to MEC
and cloud. This has an opposite effect on ALG3 and ALG4

which both use RMS for scheduling.
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Fig. 7. The waiting time obtained for each of the algorithms during the experiments in milliseconds and the average waiting time for Exp1 is displayed.

Fig. 8. The figure shows a comparison of the number of tasks that have been executed in the local MEC, re-offloaded to another MEC or cloud in Exp1

5) Comparison of the ratio of processes that meet Execu-
tion Deadline

In this section, the ratio of tasks that meet their execution
deadline during the experiment for Exp1 is compared for all
six compared algorithms. These results are obtained from the
end device. Each task that is sent out by the end device to
the MEC node has a deadline constraint and is monitored
to make sure that the deadline constraint is met as the task
travels through the MEC platform and back to the end node.
The percentage of tasks that meets the deadline constraint is

labelled here as TP (Timely Process) while the percentage of
tasks that did not meet the deadline constraint is labelled here
as UP (Untimely Process). It can be seen in Figure 9 that more
tasks meet the deadline as the number of MECs increases. It
can also be seen that more tasks meet their deadline using
ALG4 with 10 MECs compared to the other algorithms in
this Exp1. Furthermore, ALG6 obtains the least number of
untimely processes with 4 MECs.



T-ITS-21-10-2406 14

Fig. 9. Comparison of the ratio of processes that missed their deadline to the processes that failed to meet the deadline. TP (Timely process) is used to
denote processes that meet the execution deadline while UP (Untimely Process) is used to denote tasks processes that missed the deadline for Exp1

Fig. 10. The CPU utilization for each of the algorithm during the experiments in percentage and the average CPU utilization for Exp2 is displayed.

B. Experimental Results for Experimental setup2 (Exp2)

This section contains experimental results obtained during
experimentation using the Exp2 setup.

1) CPU Comparison
Figure 10 shows the CPU utilization results obtained for

the algorithms during the Exp2. As depicted in the figure, the
CPU utilization for each of the compared algorithms decreases
with an increase in the MEC node. This gradual decrease is
similar to the behaviour in Exp1. This can be attributed to
the sharing of the total workload sent by clients among the
MEC nodes. It can also be seen that the CPU utilization of

the case study algorithms for Exp2 is lower than the Exp1.
This observation is trivial as in Exp1, the MECs were equally
busy throughout the experiment which is not the case in Exp2.
Averaging the results of the 3 sub experiments with 4, 7 and 10
MECs, ALG2 obtains the highest CPU utilization while ALG6

achieves the slowest CPU utilization during the experiments.
ALG2 uses a deadlock avoidance algorithm while ALG6 uses
a deadlock prevention algorithm.

2) Round Trip Time
The round-trip time obtained for Exp2 can be seen in Figure

11. Each participating MEC records the RTT for each of the
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Fig. 11. The RTT obtained for each of the algorithms during the experiments in milliseconds and the average RTT for Exp2 is displayed.

Fig. 12. The waiting time obtained for each of the algorithms during the experiments in milliseconds and the average waiting time for Exp2 is displayed.

MEC in the platform to be used for offloading decisions. The
RTT is obtained here in the Exp2 setup similar to how it
is obtained in the Exp1 setup. The round-trip time for the
Exp2 ranged between 0.89 to 1.93 milliseconds. Averaging the
results of the 3 sub experiments with 4, 7 and 10 MECs, ALG4

obtains the lowest overall RTT while ALG6 achieves the
highest RTT. ALG4 and ALG6 are both deadlock prevention
algorithms. However, ALG4 uses RMS for task scheduling
while ALG6 uses EDF.

3) Waiting Time

The waiting time convergence comparison result for the
Exp2 has been depicted in Figure 12. Exp2 setup seems to
have a more predictable convergence than the Exp1 as the
waiting time converges between 0.89 to 1.63 milliseconds for
each of the experimental runs from 4 to 10 MECs. On average,
ALG4 attains a lower waiting time while ALG1 acquires a
higher waiting time during the 3 sub-experiments from 4 to 10
MECs. ALG4 utilises a deadlock prevention algorithm while
ALG1 employs a deadlock avoidance algorithm.
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Fig. 13. Comparison Between the ratio of processes that were executed locally in the MEC to processes that were Re-offloaded for Exp2

Fig. 14. Comparison of the ratio of processes that missed their deadline to the processes that failed to meet the deadline. TP (Timely process) is used to
denote processes that meet the execution deadline while UP (Untimely Process) is used to denote tasks processes that missed the deadline for Exp2

4) Offload vs Local

The comparisons between the ratio of tasks executed locally,
re-offloaded to the cloud or re-offloaded to another MEC are
presented in this section. It can be seen in Figure 13 that an
increase in the number of MECs leads to an increase in the
percentage of tasks re-offloaded to a neighbouring MEC for
all compared algorithms. The overall behaviour here is similar
to what is shown in Exp1. ALG6 and ALG1 algorithm had
the best performance result with the number of tasks executed
locally for each run above 78%. However, an increase in the
number of nodes has very little effect on ALG6 and ALG1

similar as in Exp1. ALG2 achieves the highest increase rate
in tasks re-offloaded to be executed in a neighbouring MEC
as the number of MECs increases.

5) Comparison of the ratio of processes that meet Execu-
tion Deadline

In this section, the ratio of tasks that meet their execution
deadline during the experiment for Exp2 has been compared
for all six algorithms. These results are obtained from the end
device perspective. Each task that is sent out by the end device
to the MEC node has a deadline constraint and is monitored
to make sure that the deadline constraint is met as the task
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Fig. 15. Summary Comparison of the results obtained in Exp1 and Exp2 (Graph is not drawn to scale)

travels through the MEC platform and back to the end node.
The percentage of tasks that meets the deadline constraint is
labelled here as TP (Timely Process) while the percentage
of tasks that did not meet the deadline constraint is labelled
here as UP (Untimely Process). It can be seen in Figure 14
that more tasks meet the deadline as the number of MECs
increases. It can also be seen that more tasks meet their dead-
line while using the ALG2 for each experimental run from 4
MECs to 10 MECs compared to the other algorithms. ALG1

obtains the lowest TP for 10 MECS while ALG4 achieve the
highest TP . ALG4 utilises a deadlock prevention algorithm
while ALG1 employs a deadlock avoidance algorithm.

6) Exp1 and Exp2 Comparison

Figure 15 summarizes the difference in the experimental
outcomes of Exp1 and Exp2. The figure shows the average
outputs of each of the experimental runs (4, 7 and 10).
The figure shows that ALG3 obtains better CPU utilization
compared to other algorithms. ALG6 and ALG1 obtains
better percentage of tasks executed locally compared to other
algorithms in Exp1 and Exp2. Comparing algorithms that
obtain better overall percentage of tasks executed on time,
ALG4 provides the best performance among all the algorithms
under study. ALG1 and ALG2 use a deadlock avoidance algo-
rithm while ALG3 uses a deadlock prevention algorithm. To
generalize, avoidance algorithm does better in the percentage
of tasks executed locally and the overall percentage of tasks
executed on time while prevention algorithms obtain better
CPU utilization. Additionally, the optimum difference between
these two algorithms is the ability to keep the system in a safe
state. Exp1 and Exp2 obtain similar behavioural patterns for
the algorithms when comparing the CPU utilization and the
offload vs local.

VI. CONCLUSION

In this paper, a comparative analysis of Deadlock Avoid-
ance and Prevention Algorithms for Resource Provisioning
in Collaborative Edge Computing has been presented for
Autonomous Vehicles (AVs). The study has been carried out
in a step on building reliable and readily available MEC
platforms that can be used to deliver low latency requirements
for 6G case study scenarios. Using a case study for real-time
AV systems in this study, comparisons were made on deadlock
situations in real-time systems. Rate Monotonic scheduling
algorithm or Earliest Deadline First algorithm were used in
prioritizing the workloads. In this research, our hypothesis
was established based on our previous study on deadlocks in
MEC by comparing six algorithms. Two experimental setups
were designed on the GNS3 platform for evaluating the com-
pared algorithms. The metrics used in the comparison include
Round-trip time, Queue waiting time, CPU utilization and the
ratio of tasks. The contributions made in this paper also have
the potential to be handy in deadlock avoidance and prevention
for efficient resource provisioning in AV networks. One major
limitation of the research is that it has been carried out in
a closed environment with limited specifications. It would be
interesting to know if the results obtained are reproduced in
different environments.

VII. FUTURE WORK

Future work in this area may be to explore deadlock
prediction in MEC using data collected over time. In this
scenario, the Resource Allocation Graph (RAG) maps the
resource consumption over time for each MEC. Additionally,
the fluctuation of resource consumption for each edge is
monitored which results in a time series. Furthermore, an
autoregressive function may be used to estimate the probability
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of the RAG to form a cycle. Hence, a proactive deadlock
algorithm is used to deprioritise processes that are more likely
to result in a deadlock as a preventive measure.
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