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    Abstract — In this paper, several ensemble cancer 

survivability predictive models are presented and tested 

based on three variants of AdaBoost algorithm. In the 

models we used Random Forest, Radial Basis Function 

Network and Neural Network algorithms as base learners 

while AdaBoostM1, Real AdaBoost and MultiBoostAB 

were used as ensemble techniques and ten other classifiers 

as standalone models. There has been major research in 

ensemble modelling in statistics, medicine, technology and 

artificial intelligence in the last three decades. This might 

be because of the effectiveness and reliability of the 

technique in medical diagnosis and incident predictions 

compare with the standalone classifiers.  We used 

Wisconsin breast cancer dataset in training and testing the 

models. The performances of the ensemble and standalone 

models were evaluated using Accuracy, RMSE and 

confusion matrix predictive parameters. The result shows 

that despite the complexity of the ensemble models and the 

required training time, the models did not outperform 

most of the standalone classifiers.  
 

Keywords — adaboostm1; breast cancer; multiboostab; 

neural network; radial basis function network 

I. INTRODUCTION  

     AdaBoost is a meta-learning method that trains several 

weak classifiers. It employs the knowledge of multiple and 

simple learners in producing a committee of classifiers. The 

final output of the model is a linear combination of a set of 

participating learners. The motive for doing this is to improve 

the confidence that we are making the right decision by 

weighing various opinions from the participating experts and 

combining them to reach a final decision [1]. Boosting has its 

roots in Probably Approximately Correct (PAC) learning 

framework that was introduced by Valiant [2] as cited by 

Schapire [3]. However, AdaBoost as a technique that 

combines several classifiers to form a strong classifier was 

first proposed by Freud and Schapire [4] in 1995. The primary 

goal of AdaBoost as an ensemble classifier is to improve the 

accuracy of the base classifier by constructing ensemble of 

decision rules that produce a strong classifier and perform 

better when they are combined than random guessing. During 

training the base classifiers are obtained sequentially using
1
 

reweighted versions of the training data taking into 

consideration the prediction accuracy of the previous 

classifier. Empirical study shows that the chosen base 

classifier can significantly affect the performance of AdaBoost 

models.  Therefore, if the base learner is too strong, it may 

achieve high accuracy leaving only outliers and noisy 

instances with significant weight to be learned in the following 

iterations. The chosen base classifier should therefore be able 

to learn without significant decrease in the weight of the 

previously and correctly classified instances. AdaBoost has 

been widely used in many applications such as text 

classification, natural language processing, drug discovery and 

computational biology [5] vision and object recognition [6] 

industrial chemical fault diagnosis and medical diagnosis [7] 

such as breast cancer prediction. 

       Breast cancer is a disease that causes cells around the 

breast to change and grow out of control most of which are 

invasive or infiltrating. It is one of the most common causes of 

cancer related death among women in the world today. For 

example, in the USA in 2015 an estimated 231,840 new cases 

of invasive breast cancer were diagnosed among women and 

60,290 additional cases of in situ breast cancer [8]. Also in the 

UK, over 55,222 women were diagnosed with new cases of 

the disease in 2014 which amounted to 11, 433 deaths [9] and 

the ailment reached 25.2% of women worldwide [10] . The 

disease is also a looming epidemic in the developing nations 

where advanced techniques for early detection and treatments 

are not readily available [11]. For example, WHO [12] 

asserted that breast cancer is the top cancer disease in women 

worldwide and is increasing at an alarming rate in other 

developing countries. It is a global leading cause of cancer 

deaths in most countries in Africa [13]. It is also the most 

common type of cancer among women in the Asian-pacific 

region.  In 2012 alone it accounts for 18% of all cases and was 

the fourth most common cause of cancer related death that 

accounts for 9% [14].  

             Medically, breast cancer can be detected early during 

a screening examination through mammography or after a 

woman notices an unusual lump [8] in her breast. Due to 

advancement in technology and availability of patient medical 

records, computer aided diagnosis cancer detection systems 

have been developed to detect and therefore control the spread 
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of the disease. Such systems rely on pattern recognition 

algorithms that are used to process and analyze medical 

information of images obtained from mammograms for 

diagnostic and decision making [15] [16]. Other breast images 

in use include ultrasound, MRI, and positron emission 

tomography (PET).  

      Recently algorithm methods have also been proposed to 

extract relevant patterns from patients’ breast cancer datasets.  

For example, Yang et al [17] developed a genetic algorithm to 

detect the association of genotype frequencies of cancer cases 

and noncancer cases based on statistical analysis. The authors 

analyzed the possible breast cancer risks using odds-ratio and 

risk-ratio analysis. McGinley et al [18] applied Spiking Neural 

Networks algorithm as a novel tumor classification method in 

classifying tumors as either benign or malignant cancer. The 

performance of the technique was rated to outperform the 

existing UWB Radar imaging algorithm. In their work 

Fatemeh et al [19] proposed an algorithm based on Non-

Subsampled Contourlet Transform and Super Resolution to 

improve the quality of digital mammography images. The 

authors then used AdaBoost algorithm to classify and 

determine the probability of a disease being a benign and 

malign cancer. Similarly, in breast mass cancer classification 

[20] the authors used computer-aided diagnosis (CAD) system 

for the processing and diagnosis of breast cancer. The 

technique was based on extreme learning machine (ELM) that 

eliminates interference in the preprocessing stages. In the 

feature selection, it uses the combination of support vector 

machine (SVM) and extreme learning machine (ELM). The 

optimal subset of feature vectors is then inputted into the 

combined classifiers for distinguishing malignant masses from 

benign ones.  

     In this paper, we presented and tested ensemble models 

using three variants of AdaBoost algorithm namely: 

AdaBoostM1, Real AdaBoost and MultiBoostingAB to predict 

the class of breast cancer. We used Random Forest, Neural 

Network and Radial Basis Function Network as base 

classifiers for predicting cancer survivability among women. 

We used the Wisconsin breast cancer datasets obtained from 

UCI repository. We also applied standalone models using 10 

different classifiers and compare their performances with the 

ensemble models. In both cases, we applied 10-fold cross 

validation technique to evaluate the predictive performance of 

the models. The rest of this paper is organized as follows: 

section 2 covers basic concepts of AdaBoost algorithm. 

Section 3 contains variants of AdaBoost and base classifiers 

used in this paper. The experimental setting and methodology 

are discussed in section 4. Section 5 cover results and 

discussions. The conclusion and future works are discussed in 

section 6. 

II. BASIC CONCEPTS OF ADABOOST 

     In this section, we describe briefly the theoretical 

background of the associated AdaBoost variants and the base 

algorithms that forms committee of experts used in the 

ensemble models. 

A. Theoretical properties of AdaBoost 

      The success of AdaBoost have been attributed to the 

algorithm’s ability to reduce the training error and accelerate 

convergence after several iterations [21]. AdaBoost properties 

have been covered recently in several studies [22]. Most 

variants of the algorithm were developed in targeting specific 

issues or problems such as object detection, letter recognition, 

text categorization, multi-class predictions, optimization 

issues, etc. 

B. AdaBoost as a technique 

      The concept of AdaBoost as a meta-learning method is 

based on the idea that better algorithm can be created by 

combining multiple instances of a simple classifiers. Each 

instance is trained on the same training dataset with different 

weights assigned to each instance based on its classification 

accuracy. The description here follows Schapire [23] : assume 

we are given a number labelled training examples such that  

𝑀 = {(𝑥1 , 𝑦1), (𝑥2 , 𝑦2),.,(𝑥𝑛 , 𝑦𝑛)} where 𝑥𝑖 ∈ ℛ𝑀 and the 

label 𝑦𝑛  ∈ {−1, 1}. On each iteration 𝑡 = 1, … , 𝑇, a 

distribution 𝐷𝑡  is computed over the 𝑀 training examples. A 

given weak learner is applied to find a weak 

hypothesis ℎ𝑡: ℛ → {−1, 1}. The aim of the weak learner is to 

find a weak hypothesis with low weighted error 𝜀𝑡 relative to 

𝐷𝑡 . The final classifier H(x) as shown in Fig. 1 (Neural 

Network as a committee of classifiers) is computed as a 

weighted majority of the weak hypothesis ht by vote where 

each hypothesis is assigned a weight αt. The final classifier is 

given in (1): 

 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑡ℎ𝑡(𝑥) 

𝑇

𝑡=1

)             
                               

(1)   

The accuracy of the hypothesis is calculated as an error 

measure this is given in (2): 

 𝜀𝑡 = 𝑃𝑟𝑖~𝐷𝑡[ℎ𝑡(𝑖) ≠  𝑦𝑖]         (2) 

The weight of the hypothesis is a linear combination of all the 

hypotheses of the participating experts. This is given in (3): 

 
𝛼𝑡 =  

1

2
ln (

1 − 𝜀𝑡

𝜀𝑡

)  
(3) 

The distribution vector 𝐷𝑡  is expressed as in (4) 



 
𝐷𝑡+1(𝑖) =

𝐷𝑡(𝑖) exp(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)) 

𝑍𝑡

 
(4) 

where Zt is a normalization factor such that the weights add up 

to 1. This makes Dt+1 a normal distribution. 

 

Fig. 1 A typical ensemble models showing a committee of 

neural network experts. Each classifier ℎ𝑖 has an associated 

weight contribution 𝛼𝑖 

During the training process, there is always a difference from 

the predicted values and the expected values.  The deviation or 

the expected error over the committee of classifiers can be 

expressed as in (5):  

 

𝐸𝑒𝑟𝑟 =  
1

𝑁
∑[𝑦𝑖(𝑥) − ℎ𝑖(𝑥)]2                (5) 

𝑁

𝑖=1

 

 

The pseudocode for AdaBoost algorithm is as shown in Fig. 2  

 

Fig.  2 AdaBoost as a method in training committee of classifiers that 

makes the final decision 

III. VARIANTS OF ADABOOST & COMMITTEES OF EXPERTS 

 

Boosting Methods 

AdaBoostM1(AdaM1) 

      This is the original version of AdaBoost algorithms that 
was first introduced by Freund and Schapire [24]. It 
significantly generates classifiers whose performance is a little 
better than random guessing. As show in Fig. 1 and Fig. 2, the 
algorithm calls the base classifier repeatedly 𝑇 times while 
training, where 𝑇 is the number of iterations. It combines the 
trained classifiers to obtain the final classifier. 

A. Real AdaBoost (RA) 

     The Real AdaBoost [25] is the generalization and 

improvement of the AdaBoostM1. The main difference to the 

standard AdaBoost involves computing and applying the 

estimate of the probabilities that each training pattern in the 

base classifier belongs to the current weight distribution. On 

the other hand, standard AdaBoost classifies the input patterns 

and compute the weighted error rate based on clarification 

accuracy. However, Real AdaBoost algorithm uses Newton 

stepping rather than exact optimization at each step. 

B. MultiBoostingAB(MBAB) 

     This is another variant of AdaBoost technique that is used 

in training base classifiers to form decision committees [26]. 

MBAB combines Boosting with Wagging algorithms. It 

therefore harnesses AdaBoost high bias and Wagging superior 

variance reduction. Empirical study shows that the algorithm 

performs better than AdaBoost or Wagging on several UCI 

datasets when C4.5 tree was used as the base learning 

algorithm. 

 



Committee of Experts  

      In this section, we briefly describe the architecture of the 

base classifiers that were used as committee of experts in our 

study.  

A. Random Forest (RF) – Random forest is a meta-estimator 

algorithm that fits several decision tree classifiers on 

various sub-samples of the dataset. It operates by 

constructing an ensemble of several decision trees at 

training time as shown in Fig.  3. It outputs the class that 

is the mode of the classes as mean prediction of the 

individual tree [27].  

  

 
Fig. 3 Random Forest as an ensemble of several decision trees 

B. Artificial Neural Network (ANN) – Artificial Neural 

network is a family of artificial intelligence models 

like the biological brain. It is capable of estimating 

complex and non-linear functions that depend on 

many inputs. ANN is generally presented as systems of 

interconnected neurons that exchange messages between 

each other. In this study, we used multilayer perception 

(MLP) with backpropagation which is a popular 

architecture of neural network algorithm [28]. The 

architecture of the ANN experts is as depict in Fig. 1. The 

network output of an MLP [28] can be expressed in (6) 

 

𝐹(𝑥1, … , 𝑥𝑚0
) =  ∑ 𝛼𝑖𝜑(∑ 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖  

𝑚0

𝑗=1

)

𝑚1

𝑖=1

 

                     

(6) 

where, 

 𝑚0 is the number of input nodes and a single layer 

consisting of 𝑚1 neurons, 

𝑥1, … , 𝑥𝑚0
 are the inputs, hidden neuron 𝑖 has synaptic 

weights 𝑤𝑖1
, … , 𝑤𝑚0

 and bias 𝑏𝑖 and 

𝛼1, … , 𝛼𝑚1
define the synaptic weights of the output layer. 

 

C. Radial Basis Function Network (RBFN) - RBFN can be 

viewed as an alternative to the MLP neural network for 

non-linear modelling. It uses radial basis function as an 

activation function and has only one hidden layer. It can 

be trained in many ways, unlike the MLP that are 

typically trained with backpropagation algorithms. The 

network output can be expressed in (7) 

 

𝑦(𝑥) =  ∑ 𝑤𝑘𝑗𝜙𝑗(𝑤𝑘𝑗) +  𝑤𝑘0   

𝑀

𝑗=1

 

(7) 

where the 𝜙𝑗 are the basis functions, 𝑤𝑘𝑗are the output layer 

weights and 𝑤𝑘0 are the bias weights. 

IV. EXPERIMENTAL SETUP AND METHODOLOGY 

A. Cancer survivability datasets 

     During the study, all implementations were carried out 

using WEKA (Waikato Environment for Knowledge 

Analysis) [29] software. WEKA is an open data mining suite 

implemented in JAVA for data classification, clustering, 

regression and visualization. We run all simulations on an 

Intel Core i5-3210M CPU 2.5GHz PC, equipped with 6.00 GB 

of RAM Windows 8.1 64-bit machine. The algorithmic 

settings of the boosting methods and the base classifiers are as 

presented in Table 1. In the study, we used the Wisconsin 

cancer survivability dataset.   
 

TABLE 1 BASIC ALGORITHMIC SETTINGS: STANDALONE AND ENSEMBLE 

MODELS 

Parameter/ 

Algorithm 

Batch 

Size 

Seed Debug Check 

Capability 

Specific 

Parameter 

RF 100 1 False True  RPa = 50 

ANN 100 0 False True LRb  = 0.3 

RBFN 100 - False True MSDc  = 0.1 

RIPPER 100 1 False True Folds  = 3 

Naïve 

Bayes 

100 - False True USDd = False 

SMO 100 1 False True TPe = 0.001 

 SVM 100 1 False True Loss = 0.1 

C4.5 100 1 False True CFf  = 0.25 

K-NN 100 - False True MSg = True 

Logistic 

Regression 

100 - False True UCGDh = False 

Ensemble 
Models 

100 1 False True Use Resampling 

aRemove Percentage, bLearning rate,  
c
Minimum standard deviation, 

d
Use Supervised Discretization,  

e
Tolerance Parameter, 

f
 Confidence Factor, 

g
Mean Squared, 

h
Use Conjugate Gradient Descent 

 

The dataset was obtained from the UCI Irvine machine 

learning repository. The raw data comprises of 699 instances 

and 10 attributes.  We removed 16 instances of the data with 

missing values to obtain 683 instances with a binary class 

attribute that was used. The binary class comprises of 444 

(65%) instances of Begin cancer and 239 (35%) instance of 

malignant cancer. Table 2 shows the attributes of the dataset.  

 
TABLE 2 ATTRIBUTES OF WISCONSIN SURVIVABILITY DATASET 

No Attributes Domain 

1 Sample code number Id number 

2 Clump thickness 1-10 

3 Uniformity of cell size 1-10 

4 Uniformity of cell shape 1-10 

5 Marginal adhesion 1-10 

6 Single epithelial cell size 1-10 

7 Bare Nuclei 1-10 

8 Bland Chromatin 1-10 

9 Normal nucleoli 1-10 

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)


10 Mitoses 1-10 

11 Class Benign - 2 

Malignant - 4 

 

B. Stratified 10-fold csross-validation  

       In the experimental setup, we used 10-fold cross 

validation with each dataset divided into ten parts.  Nine 

parts were used to train each model and one part was used 

for testing. We applied this method as empirical studies 

shows that stratified cross-validation generates comparison 

results with lower bias and lower variance. The process of 

10-fold validation involves the following four outline 

steps: 

 

a) For each fold train, the classifier using all the folds 

except one 

b) Use the left-out fold to test the model by calculating 

the cross-validation metrics  

c) Run the 𝑘 − 𝑓𝑜𝑙𝑑 cross validation several times (in 

our case 10 times) 

d) Average the cross-validation metrics across the 

subsets to get the final cross validation metrics. 

C. Evaluation and Performance methods  

         In evaluating the performance of the models, we applied 

six different statistical metrics namely the classification 

Accuracy, TP rate, FP rate, RMSE, Precision, ROC Area. Fig. 

4 is a confusion matrix for a classifier with two classes False 

and True (True Positives - TP, True Negative - TN, False 

Positive - FP and the False Negative -  FN).  The accuracy of 

an algorithm is the percentage measure of instances that were 

correctly classified. The accuracy and RMSE are as 

represented in (8) and (9) respectively.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(8) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

 

(9) 

 

The sensitivity and the specificity measurements of the models 

are as represented in (10) and (11) respectively. 

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(10) 

𝑆𝑝 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(11) 

 

     Receiver Operator Characteristic (ROC) curves is a metric 

that shows how the number of correctly classified positive 

examples varies with the number of incorrectly classified 

negative examples for binary classifier when the threshold 

discrimination is varied. Precision Recall curves (PRC) on the 

other hand give a more informative of an algorithm’s 

performance when dealing with highly skewed datasets. The 

true positive rate (the precision) and the false positive rate 

metrics are as expressed in (12) and (13) respectively. 

𝑇𝑝𝑟 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(12) 

 

𝐹𝑝𝑟 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

(13) 

 

 
Fig.  4 The confusion matrix used for two class prediction 

V. RESULTS AND DISCUSSIONS 

A. Classification comparison among the ensemble models 

The metric performance of the ensemble models is as 

illustrated in Table 3.  

 

1. True Positive and False Positive Rates  

The table shows that AdaM1 + RF and MBAB + RF models 

have the best TP rate of 0.97 compared with RA+ANN model 

that has the worst TP rate of 0.88.  In term of FP Rate, 

MBAB+RBFN have the least value of 0.03 followed by 

AdaM1+RF and RA+RF models with 0.04.  RA+ANN have 

the largest FP rate value of 0.22 while MBAB+RBFN models 

have the smallest value of 0.03. 

This is illustrated in Fig. 5.  

 

2. Accuracy and ROC  

AdaM1+RF and MBAB+ANN models have the best accuracy 

prediction value of 0.97. On the other hand, RA + ANN model 

has the worst prediction accuracy value of 0.88.  This was 

followed by AdaM1+ RBFN and RA + RBFN models with 

0.95 prediction accuracy. The ROC area value of all the 

models is 0.99 apart from AdaM1+ANN and RA + ANN 

models that have ROC area of 0.98, and   AdaM1+ RF model 

that has ROC area of 0.97.  This is illustrated in Fig. 6.   

 

3. RMSE and Execution Time 

The performance of RA+ANN model in terms of RMSE 

metric is worst with value of 0.29 while AdaM1 + RF and 

MBAB + RF models have the least RMSE value of 0.17. It 

takes 11.73s for MBAB+ANN model to train its base 

classifier. This is the longest execution time for all the 

presented models. On the other hand, the execution time for 

MBAB+RF was 0.14s. The RMSE and the execution time 

performance for the ensemble models are as illustrated in Fig. 

7 and Fig. 8 respectively. 

 

4. PRC Area and Precision 



The PRC area of most of the models have value of 0.99 apart 

from AdaM1+ANN model with PRC area of 0.97, and 

MBAB+ANN and RA ANN models with PRC area of 0.98. In 

term of Precision values RA+ANN model has the least value 

of 0.90 while PRC value for other models ranges from 0.95 to 

0.97. 

 

      In the ensemble models, we found that MBAB+RF model 

performs best with accuracy value of 0.97, RMSE value of 

0.17, TP Rate value of 0.97, FP rate value of 0.05, Precision 

value of 0.97, ROC area value of 0.99, PRC area value of 0.98 

and execution time of 0.14 seconds. On the other hand, 

RA+ANN model performs worst with prediction accuracy of 

0.88, RMSE value of 0.29, TP rate value of 0.88, FP value rate 

of 0.22, Precision value of 0.90, Recall curve value of 0.88, 

ROC area value of 0.98, PRC area value of 0.98 and execution 

time of 4.61seconds.  

B. Classification comparisons among the single models  

Table 4 shows the metric performance of the standalone 

models namely: Random forest, Neural network, Radial basis 

function, RIPPER, Naïve Bayes, SMO, SVM, C4.5, KNN and 

Logistics Regression. 

 

1. True Positive and False Positive Rates  

In term of TP rate RF, Naïve Bayes, SMO and Logistics 

Regression have the best TP rate value of 0.97 while C4.5 has 

the worst TP rate value of 0.94. In term of FP rate Naïve 

Bayes has least value 0.02 followed by ANN, C4.5 and K-NN 

with value of 0.06. The TP rate and FP rate performances are 

as illustrated in Fig.  9.  

 

 

2. Accuracy and ROC  

ANN and K-NN classifiers have the least Accuracy prediction 

value of 0.95 while accuracy prediction values of other 

classifiers are between 0.96 and 0.97. The ROC area of most 

of the classifiers ranges from 0.97 to 0.99 apart from RIPPER 

and C4.5 with ROC area value of 0.96. The accuracy and 

ROC performances of the algorithms are illustrated in Fig.  10.  

 

3. RMSE and Execution Time 

In term of RMSE metric, Table 4 shows that SVM performs 

best with RMSE value of 0.04 and C4.5 performs worst with 

RMSE value of 0.22, followed by RBF with RMSE value 

0.18. The result reveals that despite the performance of ANN 

compare to other standalone classifiers it takes ANN 1.17s to 

train its base classifiers compare to C4.5 that requires 0.01s 

The RMSE performance and the execution time of the 

standalone models are illustrated in Fig. 11 and Fig. 12 

 

 

4. PRC Area and Precision 

As shown in the Table 3 K-NN and SMO algorithms have 

PRC area of 0.96 while ANN and RBBN have PRC area of 

0.98. Logistic Regression and RF have PRC area of 0.99 while 

PRC areas of other models range between 0.94 and 0.95. The 

precision values of C4.5 and K-NN are 0.94 and 0.95 

respectively while the precision value for other classifiers 

ranges from 0.96 and 0.97.  

 

      In the standalone classifiers in terms of Accuracy, RMSE, 

Precision and Execution time metrics ANN performs worst 

with 0.95, 0.2, 0.97 and 1.17 respectively.  On the hand, 

Random Forrest perform best with Accuracy, RMSE, 

Precision and Execution time metrics values of 0.97, 0.17, 

0.97 and 0.13 respectively.  

C. Classification comparison between stand-alone classifier 

and committee of classifiers 

    The results for the standalone and the ensemble classifiers 

are as outlined in Table 3 and Table 4 respectively. Despite 

the complexity of some of the ensemble models that requires 

more time for training and testing, the results show that there 

are no significant differences or improvements in their 

performance metrics compared to the standalone classifiers.   

 

VI. CONCLUDING REMARKS AND FUTURE WORK 

       In this paper, we presented and tested ensemble models 

using three variants of AdaBoost algorithms namely 

AdaBoostM1, Real AdaBoost and MultiAdaBoostAB.  We 

applied Random Forest, Neural Network and Radial Basis 

Function Network algorithms as base learners. We compared 

the performance of the ensemble models with standalone 

classifiers.   

       

The results of our experiment show that the success of the 

boosting algorithms depend on the choice of base classifier, 

the data and tuning properties of the ensemble technique. 

However, we found that the complexity of the chosen 

algorithm and ensemble approach does not necessarily lead to 

improvement or better results on the datasets used in this 

study. The dataset used in the study is linearly separable 

therefore; there is a need for further study using more complex 

and imbalance datasets.  

The results of the study also show that all ANN models 

require most time in training their committee of classifiers 

compared to others ensemble models. For example, 

MBAB+ANN require 11.73s, AdaM1+ANN require 4.77s and 

RA-ANN requires 4.61s.  On the other hand, RBFN models 

require least time in training its base classifiers: 

MBAB+RBFN, AdaM1+RBFN and RA-RBFN requires 0.37, 

0.41 and 0.28 seconds respectively. 

      In the future, we intend to further explore boosting with 

more emphasis on diversity of the committee of classifiers and 

experiments on more complex and imbalance cancer datasets. 

Future work will also involve exploration of algorithm settings 

to improve classification accuracy.     

 



 

 

 

 

 

 

 

 

 

TABLE 3 PERFORMANCE COMPARISON AMONG THE COMMITTEE OF CLASSIFIERS 

Metrics / 

Models Accuracy RMSE TP Rate FP Rate Precision 

Recall 

Curve 

ROC 

Area 

PRC 

Area Time(s) 

AdaM1 + RF 0.97 0.17 0.97 0.04 0.97 0.97 0.99 0.99 0.2 

AdaM1 + ANN 0.96 0.2 0.96 0.05 0.96 0.96 0.97 0.97 4.77 

AdaM1 + 

RBFN 0.95 0.2 0.95 0.08 0.96 0.95 0.99 0.98 0.41 

RA + RF 0.96 0.18 0.96 0.04 0.97 0.96 0.99 0.99 1.44 

RA + ANN 0.88 0.29 0.88 0.22 0.9 0.88 0.98 0.98 4.61 

RA+ RBF 0.95 0.2 0.95 0.06 0.95 0.95 0.99 0.99 0.28 

MBAB + RF 0.97 0.17 0.97 0.04 0.97 0.97 0.99 0.98 0.14 

MBAB+ ANN 0.96 0.19 0.96 0.05 0.96 0.96 0.98 0.98 11.73 

MBAB + RBFN 0.96 0.19 0.96 0.03 0.96 0.96 0.99 0.98 0.37 

 

TABLE 4 PERFORMANCE COMPARISON AMONG STANDALONE OF CLASSIFIERS 
 

Metrics / 

Algorithms Accuracy RMSE TP Rate FP Rate Precision 

Recall 

Curve 

ROC 

Area 

PRC 

Area Time(s) 

Random Forest 0.97 0.17 0.97 0.04 0.97 0.97 0.99 0.99 0.13 

ANN 0.95 0.2 0.96 0.06 0.97 0.96 0.99 0.98 1.17 

RBFN 0.96 0.18 0.96 0.04 0.96 0.96 0.99 0.98 0.05 

RIPPER 0.96 0.2 0.96 0.04 0.96 0.96 0.96 0.95 0.06 

Naïve Bayes 0.97 0.16 0.97 0.02 0.97 0.97 0.99 0.99 0.03 

SMO 0.97 0.17 0.97 0.03 0.97 0.97 0.97 0.96 0.05 

SVM 0.96 0.04 0.96 0.03 0.96 0.96 0.97 0.95 0.05 

C4.5 0.95 0.22 0.94 0.06 0.94 0.94 0.96 0.94 0.01 

K-NN 0.95 0.21 0.95 0.06 0.95 0.95 0.97 0.96 0.02 

Logistics 

Regression 0.97 0.17 0.97 0.05 0.97 0.97 0.99 0.99 0.05 

 

 



 
Fig.  5 TP and FP rates: Committee of classifiers 

 
Fig. 6 Accuracy and ROC: Committee of classifiers 

 
Fig. 7 RMSE: Committee of classifiers 

 
Fig.  8  Running time:  Committee of classifiers 

 
Fig. 9 TP and FP rates: Stand-alone classifiers  

Fig. 10 Accuracy and ROC: Stand-alone classifiers 

 
Fig. 11 RMSE: Stand-alone classifiers 

 

 
Fig.  12 Time of running: Stand-alone classifiers 
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