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Abstract
When subjected to bending loads, sandwich panels are highly efficient structural components with the potential to achieve 
substantial weight reduction. A successful design methodology for sandwich panels should aim at maximising this poten-
tial for weight reduction while considering the various possible failure mode in a simple yet accurate manner. This paper 
investigates the application of steel sandwich panels as two-way deck systems. Near-optimal designs for all-steel Rectangu-
lar Honeycomb Core Sandwich Panels (RHCSPs) under general out-of-plane loading are achieved using a gradient-based 
optimisation method. The method relies on continuously optimising the design limit state constraints while the response 
constraints are considered a priori in the analysis stage using simplified analytical assessment. Plate bending solutions and 
sandwich bending solutions are used as alternatives to estimate the internal stresses on each layer of the sandwich panel under 
out-of-plane loads, where comparisons are made between these two analysis methods in terms of computational efficiency and 
accuracy. The internal stresses are then used to formulate design limit state equations for each relevant failure mode, including 
material yielding, plate buckling and deformation control. The Method of Moving Asymptotes is used for the optimisation 
of RHCSPs, considering the limit states as the constraints of the optimisation problem and weight as the objective function 
to be minimised. The proposed methodology for simplified assessment is verified against detailed nonlinear finite element 
models for optimal design solutions. The implications of the results of the proposed optimisation strategy on the development 
of a systematic design methodology for RHCSPs are also highlighted, making specific reference to critical failure modes.
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1  Introduction

Conventional steel deck systems, such as those used in off-
shore topsides and as shown in Fig. 1, consist of a steel 
plate spanning over a grid of primary and secondary beams, 
forming a grillage system. For applications where heavy 
equipment is installed, the provision of a dense grid of 
secondary beams underneath the equipment supports is 
required to ensure efficient load transfer, adequate capac-
ity and sufficient stiffness of the deck plate locally. On the 
other hand, areas destined for light equipment and consuma-
bles are usually designed for uniform loads, leading to a 

uniform arrangement of the secondary structural compo-
nents. Due to these design requirements, secondary deck 
beams are distributed throughout the deck in a nonuniform 
fashion, depending on the load magnitude and variability, 
predominantly dictated by the equipment arrangement over 
the deck. This convoluted beam distribution requires sub-
stantial welding activities to be performed on-site, steeply 
raising the construction costs associated with conventional 
deck systems. Additionally, conventional deck systems form 
an important contribution to the overall weight of industrial 
structures. Innovative solutions to substitute conventional 
configurations which are more beneficial in terms of weight, 
construction time, life span, safety, assembly process and 
overall cost are thus desirable.

The popularity and effectiveness of sandwich compo-
nents in weight-critical applications can be attributed to 
their attractive high specific strength and stiffness, resulting 
from their geometrical configuration. Formally, a sandwich 
panel can be defined as a composite structural component 
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consisting of the following: (i) two thin and sufficiently stiff 
plates of dense material at the top and bottom of the panel, 
(ii) the core, which is an intermediate thick layer of a low 
density material between the plates, and (iii) a specific con-
nection scheme between the plates and the core of the panel 
(Allen 1969).

The basic principle underlying the structural response of 
sandwich panels is analogous to that of an I-shape beam, 
extended in two planar dimensions. The relative strength and 
stiffness of I-sections can be attributed to the concentration 
of most of the material in the flanges, far from the bending 
neutral axis. In this manner, the component stiffness and 
capacity under flexural loading is significantly enhanced. 
The web provides the required shear resistance, maintaining 
a certain distance between  the plates, while further provid-
ing stability to the flanges against buckling. Similarly, the 
behaviour of sandwich structures is defined by the sandwich 
effect: the top and bottom plates resist bending moments and 
the core resists transverse shear forces. These characteristics 
render sandwich components considerably more efficient in 

resisting flexural loading as compared to conventional solid 
components of equivalent weight (Zenkert 1995).

When considering their application as deck systems, the 
enhanced flexural behaviour of sandwich panels enables 
the design of larger spans, reducing the need for a dense 
grip of supporting secondary beams, as shown in Fig. 2a. 
This is further reduced by taking advantage of the two-way 
spanning action of sandwich panels. Beyond their inher-
ent weight saving potential, sandwich panels demonstrate 
an impressive potential for achieving functional flexibil-
ity against the relocation of heavy equipment, due to the 
uniformity of the core geometry resulting in uniform local 
stiffness and strength characteristics throughout their planar 
domain.

All-steel Rectangular Honeycomb Core Sandwich Panels 
(RHCSPs), as illustrated in Fig. 2b, are considered to be the 
topology of sandwich construction with the most potential 
to satisfy the deck system requirements of weight saving, 
adequate structural performance, and practical manufactur-
ing and assembly processes. RHCSPs consist of an array 
of strips in the two planar dimensions, which intersect to 
form rectangular cells, capable of adapting to a wide range 
of spans with different aspect ratios as well as loading con-
ditions. In this manner, an anisotropic response with pre-
defined characteristics can be established, achieving the 
optimal performance in each bending direction. While previ-
ous work has focussed on one-way  sandwich action, such as 
the I-core sandwich panel system (Kujala and Klanac 2005), 
this paper focuses on the optimisation of RHCSPs as two-
way spanning sandwich systems.

There is a lack of clear and detailed guides for modelling 
the two-way behaviour of sandwich plates. Initial design 
guides for sandwich panels were specific for a given prod-
uct, where the design was achieved through tables presenting 
the properties of a discrete set of sandwich panels (Hex-
cel Composites 2000). Additionally, analyses are based on 

Fig. 1   Plan view of primary and secondary steel layout of a conven-
tional deck system

Fig. 2   a Plan view of steel layout for an innovative sandwich panel deck system; b Rectangular Honeycomb Core Sandwich Panel
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one-way simply supported or cantilever beam theory. Even 
more recent guidelines use basic equations and tables for the 
design of sandwich panels (Lloyd's Register 2015).

The first specification for the structural application 
of steel sandwich panels was put forward by DNV—Det 
Norske Veritas (2012), particularly for applications to ship 
structures. For new sandwich constructions, DNV requires/
recommends the following:

A steel sandwich panel subjected to local lateral pressure 
is to follow elastic design principles to avoid major plastic 
yielding of steel face plating and to limit too high shear 
stresses in the core.

In the absence of detailed FE analysis, which is normally 
preferred for complex cases with load and pressure varia-
tions over the sandwich plating and supporting structure, a 
simplified analytical assessment based on a simply supported 
plate model and uniform lateral pressure is acceptable.

A design methodology that follows both requirements/
recommendations is deemed suitable for practical applica-
tion since the trade-off between the efficiency of the design 
process and the accuracy of the final solution is seen as ben-
eficial. In this regard, a suitable method of analysis based 
on analytical approaches could be considered since these 
can be easier and faster to apply than detailed numerical 
approaches. On the other hand, analytical approaches are 
valid only for idealised loading and support conditions 
(SAND.CORe Co-ordination Action 2006). Simplified FE 
models can overcome these restrictions, where common 
methods with improved efficiency rely on the employment 
of sandwich shell finite elements, using layerwise laminate 
theory (Carrera 1998), while still defining distinct material 
properties for the faceplates and the homogeneous core. An 
effective approach has previously been proposed by Liang 
and Izzuddin (2016) to perform linear and nonlinear analysis 
of sandwich structures using a 2D local shell system, where 
a co-rotational approach is employed to model geometric 
nonlinearity (Izzuddin 2007; Izzuddin and Liang 2016).

In contrast, for a sandwich panel with a discrete core, 
which can be highly orthotropic, a full discretisation in shell 
elements is recommended (SAND.CORe Co-ordination 
Action 2006). Orthotropic all-metal sandwich panels, such 
as the corrugated core (Chang et al. 2005; Ge et al. 2021) or 
the I-core (Yan and Jelovica 2021; Sun et al. 2015) sandwich 
panels, require a dense mesh of finite elements for both the 
plates and the core to capture several structural phenomena 
at sufficient levels of detail. The discretisation of the whole 
sandwich panel can, however, lead to significant computa-
tional demands, rendering these models unsuitable for prac-
tical application in design and optimisation. These benefits 
and drawbacks of detailed numerical models for RHCSPs 
have been previously investigated (Nordas et al. 2018), 
showing that the use of such high-fidelity models should be 
restricted to design scenarios of extreme significance where 

important local effects cannot be captured with simplified 
approaches.

As an alternative to classic iterative design methodolo-
gies, optimisation has become increasingly used for struc-
tural engineering problems which are relevant to industrial 
applications (Pedersen et al. 2015). For example, a weight 
optimisation tool, which can provide sufficiently accurate 
predictions at the early design phase is extremely valuable 
since it allows for the structure to be further optimised in 
the next executive phase (Cicconi et al. 2016). Optimisation 
problems for sandwich panels target a wide range of appli-
cations, materials and core topologies (Rathbun et al. 2005; 
Romanoff 2014; Lurie et al. 2017; Fang et al. 2017). The 
wide range that is covered in the research literature suggests 
that new problems require individual and innovative solution 
methods, as presented hereafter.

Initially, closed-form solutions established the fundamen-
tals for minimum-weight structural optimisation of sand-
wich panels (Vinson 1999). However, complex engineering 
optimisation problems that require an increased number of 
variables and constraints do not typically have closed-form 
solutions. Accordingly, gradient-based algorithms have been 
developed to provide solutions for these problems, typically 
through using iterative methods based on the derivatives of 
the objective and constraints functions (Valdevit et al. 2004). 
An example of gradient-based optimisation of sandwich 
structures with varying core and face plate thickness was 
proposed by Löffelmann (2021), taking into consideration 
constraints on maximum stress, wrinkling, and crimping.

Other works take advantage of heuristic methods, such 
as Genetic Algorithms (GA), to perform the structural opti-
misation of sandwich panels, usually using nonlinear finite 
element analysis to assess the structural behaviour of each 
individual (Poirier et  al. 2013). Alternatively, topology 
optimisation has also been used for the design of sandwich 
panels (Chu et al. 2019). These methodologies, although 
accurate, are less suitable for practical application due to 
the substantial computational time to create, run and post-
process nonlinear FE models.

This paper proposes a practical optimisation methodol-
ogy for the structural design of RHCSPs under combined 
out-of-plane uniformly distributed loads and patch loads, 
allowing their application as two-way spanning deck sys-
tems. Gradient-based optimisation algorithms are considered 
to be ideal for this problem due to a reduced number of 
variables and the continuity of the design limit state equa-
tions. To increase the applicability of the method, simplified 
numerical approaches, which are inherently less accurate 
but more computationally efficient, are preferred. Two dis-
tinct numerical modelling approaches are considered, based 
on analytical Reissner–Mindlin plate bending expressions 
and layered sandwich shell elements (Liang and Izzuddin 
2016). These two methods are used to capture the stiffness 
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characteristics of the panel and determine the internal force 
distribution within the domain of the panel. However, both 
these methods must be accompanied by local limit state 
checks to overcome their inability to capture some local 
failure modes. The efficiency of the method is based on 
solely optimising the design limit state constraints while 
the response constraints are considered during the analysis 
stage. The method, verified against numerical modelling, is 
shown to generate minimum-weight solutions in an efficient 
yet accurate manner, which is of particular importance in 
weight-sensitive applications including offshore structures.

2 � Optimisation of RHCSPs

Besides the width W  and length L , RHCSPs are uniquely 
defined by seven geometric variables, as illustrated in  Fig. 3: 
thicknesses of the top and bottom plates tf ,top and tf ,bot , height 
h , core strip spacing in the x - and y-directions, lx and ly and 
web thickness in x and y , tw,x and tw,y.

In this paper, two different methodologies for the design 
and optimisation of RHCSPs are proposed. The simplest 
one, envisioned for simply supported panels, uses Reiss-
ner–Mindlin (RM) plate theory to obtain the internal forces 
within the panel, followed by an optimisation of the geo-
metric variables of RHCSPs according to its local failure 
criteria. This method does not require iterations because 
the internal bending moments and shear forces are inde-
pendent of the candidate structural details, although this is 
only valid for isotropic or nearly isotropic sandwich panels 
under certain support conditions, specifically simply sup-
ported panels.

A more refined method of analysis uses a modelling 
approach based on layered sandwich shell elements (Izzud-
din and Liang 2016) to re-assess a candidate optimal solu-
tion, update the internal forces, and optimise again for these 
new design internal forces. The initial candidate solution is 
obtained arbitrarily, and the procedure stops when weight 
convergence is achieved, based on a weight tolerance of 

10–2 kg/m2. This iterative method can more realistically 
account for the influence of the core shear stiffness in the 
two directions, rendering it suitable to be applied to sand-
wich panels with general support boundary conditions.

Both approaches are schematically illustrated in Fig. 4.

2.1 � Methods of analysis

The development of a practical assessment and optimisa-
tion method for the design of RHCSP systems requires the 
evaluation of the accuracy and computational efficiency of 
several methods of analysis to obtain the internal forces in a 
sandwich panel, presented in Fig. 5. These methods include 
analytical expressions, plate FE elements, sandwich FE ele-
ments and detailed numerical models using full discretisa-
tion of the cover plates and the honeycomb core. As men-
tioned in the previous section, detailed high-fidelity models 
are not considered due to their substantial computational 
cost (Nordas et al. 2018).

Analytical expressions for plate bending are associated 
with a very limited field of application and have several 
assumptions embedded regarding the material response, 
the geometry and the range of loading and deformation. In 
fact, most of the analytical work can only be used for simply 
supported plates. Nonetheless, under these circumstances, 
plate bending theory, such as RM theory, is extremely use-
ful for the initial design stages as it provides an accurate 
and efficient estimate of internal forces in the elastic range. 
These are valid for any given sandwich panel with thin faces 
and isotropic weak core (Zenkert 1995). This theory can be 
written in terms of partial deflections, which are the com-
ponents of the total deflection due to bending wb and due to 
transverse shear ws . The component of deformation due to 
shear is significant for sandwich panels due to the low shear 
stiffness of its core relatively to solid plates. Considering a 
simply supported sandwich panel, the partial deflections are 
obtained as follows (Zenkert 1995):

Fig. 3   Geometric characteristics of RHCSPs
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where D and S represent, respectively, the bending and 
shear stiffness of the sandwich panel and pmn represents the 
Fourier coefficients associated with a given load. Under a 

(1)

wb(x, y) =
1

D

∞∑
m=1

∞∑
n=1

pmn[
(m�∕L)2 + (n�∕W)2

]2 sin
m�x

L
sin

n�y

W

(2)

ws(x, y) =
1

S

∞∑
m=1

∞∑
n=1

pmn

(m�∕L)2 + (n�∕W)2
sin

m�x

L
sin

n�y

W

uniformly distributed load, pmn = 16p0∕�
2mn , where p0 is 

the value of the UDL and m and n assume odd integer values.
This assumption is only exact for isotropic sandwich pan-

els but still provides a good approximation of the internal 
force distribution for similar rigidities in the x - and y-direc-
tion, as demonstrated subsequently. Similar expressions are 
also available for simply supported plates under patch loads 
(Zenkert 1995). To consider general support boundary con-
ditions or continuity between adjacent panels, resorting to 
FE models becomes necessary.

The sandwich element, as illustrated in Fig. 6, has been 
implemented in ADAPTIC (Izzuddin 1991), which is 
employed for all the numerical work in this paper. Sand-
wich FE models consist of layered shell elements with three 
layers, where the two plates and the core of the sandwich 
panels are embedded (Liang and Izzuddin 2016). When 
compared to RM plate models, sandwich elements offer a 
broad range of benefits, including practical application in 
design and a good balance between accuracy and compu-
tational demand. Since the intermediate layer is continuous 
in this modelling approach, the mechanical properties of the 
discrete core are equivalently obtained through a process of 
core homogenisation.

Sandwich element models can predict the stiffness char-
acteristics of the panel, due to the intermediate layer having 
equivalent mechanical properties to the discrete core. More-
over, the planar stress distribution in the top and bottom 

Fig. 4   Schematic of the design 
and optimisation methods for 
RHCSPs

Fig. 5   Internal forces on a sandwich plate element
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plates can be captured with good accuracy and a nonprohibi-
tive computational cost. The shear stiffness of the core Sx 
and Sy , can be determined by the conception of a transverse 
shear load acting only on the core in the z-direction. By 
applying Hooke’s law, the shear stiffness of the core is sim-
ply determined by:

where Gs represents the shear modulus of steel. On the other 
hand, the continuous nature of the intermediate core layer, as 
opposed to the actual discrete configuration, does not allow 
for some local failure modes to be accurately captured, such 
as intercellular plate buckling. Therefore, the sandwich ele-
ment models provide a highly efficient approach of accept-
able accuracy only in cases where the elastic response of the 
panel component or system is investigated. In fact, this is 
the main mode of application for assessment or design pur-
poses, where the distribution of internal forces is required in 
the elastic range of response. However, this type of analysis 
must be accompanied by local limit state checks to overcome 
the inability to capture local failure modes.

2.2 � Limit state criteria

A successful design methodology for sandwich panels 
requires the consideration of the various possible failure 
modes, where an accurate prediction of these modes is not 
only necessary, but it should also utilise a simple approach 
that is suitable for practical application. The aim is to enable 
designers to assess with confidence the critical failure mode 
under specific loading and support conditions, the magnitude 
of the corresponding load and, most importantly, the loca-
tion of failure. With this information, the iterative optimisa-
tion process of a given design becomes simple and intuitive.

The limit states derived henceforth can be divided into 
three categories: material yielding, plate buckling and ser-
viceability limit states. Material yielding is assumed to take 
place according to the von-Mises yield criterion, with a yield 
strength of the material fy . Secondly, for plate buckling, the 

(3)
Sx = Gsh

(
tw,x

lx

)

Sy = Gsh
(

tw,y

ly

)

critical buckling load Ncr and respective critical buckling 
stress �cr are generally written as:

where E is the elastic Young’s modulus of the plate, t is plate 
thickness, � is Poisson’s ratio, Dplate(t) = Et3∕12

(
1 − �2

)
 is 

the plate bending stiffness, b is a dimension of the plate and 
k is the buckling coefficient (Ventsel 2001). The definition of 
the buckling coefficient, hence the corresponding buckling 
load, depends on the aspect ratio of the plate, the stress state, 
and the support conditions, as elaborated in subsequent sec-
tions. Moreover, it should be noted that buckling limit states 
are constrained by the elastic buckling capacity of RHCSPs, 
as it is a common design philosophy in engineering codes.

The limit states considered for RHCSP and discussed 
hereafter are: face yielding, face intercellular buckling, core 
compressive yielding, core compressive buckling, core shear 
yielding, which includes punching shear, and core shear 
buckling. The only serviceability limit state considered 
in this paper is deflection control. Detailed FE analysis is 
used to guide the development and confirm the simplified 
analytical expressions for each limit state. The three buck-
ling failure modes considered in this paper are illustrated in 
Fig. 7, referring to the face plate and the core strips shown 
in Fig. 3, which include the relevant geometric variables 
and the deformed shape consistent with simply supported 
conditions at the ends of the component plates.

2.2.1 � Face yielding

Consider a sandwich panel under general loading that leads 
to different bending moments in the principal directions, 
Mx and My , as well as twisting moments Mxy , as shown 
in Fig. 5. According to the sandwich concept, the top and 
bottom plates will be under a general planar stress state. 
Plate yielding limit state will therefore be defined by the 
von-Mises yield criterion (Gozzi 2004) and the sandwich 
effect according to the following expression, derived per 
unit length:

where tf  refers to the thickness of the face plate and h refers 
to the height of the panel, as illustrated in Fig. 3. A single 
quantity, equivalent to a ‘von-Mises moment’ can be con-
veniently derived according to:

(4)

�cr = k
�2E

12(1 − �2)

(
t

b

)2
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Ncr

t
; Ncr = k

�2Dplate(t)

b2
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√
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√
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+ 3
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√
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x
−MxMy +M2

y
+ 3M2
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Fig. 6   Three-layered sandwich model and local coordinate system 
(Liang and Izzuddin 2016)
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From the three maps of internal resulting moments, a ‘von-
Mises moment’ map can, therefore, be obtained. This simpli-
fication helps to establish where yielding initiates in the panel 
according to the following:

2.2.2 � Face intercellular buckling

Face intercellular buckling occurs when one of the face plates 
subject to a compressive stress state loses stability in between 
the supports provided by the core plates. The assessment of 
intercellular buckling under a general planar stress state can 
be achieved by considering a simply supported rectangular 
plate under biaxial planar stress, whose dimensions are the cell 
sizes of the core in the two directions, neglecting the effect of 
planar shear, as shown in Fig. 7a. Moreover, the biaxial stress 
resultants are defined by the bending moments of the panel 
divided by its height.

By introducing the cell sizes in the two directions into the 
exact solution for the stability equation applied to the buck-
ling behaviour of rectangular simply supported plates under 
biaxial compressive stress, the bending moment resistance for 
intercellular buckling can be determined as:

where � = Med,y∕Med,x defines the ratio between the bend-
ing moment resultants at a given point. It should be noted 
that the selection of the deformation mode, via parameters 
m and n , is the one that leads to the smallest compressive 
load, referred to as the critical buckling load. For this, eight 
different constraints are added considering m = 1, 2, 3, 4 for 
n = 1 and n = 1, 2, 3, 4 for m = 1 . These constraints lead to 
the exact buckling load for aspect ratios between the cell 

(7)MvM,max ≤ Mrd = h ⋅ tf ⋅ fy

(8)Med,x ≤ Mcr,x = h ⋅ tf ⋅

[
m2

(
lx∕ly

)2
+ n2

]2

m2
(
lx∕ly

)2
+ �n2

�2Dplate

(
tf
)

l2
x

sizes of the core up to 4.0, since the incorrect choice of m 
and n would lead to higher capacity and therefore to non-
active constraints, i.e. constraints that do not influence the 
optimal solution.

The critical locations for design are considered to be 
where Med,x is maximum, for both positive and negative 
values, with the corresponding Med,y , and where Med,y is 
maximum, for both positive and negative values, with the 
corresponding Med,x . This approach is expected to provide 
conservative theoretical predictions and could accordingly 
be used to achieve safe designs.

2.2.3 � Core shear yielding

According to the sandwich concept, the core is responsi-
ble for carrying shear forces and stabilising the face plates. 
Therefore, the core plates will be under a pure shear stress 
state which can cause yielding or buckling. The plastic shear 
resistance of a beam specimen of a RHCSP can be obtained 
similarly to an I-beam, by multiplying its shear area, which 
is the area of the web, by fy∕

√
3 . This accords with the von-

Mises criterion, which leads to the following expressions 
for the orthogonal cores under a pure shear stress state in 
a RHCSP:

The verified analytical predictions for the shear yield-
ing limit state specify that the resistance of the core in the 
two main directions is independent of each other. Therefore, 
the RHCSP is a versatile structural solution for rectangular 
sandwich panels, with two different orthogonal spans, with 

(9)Ved,x ≤ Vrd,x = h

�
tw,x

lx

�
fy√
3

(10)Ved,y ≤ Vrd,y = h

�
tw,y

ly

�
fy√
3

Fig. 7   Buckling failure modes: a face intercellular buckling; b core shear buckling; c core compressive buckling
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independent design checks for each direction, and the pos-
sibility of optimising the core in each direction, while taking 
advantage of the two-way flexural response.

2.2.4 � Core shear buckling

Core shear buckling can be assessed by considering a sim-
ply supported rectangular plate under a pure shear stress 
state whose dimensions are the cell size of the core in the 
orthogonal direction and the height of the panel, as shown in 
Fig. 7b. This method neglects the combined effect of shear 
and compression, which could potentially be relevant in the 
vicinity of patch loads.

The general solution for the stability equation applied 
to the buckling behaviour of rectangular simply supported 
plates under pure shear stress Nxy can be obtained. Under 
these conditions, by substituting the plate dimensions by the 
height and cell size in the orthogonal direction and consider-
ing h ≥ l , the critical shear force resultant of a RHCSP in the 
two directions, as verified via detailed numerical analysis, 
can be determined as:

and for h < l:

These constraint functions, when applied simultaneously, 
do not result in the accurate shear buckling capacity, since 
the wrong geometrical assumptions generate active con-
straints. This inaccuracy can be easily resolved by writing 
the denominators as piecewise functions.

These verified design equations for the shear buckling 
capacity of the core indicate that the two main directions 
are no longer decoupled. As an example, decreasing the core 
spacing in the y-direction increases the resistance of the core 
against core shear buckling in x-direction.
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⋅
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⋅

�2Dplate
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2.2.5 � Core compressive yielding

Under local concentrated loading, arising from the supports 
of heavy equipment, the core of the sandwich panel can fail 
through compressive yielding or compressive buckling. 
Compressive yielding is also governed by the von-Mises 
criterion applied for a uniaxial stress state. In this state, the 
ultimate capacity of a rectangular honeycomb core per unit 
area can be derived by the following expression:

2.2.6 � Core compressive buckling

The prediction of the elastic buckling of the core under com-
pression can be achieved by considering a simply supported 
rectangular plate under a uniaxial compressive stress state. 
The dimensions of this unit-plate are the cell size of the core 
and the height of the panel, as shown in Fig. 7c. Taking into 
consideration rectangular cores, the buckling behaviour of 
a group of cells can be assessed by two different critical 
buckling loads arising from different orthogonal unit-plates. 
The elastic buckling capacity of the system is determined 
by the sum of the resistance of each unit-plate, leading to 
the following expression to assess the compressive buckling 
capacity of a rectangular core:

where mx and my are selected so that the critical buckling 
is minimised. The selection of the deformation mode, via 
parameters mx and my , is achieved via 25 different constraints 
considering the permutations of mx,my = 1, 2, 3, 4, 5 . These 
constraints lead to the exact buckling load of welded cores 
in the practical range where the height of the optimal panel 
is less than five times the cell sizes in the two orthogonal 
directions.

Each component of (16) is valid only for elastic buckling. For 
elasto-plastic buckling, with material nonlinearity developing 
after buckling, the plate that buckles first could have lost a signifi-
cant part of its resistance due to softening. Adding the two buck-
ling loads provides an accurate estimation of the buckling capac-
ity only if the buckling capacities of the two plates are similar. 
Nonetheless, the choice of using (16) as a design equation relies 
on three aspects: firstly, rectangular plates present a strong stable 
post-buckling response, characterised by a shift of the applied 
compressive stress from the centre of the plate towards its edges, 
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reducing the bending moments in the centre of the buckled plate; 
secondly, compressive yielding is revealed to be the least critical 
limit state, decreasing the chances of compressive buckling to be 
shortly followed by material yielding; and thirdly, the difference 
between the buckling capacity of each set of plates is delimited 
by the set of design bounds for thicknesses and cell sizes.

2.2.7 � Deflection control

Finally, a serviceability limit state regarding the deflection 
of the panel is considered as 1/360 of the smaller span of the 
sandwich panel. The maximum deflection wb0 is obtained 
using considering a unit flexural stiffness D . The deflection 
constraint is then written as:

Shear deformation can also be accounted in the con-
straint by considering a similar reference variable ws0 , cor-
responding to the maximum shear deflection, as shown in for 
S = 1.0 . With Dpanel = E ⋅

(
h2tf ,toptf ,bot

)
∕
(
tf ,top + tf ,bot

)
 and 

Spanel = G ⋅ h ⋅min
(
tw,x∕lx, tw,y∕ly

)
 , the updated deflection 

constraint is given by:

In the case of orthotropic cores, two constraints are con-
sidered to prevent convergence issues arising from the min 
function in the denominator. Nonetheless, this approxima-
tion leads to conservative solutions since the shear deflec-
tion is calculated using the most flexible core in the two 
directions. In the case where the deflection is numerically 
obtained from the sandwich element models, as shown in 
Fig. 6, the flexural reference variable wb0 is determined 
on a model with virtually large shear stiffness, while the 
shear reference variable ws0 is estimated through the differ-
ence between the model with realistic shear stiffness and 
the model with large shear stiffness. This does not increase 
computational time since the two linear elastic models can 
be computed in parallel.

2.3 � Gradient‑based optimisation

It is recognised that the weight of an offshore facility sig-
nificantly influences the cost, schedule, and complexity 
of offshore projects (Rui and Walker 2015), even though 
it is hard to quantify this influence (Kaiser et al. 2013). 
Moreover, fabrication costs for offshore topside structures 
are usually presented in cost per tonne, indicating the sig-
nificance of weight on these costs. This is due to the cost 
per day of offshore transportation vessels being highly 

(17)
wb0

Dpanel

≤
min (L,W)

360

(18)
wb0

E ⋅

h2tf ,toptf ,bot

tf ,top+tf ,bot

+
ws0

G ⋅ h ⋅min
(

tw,x

lx
,
tw,y

ly

) ≤
min (L,W)

360

dependent on their weight capacity. Therefore, consider-
ing the application as deck systems for offshore topsides, 
minimising weight is seen as the main objective since it 
not only reduces material usage but significantly influ-
ences the cost of transportation and installation.

In this paper, the weight of the panels is the only param-
eter to be considered in the objective function f0(X) for 
optimisation. The expression for the weight of the panel, 
expressed per unit area, is as follows:

This objective function as well as the constraint func-
tions presented throughout Sect.  2.2 are continuous. 
Moreover, as shown in Fig. 3, this optimisation problem 
is defined solely by seven geometric variables, which ren-
ders gradient-based optimisation algorithms capable of 
efficiently solving this problem. A practical consideration 
in the context of gradient-based optimisation requires that 
the constraint functions be normalised to improve the per-
formance of the method. Every structural constraint is then 
written in the following form:

where C stands for a constant value combining all the con-
stant inputs necessary to express a given limit state, and 
gi(X) stands for a function that combines all the variables X 
of the optimisation problem in the same expression. Addi-
tionally, the value of 1.0 can be interpreted as the inverse 
of a target utilisation factor (or safety factor) for the con-
sidered limit state, as C also refers to the design internal 
forces and gi(X) to the respective resistance. This requires 
the internal forces to be independent of the variables, which 
is an assumption undertaken in this paper. This assumption 
is valid for simply supported sandwich panels of nearly 
isotropic cores. For general support boundary conditions, 
the refined methodology is needed to re-assess the internal 
forces at the end of each iteration, as illustrated in  Fig. 4. 
Using different target utilisation factors for different limit 
states establishes a hierarchy of failure conditions, similar to 
the principles of capacity design presented in design codes 
for buildings under earthquake loading (British Standards 
Institution 2005). In this paper, the target utilisation factors 
are all set to 1.0.

Lower and upper design bounds ( Xmin and Xmax ) for the 
geometric variables that define a RHCSP are also estab-
lished. A minimum value for the thickness of the plates of 
3 mm is chosen due to fabrication limits. However, there is 
an interest in neglecting these design bounds initially, gen-
eralising the method to different applications. Consequently, 
the optimisation problem can be summarised as follows:

(19)f0(X) = Weight = �s

[
tf ,top + tf ,bot + h

(
tw,x

lx
+

tw,y

ly

)]

(20)fi(X) =
C

gi(X)
− 1.0 ≤ 0
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This work adopts the Method of Moving Asymptotes 
(MMA) (Svanberg 1987), which is a gradient-based numeri-
cal method to solve optimisation problems by creating, in 
each iteration, a subproblem where a function with the gen-
eral shape of y = 1∕x approximates both the objective and 
the constraint functions in the vicinity of the current point. 
In short, the MMA algorithm replaces the objective and 
constraints functions with a set of convex functions that are 
equivalent in the vicinity of the current point and then solves 
the subproblem as a convex optimisation problem. These 
approximating functions are updated in each iteration, hence 
the name ‘moving asymptotes’. In detail, the approximation 
functions that constitute the subproblem are defined as:

where the i-index refers to the objective and constraints 
functions, the j-index to the design bounds of each of the n 
variables, pij and qij are scalar coefficients which guarantee 
the same local gradient in the current iterative step k , and 
uj and lj are the moving asymptotes. A representation of the 
approximation function f̃ (X) is illustrated in Fig. 8a, where 
the local gradient is negative 

(
pij = 0

)
 , while Fig. 8b illus-

trates the case where the local gradient is positive 
(
qij = 0

)
.

2.3.1 � Sensitivity analysis

The sensitivities of the objective function and the yielding, 
buckling and deformation constraints are obtained analyti-
cally and implemented in the algorithm. Since the geometric 
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variables are treated as continuous, the objective and con-
straint functions presented throughout Sect. 2.2 are differ-
entiable. The derivation of these sensitivities is presented 
in Appendix.

The objective and constraint functions that rule structural 
design optimisation problems, such as the one presented in 
this paper, are usually nonlinear and, most importantly, 
nonconvex. Therefore, gradient-based algorithms, such as 
MMA, may result in a local optimum instead of the global 
optimum. To confirm the suitability of the method, an 
exhaustive search was applied which consists of subdivid-
ing the parametric domain to obtain an estimate of the global 
minimum through brute force search. The solution found in 
the discrete space using this exhaustive search is similar to 
the one found in the continuous space using MMA. Moreo-
ver, the design space in the vicinity of the optimal solution 
was searched by permutating small increments of the geo-
metric variables. This guarantees that the minimum solution 
that respects the constraints is found. Finally, since the initial 
candidate solution is obtained arbitrarily and multiple starts 
converged to the same solution, this strongly indicates the 
solutions provided in this paper are global optima.

For the problems described in this paper, MMA provided 
consistent global optimal solutions. It should be noted that 
some other gradient-based methods, such as the interior-
point method (Maar and Schulz 2000) or sequential quad-
ratic programming (Schittkowski et al. 1994), could have 
been used to solve this optimisation problem.

3 � Verification against detailed numerical 
models

A simply supported rectangular sandwich panel with an area 
of 5.4 × 9.0 m2 under a combination of distributed and patch 
loads is analysed and optimised. A schematic view of the 
example is presented in Fig. 9a, establishing the geometry 

Fig. 8   Approximation of functions by the MMA: a negative and b positive local gradient
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of the problem and the loading conditions. The panel is sub-
jected to a UDL of 20 kPa as well as four patch loads with 
varying dimensions and area loads. Design internal forces 
are obtained using RM plate bending theory with these being 
unaffected by the flexural and shear rigidities. An illustra-
tive output of this method of analysis is presented in Fig. 9b 
depicting the top plate planar stress resultant in the x-direc-
tion in N/mm. On the other hand, Fig. 9c represents the 
same stress map as obtained from the sandwich FE model 
of the optimal solution. The numerical sandwich FE solu-
tion was obtained using 8640 elements corresponding to an 
element size of 75 mm while the RM plate bending theory 
was used to calculate the internal forces in 6000 points. The 
correspondence between the results from the RM analytical 
solution and the numerical sandwich FE solution is evident 
in this case.

These two methods of analysis are used to obtain the fol-
lowing quantities relevant to the previously presented limit 
states: maximum equivalent von-Mises bending moment, 
MvM,ed , for face yielding; maximum bending moment in x - 
and y-directions at critical locations, Med,x and Med,y , for 
intercellular buckling; maximum shear forces in x - and y
-directions, Ved,x and Ved,y, for core shear yielding and buck-
ling; maximum compressive stress, Ced , for compressive 
yielding and buckling; the constants wb0 and ws0 , for defor-
mation control. The critical locations for intercellular buck-
ling include the points with maximum bending moments in 
both x - and y-directions. These design internal forces are 
presented in Table 1, as obtained using the Reissner–Mindlin 
analytical expressions and as obtained using the sandwich 

FE model of the optimal panel. Some discrepancies can be 
observed mainly in the maximum shear forces in the vicinity 
of the patch loads, which can be associated with the differ-
ent underlying assumptions of RM plate bending theory and 
sandwich FE modelling to analyse domains where shear is 
changing rapidly. Nonetheless, it can be ascertained from 
Fig. 9 and Table 1 that the analytical RM plate bending 
expressions can accurately estimate the distribution of inter-
nal forces in the domain of the panel, as compared to the 
numerical model based on sandwich FE elements, verifying 
that no iterations are required in this case.

As previously mentioned, the target utilisation factors 
for all limit states are kept as 1.0, and the optimisation is 
performed without considering design bounds. Consider-
ing a yield strength fy of 235 MPa, the outcomes of the 
optimisation algorithm are the dimensions of the optimal 
panel, which are presented in Table 2, and the corresponding 

Fig. 9   5.4 × 9.0 m2 Model: a schematic view; b internal force maps using analytical RM model; c internal force maps using sandwich FE model

Table 1   Design internal force resultants—5.4 × 9.0 m2

Design quantities Analytical RM model Sandwich FE model

MvM,ed (N mm/mm) 407,000 401,000
Vx,ed(N/mm) 456 480
Vy,ed(N/mm) 450 479
Med,x , Med,y (N mm/

mm)
390,000, 286,000 386,000, 283,000
337,000, 321,000 332,000, 320,000

Ced(MPa) 2.02 2.02
wb0 (N mm2) 9.2e11 9.1e11
ws0(N) 5.2e5 4.6e5
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utilisation factors for the optimal panel are presented in 
Table 3. It can be observed that several limit states have a 
utilisation factor equal to 1.0, rendering them critical to the 
optimisation problem.

The optimal panel, as obtained from the two different 
analysis methods, is approximately the same. To verify the 
optimisation sequence, a detailed nonlinear FE model, in 
which both the cover plates and core strips are modelled 
with nine-noded shell elements, is used to investigate the 
nonlinear structural behaviour of the optimal panel from the 
RM analytical solution. The panel geometry and the load-
ing conditions are presented in Fig. 9a and Table 2. For the 
domain discretisation of RHCSPs, 9-noded quadrilateral 
(Izzuddin and Liang 2016, 2020) geometrically nonlinear 
co-rotational shell FEs have been employed. This high-
fidelity numerical modelling strategy can capture various 
forms of local buckling and its progression over the panel 
domain, alongside the effects of material nonlinearity and 
sympathetic sinusoidal imperfections (Nordas et al. 2018).

A model of the optimal panel is depicted in Fig. 10a, 
which also shows the compressive stress maps in the x
-direction, while Fig. 10b provides the predicted nonlinear 
response.

It can be seen from the core deformed shape in Fig. 10a 
that the critical failure mode is compressive buckling of the 
core plates below the 900 × 900 mm2 patch loads, which 
occurs at a load factor LF = 0.95. The fact that this load fac-
tor is close to 1.0 indicates that the interaction between core 
compressive buckling and core shear buckling below the 
patch loads is not significant. The results from an identi-
cal model with linear elastic material are shown to identify 

material yielding, which occurs at LF = 1.02. At LF = 1.0, 
the maximum displacement is 13.62 mm, complying with 
the serviceability limit of 15.0 mm (i.e. 5400/360). As pre-
dicted by the optimisation sequence, structural instabili-
ties should affect the nonlinear response of the panel at a 
load factor LF = 1.0, which is successfully observed in the 
detailed model. This fact serves as a verification tool for 
the proposed analysis methodology. In addition, the panel 
displays a hardening post-buckling response, which indicates 
that the proposed limit state criteria have the desirable char-
acteristic of being marginally conservative.

4 � Application examples

Benchmark results arising from the optimisation algorithm 
are provided and discussed in this section to assist in the 
development of practical rules and future design guidance. 
Firstly, it should be noted that both design methodologies 
presented in this paper provide the same solution for simply 
supported square panels under UDL. This is because plate 
models accurately estimate isotropic sandwich panels, which 
end up being optimal in these scenarios. It should also be 
noted the optimisation sequence based on the RM analytical 
solution is an order of magnitude faster than the algorithm 
based on sandwich FE elements since it does not require 
recalculation of design internal forces. More relevant con-
clusions arise from a 2 × 10 m2 simply supported panel under 
a UDL of 0.2 MPa, as shown in Fig. 11a. Table 4 presents 
the design internal forces for the optimal panel.

As expected, load transfer is achieved via the shorter 
span in the x-direction as indicated by the design bending 
moments in x - and y-directions in Table 4. The optimal 
panel is established for the unbounded problem, assuming 
a yield strength fy of 235 MPa, with the optimal geometric 
variables presented in Table 5, while Table 6 depicts the 
respective utilisation factors.

The optimal panel has an approximately isotropic core 
( Sx ≈ Sy ). Even by artificially reducing Vy,ed to a negligible 
number, the optimal panel is still interestingly nearly iso-
tropic ( Sx ≈ 1.3Sy ), with shear buckling in the two direc-
tions representing the critical limit states, as shown in 
Table 6. This nonintuitive result can be interpreted as fol-
lows: first of all, when the variables are kept unbounded, 
there are no lower bounds to the weight of the core and, 
therefore, the optimal panel is defined by a large height and 
a light core; secondly, the plates of the core, are extremely 
thin and prone to buckling; finally, the shear buckling limit 
state, as defined in (11) and (12), for h ≥ l , denotes that 
the spacing of the strips in the orthogonal direction has a 
greater influence on the elastic buckling capacity, than the 
spacing of the strips in the direction of the shear forces; 
therefore, the optimal panel has thick plates with increased 

Table 2   Geometric variables of the optimal panel—5.4 × 9.0 m2

Geometric variables Analytical RM model Sandwich FE model

tf ,top∕tf ,bot(mm) 4.21 4.14
h(mm) 411.9 412.4
tw,x∕tw,y(mm) 2.13/1.84 2.07/1.84
lx∕ly(mm) 202.3/168.1 194.0/168.4
Weight (kg/m2) 135.5 134.8

Table 3   Utilisation factors of the optimal panel—5.4 × 9.0 m2

Limit states Analytical RM model Sandwich FE model

Yielding Top/Bot 1.000 1.000
Shear yielding X/Y 0.775/0.735 0.802/0.784
Compressive yielding 0.400 0.398
Intercellular buckling 1.000 1.000
Shear buckling X/Y 0.578/1.000 0.633/1.000
Compressive buckling 1.000 1.000
Deformation control 0.917 0.898
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cell size in the direction of high shear force and thinner 
plates with reduced cell size in the direction of the lower 
shear force, leading to a panel which has similar core shear 
stiffness in both directions.

Now, to investigate the effect of introducing design 
bounds on the thicknesses of the plates, which are set as a 
minimum thickness of 3 mm due to fabrication limits, the 
optimal panel presented in Table 7 is obtained.

In this case, the core of the optimal panel is orthotropic 
with Sx = 2.15Sy . This degree of orthotropy of the core 
might indicate that plate bending solutions do not provide 
an accurate distribution of internal forces in the panel. Nev-
ertheless, it has been found that more accurate analysis 
using sandwich FE modelling does not significantly alter 
the weight of the optimal panel, indicating that the analytical 
RM approach, which runs around 10-times faster, can be still 
used to accurately estimate the optimal solution of simply 
supported rectangular panels with an orthotropic core and 
with large aspect ratio under UDL.

Another example considers the same 2 × 10  m2 panel 
under a 2 MPa, 400 × 400 mm2 centred patch load, as shown 

in Fig. 11b. Table 8 presents the geometric variables of the 
optimal panel.

In these two cases, using the iterative method achieves 
a lighter optimised panel, which is due to a reduction in 
the design shear forces. A final reference is considered for 
a 2 × 10 m2 panel under a UDL of 0.2 MPa, but now with 
three fixed edges and a free long edge, as shown in Fig. 11.c. 
For general support boundary conditions, neither analyti-
cal nor numerical plate bending models can provide suffi-
ciently accurate results since the internal force distribution 
is dependent on the ratio between flexural and shear stiffness 
of the plate. Hence, this method of analysis is not suitable 
to be used for optimisation of sandwich panels with general 
support boundary conditions. Table 9 presents the geometric 
variables of the optimal panel when excluding or consider-
ing design bounds for the thicknesses of the plates, obtained 
using the more general approach using sandwich FE model.

In this last case, the shear forces at the corners of the 
free edge substantially influence the optimal panel. Since 
the panel is designed according to the maximum shear force, 
this fact leads to nearly isotropic core sandwich panels. A 
nonuniform core could be used in these cases, where core 

Fig. 10   Detailed model of 
the optimal panel: a Stress 
maps and failure b Nonlinear 
response
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Fig. 11   Schematic view of 2 × 10 m2 panels: a simply supported under UDL; b simply supported under centred patch load; c three fixed edges 
and a free long edge under UDL

Table 4   Design internal force resultants—2 × 10  m2, UDL, without 
design bounds

Design quantities Analytical RM model Sandwich FE model

MνM,ed (N mm/mm) 88,500 88,100
Vx,ed (N/mm) 200 199
Vy,ed (N/mm) 147 147
Med,x, Med,y (N mm/

mm)
99,700, 30,250 99,200, 30,000
70,600, 35,500 73,700, 35,400

Ced (MPa) 0.2 0.2
wb0 (N mm2) 4.2e10 4.0e10
ws0 (N) 1.0e5 9.7e4

Table 5   Geometric variables of the optimal panel—2 × 10 m2, UDL, 
without design bounds

Geometric variables Analytical RM model Sandwich FE model

tf,top/tf,bot (mm) 1.57 1.57
h (mm) 240.0 239.3
tw,x/tw,y (mm) 0.66/0.61 0.66/0.61
lx/ly (mm) 74.7/70.5 74.6/70.5
Weight (kg/m2) 57.4 57.3

Table 6   Utilisation factors of the optimal panel—2 × 10 m2, UDL, 
without design bounds

Limit states Analytical RM model Sandwich FE model

Yielding Top/Bot 1.000 1.000
Shear yielding X/Y 0.694/0.526 0.693/0.529
Compressive yielding 0.049 0.049
Intercellular buckling 1.000 1.000
Shear buckling X/Y 1.000/1.000 1.000/1.000
Compressive buckling 0.574 0.572
Deformation control 0.826 0.818

Table 7   Geometric variables of the optimal panel—2 × 10 m2, UDL, 
with design bounds

Geometric variables Analytical RM model Sandwich FE model

tf,top/tf,bot (mm) 3.68/3.00 3.64/3.00
h (mm) 157.1 150.4
tw,x/tw,y (mm) 3.00/3.33 3.00/3.29
lx/ly (mm) 206.7/482.7 199.7/464.4
Weight (kg/m2) 78.8 78.3
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strips are used only near the supports and then interrupted 
towards the middle of the panel.

5 � Conclusions

This paper proposes a methodology for structural design and 
optimisation of RHCSPs using a gradient-based optimisation 
approach, comprised of a method of analysis and the introduc-
tion of limit state equations based on pre-established failure 
modes, solved iteratively by the Method of Moving Asymp-
totes. This paper demonstrates that removing the response 
constraints from the optimisation sequence leads to an effi-
cient yet accurate design method for simply supported panels.

The analysis of simply supported sandwich panels under 
combined out-of-plane UDL and patch loads can be based on 
the Reissner–Mindlin plate theory, which, when compared 
to sandwich FE models, allows for a relatively accurate opti-
misation sequence to run without recalculating the internal 
forces for every iterative step. When considering general 
support boundary conditions, the analytical RM approach 
is no longer suitable, and a more refined method of analysis, 
such as using sandwich FE models, is required to recalculate 
the internal force distribution at each iterative step.

Regardless of the method of analysis, the design method-
ology takes advantage of the sandwich concept, where it is 
assumed that top and bottom plates resist bending moments 
and the core resists the shear forces, to obtain the internal 
forces in each layer. The internal forces are used to gener-
ate the constraints of a structural optimisation problem to 

minimise weight. The constraints are based on the various 
limit states in the domain of the panel, including material 
yielding, plate buckling and deformation control. The opti-
mal panel obtained from the proposed design methodology 
is verified against detailed numerical modelling.

The results considering different panel configurations 
demonstrate that the optimisation of the unbounded problem 
interestingly leads to nearly isotropic cores even for rectan-
gular panels with a one-way load transferring mechanism, 
mainly due to core shear buckling being the critical limit 
state. By considering practical limits related to the manu-
facturing process, the cores of optimal rectangular panels 
become more orthotropic. Despite this, the analytical RM 
approach proved to provide sufficiently accurate results for 
simply supported panels at a substantially reduced computa-
tional cost, as it avoids a recalculation of the internal forces 
at each iterative step.

The proposed methodology enhances the prospects for 
the application of RHCSPs as two-way sandwich panel deck 
systems, a novel solution that is superior to the conventional 
one currently used in offshore structural engineering prac-
tice in terms of weight, construction time, life span, safety, 
assembly process and overall cost.

Appendix

Analytical sensitivities

Analytical sensitivities of the objective function and the 
yielding, buckling and deformation constraints fi(X) are 
presented hereafter, written in the following form:

The objective function f0(X) , presented in (19), is dif-
ferentiated as:

The sensitivities are obtained as follows for face yielding 
of the top plate:

face yielding of the bottom plate:

core shear yielding in the x-direction:
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Table 8   Geometric variables of the optimal panel—2 × 10  m2, Patch 
load, with design bounds

Geometric variables Analytical RM model Sandwich FE model

tf,top/tf,bot (mm) 4.12/3.00 3.94/3.00
h (mm) 107.5 104.9
tw,x/tw,y (mm) 3.00/3.00 3.00/3.00
lx/ly (mm) 175.1/246.0 163.4/231.2
Weight (kg/m2) 80.6 80.3

Table 9   Geometric variables of the optimal panel—2 × 10 m2, three 
fixed edges—Sandwich FE model

Geometric variables Without design bounds With design bounds

tf,top/tf,bot [mm] 2.99/2.99 4.50/4.50
h [mm] 494.7 404.5
tw,x/tw,y [mm] 1.48/1.47 3.00/3.00
tx/ly [mm] 140.4/144.4 233.1/246.8
Weight [kg/m2] 127.5 150.0
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core shear yielding in the y-direction:

and core compressive yielding:

For buckling limit states, the derivatives require more 
terms. To simplify the notation, the following placeholders 
are defined first:

The sensitivities for face intercellular buckling applied to 
the top plate are then obtained as follows:

Considering shear buckling in the x-direction and consider-
ing h ≥ ly , the following placeholder is first defined:

where the sensitivities are expressed as:

On the other hand, for h < ly , ks is given by:

where the sensitivities are obtained as:
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For shear buckling in the y-direction, and considering 
h ≥ lx , the following placeholder is first defined:

where the sensitivities are obtained as:

On the other hand, for h < lx , ks is defined as:

and the sensitivities are expressed as:

To simplify the notation for compressive buckling, con-
sider two placeholders:

The sensitivities can then be expressed as:

The sensitivities for the control of deflection consider-
ing tw,x
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<
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 are determined as:
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On the other hand, for tw,y
ly

<
tw,x

lx
:
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Replication of results  Scripts used in this work can be found at: https://​
github.​com/​luisa​ntos0​90/​SaMO_​07_​2022.​git. The numerical work pre-
sented in this paper has been performed in ADAPTIC (Izzuddin 1991), 
developed by Professor Bassam A. Izzuddin.
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