
Vol.:(0123456789)1 3

AI & SOCIETY (2021) 36:1093–1104 
https://doi.org/10.1007/s00146-020-01124-6

EDITORIAL

Introduction: ways of machine seeing

Mitra Azar1 · Geoff Cox2 · Leonardo Impett3

Received: 23 November 2020 / Accepted: 26 November 2020 / Published online: 20 February 2021 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

How do machines, and, in particular, computational technol-
ogies, change the way we see the world? This special issue 
brings together researchers from a wide range of disciplines 
to explore the entanglement of machines and their ways of 
seeing from new critical perspectives. As the title makes 
clear, we take our point of departure in John Berger’s 1972 
BBC documentary series Ways of Seeing, a four-part televi-
sion series of 30-min films created by Berger and producer 
Mike Dibb, which had an enormous impact on both popular 
and academic perspectives on visual culture. Berger’s scripts 
were adapted into a book of the same name, published by 
Penguin also in 1972. The book consists of seven numbered 
essays: four using words and images; and three essays using 
only images. Seeing is evidently a political act, exemplified 
in the third episode-chapter, where images of women in early 
modern European painting (Pol de Limbourg, Cranach the 
Elder, Jan Gossaert, Tintoretto) and commercial magazines 
are juxtaposed to demonstrate the ways in which women are 
rendered as objects of the male gaze. More broadly, Berger 
emphasised that “the relation between what we see and what 
we know is never settled”. In this special issue, we explore 
how these ideas can be understood in the light of technical 
developments in machine vision and algorithmic learning, 
and how the relations between what we see and know are 
further unsettled.

What we see above (Fig. 1) is clearly not a book as such 
but a technically reproduced image of a book (Cox 2016). 
This testifies to the ways in which what, and how, we see 
and know is further unsettled through complex assemblages 
of elements, the details of which are largely kept from 
view. Access to the means of production here emphasises 
the Marxist approach of Berger (and, in turn, the Marxism 
of Benjamin, who Berger credits with furnishing the key 
concepts in Ways of Seeing), and how exposing what stays 
invisible allows a political understanding of social relations 
and thereby the possibility of their transformation. The TV 
programmes employed Brechtian techniques: revealing the 
technical apparatus of the studio, to encourage viewers not 
to simply watch (or read) in a straightforward way but rather 
be forced into an analysis of their alienation. Although rather 
less sophisticated in form, we hope for something similar 
with this journal that readers will reflect on what they see 
and read in ways that lead to a “return from alienation” or 
recognition of distancing-effects—breaking the “fourth 
wall” of machine vision, so to speak—to expose the uneven-
ness of social relations in new ways.

Alienated forms of social interaction have become the 
“new normal” as we write. The current pandemic seems 
to heighten uncertainties about what is rendered visible 
and invisible to human perception. When the visual field is 
increasingly nonhuman, how is the world made knowable to 
us when much of its operations lay outside our visual reg-
ister and consequently outside the scope of human action? 
Adrian Mackenzie and Anna Munster refer to an “opera-
tionalization” of visuality, in which images operate within a 
field of “distributed invisuality” in which relations between 
images count more than indexicality or iconicity (we might 
add, “aura” (Benjamin 2008)) of a single image (Mackenzie 
and Munster 2019: 16). Seeing, or what they call “platform 
seeing”, becomes distributed through data practices and 
machinic assemblages that “emphasize the importance of 
the formatting of image ensembles as datasets across con-
temporary data practices; the incorporation of platforms 
into hardware in devices; forms of parallel computation; and 
the computational architectures of contemporary artificial 
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intelligence. These assemblages constitute the (nonhuman) 
activities of perception as mode of cutting into/selecting out 
of the entire flux of image-ensemble world” (2019: 3). The 
importance of this understanding is that a new mode of per-
ception is operationalized, what they call “invisual percep-
tion” (2019: 4): a new way of (machine) seeing which is an 
assemblage of its various parts; including imaging devices 
(such as cameras), the data they produce (which might take 
the form of an image), and the wider practices and infra-
structures through which they are operationalized (in terms 
of its application).

So how to begin to understand the relation between seeing 
and knowing within this new operational context? Artist Tre-
vor Paglan bluntly explains: “We’ve long known that images 
can kill. What’s new is that nowadays, they have their fingers 
on the trigger” (2014). This intensification of visuality takes 
“necropolitical” form (defined by Achille Mbembé (2003) 
as the question of who lives and who dies). Central to this is 
the “right to look” as Nicholas Mirzoeff has previously put 
it, the need to reclaim autonomy from authority, and gener-
ate new forms of “countervisuality” that turn the unreality 
created by visuality’s fake authority into real alternatives 

(2011: 476, 485). For this journal, the special relationship 
between the formation of “racial surveillance capitalism” 
and the artificial vision of colonial power is further elabo-
rated by Mirzoeff, for instance, as a form of fake authority 
over asylum seekers and refugees (see “Artificial Vision, 
White Space and Racial Surveillance Capitalism”, herein). 
The “realism” of this authority is rendered open to ques-
tion, and some of the contradictions inherent to machine 
seeing are exposed. Indeed, “Reality is not only everything 
which is, but everything which is becoming. It’s a process. 
It proceeds in contradictions. If it is not perceived in its con-
tradictory nature it is not perceived at all” (Brecht, cited in 
Mirzoeff 2011: 477).

We might well ask how machine seeing further exposes 
contradictions, or perhaps there is another kind of nega-
tion at work? To paraphrase, Luciana Parisi in “Negative 
Optics in Vision Machines” (herein), can machine vision 
step beyond the “ocularcentric metaphysics of the Western 
gaze and the reproduction of racial capital”? She refers to 
this “inhuman” mode of machine vision as “negative optics” 
(like countervisuality) in order to offer an internal critique 
of ocular metaphysics, but also to defy the equation of value 

Fig. 1   The Cover of Ways of Seeing by John Berger (1972), and as seen through an optical character recognition programme. Images from Pen-
guin Books and Scandinavian Institute for Computational Vandalism
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between 0 and 1 s that sustains the universal law of (com-
putational) capital. By starting from the negativity of the 
image, the racialized and gendered conditions of “artificial 
intelligence capitalism” demonstrate that “the equation of 
value maintains the condition of the zero of blackness”. 
What is challengingly proposed is that randomness in com-
putation is part of the expansion of “heretic epistemologies” 
that start from dark optics and address what Denise Ferreira 
Da Silva calls “blackness”, namely “matter without form”, 
or “matter beyond the equation of value” (2017). Parisi 
suggests that, instead of being just invisible, blackness, as 
matter without form, brings forward the nullification of the 
ocularcentric field of vision.

What constitutes knowledge or value can be seen to be 
arranged in ways that further recall Berger’s reflections on 
the medium of television through which his ideas were made 
public: “But remember that I am controlling and using for 
my own purposes the means of reproduction needed for 
these programmes […] with this programme as with all 
programmes, you receive images and meanings which are 
arranged. I hope you will consider what I arrange but please 
remain skeptical of it.” (1972). We reiterate this statement 
here to further stress reflection on the means of production, 
including journals like this, that purport to impart useful 
knowledge. What is learnt should not be separated from 
the means by which it is transmitted or circulated. More to 
the point, the production of meaning lies at the core of our 
discussion, as do concerns about what is being learnt, and 
to what extent this has been compromised by the mode of 
production, or inflected by reductive ideas of how the world 
operates. Under these conditions, the relations between 
human and machine learning become quite blurry. The 
overall idea of “learning” implies new forms of control over 
what and how something becomes known and how decisions 
are made, as for instance, in the ways in which images are 
classified and categorized by humans and machines (e.g. 
concluding that this image of a person most likely represents 
a specific gender, race, likely terrorist, and so on). Knowl-
edge is often set at the lowest common denominator in such 
cases, backed up by the enormous infrastructural power 
of the companies that profit from generalisations, as is the 
case for platform-based media empires—such as Amazon 
and Google—who are concerned that users simply supply 
(visual) data.

That machines can be said to “see” or “learn” is short-
hand for calculative practices that only approximate (or 
generalise) likely outcomes by using various probabilistic 
algorithms and models that all have built upon inherent 
human–machine prejudices such as those related to gender 
and race (see Myers West et al. 2019). What are the politi-
cal consequences of automated systems that use labels to 
classify humans, including by race, gender, emotions, abil-
ity, sexuality, and personality? Kate Crawford and Trevor 

Paglan’s “Excavating AI” (2019, republished in a new ver-
sion for this journal) examines how and what computers 
recognize in an image, and indeed what is misrecognized? 
Computer vision systems make judgements, and decisions, 
and as such exercise power to shape the world in their own 
images, which, in turn, is built upon flattening generalities 
and embedded social bias.

A cartography of the limits of AI is provided by Mat-
teo Pasquinelli and Vladan Joler in “The Nooscope Mani-
fested” (herein), applying the analogy of optical media to 
“diagram” machine learning apparatuses. Ultimately, they 
wish for more collective intelligence about machine intelli-
gence, more public education instead of “learning machines” 
and their “colonial regime of knowledge extractivism”. The 
interplay between truth and fiction is again part of this, and 
“deepfakes” for example (a wordplay on “deep learning”) 
make a good case study for the ways in which synthetic 
instances can pass for real data (or human reason) as per-
petuated by corporate regimes of knowledge extractivism 
and epistemic colonialism (to paraphrase the evocative 
description of Pasquinelli and Joler). Furthermore, this 
interplay of truth/fake is what Abelardo Gil-Fournier and 
Jussi Parikka expand upon in “Ground Truth to Fake Geog-
raphies” (herein) to chart the development of what they call 
“ground truth”, with reference to the shift from physical, 
geographical ground, to the “ground of the image”. They 
discuss contemporary practices that mobilize geographi-
cal earth observation datasets for experimental purposes, 
including “fake geography” as well as artistic practices, to 
show how ground truth is “operationalised” (citing Harun 
Farocki 2004).

Seeing, then, is no longer centred, singular or indexical 
truth or reality, as it was mistakenly thought to be, indicative 
of a wider need to manifest authority and power through vis-
uality, but takes on new distributed and contradictory forms. 
Fabian Offert and Peter Bell in “Perceptual Bias and Tech-
nical Metapictures” (herein), argue for a transdisciplinary 
approach—across computer science and visual studies—to 
understand the inherent biases of machine vision systems. 
What they call “perceptual bias” accounts for the differ-
ences between the assumed “ways of seeing” of a machine 
vision system, “our reasonable expectations regarding its 
way of representing the visual world, and its actual percep-
tual topology”. This shifts the discussion from critical atten-
tion to dataset bias and on fixing datasets by introducing 
more diverse sets of images. The point is upheld by Nicolas 
Malevé in “On the Dataset’s Ruins” (herein) who acknowl-
edges the dataset as significant cultural form, but also wants 
to shift attention from fixing the database (as in the case of 
the inherent biases of ImageNet) to highlight the invisible 
labour that labels and classifies the images, as well as to the 
operations of the apparatus itself. To understand the spe-
cific character of the “scale” of computer vision as he puts 
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it, comparison is made to André Malraux’s “museum with-
out walls” in which the photographic apparatus allows for 
unlimited access to the world’s image resource. The social 
implications of this attention to scale—from the molecu-
lar to urban—are further elaborated in Benjamin Bratton’s 
commentary on the The New Normal think-tank at Strelka 
Institute in Moscow (“AI Urbanism: A Design Frame-
work for Governance, Program, and Platform Cognition”, 
herein), thereby understanding AI as “a property that can 
be designed into objects of different scales” and thus more 
alert to questions of “what kind of planetarity can and must 
be composed”.

From our open call for papers, contributors further 
address the ways in which existing references from visual 
culture—such as Berger’s Ways of Seeing—useful as they 
remain, require additional work, not least in dialogue with 
other disciplines to further emphasise the importance of 
social and political aspects in technical fields such as AI 
(Agre 1997). (And we might reiterate the name of this jour-
nal to stress our point.) Reflecting what he calls “cultural 
analytics”, Lev Manovich’s “Computer Vision, Human 
Senses, and Language of Art” (herein) argues for the 
importance of using computer vision methods in humani-
ties research, and how this can offer analytical insights into 
cultural objects where existing analytical tools fall short. 
In another article, “On Machine Vision and Photographic 
Imagination” (herein), Daniel Chávez Heras and Tobias 
Blanke discuss the experimental television programme Made 
by Machine: When AI met the Archive (2018), created with 
materials from the BBC television archive using different 
computational techniques. They establish a conceptual and 
material link between photographic practice and deep learn-
ing computer vision, and the implied “optical perspective of 
the computer vision system itself”. Carloalberto Treccani’s 
“The Brain, the Artificial Neural Network and the Snake” 
(herein) is an account of the evolutions of vision systems, 
from “intelligent” animals to the functioning of Artificial 
Neural Networks. Both human and machine learning can be 
seen to demonstrate, through trial and error (recurrent neu-
ral nets), how, for better or worse, artificial systems inform 
us about the workings of biological systems, and how and 
“why we see what we see”. Claudio Celis Bueno and María 
Jesús Schultz Abarca’s article “Memo Akten’s Learning to 
See” (herein) employs the philosophy of Bernard Stiegler 
to insist that “human vision is always already technical”, 
and the result of constant training processes. Akten’s art 
installation Learning to See (2017) becomes an example of 
machinic imagination and “machinic unconscious” (refer-
ring to Walter Benjamin’s notion of the “optical uncon-
scious”, and how technical reproduction provided access to 
new forms of vision). The optical logic is transformed, in 
ways that augment new layered realities. This layering is 
what Manuel van der Veen describes, in his “Crossroads of 

Seeing” (herein), in which two ways of seeing are produced 
simultaneously, as our field of vision is superimposed with 
additional information and images. Augmented reality is 
compared to traditional procedures, such as trompe-l’œil, 
to suggest that new kinds of reflection become possible; not 
only to look at the intersection itself, but also to see where 
the ways “divide” (we might add contradict).

The inherent fallibility of AI systems is explored in 
Gabriel Pereira and Bruno Moreschi’s “Artificial Intelli-
gence and Institutional Critique 2.0” (herein), drawing upon 
their intervention within the art collection of the Van Abbe-
museum in Eindhoven, Netherlands. Using widely available 
image-recognition software to “read” images, the inherent 
values of both are exposed. It is the “untrained eye” of com-
puter vision that offers critique of the art system and possible 
new ways of approaching visual culture on the one hand, as 
well as understanding the commercial imperatives of com-
putational ways of seeing on the other. The point is reiterated 
that new methods of analysis are required that work with 
computational practices and existing theoretical readings, 
in which the human and the machine are critical partners. 
In Iain Emsley’s “Causality, Poetics, and Grammatology” 
(herein), a “critical assemblage” of philosophy and com-
putational thinking allows for an analysis of the Next Rem-
brandt project (2016, a 3D printed painting made from the 
data of Rembrandt’s total body of work using deep learning 
algorithms and facial recognition techniques). In Rebecca 
Uliasz’s “Seeing like an Algorithm” (herein), the relation-
ship between the image and the human subject is explored in 
detail. Techniques of machine vision are described as “tech-
niques of algorithmic governance”, and the way the human 
subject is made visible through computation. She refers to 
the relationship between the “operative image” (Farocki 
2004) and the formation of “emergent subjects”. Perle 
Møhl’s “Seeing Threats, Sensing Flesh: Human–machine 
ensembles at work” (herein) further develops the discussion 
of “human–machine ensembles”, how they work together 
mutually to “see” specific things and “unsee” others. Her 
key point is that seeing in both cases is “not automated but 
unskilled and mutually co-constituted”. Examples are pro-
vided that demonstrate this coming together of “material, 
political, organisational, economic and fleshy entities in 
order to configure what can be seen and sensed, and what 
cannot”.

We hope with this coming together of articles there is 
sufficient attention to critical-technical practices that illu-
minate the complexity of human–machine relations, and 
their transformations, and not least to serve to emphasise 
the uncertainties and contingencies that characterise these 
contemporary ways of seeing.

The relation between what we see and what we know 
has always been unsettled. It has been argued that seeing 
and ways of seeing have been intertwined since bipedism 
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bifurcated the evolution of the first anthropoids, which found 
themselves with hands for crafting (rather than only using 
them for walking) and a mouth for speaking (rather than 
only for eating) (Leroi-Gourhan 1993). The changing of 
orientation happens simultaneous to the development of an 
erect posture and the consequent changed function of the 
mouth, from an organ to simply gather and ingest food, to an 
organ increasingly capable of articulating sounds. Building 
on the philosophy of André Leroi-Gourhan, it is possible 
to imagine that this changing of perspective stimulated a 
vocal response from the liberated mouth—and the sequence 
of sounds were a first attempt to articulate the sense of awe 
(Plato 2004) or dread (Nietzsche 2006) associated with the 
new orientation of the body. At the same time, the liberated 
hands could start intervening with the surrounding land-
scape, scratching stones and, in a way, attempting inscription 
of those early articulations of sound emerging from the liber-
ated mouth. Otherwise said, the technical ability acquired by 
the hands proceeds simultaneous to the possibility of articu-
lating sounds to signify things, thanks to the new orientation 
of the erect body, and the freeing of the head and the mouth.

Although Berger seems to be strongly influenced by phe-
nomenology—especially the phenomenology of percep-
tion of Merleau-Ponty (1964), and defines human seeing 
as primordial and in anticipation of language—the relation 
between seeing and ways of seeing is unsettled because see-
ing (as much as speaking) is always already technical, and, 
as such, written (Derrida 1976). Despite these phenomeno-
logical traces found in Berger’s approach, his work is also 
about the hidden intricacies between image and language, 
explored through a reverse engineering of the grammar of 
images (no doubt influenced by the influence of semiotics 
and structuralism at that time). Berger maintains the primor-
diality of the image over the language, as is made clear in 
the first sentence of the book—“Seeing comes before words. 
The child looks and recognizes before it can speak”—or 
in the assertion that although we “explain that world with 
words […], words can never undo the fact that we are sur-
rounded by it” (Berger 1972: 7). Furthermore, “the recip-
rocal nature of vision [of simultaneously seeing and being 
seen] is more fundamental than that of spoken words” 
(Berger 1972: 8). Yet, to Berger, it is the very grammatical 
in-expressibility of the image that inevitably generates the 
power of signification through sounds and language, which 
in our earlier brief sketch of evolutionary palaeontology 
(inspired by Leroi-Gourhan) began with the changed orien-
tation of the body, producing new ways of seeing together 
with inscription practices.

Moreover, Berger turns the phenomenological ideal of 
a primordial image into a trigger for a historical material-
ist analysis of images which departs from the idealism of 
a virgin gaze and white canvas, and instead explores the 
originarity of the image in relation to the proliferation of 

strategies for registering and manipulating it. It’s not difficult 
to imagine these early anthropoids emitting sounds while 
simultaneously experimenting with modifying rocks into 
what became tools. In this sense, Berger’s phenomenologi-
cal and semiotic references, find their current synthesis in a 
post-phenomenological approach which rethinks the origi-
narity of the (human) image as always already captured by 
the originarity of technicity (Stiegler 1998), which allows 
its perception in the first place, turning the image into a way 
of seeing.

In this sense, “all images are [hu]man-made” (Berger 
1972: 8), and all images imply knowing in their making as 
much as in their realisation—this knowing, and its tempo-
rality, being inscribed, or spatialised, in the proto-technical 
object, if we follow Stiegler. Thus, not only “the way we 
see things is affected by what we know or what we believe” 
(Berger 1972: 8), but also the images we make (or how 
we make them) are “affected by what we know or what 
we believe”. It seems there is always a grammar beyond 
an image, and this grammar proliferates because of its 
impossibility to grasp the fullness of an image. The rela-
tion between image and language is necessarily unsettled 
because, although they are co-originary, the ability of the 
latter to signify the former is never settled, and changes as a 
consequence of what we know or believe.

Since the beginning, the unsettling relation between 
(human-made) image (ways of seeing) and language 
(knowing) has turned into the unsettled relation between 
techne (the techne to make an image) and episteme (the 
socio-cultural milieu that allows for certain technics, and 
images, to emerge). In fact, the relation between techne and 
episteme—or, in Berger’s terms, seeing and knowing—is 
so deeply unsettled that philosophy, according to Derrida 
(1981) and Stiegler (2013), has been unable to think it prop-
erly since at least the time of Plato’s Phaedrus (370 BC). 
At this time, the unsettling relation between ways of seeing 
as always technical and knowing, and as always supported 
by technicity, is exemplified by the practice of “sophism”, 
understood as a break of the linkage between techne and 
episteme. In brief, sophists applied techne without a proper 
episteme, turning it into a poison, and not a cure, given the 
pharmacological nature of technology, already highlighted 
by Plato, and further emphasised by Derrida and Stiegler. 
Berger’s work also dives into this de-linkage, not at the level 
of philosophical inquiry, but at the level of the concrete pro-
duction of artefactual images and the implicit process of 
knowing they support (or not). In doing so, Berger provides 
tactics for navigating their hidden epistemologies, within a 
Marxist framework in the most literal sense, through which 
to re-think the relation between the technical exteriorisations 
which produce images and the concept of alienation as the 
distancing-effect between the means of production and the 
knowledge of conditions. Alienation here is understood as 
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a departure from the relation between the proliferation of 
technical exteriorisations and the implicit (gnoseological 
and) epistemological framework they bring forth.

These inscriptions, or technical artefacts, are written, 
and represent images. Technical exteriorisations (images, 
in Berger’s sense) attempt the inscription of the non-spe-
cialised sensory-motor schema of the hands and of the erect 
body which, as a consequence of its non-specialisation, 
produces the corticalisation of the brain (Leroi-Gourhan 
1993). Non-specialization through externalisation opens 
up the therapeutic or curative side of the technical object, 
while its poisonous side emerges when externalisation 
starts to produce, instead, specialization. Factory workers 
are specialised because they only know how to operate the 
cog they see in front of them—without knowledge of the 
larger mechanism of which it is part—as dramatically shown 
in Farocki’s (1968) film Inextinguishable Fire, depicting 
the production of Napalm by Dow Chemicals by units of 
workers producing single parts necessary to assemble the 
weapon. Workers remain unaware of the ultimate goal of 
their work, given the strict division of labour enforced 
by the factory. The distancing between seeing and know-
ing increases with computational technology, which often 
reduces cognitive workers into keyboard operators, push-
ing buttons completely unaware of the algorithmic conse-
quence of their actions. The invisibility of the grammar is 
triggered by computational infrastructures that turn ideology 
(and knowledge) into a cloud of diffuse, networked services 
constantly extracting and processing data. This invisibility 
is a consequence of the specialization of knowing and it 
is de-linking from the ways of seeing that enable it in the 
first place. This alienation, or “generalized proletarization” 
(Stiegler 2017) involves producers and consumers alike, 
and their common loss of savoir-faire (how-to-do), savoir-
vivre (how-to-live) and savoir-théorizer (theoretical knowl-
edge). Rethinking the linkage between knowing and seeing 
in relation to ways of machine seeing means understanding 
alienation as the theft of knowledge operated by technics 
animated by sick epistemological frameworks, and vice-
versa. Furthermore, it means to understand that the technical 
object has been deprived of its ability to produce new long 
circuits of individuation and trans-individuation (Stiegler 
1998), and instead, as we will see, produces short circuits 
of dividuation.

These tendencies proliferate and become more complex 
as the relation between visibility and invisibility keeps shift-
ing and reaches a point where the demand to visualise drives 
a bulimic “drive to visibility” which aims at making every-
thing visible (van Winkel 2005: 1). At the same time, the 
drive to visibility functions by hiding the processes through 
which visibility emerges. In the current technological milieu, 
big data is funneled from raw data assemblages into data-
sets that furnish the materials for the constitution of users’ 

algorithmic doubles (which arise from the extraction of their 
geolocation, frequency of communication, choice of topics, 
and so on). In this way, the algorithmic double becomes a 
data matrix for the molecular-tailored production of “miss-
ing visuals” (van Winkel 2005). In this architecture, miss-
ing visuals are those that appear at the level of the interface 
on the basis of the user’s algorithmic double, and function 
as bait to keep the user clicking and producing new data 
to enrich the algorithmic double which, in turn, will pro-
duce new (missing) visuals. In short, the proliferation of big 
data’s invisualities function as means for the production of 
new data and, as a consequence, new missing visuals (Azar 
2020). These invisualities capture the subject in a circuit 
of algorithmic dividuations which produce the subject’s 
algorithmic double, designed to overlook the production of 
(missing) images, which is where the circuit of individuation 
(and trans-individuation), possibly enabled by the technical 
object and its ways of seeing, is interrupted. The projection 
of the algorithmic double on the user’s interface generates 
mirroring effects and digital echo-chambers where previous 
tastes and beliefs are fed back to confirm their positioning 
(and orientation) in the world. In Berger’s terms, and put 
simply, new ways of algorithmic seeing allow the constant 
production of new visuals while simultaneously increasing 
the gap between seeing and knowing.

If this relation between seeing and knowing was once 
fundamental to acting in the world, the current distribution 
of agency across complex networks of non-human agents 
allows simultaneously more visibility—and, as a conse-
quence, more knowledge about processes that before were 
not visible—and less knowledge about the very processes 
behind the way in which these new visualities are rendered 
visible. Although we see more, we are not given the instru-
ments to understand the ways in which we see more—this 
being mainly a problem of property, for example in rela-
tion to our reliance on proprietary platforms and infra-
structures, but also a problem related to the complexity 
of algorithmic networks, which in their operations often 
escape current epistemological frameworks.

Paraphrasing Stiegler (2015, 2019), if we see (and know) 
more, it is because of the computational ability of algo-
rithmic networks to take over (and exponentially increase 
beyond human capacity for reason; what Kant defines as 
the analytical faculty of reason, or understanding). If we 
see and know less, simultaneously, it is because algorith-
mic networks colonise also the faculty of synthesis, “short-
circuiting the deliberative functions of the mind” (Stiegler 
2019: 26), to the point of moving beyond the given episte-
mological framework which embed them, or, otherwise said, 
to the point of destroying the possibility of theory (and of a 
human-accessible epistemology) as such (Stiegler 2015). In 
this context, how to recover a sense of agency when it has 
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been distributed to wider systems and assemblages, or more 
to the point, how to adjust to this reality (Tsing 2015)?

Evidently, images themselves have the ability to act in 
the world, and upon us, nowadays via the artefactuality 
of computational technology, characterised by its simul-
taneous invisuality and proximity. According to Stiegler, 
adjusting to reality consists of adopting a given (artefac-
tual) reality rather than adapting to it (2010), with adop-
tion standing for the ability to recover a sense of agency 
through long circuits of individuation that increases 
knowledge as savoir-faire (2018) and non-specialisation 
via the adoption of the technical object and its emancipa-
tory potential. In a way, this was once the project of criti-
cal visual culture, to which Berger’s essay contributes: to 
render visible the underlying conditions that allow us to 
see reality as it really is, instead of bringing to visibil-
ity new visuals by hiding the processes that make them 
visible, as happens with AI-driven big data analysis for 
example. Moreover, this is about the relation between 
what is visible and the names that we give to what is seen, 
as well as what is invisible—a politics of representation 
and nonrepresentation. But things are not so easy to com-
prehend as they were once thought to be, as images now 
proliferate and circulate in such vast quantities and are 
mostly made by machine for machines (Paglen 2016), and 
the knowledge related to this circulation can be only par-
tially traced given the ability of machines to write accord-
ing to a grammar not fully graspable by humans, further 
occluded by the proprietary nature of this form of writing, 
and knowing.

That machines play their part in this multilayered 
assemblage of images, turning images into operations, was 
famously articulated by Farocki: “images no longer represent 
an object but are part of an operation” (2004). In his video 
trilogy Eye/Machine (2001–3), and in his writing “Phantom 
Images”—key references for various articles in this jour-
nal—this is made evident, as the image-making machine no 
longer simply takes the position of a person but one of “intel-
ligence”, combining what Farocki calls “the ill-considered 
notion of intelligence with an equally ill-considered sub-
jectivity” (2004: 13) Images then are “operative” inasmuch 
as they do more than simply display themselves and offer 
themselves for human interpretation, but begin to interpret 
themselves. Machines “see”, but not simply like the eye of 
modernism (as in the case of the “kino eye” of Vertov’s 1929 
Man With a Movie Camera). Image-machines “act”, but no 
longer in the metaphorical or animistic “image-act” that 
art historian Horst Bredekamp saw in the war-photograph 
or the medieval altarpiece. In their social interaction with 
humans, images have always created, and not just depicted, 
reality. Now, as in the case of images created by machines 
for machines (synthetic datasets, QR codes, calibration 

routines, and so on), image-machines create reality in their 
autonomous interaction with each other.

The removal of the human subject from the assemblage 
of seeing, or its role as a disposable element from which to 
extract value and knowledge, is symbolised by what Farocki 
calls the “suicidal camera” (2004). Suicidal cameras gener-
ate suicidal images: images produced by cameras located on 
remote missile systems and offered to the human operator 
until the moment the missile hits its target, at which point the 
camera disintegrates with the explosion and the transmission 
ends. If on the one hand, the human element fulfills a moni-
toring function, while the (ill) intelligence is delegated to the 
machine, on the other it is the pray of the image, and appears 
and disappears with it. Farocki’s suicide images work well 
to explain the relation between the iconic indexicality of 
the algorithmic image understood as the possibility of its 
human-oriented use-value (otherwise said, as the form in 
which it is accessible by humans), and the speed at which 
it is forced to circulate and to be exchanged (according to 
its exchange value), which, in fact, compromises its human-
oriented (iconic) indexicality.

It is within this type of operationality—understood by 
expanding on Berger’s Marxist framework—that the drive to 
visibility bargains truthfulness for novelty, and the relation 
between seeing and knowing becomes a problem of truth, 
or, to say it with Foucault, a problem of “games of truth” 
(Lorenzini 2015). In our computational context, iconic 
indexicality falls short not really because algorithmically-
produced images look fake, rather the opposite—they can 
almost seamlessly pretend to be factual, indexing reality 
while being fully algorithmically-generated. For example, 
Generative Adversarial Networks (or GANs)—a framework 
in which two neural nets are dialectically opposed—have 
managed not only to allow real time facial re-enactment (as 
in the case of the DeepFakes) but also to process autono-
mously huge databases of real human faces and to generate 
new hyper-realistic faces that do not replicate any of the 
faces of the dataset. These AI human faces are both faces of 
missing humans (who do not exist in the actual world) and 
faces of algorithmically-generated ghosts, as paradoxically 
shown by the project DoppelGANger.agency (Azar 2018), 
which turns AI-generated faces into street posters for miss-
ing persons (Fig. 2).

These DoppelGANgers are a form of missing visuals 
emerging from the real human faces the GANs were trained 
on (Azar 2020), and as such can help to re-open the ques-
tion of iconic indexicality in relation to algorithmic images 
that resemble their referents, even though their referents do 
not exist. In other words, the iconic indexicality of the algo-
rithmic image serves to support the algorithmic indexical-
ity which is at the core of the operational drive and conse-
quent circulation of the image. This algorithmic indexicality 
allows for the clustering of images with similar parameters, 



1100	 AI & SOCIETY (2021) 36:1093–1104

1 3

and to profile users exposed to the iconic indexicality of 
the image on the basis of those clusters, so as to predict the 
next (missing) image. In fact, the seeing and knowing on 
the side of the algorithmic indexicality is almost alien to 
the seeing and knowing happening on the side of the iconic 
indexicality, yet, at the same time one would not function 
without the other.

The relation between ways of seeing and knowing is 
always unsettled then because although the former is a gram-
matical object which, on the basis of its grammatology (of 
which the technical inscription is a trace), manifests itself as 
a knowable object, its very grammatology doesn’t exclude—
but rather depends on—the incomputable opening that the 
relation between ways of seeing and knowing inevitably 
produce. Ways of seeing and knowing—technical artefacts 
and human knowledge—are rooted in the non-specialised 
senso-motor and cortical potential defined by its capability 
of bifurcating, or finding ways of savoir-faire and savoir-
vivre not fully inscribed by the ways of seeing and the forms 
of knowing they enable.

Finally, in this last section, we should say more about our 
editorial process and motivation for our work. We started 
this project with a series of small events at the University of 
Cambridge in 2016 (initially developed by Anne Alexander, 
Alan Blackwell, Geoff Cox and Leonardo Impett), to bring 

some of the politics of Berger to the discussion of machine 
vision, working across the Digital Humanities Learning 
programme and Computer Lab, and reaching out to other 
collaborators, and in turn to the contributors of this jour-
nal. Our starting point was to speculate on the comparison 
between Berger’s Ways of Seeing and David Marr’s Vision, 
a foundational text in computational neuroscience—and the 
axiomatic philosophy of vision behind machine vision for 
the past four decades. If Berger’s concern was understand-
ing how humans seeing with machines changed the ways in 
which they could represent the world, Marr was interested 
in the theoretical work necessary to make machines which 
could see. With a degree in mathematics, his early work on 
neuroscience was largely done at Cambridge, before moving 
to MIT; where in 1980, he was tenured at the Department 
of Psychology. He died later that year. His book, Vision: A 
Computational Investigation into the Human Representation 
and Processing of Visual Information, was published post-
humously two years later, becoming the foundational text for 
the new field of computational neuroscience.

The explanation of the human visual system contained 
in Marr’s Vision has remained the go-to theory of human 
vision for generations of computer scientists, for teaching 
and research: the most prestigious award in the computer 
vision community (awarded by the International Conference 

Fig. 2   Examples from Mitra 
Azar, Doppelganger.agency 
(2019), doppelganger.agency
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on Computer Vision) is called the Marr Prize. What must 
be stressed, however, is that computer scientists didn’t just 
adopt Marr’s paradigm because it was the most up-to-date, 
successful, or accurate physiological theory of the human 
visual system. Computer vision is not, in general, meant to 
be a simulation of a biological visual system; that is not the 
epistemic role of a theory of human vision for the computer 
vision community. Rather than giving a biological precedent 
that machine vision researchers could copy, Marr’s theory 
does almost the reverse: it understands human visual pro-
cesses in computational terms. The parallels Marr draws 
between human and machine vision are far wider, and more 
structural, than that of the individual “neuron”. Rather than 
anthropomorphic computing, Marr’s Vision is technomor-
phic physiology.

Marr was interested in creating an information-theoretical 
(and even computer-scientific) model of biological seeing: 
before Vision, his early work was to propose computational 
models of the cerebellum, neocortex and archicortex (hip-
pocampus) (Marr 1969, 1970, 1971). These were computa-
tional models not in the sense of computer simulations, but 
rather in that they used the metaphors of theoretical com-
puter science—pattern recognition, memory systems—to 
explain the role and mechanisms of the human visual sys-
tem. Electronics had long furnished a conceptual and nota-
tional system with which to describe human neuroscience 
(as in the Fig. 3 below, from Marr 1982); Marr’s innovation 
was to extend this metaphor to information theory itself 
(Fig. 3). This is the basis of Marr’s central axiom: vision as 
an information processing system.

In the decades that followed Marr’s Vision, a number of 
results supported his general theory of vision as information 
processing: that the human trichromatic system (Parkkinen 
and Jaaskelainen 1987), and the activation functions of pri-
mary visual cortex neurons (Field 1987), could be derived 
statistically from data about the natural world. In the so-
called Tri-Level Hypothesis, David Marr and Tommaso 
Poggio (1976) outlined how these information processing 
systems—both biological and machine vision—ought to be 
understood at three separate levels:

•	 Computational level: what (computational) problem does 
the system solve, and why?

•	 Algorithmic/representational level: what statistical rep-
resentations and operations does the system employ to 
solve this problem?

•	 Implementation/physical level: how are these statistical 
operations implemented, either as neural structures or 
computer code?

Marr’s proposal, therefore, is to understand machine and 
human vision as a separable stack: we might share the same 
computational problem (say, face recognition) across multi-
ple algorithms (eigenfaces, wavelet transforms), or the same 
algorithmic approach (e.g. learning sparse feature embed-
dings), through various physical implementations (neurons, 
GPUs, CPUs). Though fond of computational metaphors, 
Marr might not have recognised the concept of the software 
stack, which only really took off with the introduction of the 
OSI model for telecommunications in 1984 and the 2000s 
proliferation of stack models for web technology. Software 
systems are increasingly designed, conceived, operated, and 
programmed around the metaphor of the stack: not just from 
a technical perspective (“full-stack developer”), but also in 
their political-economic dimension (“full-stack business 
analyst”).

Bratton’s intuition (2016) about the “stack”—that the 
structural, transversal metaphors of software engineering 
and techno-capitalism are equally useful critical tools—is 
relevant to our project. We can expand Marr and Poggio’s 
tri-level model of human vision:

(1)	 Social level (where are such systems deployed, by 
whom, for what purpose)

(2)	 Computational level (which problems are being solved: 
e.g. “object detection”)

(3)	 Data level (who labels, which images are chosen, who 
takes the photographs)

(4)	 Algorithmic/representational level (e.g. Siamese con-
volutional neural network with Adam gradient descent 
optimization)

(5)	 Implementation/physical level (abor. Tensorflow on 
cuDNN/CUDA on Nvidia GPU)Fig. 3   Different models (in Marr, Vision, 1962: 163)
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(6)	 Philosophical/axiomatic level (e.g. vision as inverse 
graphics)

This vertical cartography of machine vision—though far 
coarser than Joler and Pasquinelli’s Nooscope—nonetheless 
exposes black-spots in our collective critical dissection of 
the machine vision stack. We have brought forward an excel-
lent critical understanding of the datasets of machine vision 
and of their social applications, but have almost nothing to 
say about the ideological content of specific algorithms, 
technical axioms, compiler languages, or massively parallel 
silicon implementations.

One of these technical axioms comes from the work 
of Marr himself: the computational paradigm of [robotic] 
Vision as Inverse [computer] Graphics. Marr outlined what 
he saw as the three stages of vision in an information-pro-
cessing pipeline in the construction of:

(1)	 Firstly, a 2D primal sketches: including edge detection, 
silhouettes, etc.;

(2)	 Subsequently, 2.5D images, including textures, fore-
ground and background;

(3)	 Finally, a full 3D model of the environment.

Here, the machinery of machine vision is chained to that 
of the early video-games industry (a link which extended, 
since widespread use of CNNs in 2012, to the hardware 
level of the stack—how Nvidia overtook Intel); through the 
implicit separation of mesh and texture, object and back-
ground, image and sprite. This is what makes it possible to 
create synthetic datasets in machine vision; to use CGI to 
synthesise models of faces, cars, streets, or warzones, which 
machine vision algorithms then learn from.

Where Berger sets out a dialectical relation between see-
ing and knowing, and the role of knowing in seeing, Marr’s 
suggestion is that the visual system is fine-tuned to effi-
ciently compress (i.e. recognise) visual stimuli that it has 
evolved to encounter (faces, shadows, motion); and in doing 
so has a kind of implicit, embodied knowledge about the nat-
ural world and its images. For Marr, then, and for computer 
vision scientists after him, seeing is not so much a product of 
knowing (nor, we might add, of belief, and thus ideology) as 
a product of data. A consequence of this perspective—of the 
unmediated nature of visual representation—is an inability 
to deal with the ambiguities and inconsistencies of visual 
perception, whose technical implications have been high-
lighted by Aaron Sloman, former chair of AI at Birmingham 
University: “that common idea is mistaken: visual systems 
do not represent information about 3-D structure in a 3-D 
model… but in a collection of information fragments, all 
giving partial information. A model cannot be inconsistent. 
A collection of partial descriptions can” (2011). Sloman’s 

critique of Marr here echoes Berger: “the relation between 
what we see and what we know is never settled.”

As Berger wrote of photography, the technical aspects of 
machine vision “are not, as is often assumed, a mechanical 
record”, rather they are saturated with ideology. What is to 
be done? Taking political issue with the corporate machin-
ery of machine vision is, for at least two reasons, an intrinsi-
cally slippery task. First, because this corporate machinery is 
difficult to delineate; it’s as far as it’s possible to get from the 
perfect-substitute-producing factory of textbook economics 
(Srnicek 2016). It includes conventional private companies 
which sell machine vision for profit—but also corporate-
funded AI labs which publish research openly in the sci-
entific community; privately-funded open-source software 
libraries, on which much of AI depends; and infrastructure, 
from cloud computing to hard silicon. Google does all of 
these; selling machine-vision-as-a-service (Google Vision 
AI), publishing open research (Google Brain), producing 
fundamental shared open-source libraries (Google Tensor-
flow), and selling the cloud services (Google Cloud) and 
even the chips (Google’s Tensor Processing Units). Micro-
soft, Amazon and others have similar profiles.

But there is a second reason for which the intersection of 
political critique and corporate research in machine vision 
is so confusingly nuanced. The academia-versus-industry 
debates of the past five decades had clear demarcation lines; 
for instance, in the tobacco industry’s long refutation of the 
link between smoking and cancer, or the oil industry fund-
ing research which attempted to obscure the links between 
man-made emissions and climate change. In the case of 
machine learning and machine vision, industry (including 
corporate AI labs) publicly agrees, in many cases, with its 
critics. Microsoft, for instance, claims “inclusiveness” and 
“fairness” as two of the six guiding principles for Responsi-
ble AI. This is not simply a marketing proposition—a paper 
on fairness in AI from Microsoft Research won Best Paper 
at CHI 2020 (Madaio et al 2020), and similar internation-
ally-relevant research is produced by other major corporate 
tech players. Through efforts like increasing demographic 
diversity in the workplace, technology companies have 
endlessly publicised those occasional win–win situations in 
which a degree of corporate fairness increases long-term 
profitability. But it’s not yet clear to what degree this man-
date for socially—and ethically responsible machine learn-
ing extends to activities which might seriously endanger a 
company’s bottom line: well-publicised ethical AI policies 
notwithstanding, Amazon, Google, Microsoft, Oracle and 
IBM all still bid for a $10bn cloud computing contract with 
the US Department of Defense in 2018–19. When Google 
dropped its bid in October 2018, it claimed the first reason 
behind this decision was that “we couldn’t be assured that 
it would align with our AI Principles”; in practice, it was 
responding to seven months of significant organised pressure 
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from Google workers, including several resignations and a 
widely-signed employee petition.

Where policymakers and journalists tend to talk about 
analysis of abstract data (almost an implication of Excel 
spreadsheets), a very large proportion of today’s AI con-
troversies centre around vision. The debate over Goog-
le’s involvement in the DoD contract started when it was 
revealed that Google supplied machine vision technologies 
for the automated video analysis of drone footage. Amazon 
(who, at time of writing, was attempting a legal challenge 
to the contract being awarded to Microsoft) continues to 
publicly host an online demo of Amazon Rekognition, their 
machine vision platform, for the defence industry; high-
lighting Amazon’s ability to “analyze images and recognize 
faces, objects, and scenes”, and finding the “likelihood that 
faces in two images are of the same person, in near real-
time”. Without a hint of irony, Amazon is at the same time 
the principal sponsor of a 3-year $20 million funding pro-
gram of the U.S. National Science foundation on Fairness 
in AI.

Such paradoxical situations, in many cases, are not borne 
of inconsistency or hypocrisy, but irresolvibility—a general 
symptom, for Matthew Fuller and Olga Goriunova (2019), of 
the post-Cold War society. In a structurally unequal society, 
it is exceedingly difficult to make a “fair” algorithm; and 
it is effectively impossible to make an algorithm which is 
both fair and effective. Jon Kleinberg, Sendhil Mullainathan, 
Manish Raghavan (2016) have shown, in the most general 
case it is impossible to classify data in a way that meets sev-
eral well-established definitions of fairness (lack of active 
discrimination; balanced false positive rates; balanced false 
negative rates). All three definitions of fairness also produce 
classifications which are, in general, different from the high-
est possible accuracy (and therefore, in most situations, dif-
ferent from the highest potential generated profit). There are 
two special cases where it is possible to satisfy all fairness 
conditions: perfect predictions (total information—nobody 
is ever misclassified because of their background), or equal 
base rates (i.e. a society/ground-truth where different groups 
have statistically identical behaviours). In a society which 
is unfair, a classification-machine will always be unfair (in 
at least one sense). What is so important about Kleinberg 
et al.’s mathematical proof is that it’s fundamentally about 
the final classification results, regardless of how any individ-
ual decisions are taken. The impossibility of fair classifiers 
in an unfair world, therefore, is equally true if those classi-
fiers are human. In the specific case of machine vision, the 
risk of unintended discrimination through high-dimensional 
correlation has greatly increased with the advent of deep 
convolutional neural networks (Impett 2018), compared to 
their simpler (and less powerful) predecessors which relied 
on hand-crafted geometric features.

Nonetheless, the research behind such a profound math-
ematical result—with enormous political implications for 
human decision-making—would not have existed were it not 
for current debates around machine-learning-based classifi-
cation systems. Our hope, in this journal and beyond, is that 
critical work on machine vision will lead to similarly pro-
found political insights. “To ask whether machines can see 
or not is the wrong question […] rather we should discuss 
how machines have changed the nature of seeing and hence 
our knowledge of the world” (Cox 2016). In this sense, the 
project of algorithmic literacy behind Ways of Machine See-
ing mirrors Berger’s didactic project of visual culture.

Beyond being a powerful or harmful new technology in 
its own right, machine vision gives us a new, precise set of 
metaphors with which to think about vision differently—in 
computational, biological, aesthetic, and consequently politi-
cal terms—to enhance our ability to see and thereby act in 
the world.
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Abstract
Computer vision aims to produce an understanding of digital image’s content and the generation or transformation of images 
through software. Today, a significant amount of computer vision algorithms rely on techniques of machine learning which 
require large amounts of data assembled in collections, or named data sets. To build these data sets a large population of 
precarious workers label and classify photographs around the clock at high speed. For computers to learn how to see, a scale 
articulates macro and micro dimensions: the millions of images culled from the internet with the few milliseconds given to 
the workers to perform a task for which they are paid a few cents. This paper engages in details with the production of this 
scale and the labour it relies on: its elaboration. This elaboration does not only require hands and retinas, it also crucially 
zes mobilises the photographic apparatus. To understand the specific character of the scale created by computer vision 
scientists, the paper compares it with a previous enterprise of scaling, Malraux’s Le Musée Imaginaire, where photography 
was used as a device to undo the boundaries of the museum’s collection and open it to an unlimited access to the world’s 
visual production. Drawing on Douglas Crimp’s argument that the “musée imaginaire”, a hyperbole of the museum, relied 
simultaneously on the active role of the photographic apparatus for its existence and on its negation, the paper identifies a 
similar problem in computer vision’s understanding of photography. The double dismissal of the role played by the workers 
and the agency of the photographic apparatus in the elaboration of computer vision foreground the inherent fragility of the 
edifice of machine vision and a necessary rethinking of its scale.

Keywords  Computer vision · Data set · Photography · Imageability · Scale · Micro-labour · Le musée imaginaire · 
ImageNet

1  Introduction

In On the Museum’s Ruins, Douglas Crimp (1980), reflects 
on the proximity between the museum and the mausoleum. 
The museum is the place artworks, disconnected from the 
practices and lived conditions that breathe life into them, 
have come to die. Crimp’s text dramatises a moment of 
change in the museum’s history. The museum, once consid-
ered the shelter of a selection of significant artworks, evolves 
into a site, where genres that were deemed secondary are 
excavated from the storerooms and given exposure. The 
inclusion of salon painting in the installation of nineteenth 
century painting at the Metropolitan Museum signals, for 
Crimp, the demise of modernism. And it triggers, among 

his contemporary critics, a wave of criticism against the 
lack of rigour, the laissez-faire attitude of a postmodern era. 
Refusing to embrace such criticism and its nostalgia, Crimp 
moves on to articulate a distinct critique of the new museal 
institution. The pretension to knowledge from the part of the 
museum is to obtain a coherence from objects and works 
extracted from increasingly heterogeneous sources with art 
history being assigned the role of homogenising the dis-
parate museum’s contents. To extract knowledge through a 
dialogue between regularised fragments is the condition at 
which the museum resists its assimilation to the mausoleum. 
Crimp sees this tendency to a larger inclusion expressed by 
André Malraux’s Le Musée Imaginaire in which oeuvres 
from all civilisations can be confronted and compared. As 
Crimp remarks, Malraux’s project emphasises the fact that 
art history cannot produce a universal plane of comparison 
without another organising device: photography. Photogra-
phy, here, acts as a leveller. Every art object that can be 
photographed can enter Malraux’s museum. Through the 
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photographic medium, a part of a plate can be compared to 
a detail of a sculpture, an enlarged brush stroke to a mural 
painting. Photography is a condition for the inclusion of 
objects and for the museum’s knowledge production. But 
to function this way, photography must be made a trans-
parent vehicle. As soon as photography itself is considered 
as an autonomous agent, heterogeneity comes back and 
the museum’s pretension to knowledge is in jeopardy. The 
ruins, for Crimp, are not only those of the museum’s con-
tents which roots are severed from the soil that gave them 
birth. The ruins are those of the museum itself, an institution 
of knowledge production based on the active yet transparent 
role of a levelling device: the photographic apparatus and the 
scale it introduces. Repressing the apparatus through which 
it obtains its coherence makes it blind to the artificiality and 
the limits of the knowledge it produces.

The current text is not an essay on art history. In the fol-
lowing pages, I will address the problems of a discipline 
of computer science, computer vision (CV), in which engi-
neers train machines to make sense of images and, for that 
purpose, assemble huge collections of photographs. In 
this endeavour, I won’t use Crimp’s critical dialogue with 
Malraux as a strict analytical framework, but rather as an 
insistence and call to increase sensitivity to the relation 
between the photographic device, scale and a pretension to 
knowledge in the vast sets of images assembled in computer 
vision. It is with the notion of selective use of photography, 
and its repression, related to the homogenisation of a poten-
tially limitless source of visual imagery, that I interrogate the 
formation of computer vision. To understand the relevance 
of such a conceptual device for CV, it will be necessary to 
take a step by step approach to photographic practices at the 
core of the discipline.

2 � Computer vision, learning to see 
by example

Nowadays, contemporary computer vision is increasingly 
understood as a sub-field of artificial intelligence and 
machine learning. This is the disciplinary affiliation given 
in introductory courses and manuals (Brownlee 2019; Fulls-
cale 2019; Wikipedia Computer vision no date). To construe 
CV first and foremost as a field of artificial intelligence (AI) 
means several hierarchies are taken for granted. For instance, 
it means that a discipline, AI, applies the same techniques, 
with a few variations, to different kinds of data. In computer 
vision, visual input is often unproblematically conflated with 
photographs or media abiding to the representational codes 

of the photographic image.1 Photographs understood as data 
are presented as passive samples awaiting the mining of 
algorithms to be made meaningfully part of computational 
systems. In such a view, agency is located on the side of the 
algorithm, and data, as the name suggests, is simply given.

The work of Fei-Fei Li, leading computer vision scientist, 
director of Stanford AI, and initiator of the ImageNet data 
set, shows how a different valence can be given to photo-
graphs. As she (GoogleTechTalks 2011) states, “another way 
to understand CV is through the evolution of its data sets”. 
Taken seriously, data sets challenge an algorithm-centric 
view of CV. The algorithm becomes relative. For Li, data 
sets are no longer suppliers of data, they are tools to formu-
late CV’s problems: they engage actively in the modelling 
process. To understand such a claim, we need to look at 
how modelling functions in contemporary machine learn-
ing systems.

Traditional AI and early computer vision relied on 
explicit modelling. In a framework, where modelling is 
explicit, developers design themselves a model that matches 
the complexity of the problem domain. For instance, a cat’s 
face is decomposed into simple shapes like a circle for the 
face, two triangles for the ears and two circles for the eyes. 
This approach is only efficient for a limited amount of cases. 
Its advantage is to produce a legible model: circle + 2 trian-
gles + 2 circles = a cat face. Such a model may function in 
a strictly controlled environment, but leads to overwhelm-
ing problems in real-world scenarios, where the cat may 
appear from profile, with eyes closed, at rest or jumping. 
Additionally, one cannot expect the animal to be perfectly 
centred and illuminated and partial occlusions or unexpected 
perspectives often change the organisation of the patterns. 
As neuroscientist David Marr remarked, photographs rarely 
follow a predictable order. Noticing the almost despairing 
feeling of early computer vision researchers, he concluded 
that “practically anything could happen in an image and fur-
thermore that practically everything did” (Marr 1982, p. 16). 
Every time a photograph deviates from an expected pattern, 
the algorithm needs to be updated and optimised. Such an 
approach lacks generalising power as the algorithm must 
not merely discriminate a pattern adequately, it also needs 
to make sense of the other patterns interfering with what 
it attempts to detect (Deng et al. 2010). Furthermore, the 
developer needs to learn in detail about the object to detect 
and to analytically decompose it before writing the code. 
Under this paradigm, to write a cat classifier, a programmer 
needs to become a feline expert.

1  See, for instance, one of the most cited papers in the discipline, “A 
large-scale hierarchical image database – ImageNet” (2009), in which 
image and photograph are used interchangeably.



1119AI & SOCIETY (2021) 36:1117–1131	

1 3

In contrast, current techniques of machine learning based 
on neural networks do not rely on a previous analytical 
decomposition. The developer assembles a data set reflecting 
the variations of the domain under study and utilises auto-
mated means to calculate an optimal function that treats the 
features of the data as parameters. In computer vision, this 
technique, at its most simple level, uses large visual data-
bases in which discrete units such as pixels can be consid-
ered as data points. Common techniques of machine learn-
ing in computer vision are said to be “supervised”, which 
means that the data is curated (Beheshti et al. 2016) to pro-
vide examples from which the machine learning algorithm 
extracts regularities: the software “learns by example”. To 
come back to the case of the cat, in the data-oriented para-
digm, the developer does not try to decompose the animal 
in distinct shapes and explicitly summarise their relations. 
Instead, she curates a large series of photographs, where 
the cat is displayed in various positions, and lets the algo-
rithm detect the regularities traversing the various samples. 
Through this phase of “learning”, the algorithm produces 
the model of the cat.

The change in algorithmic design does not merely cor-
respond to an evolution of the technical process. It provokes 
more largely a reconfiguration of the positions of the actors 
in the field. The analytical decomposition of the problem 
is now replaced by the production of a data set exhibiting 
the regularities that define the problem domain. Engineers 
are said to write programs that “discover” the rule inher-
ent to the data (Simpson Center for the Humanities UW 
2017). However, these data sets do not appear by magic, they 
need to be curated, assembled, maintained and annotated. 
Concretely, the modelling is outsourced to those who curate 
and annotate the data set. The annotators and curators are 
in fact implicitly coding the model that will be discovered 
algorithmically. The engineers say the model is learned end 
to end. This means in fact that it doesn’t learn from them 
anymore. In the current machine learning paradigm, the 
engineer doesn’t need to be a feline expert to produce a cat 
detector, but the engineer relies on a population of curators 
and annotators actively engaged in defining what counts as 
photographs of cats. The paradigm change in machine learn-
ing has externalised the modelling process and, by doing so, 
has produced a new division of labour.

If we take this seriously, then the data set becomes a site, 
where computer vision is made, rather than a component 
of its supply chain. The techniques to compose a data set 
are not subsidiary to the problem of computational vision, 
they are integral to it. But as important as data sets are for 
machine vision, two intertwined aspects of their produc-
tion are generally overlooked: the micro-labour of annota-
tion and the role given to photography in the process. To 
examine the labour that goes into CV and its photographic 
dimension, I will analyze how ImageNet, one of the largest 

database of human annotated visual content to date (Deng 
et al. 2009) has been assembled. The ImageNet project is a 
collection of images for visual research that offers tens of 
millions of images manually annotated, sorted and organ-
ised according to a taxonomy. It aims to serve the needs of 
computer vision researchers and developers for training data. 
Due to its size2 and its extensive annotations, ImageNet has 
become de facto the most used knowledge base in the world 
of computer vision (Fei-Fei 2010). Following the work of 
the annotators who selected the photographs and reflecting 
on the role given to photography, I will try to understand 
their roles in the process and the reasons why they remain 
treated as contingent rather than crucial to the definition of 
what it means for machines to see.

3 � The elaboration of CV

Computer vision data sets depend on a standing reserve of 
large volumes of manually annotated photographs. Adver-
tising a new update of the Google Photo service, Chuck 
Rosenberg (2013) wrote that, thanks to the advances of com-
puter vision, users could search their own images without 
having to manually label each and every one of them. This 
tedious work can be executed automatically from now on. 
Yet, to automate this task, large volumes of annotations are 
themselves necessary. While the users of the new Google 
software may not be obliged to manually tag their photos 
anymore, thousands of hands on keyboards, retinas glued 
on screens are producing an unprecedented amount of label-
ling and descriptions to train the algorithms that automate 
the user’s tagging. Perhaps, the amount of annotation work 
involved in the production of data sets is more impressive 
than the amount of photographs included in ImageNet. After 
all, 14 million images are only a fraction of the monthly 575 
million public uploads of photos on a platform like Flickr. 
(Smith 2019) The work of manually cross-referencing and 
labelling the photos is what makes data sets like ImageNet 
so unique. In fact, there has been rarely in history so many 
people paid to look at images and report what they see in 
them (Vijayanarasimhan and Grauman 2009). The automa-
tion of vision has not reduced the amount of eyeballs look-
ing at images, of hands typing descriptions, of taggers and 
annotators. On the contrary, it has increased their number. 
Yet what has changed is the context in which the activity of 
seeing is taking place, how retinas are entangled in heavily 
technical environments and how the speed at which can-
didate images must be evaluated. Due to the pressure of 
generating annotations at the scale of the web, the process 

2  The average number per categories is 10.5k, see ImageNet_2010.
pdf.
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needs to be massively “parallelized”.3 A parallel architec-
ture optimises the calculation and makes maximal use of all 
the computational resources of a machine. On the Amazon 
Mechanical Turk (AMT) platform, where a large part of 
the annotation effort is produced, the workers are treated as 
computational processes. The workers, the “Turkers”, are 
abstracted away. The advantage of having parallel processes 
is that the execution time of a given task can be divided 
among the available workers/processes. Li calculated the 
amount of human labour required for ImageNet this way: 
estimating that a person can annotate two images per second, 
such that 19 human years are necessary for an individual 
working 24 h a day to verify the tens of millions of images in 
her data set. AMT allows her to compress the 19 years into 
2 years by providing the necessary workforce to handle the 
workload in parallel (GoogleTechTalks 2011).

Apart from speed, there is another less “technical” reason 
to adopt such architecture. The parallel architecture isolates 
the workers and makes it difficult for them to create bounds, 
to build a collective identity and to unionise. The Turkers 
have no name, only an anonymous identifier and the plat-
form doesn’t provide any mean of communication between 
them (Irani and Silberman, 2013). There are political reasons 
for crowdsourcing platforms to fear workers’ unions: their 
working conditions are exploitative. AMT offers people with 
large data sets the possibility to outsource the annotation 
work using their massive workforce. The tasks on AMT are 
rewarded with micro-payments. An annotation is estimated 
between 1 and 4 cents and the estimated hourly revenue for 
a Turker is approximately two dollars (Hara et al. 2018). The 
annotator must find an optimal trade-off between the preci-
sion and attention required to make a good enough annota-
tion and a speed that allows her to “maximise” her financial 
gain. The hourly rate depends on the task and access to the 
most lucrative tasks depends on the age, the origin and the 
class of the workers as one needs to be “culturally compat-
ible” (Irani 2015, p. 726) with the request. Annotation tasks 
in particular require to quickly learn the knowledge relevant 
to very different subjects including religious differences (i.e., 
be able to discriminate between photographs of Catholics 
and Old Catholics, archbishops and archpriests, Buddhist 
and Zen Buddhists from sources as various as the Vatican 
website, English tabloids, and family albums), military ranks 
and uniforms (i.e., differentiate between Redcaps and Green 
Berets, adjutant generals and generals, sergeants and first 
sergeants, recruiting sergeants and gunnery sergeants, from 
sources ranging from military websites, news outlets, TV 
series or wedding pictures), or bacterial species (i.e., identify 

the Bacillus anthracis, the spirillum, the clostridium perfrin-
gens, or the gonococcus from microscopic imagery).

The workers, if they want to make a living, need to work 
at a pace that barely allows them to see the images. For the 
annotators, structurally, the “glance” is the norm. Speed is 
built in the platform economically. Training sets must be 
produced fast. Lots of workers are mobilised intensely for a 
short period of time. Through the interface of the AMT, the 
requesters are managing the cadence of the annotation work. 
They want to ensure the workers go fast enough to match 
production deadlines. And, at the same time, they attempt to 
preclude them from overlooking their task to avoid drops in 
quality. The interfaces of annotation are designed to control 
workers’ productivity, to find the optimal trade-off between 
speed and precision. The time estimation for labelling tasks 
is especially difficult as it varies according to the annota-
tor’s experience and the nature of the photographs. Andrej 
Karpathy, now Tesla’s director of AI, reported that when 
he annotated an ImageNet’s recognition challenge’s data 
set, the labelling started at a rate of one image per minute 
and decreased with the accumulated experience (Karpathy 
2014). But, even if progress was noticeable, the rate was not 
constant as some images like those depicting some particu-
lar breeds of animals required a longer time and additional 
research. To cope with the variability of the annotation pro-
cess, numerous techniques are currently tested to streamline 
it. To begin, as manual labelling is costly, the priority must 
be given to the annotations producing the highest informa-
tion gain. As Vijayanarasimhan and Grauman put it, unla-
belled images must be ranked “according to their expected 
‘net worth’ to an object recognition system” (Vijayanarasim-
han and Grauman 2009). The cost of the labelling effort 
leads the computer vision researchers to approach visual 
content in the form of informational currency and attention 
scarcity. This approach informs the architecture of annota-
tion workflows, wherein a pre-labelling attempt is made by 
an algorithmic detector and corrected by human annotators 
(Papadopoulos et al. 2016). Pattern recognition techniques 
are used to absorb the bulk of the “easy” detection work, 
spot the potential targets and redirect the “ambiguous” cases 
to the human annotators (Vijayanarasimhan and Grauman 
2009). While these techniques of semi-automation are in 
their early stages, their existence indicates the anxiety of 
the data set makers to control the annotator’s attention and 
prevent her distraction. The requesters invest in the annota-
tor’s attention and treat attention as an asset that needs to be 
protected. Besides guiding the annotator’s eyes to specific 
regions of interest and regulating their attention, research-
ers are exploring how to augment the annotators’ ability to 
absorb visual content. For instance, Krishna et al. (2016, p. 
2) claim to have devised a technique of rapid serial visual 

3  In Informatics jargon, to “parallelize” a process means to design a 
workflow where two processes can take place without interference.
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presentation that allows workers to produce one “hit”4 in 
100 ms by immersing them in an uninterrupted visual flow. 
As the volume of requests augments, such experiments indi-
cate that the unit of measurement for hits is moving towards 
the millisecond. Finally, others are concentrating on evalu-
ating workers’ performances over large periods to identify 
the annotators able to sustain the rhythm over time without 
decline in submission quality and sifting out the “satisfic-
ers” (Hata et al. 2017) who strive to do the minimal amount 
of work to meet the acceptance threshold. In response, the 
workers themselves try to figure out what is a good ratio 
between speed and accuracy. On social media platforms 
like Reddit, AMT workers exchange tips about “good pay-
ing tasks” and compare their performances. To be able to 
estimate the amount of work required for a task is a matter 
of survival in the crowdsourcing environment: both for the 
data set maker who is under pressure to deliver in a com-
petitive environment and the annotators who internalise the 
system’s speed.

Where does this analysis of the annotation architecture 
leave us? First, it emphasises that data is not given. Data 
needs to be produced and engineers are deeply involved in 
setting up the material conditions of production of said data. 
If the work of curating data sets and their annotation is cen-
tral, so is the management of the populations of workers 
involved. More importantly perhaps, we see how the notion 
of scale transpires into the whole process. With this notion 
of scale, we find a point in the midst of the technicalities of 
CV, where the discussion of Le Musée Imaginaire starts to 
resonate. A scale here is not a simple measurement of the 
accumulation of more material which has for consequence 
an accumulation of knowledge. Scaling corresponds to a 
production of difference not just to an increase of the same. 
If Malraux emphasises that his contemporaries have access 
to more artworks than their predecessors, he also insists that 
their relation to art differs in kind as well as in breadth. 
They have access to more categories of works and to a larger 
selection of works inside these categories. The expansion 
of categories and expansion of intra-categorial comparisons 
are the engines of a different relation to artworks and their 
representations. In this perspective, Le Musée Imaginaire is 
more than a printed book, it is an operation that brings the 
museum to the scale of the printed press.

Even if Li’s concerns feel remote from Malraux’s con-
cerns, to read Le Musée Imaginaire from this perspective, 
invites to pay closer attention to the generative character of 
scale. It shifts our attention from quantity increase (the addi-
tion of discrete content) to scale as a qualitative architecture 
of relations. And it helps take the measure of what is at 

stake when Li declares ImageNet is meant to bring computer 
vision to the scale of the web. Between the French Minister 
of Culture and the director of the Stanford AI lab, there is 
a resonance in the investment in scale as vector of knowl-
edge transformation. There are also striking differences. For 
instance, in Malraux’s essay, one could hardly find any refer-
ence to the labour involved in the production of the photo-
graphs or any economical consideration. Malraux’s museum 
is abstracted away from these concerns, as the art historian 
benefited from the budgets and apparatus of the Ministry 
of Culture. Li, on the other hand, brings the logistics and 
the economics of scale to the front. When she states that a 
crucial step to advance her discipline is to resolve the scale 
of the problem, she makes clear that this involves getting 
one’s hands dirty with issues of management and control.

This dissonance calls for further elaboration on the nature 
and dynamics of the knowledge that is produced. A scale, 
manifested in logistics and industrial infrastructure, is deeply 
generative. As media scholar Matthew Fuller writes, a scale 
provides “a certain perspectival optics by which dimensions 
of relationality and other scales may be ‘read’ […]” (Fuller 
2005). From a newly sensible scale, it becomes possible to 
“read new dimensions of potentiality” (Fuller 2005). Li’s 
work is an articulation of scales. It is the millions of images 
with their labels, the articulation of vision with the decom-
position of work in micro-tasks and micro-payments. The 
problem of scale is an articulation of both the macro and the 
micro. 14 million images need a model of vision, where the 
milliseconds are the unit of measure for perception. When 
thinking about the problem of scale of computer vision, we 
need to keep in mind the opposite poles of the problem’s 
dimension: on one hand, the infinitesimally small units of 
perception (the eye saccades), the miniaturisation of the 
work process in discrete hits that can be performed at full 
speed; and on the other hand, the massive amounts of photo-
graphs available on digital platforms and the vast population 
of precarious workers ready to annotate on demand.

This articulation of scale brings about a new distribution 
of labour crucially affecting the task of modelling. A task 
that was previously in the hands of the engineers is distrib-
uted among the annotators. The engineers delegate a series 
of crucial decisions, while keeping control over the way the 
problem is formulated and its interpretation. Through the 
interfaces and contracts of AMT, the engineers design the 
frame of “transepistemic relations” (Knorr-Cetina and Mal-
kay 1983).5 For Karin Knorr-Cetina, an example of a tran-
sepistemic relation can be found in the interaction between 
a funding agency and the researchers it supports. Often the 

4  In Amazon Mechanical Turk’s jargon, a “hit” stands for a “human 
intelligence task”.

5  “Transepistemic”, an adjective coined by sociologist of science 
Karin Knorr-Cetina refers to relations crucial to the inquiry that 
exceed the boundaries of the scientific community.
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funding agency participates to the framing of the research 
problem by negotiating the methods to be used or the inter-
pretation of measurements (Knorr-Cetina and Malkay 1983, 
p. 132). Research happens in and ex situ, yet the contribution 
of the agency remains unacknowledged in the reports and 
research outputs. To produce “pure” knowledge, the scien-
tists do not refer to the funding agency as a collaborator as 
it would open the door to a criticism of external influence, 
and a suspicion of introducing non-scientific criteria. With 
this concept, Knorr-Cetina emphasises the active role of 
external agents in the production of science and their rela-
tive invisibility. The concept stresses the importance of the 
circulation of knowledge and its distributedness. Although 
in an inverse balance of power, the engineers and the annota-
tors together contribute to the production of the knowledge 
relevant to computer vision. AMT can be characterised as 
a transepistemic device that enables the collaboration while 
masking one party’s contribution. It elaborates computer 
vision as it provides the modelling for the training process 
at the appropriate scale, and it elaborates it (this time with 
the emphasis on laborare, the latin root of the word) as it 
articulates computer vision’s division of labour.

4 � The data set as photographic alignment

What is the nature of the workers contribution in the tran-
sepistemic relation? Workers are said to be cleaning the data 
set, a term that invokes hygiene and manual rather than intel-
lectual labour. To clean is to scrub away the germs and para-
sites intoxicating a set of samples. It also indicates clearly, 
where is the annotator’s side in the division of labour. By 
contrast, the role of the worker would be framed much dif-
ferently if she was considered as contributing to the curation 
rather than the cleaning of the data set. The nature of the 
decisions the annotator has to take is of central importance 
for what is included in, or excluded from, the data set. Yet, 
as we begin to understand better, the labour so crucial to 
the process remains undervalued financially and unacknowl-
edged (the workers are anonymised and interchangeable). 
Furthermore, the decision-making power of the workers, as 
we will see, must be simultaneously enabled and delimited.

With the annotator’s work, we are at the core of the pro-
cess of regularisation of computer vision’s objects. Regu-
larisation means to process the objects in a manner that 
makes them suitable for use in scientific work. In this case, 
it means to fashion the objects in a manner that they exhibit 
the regularities that will be picked up by the algorithms at a 
later stage. As the historians of science Daston and Gallison 
(2017, pp. 19–22) remark, “No science can do without such 
standardized working objects, for unrefined natural objects 
are too quirkily particular to cooperate in generalizations 
and comparisons.” Regularities are never simply given in 

the data, they always need a helping hand. The workers are 
given a set of photographs pulled from the Internet through 
automatic queries of visual search engines. The results from 
these queries are noisy, ambiguous, and at times obviously 
unrelated.6 A considerable amount of work of disambigua-
tion has to be performed. The workers are tasked to filter the 
search results and extract the relevant photographs. They 
are expected to find by consensus which photographs are 
“imaging” a given concept. Imageability, a concept imported 
from psycholinguistics, describes the ease or difficulty with 
which a concept can be characterised visually (Paivio 1986; 
Yang et al. 2019). ImageNet is composed of a wide array 
of heterogeneous entities including stars, cities, animals, 
vehicles, micro-particles and diseases. But as different as 
they are, computer scientists think they may all be imaged 
in a way that make them available for comparison and dif-
ferentiation. Imprints of light captured by a digital camera, 
computer simulations, screenshots or photoshoped images 
are all reduced to pixels. Therefore, molecules, pencils, acro-
bats, coliphages, olives and tetraspores belong to a same 
imaged register, where regularities and differences can be 
observed. What do they have in common? They can be pho-
tographed, or more precisely represented according to the 
codes of photographic realism. Significantly, the interface 
warns the ImageNet’s annotators: “PHOTOS ONLY, NO 
PAINTINGS, DRAWINGS, etc.” A pivotal role is given to 
photography conceived as a leveller, an instrument that auto-
matically converts light into pixels according to predictable 
rules and at the same time that images a concept. Photogra-
phy is mobilised as an instrument to homogenise the visual 
world, to transform the visual into data, where data of dif-
ferent origins can be compared and classified.

In the first part of this text I have discussed how the 
notion of scale was central to Li’s project. I have differen-
tiated scale from a simple quantitative indicator. Resolv-
ing the scale mobilises micro-labour, eye saccades, and 
billions of data items. Now we see that the billions of ele-
ments selected to enter the data set are not random visual 
files, they are photographs, and as photographs, they are 
treated as suppliers of representations, dedicated to the 
task of “imaging” concepts. Furthermore, photography is 
given a role of leveller which offers a plane over which 
individual representations can be compared. In Le Musée 
Imaginaire, Malraux forges a word that encapsulates pho-
tography’s role in regulating the representations entering 
the collection. Everything in the museum has a place if 
it is “photographable” (Malraux 1965, p. 123). By pho-
tographable, Malraux doesn’t mean only something that 

6  Referring to the Torralba et al. (2008), Yang et al. evaluate to 10% 
the number of photos matching a query, https​://peopl​e.csail​.mit.edu/
torra​lba/publi​catio​ns/80mil​lionI​mages​.pdf.

https://people.csail.mit.edu/torralba/publications/80millionImages.pdf
https://people.csail.mit.edu/torralba/publications/80millionImages.pdf
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can be reproduced as a photograph. In Malraux’s account, 
photography is active and is perfectly suited to address 
the question of style. For him, a photograph doesn’t trans-
parently describe an artwork. Light, frame, composi-
tion, angle, all contribute to reveal style within the visual 
object. Yet even if these correspond to carefully selected 
choices, they are revealing something that exists within 
the object. The photograph makes the objects speak. This 
revealing, even if it is obtained through a technical pro-
cedure, is by no means purely mechanical. In the book, 
Malraux compares different photographic reproductions 
of a same artwork and insists some capture the artwork 
better than others. Therefore, Malraux’s photograph is 
not just a passive reproduction. However, as a revealing, 
its active contribution is intimately bound to its efface-
ment, its disappearance. Any surplus to what it reveals 
can be dismissed as irrelevant, and when two photographs 
are juxtaposed (or “confronted” in Malraux’s terms), the 
dialogue we are invited to witness happens between two 
objects, not between two photos. To be photographable 
means to be opened up to comparison by the means of 
photography.

To bring the discussion back to computer vision, the 
problem faced by the data set creators can be formulated 
this way: how to make 20,000 categories imageable and 
photographable? Diversity is an important criteria to con-
stitute a data set. The diversity in question concerns the 
objects represented in the photographs. The objects must 
exhibit variance in positions, viewpoints, appearance. 
They must be placed in front of different backgrounds and 
must appear with various degrees of occlusion (Deng et al. 
2009, pp. 4–5). The search engine is the provider of such 
diversity as it concentrates in one page, photographs of 
distinct sources. Concretely, it means the engineers del-
egate to the search engine the task to extract the photos 
from the context in which they operate online. To per-
form this extraction, the search engine needs to undo a 
large series of relations that held these photos in place. 
For example, as most ImageNet’s photographs are origi-
nally posted on Flickr, it requires the undoing of the rela-
tions the platform has established among the many enti-
ties that partake in the photograph. On the platform, the 
photograph is a composite. It is made of a series of JPEG 
files of different formats. It includes tags and comments. 
It circulates in communities and albums. Metadata infor-
mation are attached to it, and so on. All these relations 
form an “alignment” that makes the Flickr photograph 
an entity that can be shared, liked, viewed rated. In the 
Flickr ecosystem, the photograph has currency. When 
the photograph gains popularity, it opens the door to new 
groups, the photographer receives a badge, and his vis-
ibility increases. The term alignment stresses the fact that 
a photograph doesn’t exist alone. It is enacted through a 

series of relations taking place in an apparatus (in this 
case, the Flickr platform) through which it gains proper-
ties, affordances, and currency.

To be included in the data set, a digital file is excised 
from its Flickr alignment. The comments do not travel 
with the file, and neither do the albums, metadata infor-
mation, or the author’s name. The Flickr photograph, once 
tagged by the author or the community, is now categorised 
according to the WordNet thesaurus. This operation is far 
from innocuous. The photograph is enacted differently. It 
is re-aligned, and this re-alignment requires a considerable 
amount of work. Once selected by the search engine, the 
files are acquired by the data set makers and they are shown 
in grids of hundreds of thumbnails to the Turkers. Moving 
from the original context, where they were published, they 
enter into another framework of attention. With the AMT 
interface, a photograph once seen in an individual page or 
inside a blog article is displayed among many other can-
didates. The screen is filled with thumbnails. Proximities 
change radically, the photograph sits next to new neighbours. 
As already mentioned, AMT privileges the glance rather 
than a sustained observation as the exploitative labour con-
ditions imply a rapid pace. Decisions must be taken fast. 
Moving from Flickr to AMT is not just a change in location 
and relations, it is a change of rhythm, speed, a change of 
metrics. It is also the conversion of an economy of sight. 
The Flickr photograph, a product of free labour, becomes 
the AMT thumbnail, an object of minimal attention for the 
Turker struggling to make ends meet. The translation from 
free labour to micro-payment goes along with the translation 
from an environment that celebrates the full screen view to 
a device that optimises its workflow with the thumbnail. In 
AMT, considerations of aesthetics do not apply, legibility 
becomes more important. Imageability is the dominant cri-
teria of selection and the worker’s competence is her ability 
to capture the photograph’s content fast.

5 � Decision‑making, micro‑labour 
in the photographic alignment

A series of examples will help understand the imaging 
process happening through the re-alignment of the search 
results. I will begin with the synset “Ratatouille”. The 
description given to the workers for the ratatouille con-
cept is “a vegetable stew; usually made with tomatoes, 
eggplant, zucchini, peppers, onion, and seasonings”. It is 
filed under Misc → food, nutrient → nutriment, nourish-
ment → dish → stew. The photos selected in the synset are 
for one half extracted from Flickr accounts and the other 
half from culinary websites, foodie blogs, cooking tutori-
als, or restaurant pages. The distribution of photographs in 
the synset seems to correspond to the stated goals of the 
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data set makers: variations in shapes, lighting, and points 
of view. The selection is testament to the variety of forms 
the dish can take. Layered slices of vegetables in a baking 
tray, cubes of tomatoes and eggplants in a pot, the meal is 
displayed alone or in combination with other dishes, on a 
stove, next to a sink, on a garden table at a barbecue party, 
in a living room on an immaculate white sofa, in a tupper-
ware container on a flower tablecloth. The technical compe-
tences of the photographers vary. The framing and cropping 
of the photographs, the sharpness, the blurs, the light bal-
ance relate to different intentions and belong to contrasting 
aesthetics. A photograph capturing the delicate reflections of 
light in the marinade sits next to a quick snapshot in which 
the details of the meal vanish under reflection of the flash-
light. In many ways, the variety of the selections meet the 
engineering requirements. Yet a closer look at the selected 
items reveals the presence of entities that do not match the 
synset’s definition. The dish has been confused with various 
forms of stew (e.g., meat stew) or tomato and mozzarella 
salads. More surprisingly, pasta meals and grilled shrimps 

on skewers have also been confused with ratatouille. The 
Pixar character of the eponymous movie also appears to be 
a candidate for the combination of zucchini, tomatoes and 
eggplants. These items can be seen as the results of mis-
takes by individual workers who didn’t pay enough attention, 
and that can be partially explained by the nature of the dish 
inasmuch as it takes multiple forms (e.g., a “rata” in French 
military slang originally being a rough mix of cheap vegeta-
bles) (Illustration 1).

The data set makers anticipated human errors of judge-
ment and the difficulty to decide whether the candidate 
images contain a particular object. They designed a solution 
to evaluate inter-annotator agreement. Essentially, a candi-
date image is included in the data set only if a consensus is 
reached among annotators. As I have explained, the plat-
form relies on parallelism for technical and organisational 
reasons. The workers are never aware of the decisions taken 
by others and cannot interact with them. Consensus on the 
platform means that several workers are presented the same 
candidate images and the platform compares their selection. 

Illustration 1   synset 
n07592768, Ratatouille



1125AI & SOCIETY (2021) 36:1117–1131	

1 3

Where the selections overlap a consensus is reached. Fur-
thermore, this consensus is modelled according to a scale 
that varies according to the “semantic difficulty” (Deng et al. 
2009) of the data set (its grade of imageability). The Ima-
geNet authors give the example of the difficulty to reach a 
consensus for a synset like “Burmese cat” in comparison 
with “cat”. As cat is deemed more imageable than Burmese 
cat, the number of annotators who need to agree on the label 
“Burmese cat” for the same photograph needs to be higher 
than the number of agreeing annotators for “cat”. “Rata-
touille” at the bottom of the branch Misc → Food Nutrient, 
is one of those terms deemed more semantically difficult 
and requiring, therefore, more eyeballs and a higher level 
of consensus.

Yet a higher level of consensus doesn’t guarantee a 
greater conformity to the definitions given to the work-
ers. In the synset n09708750, the concept “Parisian”, is 
described as “a native or resident of Paris” (Illustration 2). 
A remarkably high portion of the selected images are pho-
tos of Paris Hilton in different forms including candid and 

tabloid photos, 3D models, or selfies. Representations of 
the socialite in bathrobe, bikini, gown or casual wear dom-
inate by far other familiar cultural tropes of Parisians like 
tourists at the Louvre Pyramid, passers-by wearing berets 
and striped sailor shirts, men kissing at Gay Pride, people 
enjoying a coffee at a terrace, or visiting the Eiffel tower. 
Unlike the previous example, the imbalanced proportion of 
photographs of Hilton cannot be explained by the errors of 
a minority of annotators that have introduced a negligible 
percentage of erroneous candidates.

The cause is often attributed to the workers. Engineers 
develop techniques to track the workers that are considered 
as “satisficers” (Hata et al. 2017) or “spammers” (Quach 
2019) who accomplish their tasks with too little care. 
Other causes are evoked, such as the annotators are not 
culturally compatible (Hata et al. 2017) with the request 
or they don’t read the definition. For these reasons, many 
precautions are in place to ensure the definition is read 
by the annotators. Before seeing the candidate images, 

Illustration 2   synset 
n09708750, Parisian
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the annotator is presented the definition of the synset. 
Subsequently she is presented another screen, where she 
has to choose the right description among several others. 
For instance for the synset N04070003, “reformer”, the 
annotators are given the following “gloss”7: “An apparatus 
that reforms the molecular structure of hydrocarbons to 
produce richer fuel; a catalytic reformer" (imagenet.org 
no date). However, none of the photos selected in the syn-
set depicts such an apparatus. Instead they depict Pilates 
reformers and people doing exercises, even if to access the 
hit, the annotator had to confirm explicitly that reformer 
was a chemistry-related apparatus and not a gymclass 
prop. For the annotator, glancing is not only a mode of 
perception related to the rapid scanning of thumbnails, 
text too is read in a glimpse (Illustration 3).

This brings us back to the problem of decision-making 
in the annotation environment. The decision is delegated 
and regulated through consensus. Supervision happens post-
hoc when consensus cannot be achieved or through punctual 
quality checks. Supervision here differs starkly from an idea 
of a subject dominating a scene from a bird’s eye perspec-
tive. To contrast, it may be useful to remind ourselves of 
a famous photograph representing Malraux in his spacious 
office at the French Ministry of Culture. The floor is cov-
ered with photographs. Malraux standing in front of his 
desk holds one of the photographs for further consideration. 
Malraux literally supervises, visually dominates the pictures 
distributed at his feet. This mode of supervision does not 
correspond to any of the actors involved in ImageNet. Li and 
her colleagues control the process through the reports given 
by the AMT interface. They receive numerical indicators 
and they can insert them in spreadsheets. But they never 
supervise ImageNet’s visual content from an overhanging 
position. There is no floor large enough to contain 14 million 
photographs, and even if such floor could exist, there would 
be no position from which an observer could embrace its 
totality. If such a position is not available to the researchers, 
the situation is even less comparable for the annotators. If 
the annotators are given the role to look at the photos on 
their screens, they are immersed in a flow and unable to 
negligently pick one photograph and consider it with an air 
of detached interest. This doesn’t mean, however, that no 
decisions are taken and that no supervision is in place. What 
this comparison suggests is that we need to further enquire 
into the mode of decision-making and that we have to renew 
our notion of supervision to adapt to what is happening in 
the annotation environment.

To annotate at speed does not consist of a mechanical 
response issued from a passive subject. To understand the 

annotator’s contribution, it is fundamental to understand the 
process as one of elaboration which goes beyond rational 
choice and explicit judgement. The epistemic contribution 
consists in embodying a scale, figuring out rhythms and 
levels, understanding and refraining involvement. To attend 
to the process of elaboration means to avoid concentrating 
exclusively on the semantic decision. The elaboration is not 
limited to a pivotal moment, where the annotators assert the 
meaning of a photograph. It includes the complex methods 
through which they synchronise within an alignment and 
embody a scale. Synchronisation, scale embodiment, attune-
ment, and seeing at speed are at the core of the photographic 
mediation of computer vision. They intervene crucially in 
the resolution of the photograph in a given alignment. To 
understand the annotator’s contribution is, therefore, to be 
attentive to how she creatively relates with the apparatus, 
how she probes, where the apparatus begins and ends. To 
attend to the resolution of a candidate image into a data set 
item requires a rethinking of the nature of the decisions that 
are taken. It requires to shift from an understanding of a 
decision mechanism based on a pivotal moment that involves 
an “isolated who” (Mol 2002) to a more distributed consen-
sus of actors and devices. The question becomes: how do the 
Turkers achieve consensus without explicit coordination? A 
crucial part of the answer lies in the methods the annotators 
mobilise to figure out the rhythm they have to follow.

The cadence of the platform comes from the remunera-
tion. To secure a minimal income, the Turkers have to per-
form at high speed. They have to calibrate their involvement. 
They need to figure out how precise they must be to make 
enough annotations and have their hits accepted. This bal-
ancing act requires finding one’s place in the alignment. The 
Turkers are contributing to the resolution of a scale, to the 
correlation between semantic hierarchies and speed. They 
do not debate together to decide whether a candidate image 
should be considered “tomato mozzarella” and consequently 
be excluded from the “ratatouille” set. They have to judge 
whether it is worth slowing down to give attention to this 
candidate or if, at first glance, it can be assimilated to the 
concept ratatouille without threatening their remuneration. 
They have to intuit if the difference they notice is worth 
changing pace or if they can remain indifferent to this dif-
ference. The Turkers develop a common sense of the appa-
ratus’ resolution without having to explicitly negotiate. The 
architecture and the pace of the AMT define its resolution, 
its grade of precision in the descriptions, and concomitantly, 
it creates a zone of indiscernibility for the apparatus.

A consensus is not always a matter of explicit argumen-
tative deliberation. It can be a matter of levelling, of find-
ing a common grade of involvement. To ask which argu-
ments led to the selection of some items rather than others 
is less important than asking how is a consensual echo 
propagated through the AMT. To build a consensus, the 

7  A technical term in WordNet’s parlance for the description of a 
synset.
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workers develop a sense of the speed required by the appa-
ratus. This speed as I have said is induced by the remu-
neration, but it is also induced by many more elements. 
For instance, AMT stabilises the candidate images as 
thumbnails detached from their original context. They are 
search engine results and as such the search engine already 
conveys a sense of consensus. If many candidate images 
look similar, it suggests that a consensus exists over them. 
The Turkers do not validate mechanically the dominant 
representations they are given by the interface, but the 
regularities that spring out from the grid of thumbnails 
function as a cue. It is an accelerator. To choose against 
the coherence that emerges from the results requires more 
work and time. It requires looking at the candidates that 
do not stand out. Another important cue comes from the 
jobs being accepted or refused by the requester. The rea-
sons why a job is accepted (understand, remunerated) or 
refused (the worker has no recourse against the requester) 
are extremely rarely given by the requester. It is, there-
fore, not always possible to correlate a decision made by 
the worker and a rejection from the requester. But as they 
have significant economic consequences for the annota-
tor, she evaluates her work based on her interpretation of 
the requester’s decision. Therefore, the Turkers never rely 
on any explicit guidance, but they follow an echo, where 
different forms of feedback and cues resonate with each 
other. Workers need to learn how to listen to the apparatus 
more than they have to read the labels and the definitions 
of the synsets.

The Parisian or the reformer cases make clear that the 
composition of the synsets cannot be explained by a process 
in which workers carefully read the gloss and select the can-
didate images accordingly. Focusing on a pivotal moment of 
an “isolated who” making a decision takes us only so far. 
The Turkers hover over a visual configuration emanating 
from the interface. Rushing through the pages, they see an 
overwhelming presence of the shining blondness of a famil-
iar icon whose name matches the synset’s label. The Turkers 
do not necessarily believe that Paris Hilton is a resident of, 
or born in, Paris. Their decision is that there are enough 
responding echoes in the apparatus to validate the selection 
without having to spend time further verifying. The object 
of the consensus is not the fact that Hilton is a Parisian, but 
that such an approximation will not isolate them. A course 
of recognition traverses the apparatus. To recognise is to be 
recognised. To be recognised as a Turker, one doesn’t need 
to recognise things that are factually right but to recognise 
the grade of approximation that is expected. The Turker’s 
competence is multi-scalar, not just a semantic affair. As 
a Turker wrote on a forum, it is to have a sense of what is 
“enough to get away with”. To get away is indeed the right 
term as a Turker must always have an eye on the previous hit 
and another on the next. Speed is conductive to consensus.

6 � Arbitrating photographic alignments

Following the production of consensus in the annotation 
environment, we gained insights into the nature of the 
workers’ transepistemic contribution. They are accom-
plishing speed and accuracy rather than emitting explicit 
judgements. They are constantly engaged in probing the 
plasticity of the consensus rather than producing discrete 
statements about facts. Having established that, I need 
to relate the workers’ contribution to the alignment they 
are part of. I have already stated, following Crimp that 
the condition for the diversity of the data set is that the 
objects are represented in various conditions but that the 
medium which represents them is uniform and transpar-
ent. Yet as we have seen the workers are involved in more 
than classifying concepts represented differently through 
a seamless medium. The heterogeneity of the candidate 
images doesn’t only reflect a disparity of styles and con-
texts. It also reflects the heterogeneity of larger appara-
tuses through which photographs are stabilised and set in 
motion. To understand the full consequence of this, we 
need to come back to the notion of alignment and the role 
played by the search engine in the data set’s acquisition 
pipeline. The search engine hides the relations and context 
in which a photograph lives online. It excises the photo-
graph from its alignment and, therefore, contributes to the 
appearance of the photographic object being independent 
from the apparatus through which it is made visible. This 
extraction is also in part the validation of the authority of 
an apparatus over a query term. In many synsets there are 
large amounts of photographs from the same source (e.g., 
a Flickr album, a blog or website). The distribution of 
the photographs in a synset reflect the effectiveness of the 
strategies of the various platforms competing for the vis-
ibility of their contents. A platform like Flickr very much 
anticipates the requirements of a search engine and offers 
it as a structured set of objects (file, metadata) optimised 
for machine readability. By securing and reinforcing the 
internal connection of its content (Flickr photos are related 
to each other by various mechanisms like links, inclusions 
in groups or tags), the platform also anticipates the search 
engine’s ranking criteria (i.e., the more links the higher 
visibility). The platform is “search engine optimised” 
and the users of the platforms are recruited in this effort. 
The search engine and the source platform are not clearly 
delineated entities between which independent JPEG files 
are in transit. Rather the platform very much interiorises 
the search engine in many ways. This explains that various 
categories are “taken over” by content popular on a shar-
ing platform as the platform is optimised to do so.

In this competition, platforms have an advantage as they 
are built from the start to capitalise on the circulation of 
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their assets. But this advantage is only partial. For certain 
categories, other apparatuses beat the platforms at their 
game. The monopoly then comes from other sources. The 
synset n09633969 “wrongdoer, offender”, for example, is 
essentially constituted from mugshots published by US 
states or county websites. These administrations operate 
their own apparatuses of capture, identification and dis-
semination that dramatically contrasts with those of ama-
teur photography. These apparatuses inscribe their own 
regularities in terms of pose, colours and point of views. 
They also inscribe other regularities in terms of race and 
gender by excluding images of white collar (or female) 
criminals and focusing on people of colour. As a conse-
quence, a synset like wrongdoer, constituted of mugshots 
does not merely validate photos that are imaging a con-
cept, it perpetuates the politics of shaming inherent to state 
department’s websites.

The data set is not a merely a collection of photo-
graphs, it is an arbitration between different forms of align-
ment: Flickr’s amateur snaps, police portraits, submarine 

photographs are re-aligned as items of a training set. It 
doesn’t make sense to talk about this process of selection 
as if a group of distinct individuals were choosing discrete 
photographs in a void, but as the data set feeding on differ-
ent photographic alignments, branching itself into various 
apparatuses and offering them different shares of the data 
set’s space, and delegating various levels of decisions to the 
search engine algorithm and the AMT workers.

Having followed this process of realignment, it is clear 
that using photography as a tool to homogenise the visual 
world leads to a paradox. The paradox is that to resolve a 
photograph as data, all the heterogeneity that pertains to 
the medium, its apparatus and its circulation needs to be 
repressed. The photograph needs to be made a transparent 
vehicle. And to make it transparent, computer scientists need 
to engage in the production of their own apparatuses and 
produce their own alignments. This long chain of transla-
tions and ruptures from search queries to AMT to data set is 
in itself an alignment and also conditioned to the existence 
and performance of apparatuses. The paradox, therefore, 

Illustration 3   synset 
n04070003, Reformer
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lies in this: it is an alignment that needs to negate itself, 
that needs to remove itself to construct photography as a 
transparent leveller of data. The workers are, therefore, 
engaged in a double process of elision. Their own contribu-
tion is unacknowledged, as they are considered to be merely 
mechanically responding to hits. Their contribution consists 
of erasing the traces of the apparatuses involved in the reso-
lution of online photographs into data set items. The invisibi-
lisation of the workers goes hand in hand with the resolution 
of photography as a transparent leveller of data.

7 � Conclusion

At this point, I have made the case that engaging with the 
photographic elaboration of computer vision requires the 
acknowledgement of the importance of the workers epis-
temic contribution and the photographic alignment travers-
ing CV. To conclude this paper, I will show how this notion 
of photographic elaboration can help question the terms by 
which current controversies in CV are being framed and the 
responses that have ensued (Illustration 4).

Despite its immense academic success, its inclusion in 
many pieces of software, and its celebration as a benchmark 
for AI algorithms, ImageNet, today, is undergoing a grave 
crisis. For those who consulted its website during the last 
years, ImageNet’s online presence has been gradually disap-
pearing. Its disappearance is due in larger part to mounting 
controversies both from the public (for instance, see Ima-
geNet Roulette, Crawford and Paglen 2019) and from inside 

the tech community (i.e., Dulhanty and Wong 2019; Shankar 
et al. 2017; Recht et al 2019). The criticism mainly targets 
the data set’s cultural, racial and gender bias. In response, 
the data set creators and a larger team of researchers are 
engaged in a process of revision of the data set as an attempt 
to remedy to the various shortcomings expressed in and out 
the CV community.

Current reparative efforts are concentrated on the main-
streaming of the training data, the objective being to make 
ImageNet fairer and updating its “acquisition pipeline”. 
The researchers’ response to the problem, as expected, 
essentially concentrates on the question of representation. 
Problematic categories are annotated to attach properties 
such as gender, age or skin colour to images. To give fairer 
representations means, for instance, rebalancing the roles 
portrayed in the photographs according to gender or racial 
criteria, and to produce a more suitable distribution of these 
roles in a synset. Leaving aside the questions of how criteria 
such as gender or skin colour are assessed, or what a suit-
able distribution of photographs based on such criteria might 
mean, it is clear from the outset that the response once again 
concentrates on the depicted objects to evaluate how well 
they image a concept. As a response to external pressure, 
the representationalism of the data set makers increases. The 
“People” subtree is annotated to evaluate the imageability of 
its concepts. All the concepts with a low imageability grade 
are removed. The solutions designed by the research team 
keep on reducing the number of selected elements in the data 
set, and potentially problematic categories are discarded. 
Data demining is in order. At the end of the process, the 

Illustration 4   A screen capture 
of the Triumphal Arc synset on 
imagenet.org
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researchers estimate that out of the 2832 subcategories of 
the “people” subtree, only 139 will remain.

But as we have seen, the problem runs deeper than rep-
resentation. A photograph is not just a constructed repre-
sentation, it is also very much defined by its circulation, the 
currencies in which it is accepted, how it comes into series. 
It acquires meaning and function through use. It requires a 
reflection on the conditions in which a photograph is tem-
porarily resolved, to the different elements it aligns with. It 
requires a renewed attention to the relation with the appa-
ratuses and the engineer’s own apparatus of capture, his/
her own alignments. Therefore, a response that addresses a 
criticism of bias only narrowly defines the problem. If the 
problem is understood solely as a question of right or wrong 
data (more balanced and fairer), it will leave unquestioned 
how photography is made to be data in the first place. It 
remains blind to the performative role of the methods, the 
labour, the agents, the scales, the apparatuses and the align-
ments it relies upon.

If we acknowledge that photographs are not representa-
tions independent from their alignments, what is the con-
sequence for data set makers? If the process of production 
of the data set doesn’t take into account the whole chain of 
aligned elements it rests upon, the nature of its own appara-
tus, it will keep treating visual data as a mere collection of 
elements that can be replaced by safer ones or entirely avoid 
risky categories. But this improvement will then necessarily 
lead to further impoverishment of the data. As an apparatus 
in denial of its own performativity will only neutralise fur-
ther the relational nature of the photograph. Engineers apply 
the GIGO maxim, “garbage in, garbage out”, and imagine 
getting rid of the garbage is the path forward. Accordingly, 
a criticism based on bias will lead to an increased cleaning 
of the data set. But image is garbage. It is entangled in con-
flicting regimes of representations, divergent apparatuses, 
disruptive alignments and irreconcilable practices. If those 
are cleaned up, there is no image left. There will be perhaps 
less risk for algorithms to be contaminated by obscene or 
offensive imagery if the data set keeps on shrinking. But 
this entails a bigger risk, the risk for machine learning to not 
learn anything worth knowing. A data set of perfect repre-
sentations is an empty one. The most striking images ever 
produced by computer vision are not deep, either fakes or 
dreams, they are flat and white and on their centre, an icon 
suggests the page is loading without ever displaying any 
content. They are the millions of empty pages of the Ima-
geNet website. These images of the data set’s ruins are the 
products of its inability to engage with the labour it relies on 
and the apparatus it is entangled with.

To introduce this text, I referred to Crimp’s take on the 
musée imaginaire. I stated that the ruins Crimp refers to 
were not solely the ruins of extracted elements dying in the 
confines of a mausoleum. They were the ruins of a project 

that relied on a particular change of scale. Malraux’s project, 
Crimp stated, was an hyperbole representing the transforma-
tion of the museum. The “real” museum is seen as limited in 
what it can acquire and keep within its walls. Photography 
makes it possible to enlarge the scope of what one sees and 
how one sees. The museum as imagined by Malraux aims 
to produce knowledge by comparison. Works can be shown 
side by side, monuments can be scaled down and details can 
be enlarged. Before, one would compare a painting with a 
memory, now one can compare two objects through their 
photographs. The problem Crimp addresses is that photog-
raphy is enrolled in the process of articulating the relations 
between a potentially unlimited amount of works on the 
condition that its role should be limited to one of revealing. 
Therefore, the process of comparison of otherwise hetero-
geneous elements is only meaningful, because the process 
of extraction and homogenisation is made invisible. But 
as Crimp ironically remarks, when photography enters the 
museum as an art object, heterogeneity returns as: “Even 
photography cannot hypostatize style from a photograph” 
(Crimp 1980, p. 53).

Crimp’s lesson is that we must extend our concern for the 
objects to the larger project, to the investment in a certain 
scale obtained through photography and the putative knowl-
edge it purports to generate.

Instead of lamenting the presence of dead objects in a 
mausoleum, one should question the ruins of an ideal plane 
of comparison. To translate this in the context of CV, instead 
of taking off every element that could lead to controversy, 
the data set makers should instead reckon with their own 
apparatus of annotation and the labour it conceals. Instead 
of denying the collaboration, they should address the tran-
sepistemic dimension of the work carried out by the annota-
tors and engage with it. This is hard work, because it ques-
tions the discipline, where it hurts most: at the level of its 
economy. Recognising the work carried out by the Turkers 
obviously opens the question of the financial revalorisation 
of their labour. Furthermore, computer scientists should con-
sider afresh their understanding of photography and do away 
with the entrenched representationalism of the discipline. 
This is hard word again, because it rejects the notion of an 
ideal plane on which all images can be made data. Combined 
together these two observations make clear that the work to 
be done is much more ambitious than bias-proofing sensitive 
categories. It confirms Li’s insight: data sets are indeed tools 
to resolve the scale of computer vision’s problem. However, 
it suggests that resolving the scale is a project that needs a 
fresh start.
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Abstract
In many critical investigations of machine vision, the focus lies almost exclusively on dataset bias and on fixing datasets by 
introducing more and more diverse sets of images. We propose that machine vision systems are inherently biased not only 
because they rely on biased datasets but also because their perceptual topology, their specific way of representing the visual 
world, gives rise to a new class of bias that we call perceptual bias. Concretely, we define perceptual topology as the set of 
those inductive biases in machine vision systems that determine its capability to represent the visual world. Perceptual bias, 
then, describes the difference between the assumed “ways of seeing” of a machine vision system, our reasonable expectations 
regarding its way of representing the visual world, and its actual perceptual topology. We show how perceptual bias affects 
the interpretability of machine vision systems in particular, by means of a close reading of a visualization technique called 
“feature visualization”. We conclude that dataset bias and perceptual bias both need to be considered in the critical analysis 
of machine vision systems and propose to understand critical machine vision as an important transdisciplinary challenge, 
situated at the interface of computer science and visual studies/Bildwissenschaft.

Keywords  Machine learning · Computer vision · Bias · Interpretability · Perception

1  Introduction

The susceptibility of machine learning systems to bias has 
recently become a prominent field of study in many disci-
plines, most visibly at the intersection of computer science 
(Friedler et al. 2019; Barocas et al. 2019) and science and 
technology studies (Selbst et al. 2019), and also in disci-
plines such as African-American studies (Benjamin 2019), 
media studies (Pasquinelli and Joler 2020) and law (Mit-
telstadt et al. 2016). As part of this development, machine 
vision has moved into the spotlight of critique as well,1 par-
ticularly where it is used for socially charged applications 
like facial recognition (Buolamwini and Gebru 2018; Garvie 
et al. 2016).

In many critical investigations of machine vision, how-
ever, the focus lies almost exclusively on dataset bias (Craw-
ford and Paglen 2019), and on fixing datasets by introducing 
more, or more diverse sets of images (Merler et al. 2019). 
In the following, we argue that this focus on dataset bias in 
critical investigations of machine vision paints an incom-
plete picture, metaphorically and literally. In the worst case, 
it increases trust in quick technological fixes that fix (almost) 
nothing, while systemic failures continue to reproduce.2

We propose that machine vision systems are inherently 
biased not only because they rely on biased datasets (which 
they do) but also because their perceptual topology, their 
specific way of representing the visual world, gives rise to a 
new class of bias that we call perceptual bias.

Concretely, we define perceptual topology as the set of 
those inductive biases in machine vision systems that deter-
mine its capability to represent the visual world. Perceptual 
bias, then, describes the difference between the assumed 
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1  As shown, for instance, by the increasing prominence of the FATE-
CV workshop, organized by Timnit Gebru at CVPR, one of the major 
international computer vision conferences.
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“ways of seeing” of a machine vision system, our reason-
able expectations regarding its way of representing the 
visual world, and its actual perceptual topology. Research 
in computer science has shown that the perceptual topolo-
gies of many commonly used machine vision systems are 
surprisingly non-intuitive, and that their perceptual bias is 
thus surprisingly large.

We show how perceptual bias affects the interpretabil-
ity of machine vision systems in particular, by means of a 
close reading of a visualization technique called “feature 
visualization” (Erhan et al. 2009). Feature visualization can 
be used to visualize the image objects that specific parts of 
a machine vision system are “looking for”. While, on the 
surface, such visualizations do make machine vision sys-
tems more interpretable, we show that the more legible a 
feature visualization image is, the less it actually represents 
the perceptual topology of a specific machine vision system. 
While feature visualizations thus indeed mitigate the opac-
ity of machine vision systems, they also conceal, and thus 
potentially perpetuate, their inherent perceptual bias.

Feature visualizations, we argue, should thus not be 
understood so much as direct “traces” or “reproductions” of 
the perceptual topology of machine vision systems (analog 
to the technical images of photography) but more as indi-
rect “illustrations”, as “visualizations” in the literal sense of 
forcibly making-visual (and thus making visible and subse-
quently making interpretable) the non-visual. They should 
be understood as technical metapictures in the sense of W. 
J. T. Mitchell (Mitchell 1995), as images about (machine) 
seeing.

We also show how feature visualization can still become 
a useful tool in the fight against dataset bias, if perceptual 
bias is taken into account. We describe a case study where 
we employ feature visualization to discover dataset bias in 
several ImageNet classes, tracing its effects all the way to 
Google Image Search.

We conclude that dataset bias and perceptual bias both 
need to be considered in the critical analysis of machine 
vision systems and propose to understand critical machine 
vision as an important transdisciplinary challenge, situ-
ated at the interface of computer science and visual 
studies/Bildwissenschaft.

2 � Deep convolutional neural networks

Our investigation looks at machine vision systems based on 
deep convolutional neural networks (CNNs), one of the most 
successful machine learning techniques within the larger 
artificial intelligence revolution we are witnessing today 
(Krizhevsky et al. 2012). CNNs have significantly changed 
the state of the art for many computer vision applications: 
object recognition, object detection, human pose estimation, 

and many other computer vision tasks are powered by 
CNNs today, superseding “traditional” feature engineering 
processes.

For the purpose of this investigation, we will describe 
CNNs from a topological perspective rather than a math-
ematical perspective. In other words, we propose to under-
stand CNNs as spatial structures. While the topological per-
spective certainly requires the bracketing of some technical 
details, it also encapsulates the historical development of 
AI from “computational geometry”, as Pasquinelli (2019b) 
reminds us.

From the topological perspective, we can describe CNNs 
as layered systems. In fact, the “deep” in “deep convolutional 
neural network” is literal rather than metaphorical (Arnold 
and Tilton 2019): it simply describes the fact that CNNs 
usually have more than two layers, with networks consist-
ing of two layers sometimes being called “shallow” neural 
networks. In the simplest version of a (non-convolutional) 
neural network, these layers consist of neurons, atomic units 
that take in values from neurons in the previous layer and 
return some weighted sum of these values. So-called “fully 
connected layers” are thus not at all different from traditional 
perceptrons (Rosenblatt 1957; Minsky and Papert 1988), 
with the one exception that they only encode differentiable 
activation functions, i.e. the computation of the weighted 
sum of input values is achieved in a differentiable way, most 
commonly in the form of a so-called rectified linear unit.

Deep convolutional neural networks, then, introduce new 
classes of neurons, which perform more complex functions. 
Convolution operations have been used in signal processing 
way before neural networks regained popularity. Mathemati-
cally speaking, a convolution operation is an operation on 
two functions that produces a third function which measures 
the influence of the second function on the shape of the first. 
A more intuitive geometric definition is that of a kernel, a 
matrix, “scanning over” a second matrix to produce a third 
(Dumoulin and Visin 2016). A common example is a Gauss-
ian kernel which can be used to blur an image, or a Sobel 
kernel that detects edges in images. The weights of such a 
kernel can become learnable parameters of a convolutional 
neural network. This means that the network, during training, 
will learn which kind of kernels, and thus essentially which 
kind of image filters are useful for a classification task.

Generally, as with all neural networks, learning in CNNs 
takes place in three different stages. A labeled input, an 
image, for instance, is passed through the interconnected 
layers of the network, until it reaches an output layer where a 
prediction regarding the input image is made, depending on 
the task set for the system. Such a task could be to classify 
an image according to certain categories, find the boundaries 
of an object in an image, or other problems from computer 
vision. An evaluation function (called “loss function” in 
machine learning) then measures how far off the prediction 
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of the system is. This information “flows back”3 through 
the network, and all its internal connections are adjusted 
accordingly.

All of these steps take place for all images in the train-
ing set, and periodically, the system is also tested on previ-
ously unseen samples. This validation process is particularly 
important as it avoids a failure mode called “overfitting”, 
where a network learns indeed to perfectly predict the train-
ing set labels, but does not generalize to unseen data, which 
is the whole purpose of training.

It is because of this incremental process that often spans 
thousands of iterations, that CNNs are notoriously opaque. 
Common CNN architectures can have millions of neurons 
and even more interconnections between these neurons. It is 
thus close to impossible to infer from looking at the source 
code, data, weights, or any other aspect of a CNN, either 
alone or in conjunction, what it does, or what it has learned. 
Selbst and Barocas (2018) have suggested calling this opac-
ity inscrutability.

Complexity, however, is not the only reason for the noto-
rious opacity of CNNs. As Selbst and Barocas argue, CNNs 
are also non-intuitive. The internal “reasoning” of neural 
networks does not necessarily correspond to intuitive meth-
ods of inference, as hidden correlations often play an essen-
tial role. In other words, it is not only hard to infer the ration-
ale behind a network’s decision from “looking at it” because 
it is inscrutable, this rationale might also be significantly 
non-intuitive. Selbst and Barocas have argued that non-
intuitiveness could be described as an “inability to weave a 
sensible story to account for the statistical relationships in 
the model. Although the statistical relationship that serves 
as the basis for decision-making might be readily identifi-
able, that relationship may defy intuitive expectations about 
the relevance of certain criteria to the decision” (Selbst and 
Barocas 2018, 1097).

3 � Interpretable machine learning

This problem has been widely recognized in the technical 
disciplines as the problem of building interpretable machine 
learning systems, also referred to as explainable artificial 

intelligence systems.4 Such systems, either by design or with 
the help of external tools, provide human-understandable 
explanations for their decisions, self-mitigating both their 
inscrutability and non-intuitiveness.

In the past 3 to 5 years, research in interpretable machine 
learning has matured into a proper subfield of computer 
science (Lipton 2016; Doshi-Velez and Kim 2017; Gilpin 
et al. 2018; Mittelstadt et al. 2019) and a plethora of statis-
tical tricks (Lundberg and Lee 2017; Ribeiro et al. 2016) 
has been developed to ensure the interpretability of simpler 
models like linear regression, particularly in safety-critical 
or socially charged areas of machine learning like credit rat-
ing or recidivism prediction.

Beyond these technical results, however, a larger concep-
tual discussion has emerged in the technical disciplines as 
well that “infringes” on the terrain of the humanities. It is 
centered around attempts to find quantitative definitions for 
concepts that naturally emerge from the problem at hand, 
such as “interpretation” and “representation”, with the help 
of methods and concepts from disciplines as diverse as psy-
chology, philosophy, and sociology, building a “rigorous 
science of interpretable machine learning”, as Doshi-Velez 
and Kim (2017) write.

A concrete example would be that of a “cat” and “dog” 
classifier. Hypothetically, we can train a standard CNN 
architecture on a large dataset of cat images and dog images. 
These images will be processed by the network as described 
above: the input layer of the network will transform the pixel 
values of an image into a multidimensional vector, which 
then flows "forward" through the network, until a prediction 
is made in the very last layer. This prediction is evaluated by 
the loss function—for instance by the mean squared error 
of all neurons—and back-propagated through the network. 
Weights are changed incrementally, until the performance 
of the network on a validation set, for instance, 10% of the 
dataset of cat and dog images that have been held back, stops 
increasing. Given a large enough dataset, we can assume that 
we will reach almost 99% accuracy for this task. But, how are 
the concepts “dog” and “cat” encoded in the system—a sys-
tem that clearly somehow “knows” what these concepts are?

Research in interpretable machine learning thus requires 
the consideration of both technical and philosophical notions 
of interpretation and representation. We propose that, for 
machine vision systems, this inherent transdisciplinarity 

3  Technically, this “flowing back” of information, also called back-
propagation, is enabled by the fact that convolutional neural net-
works, beyond the topological perspective, are just very large differ-
entiable equations. Hence, for each neuron we can derive the slope 
of the loss function with respect to this specific neuron. This allows 
us to then adjust the weights of this neuron into the direction of 
the slope, thus decreasing the error of the whole function by a tiny 
amount. This adjustment process, can be implemented in differ-
ent ways and is most commonly realized through stochastic gradient 
descent.

4  The difference between the two terms originally was a matter of 
geography: “interpretable machine learning” was used in the North 
American context, while “explainable artificial intelligence” was used 
in the European context. Today, however, both terms are used inter-
changeably. We will stick with interpretable machine learning in the 
context of this paper, to emphasize its focus on machine learning (i.e. 
technical systems) vs. artificial intelligence (i.e. speculative technolo-
gies).
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implies linking technical concepts and concepts from visual 
studies/Bildwissenschaft. In particular, it suggests under-
standing the interpretation of machine vision systems as an 
act of image-making, both literally and metaphorically. This 
is why, in the following, we will look at feature visualization.

4 � What is feature visualization?

Feature visualization belongs to a range of techniques for 
the visual analysis of machine learning systems called visual 
analytics (Hohman et al. 2018). The idea of visual analyt-
ics is to show how a machine vision system perceives the 
world, and thus how it makes its decisions. Explanations, 
in visual analytics, thus, take the form of images, not of 
numbers or sentences. In other words, visual analytics is 
the visualization of machine learning systems for the sake 
of interpretability. Within visual analytics, feature visualiza-
tion (together with attribution techniques) has become one 
of the most widely used methods. Originally developed by 
Erhan et al. (2009) and continuously improved since, it has 
been shown to produce remarkable results (Olah et al. 2017, 
2018, 2020).

Technically, feature visualization is a straightforward 
optimization process. To visualize what a neuron in a deep 
convolutional neural network has learned, a random noise 
image is passed through the layers of the network up until 
the hidden layer that contains the neuron of interest. Nor-
mally, during the training or prediction stages, the image 
would be passed further on to the output layer. For the pur-
pose of visualization, however, we are not interested in a 
prediction but in the “activation” of a single neuron, its indi-
vidual response to a specific input image when it reaches the 
neuron’s layer. Hence, instead of utilizing the original loss 
function of the network, this response is now interpreted as 
its loss function. In other words, it is now the response of a 
single neuron that drives the “learning” process.

The important difference is that this new loss flows back 
through the network beyond the input layer and is used to 
change the raw pixel values of the input image. The input 
image is thus altered, while the network’s internal intercon-
nections remain untouched. The altered image is then being 
used again as the input image during the next iteration, and 
so on. After a couple of iterations, the result is an image that 
highly activates one specific neuron.

5 � Perceptual bias as syntactic bias

This process, however, is called “naïve” feature visualization 
for a reason. In almost all cases, images obtained with it will 
exclusively contain very high frequencies and will thus be 
“illegible” in both the syntactic and semantic sense: there 

will be no visible structure, and no recognizable content 
(Fig. 1).5 The images may very well be the best possible 
images with regard to a specific neuron and may very well 
be the closest possible visualizations of what this neuron has 
learned. To the human observer, however, they contain no 
information. They are adversarial examples (Szegedy et al. 
2013; Goodfellow et al. 2014a)—images that highly activate 
specific neurons or classes in a fully trained deep convolu-
tional neural network, despite being utterly uninterpretable.

Naïve feature visualization, then, shows us a first glimpse 
of the peculiar perceptual topology of CNNs. Perceptual 
bias, here, takes the form of syntactic bias. This syntactic 
bias, in turn, manifests as texture bias (Geirhos et al. 2019), 
an inductive bias in CNNs that “naturally” appears in all 
common CNN architectures. Inductive biases are “general”, 
prior assumptions that a learning system uses to deal with 
new, previously unseen data.

Fig. 1   Unregularized feature visualization of the “banana” class of an 
InceptionV3 CNN trained on the 1000 ImageNet classes in the ILS-
VRC2012 subset. These and the following visualizations have been 
generated with a custom software written by Fabian Offert in Python/
PyTorch, implementing an optimized feature visualization algorithm 
with regularization but without natural image priors

5  Concretely, to generate the feature visualization images in this 
paper, the following settings have been used: InceptionV3 model pre-
trained on ImageNet/ILSVRC2012; stochastic gradient descent opti-
mizer (torch.optim.SGD) with a learning rate of 0.4 and an L2 weight 
decay of 0.0001; optimization target: fully connected prediction layer 
(layer 17); 3 octaves, with 1.5 × resolution increase/octave, leading 
to a final resolution of 672 × 672; 2000 iterations per octave; jitter 
(image is randomly shifted 32 pixels) every octave; total variation fil-
ter every 20 iterations.
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At this point, it is important to note that we will not con-
sider modifying the inductive biases of the CNN itself as a 
solution to the problem of perceptual bias, as, for instance, 
Geirhos et al. (2019) and Zhou et al. (2020) suggest. More 
precisely, for the purpose of our investigation, we are inter-
ested in interpretable machine learning as a narrow set of 
post hoc methods to produce explanations. Thus, we will 
also not take the field of representation learning (Bengio 
et al. 2013) into consideration, which is concerned with the 
development of mechanisms that enforce the learning of 
“better” representations. This restriction to the scope of our 
investigation has three main reasons. The first reason is the 
post hoc nature of the bias problem. While efforts to build 
resistance to bias into machine learning models exist, there 
is, at the moment, no clear incentive for industry practition-
ers to do so, except for marketing purposes. It can thus be 
assumed that, in real-world scenarios, the detection and miti-
gation of bias will be mostly a post-hoc effort. The second 
reason is a simple historical reason. Thousands of machine 
learning models based on the exact perceptual topologies 
under investigation here have already been deployed in the 
real world. Thus, it is of vital importance to understand, 
and be able to critique, such models and their perceptual 
biases. Finally, while impressive progress has been made 
in other areas of machine learning (Cranmer et al. 2020), in 
machine vision, controlling and harnessing inductive biases 
can still be considered an open problem. Recent research 
suggests that at least one established principle of gestalt 
theory (the law of closure) does emerge in CNNs (Kim 
et al. 2019; Ritter et al. 2017; Feinman and Lake 2018) as 
an inductive bias. Overall, however, the inductive biases of 
CNNs are still unclear (Cohen and Shashua 2017), and thus 
un-manageable.

Given these restrictions, the only option to mitigate this 
specific textural aspect of perceptual bias is to not change 
the model, but to change our image of it. In the case of 
feature visualization, it means adding back representational 
capacity to these images. It means introducing constraints—
in other words, different biases—that allow the production 
of images that are images of something, instead of “just” 
images. Importantly, any such constraint, however, auto-
matically moves the image further away from showing the 
actual perceptual topology of a CNN. It becomes less of a 
visualization, and more of a reconstruction. This trade-off is 
the core problem of perceptual bias: it can only be overcome 
by shifting towards different, “better” biases, i.e. biases that 
shape our perception of the visual world.

One strategy to “add back” the representational capacity 
to feature visualization is regularization (Fig. 2). Regulariza-
tion, here, simply means adding additional constraints to the 
optimization process. This can be achieved either by adapting 
the loss function—for instance, using a quadratic loss function 
instead of just taking the mean of some values—or by applying 

transformations to the input image in regular intervals, for 
instance, every few iterations in the optimization process. 

Erhan et al. (2009) introduced the concept of activa-
tion maximization, the core idea of iteratively optimizing 
an image to highly activate a selected neuron. From there, 
more and more elaborate regularization techniques started to 
appear, each introducing concrete suggestions for signal pro-
cessing operations on the input image between iterations, on 
top of more common regularization techniques introduced 
through the loss function, like L2 regularization. Among 
these are jitter (Mordvintsev et al. 2015), blur (Yosinski 
et al. 2015), total variation filters (Mahendran and Vedaldi 
2015), bilinear filters (Tyka 2016), stochastic clipping (Lip-
ton and Tripathi 2017) and Laplacian pyramids (Mordvint-
sev 2016). Mordvintsev et al. (2015) also introduce the idea 
of octave-based optimization, enabling significantly higher 
image resolution. What all these techniques have in com-
mon is some kind of frequency penalization, i.e. the active 
avoidance of input images evolving into adversarial exam-
ples, either through optimizing for transformation robust-
ness (Mordvintsev et al. 2015) or through direct filtering 
(all others).

6 � Perceptual bias as semantic bias

Despite all regularization efforts, however, feature visuali-
zations often still present “strange mixtures of ideas” (Olah 
et al. 2018). Visualizing higher level neurons in particular 

Fig. 2   Regularized feature visualization of the “banana” class of an 
InceptionV3 CNN trained on the 1000 ImageNet classes in the ILS-
VRC2012 subset
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produces ambiguous results, images that might, or might 
not, show proper “objects”. To learn more about the logic 
of representation in CNNs, we thus have to ask: what is the 
relation between technical and semantic units, between arti-
ficial neurons and meaningful concepts, in CNNs?

Trivially, at least for higher level neurons, individual 
feature visualization images must always have a degree of 
ambiguity that is directly correlated to the diversity of the 
training set. After all, the network has to be able to success-
fully classify a range of instances of an object with very dif-
ferent visual properties. In that sense, reality is “distributed”, 
and it is no surprise that feature visualization images will 
reflect different manifestations of, and perspectives on, an 
object, akin to Cubist paintings (Fig. 3).

But, the entanglement of concepts in the internal repre-
sentations of a CNN goes beyond this “natural” ambiguity. 
Generally, we can state that, in all predictions of a CNN, 
all neurons play “a” role. Even if their role is just to stop 
the information flow, i.e. to pass on zero values to the next 
layer, these one-way streets are in no way less relevant to 
the classification accuracy of the whole system than all 
other neurons. In a way, concepts are thus “dissolved”, or 
“entangled”, when they are learned, and represented, by a 
CNN. Early work by Szegedy et al. (2013) suggests that this 
entanglement is inevitable and absolute. Later work by Bau 
et al. (2017, 2018) shows that some neural network archi-
tectures (GANs in particular) are less “naturally entangled” 
than others. Generally, however, significant supervision or, 
again, artificial inductive biases (Locatello et al. 2019) are 
required to “disentangle” CNNs, and arrive at a meaningful 
correspondence of technical and semantic units.6

Perceptual bias, here, thus takes the form of semantic 
bias. Other than in the case of adversarial examples/texture 
bias, where perceptual bias affects the formal aspects of the 
visualization, here, it concerns aspects of meaning. Objects, 

for us, are necessarily spatially cohesive. If they are repre-
sented by CNNs, however, they lose this spatial coherence, 
different aspects of an object are attached to different neu-
rons, which, in turn, get re-used in the detection of other 
objects. This missing coherence does not interfere with the 
CNN’s ability to detect or classify spatially coherent objects 
in images but enables it.

For feature visualization, which visualizes CNNs in their 
“natural”, entangled state, reaching semantic interpretability 
thus implies the introduction of even more constraints. These 
additional constraints are so called natural image priors. Just 
as regularization is a syntactic constraint, biasing the visu-
alization towards a more natural frequency distribution, so-
called natural image priors are a semantic constraint, biasing 
the visualization towards separable image objects.

To produce natural image priors, Dosovitskiy and Brox 
(2016) propose to use a GAN generator. Generative adver-
sarial networks (GANs) have received a lot of attention since 
2015/2016 for being able to generate realistic images in an 
unsupervised way from large datasets. They were originally 
introduced by Goodfellow et al. (2014) and have since been 
steadily improved and extended to other tasks beyond image 
generation. The term “generative adversarial network” refers 
to an ensemble of two convolutional neural networks that 
are trained together. The notion of “adversarial” describes 
the dynamic between the two networks, where a generator 
attempts to fool a discriminator into accepting its images. 
Whereas the discriminator is thus a regular, image-classify-
ing convolutional neural network, the generator is a reverse 
CNN that outputs an image. Its input is a number from a 

Fig. 3   Left: regularized feature 
visualization of the “violin” 
class of an InceptionV3 CNN 
trained on the 1000 ImageNet 
classes in the ILSVRC2012 
subset. Right: George Braque, 
Violin and Candlestick (1910)

6  Unfortunately, we cannot give a full review of the relevant com-
puter science literature regarding representation learning and dis-
entanglement here. Instead, we would like to refer the reader to the 
review articles by Bengio et al. (2013) and Locatello et al. (2019).
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latent vector space, i.e. a high-dimensional space. Con-
cretely, a random sample from this latent space is forwarded 
through the layers of the generator, and an image is created 
at its last layer. This generated image, or alternatively an 
image from a supplied image dataset, is then evaluated by 
the discriminator, which attempts to learn how to distinguish 
generator-generated images from images that come from 
the supplied dataset. Importantly, the discriminator’s loss is 
back-propagated all the way to the generator, which allows 
the generator to adjust its weights depending on its current 
ability to fool the discriminator. Eventually, this dynamic 
results in a generator that has learned how to produce images 
that look like they come from the supplied dataset, i.e. that 
have similar features as the images in the supplied dataset 
but are not part of the dataset. Overfitting, here, is avoided 
by never giving the generator access to the supplied dataset. 
Its only measure of success is how well it is able to fool the 
discriminator.

Nguyen et al. (2016) turn this technique into a dedicated 
feature visualization method by applying the paradigm of 
activation maximization to the input of a GAN generator. 
Instead of optimizing an input image directly, i.e. in pixel 
space, it is thus optimized in terms of the generator, i.e. in 
feature space. This technique has three main benefits: (a) 
Optimization in feature space automatically gets rid of high 
frequency artifacts. The generator, trained to produce real-
istic images, will never reconstruct an adversarial example 
from a latent feature representation. (b) Optimization in fea-
ture space introduces a strong natural image prior. More pre-
cisely, it introduces a natural image prior that corresponds 
directly to the level of realism that can be attained with the 
generator. (c) Finally, optimization in feature space requires 
neither the generator, nor the network that is being analyzed 
to be trainable, as back propagation just passes through an 
image: a feature representation is fed into the generator, the 
generator produces an image, this image is fed into the net-
work that is being analyzed, which in turn produces a loss 
with regard to the neuron being analyzed, as in regular fea-
ture visualization.

This means, however, that the images that can be pro-
duced with this feature visualization method are entirely 
confined to the latent space of the specific GAN generator 
employed. Where regularization constrains the space of pos-
sible images to those with a “natural” frequency distribution, 
natural image priors constrain the space of possible images 
to the distribution of a GAN generator. In both cases, inter-
pretable images are the result. These interpretable images, 
however, do not reflect the perceptual topology of the ana-
lyzed CNN. On the contrary, they intentionally get rid of the 
non-humanness that defines this topology, translating it into 
a human mode of perception that, in this form, simply does 
not exist in the CNN. To be images of something, feature 

visualizations have to be freed from the very mode of per-
ception they are supposed to illustrate.

7 � Feature visualizations as technical 
metapictures

As we have seen, the perceptual topology of machine vision 
systems, based on CNNs, is not “naturally interpretable”. It 
is biased towards a distributed, entangled, deeply non-human 
way of representing the world. Mitigating this perceptual 
bias thus requires a forced “making legible”. Feature visu-
alization, as we have seen, is one possibility to achieve this 
forced legibility. However, feature visualization also exem-
plifies an essential dilemma: the representational capacity of 
feature visualization images is inverse proportional to their 
legibility. Feature visualizations that show “something” are 
further removed from the actual perceptual topology of the 
machine vision system than feature visualizations that show 
“nothing” (i.e. illegible noise).

There is thus an irreconcilable difference between the 
human and machine perspective. As Thomas Nagel reminds 
us, there is a “subjective character of experience” (Nagel 
1974), a surplus generated by each specific perceptual 
approach to the world that can never be “translated”. Even 
if an external observer would be able to attain all the facts 
about such an inherently alien experience (analyze it in 
terms of “functional states”), they would still not be able to 
reconstruct said experience from these facts.

Feature visualizations, then, should not be understood so 
much as direct “traces” or “reproductions” of the perceptual 
topology of machine vision systems (analog to the technical 
images of photography) but more as indirect “illustrations”, 
as “visualizations” in the literal sense of forcibly making-
visual (and thus making visible and subsequently making 
interpretable) the non-visual.

We thus propose to understand these images as techni-
cal metapictures, a term we adapt from W. J. T. Mitchell’s 
picture theory (Mitchell 1995). For Mitchell, metapictures 
are pictures that are “deeper” than “regular” pictures, as they 
incorporate a form of recursion: they are representations of 
representation “pictures about pictures” (Mitchell 1995, 
36). Mitchell identifies certain abilities of these pictures. 
“The metapicture […] is the place where pictures reveal and 
‘know’ themselves, where they reflect on the intersections 
of visuality, language, and similitude, where they engage 
in speculation and theorizing on their own nature and his-
tory” (Mitchell 1995, 82). They are not only self-reflective 
but reflective on imagery and perception. “The metapicture 
is a piece of moveable cultural apparatus, one which may 
serve a marginal role as illustrative device or central role as 
a kind of summary image, what I have called a ‘hypericon’ 
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that encapsulates an entire episteme, a theory of knowledge” 
(Mitchell 1995, 49).

The technical metapictures that feature visualization 
produces realize exactly this idea of a “summary image.” 
They promise not a theory of images but a theory of seeing. 
More precisely, their promise is exactly that of interpretable 
machine learning: to provide an intuitive visual theory of 
the non-intuitive perceptual topology of neural networks. In 
a sense, technical metapictures, and their use in interpret-
able machine learning, are thus an operationalization of the 
notion of metapicture itself.

For Mitchell, this epistemological power of metapictures, 
then, equips them with a sort of agency. Metapictures “don’t 
just illustrate theories of picturing and vision: they show us 
what vision is, and picture theory” (Mitchell 1995, 57). This 
agency, however, is actualized only if and when it comes 
into contact with a viewer. To make sense, to actually pro-
vide the reflection on images and vision that they promise, 
metapictures require a viewer. In the case of feature visu-
alization, this interpretation has to happen not only on the 
level of the viewer but also on the technical level, where a 
significant effort has to be made to translate the anti-intuitive 
perceptual topology of a machine vision system into human-
interpretable images in the first place. This includes adding 
information from the outside, for instance in the form of 
natural image priors. In other words, technical metapictures 
manifest an implicit, technical notion of interpretation, that 
is inseparable from the explicit interpretation that they also 
require.

8 � Learning from technical metapictures

If we understand feature visualizations as technical metapi-
ctures, that is, if we look at them not as representations of 
machine vision systems but as reflections on the perceptual 
limits of machine vision systems, we can re-imagine them 
as a method of critique that can detect deeper forms of bias.

Taking up the idea that “adversarial examples are not 
bugs, they are features,” (Ilyas et al. 2019) the peculiar 
ways of machine seeing described above would be utilized 
to detect anomalies in datasets that go beyond problematic 
or socially charged categories.

One of the main problems of image datasets is the diver-
sity and heterogeneity of the real-life visual world, which is 
inherently difficult to capture by technical means. How is the 
diversity and heterogeneity of the real-life visual world to 
be represented in a set of images of bounded size? Histori-
cally, this problem is related to the general epistemological 
problem of creating taxonomies of what exists. The appear-
ance of solutions to this problem, and their failure, can be 
traced back to the beginnings of the enlightenment in the 
seventeenth century, with Descartes, Leibniz, Wilkins and 

others speculating on scientific approaches to the design of 
inventories of the world. Importantly, since then, taxonomies 
have been thought of as symbolic, i.e. as textual representa-
tions of the world.

With the introduction of images, however, and the crea-
tion of visual taxonomies, conceptual problems already 
present in symbolic taxonomies have been amplified by an 
order of magnitude: any claim to completeness is now not 
only a claim to a completeness of concepts, but of mani-
festations. Put differently: while symbolic taxonomies have 
to deal with an infinity of abstractions, visual taxonomies 
have to deal with an infinity of individual objects. Of course, 
this grounding of the learning problem in “real” data, in 
“ground truths”, to use the terminology of machine learning, 
is exactly the point. The hypothesis is that useful abstrac-
tions will appear automatically by means of the exposure 
of a system to a manifold of manifestations. This, however, 
increases the number of potential points of bias injection 
to the size of the dataset. In other words: it is in every sin-
gle image that potential biases come into play, and thus the 
design and use of visual taxonomies becomes of crucial 
importance.

ImageNet (Deng et al. 2009) is a large-scale digital image 
dataset intended to facilitate the automatic classification of 
images with regard to depicted objects (object recognition). 
It consists of over fourteen million images in over 21,000 
categories. Originally conceived and first presented at CVPR 
in 2009 by Fei Fei Li and others, ImageNet consolidated 
an existing taxonomy, WordNet (Miller 1985) and image 
resources freely available on the Internet. ImageNet stands 
out as being the first large-scale dataset using distributed 
labor acquired via Amazon Mechanical Turk to solve the 
problem of cheap data vs. expensive labels, i.e. the circular 
problem of first having to hand-annotate images to automate 
the process of annotating images.7

Since 2010, the ImageNet project has run the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC), a 
competition to identify the state of the art in image classifi-
cation (Russakovsky et al. 2015). The challenge usually only 
requires the participating models to correctly classify images 
from an ImageNet subset. Importantly, because the images 
contained in ImageNet are “scraped” (i.e. downloaded) 
from the Internet and thus might be subject to copyright, 
the ImageNet project only supplies URLs to the images. As 

7  A proper analysis of the entanglement of machine learning and 
labor lies outside the scope of this paper. Nevertheless it should be 
mentioned, as brilliantly analyzed, among others, by Daston (2018) 
and Pasquinelli (2019a) that machine learning is an essential Taylorist 
idea. As Charles Babbage writes already in 1832: “[T]he division of 
labor can be applied with equal success to mental as to mechanical 
operations, and […] it ensures in both the same economy of time” 
(Babbage 2010, 295).
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the project has been in existence since 2009, many of these 
URLs are not accessible anymore today. These two factors 
have facilitated the current real-life use of ImageNet: in most 
contemporary applications, it is actually just a subset that is 
being used to train and test computer vision systems, most 
prominently the subset created for the 2012 ILSVRC.

In the past few years, much has been written about 
biased datasets. ImageNet has been at the center of this 
debate (Malevé 2019), with Trevor Paglen and Kate Craw-
ford’s “Excavating AI” project (Crawford and Paglen 2019) 
receiving broad media attention. What Crawford and Paglen 
rightfully criticized was essentially the historical debt of the 
dataset, which operates with a taxonomy based on Word-
Net. WordNet, in turn, includes many categories which are 
neutral as textual categories (e.g. “terrorist”), but have nec-
essary social and political implications when “illustrated” 
with images. The failure of the ImageNet team to remove 
these and similar categories, and even stock some of them 
with actual images based on the aforementioned distrib-
uted micro-labor, rightfully led to a public outcry in reac-
tion to the “Excavating AI” project, and subsequently to the 
removal of these categories from the dataset.

Nevertheless, there is a need for more elaborate methods 
of image dataset critique, and feature visualization could 
provide a potential basis for such a method. One exam-
ple application is the detection of dataset anomalies in 
art historical corpora (Offert 2018). A more broad critical 
approach would be the analysis of highly common datasets 
like ImageNet, which are not only used “as is” in real-life 
classification scenarios but even more often used to pre-train 
classifiers which are then fine-tuned on a separate dataset, 
potentially introducing ImageNet biases into a completely 
separate classification problem.

To demonstrate this approach, we visualized and selected 
the output neurons for several classes of an InceptionV3 
model (Szegedy et al. 2016) pre-trained on ImageNet/ILS-
VRC2012 hand-selecting visualizations that show some non-
intuitive properties of the ImageNet dataset. For instance, 
for the “fence” class output neuron (Fig. 4) we see that the 
network has not only picked up the general geometric struc-
ture of the fence but also the fact that many photos of fences 
in the original dataset (that was scraped from the Internet) 
seem to contain people confined behind these fences. This 
can be verified by analyzing the 1300 images in the data-
set class, which indeed show some, but not many scenes of 
people confined behind fences. Cultural knowledge, more 
specifically, a concrete representation of cultural knowledge 
defined by the lense of stock photo databases and hobby pho-
tographers, is introduced here into a supposedly objective 
image classifier. Importantly, this also means that images 
of people behind fences will appear more fence-like to the 
classifier. The relevance of this consequence is revealed by 
a Google reverse image search: for a sample image (Fig. 5) 

from the “fence class”, despite the prominence of the person 
compared to the actual fence, the search produces the Wiki-
pedia entry for “chain link fencing” (Fig. 6), suggesting an 
unverifiable but likely connection between the Google image 
search algorithm and ImageNet/ILSVRC2012.

For the “sunglass” class (Fig. 7), the diversity that the 
respective output neuron has to deal with becomes obvious 
in the entanglement of actual sunglasses and body parts. 
More surprisingly is the inclusion of mirrored landscapes. 

Fig. 4   Regularized feature visualization of the “fence” class of an 
InceptionV3 CNN trained on the 1000 ImageNet classes in the ILS-
VRC2012 subset

Fig. 5   Sample image from the ILSVRC2012 “chain link fence” class. 
Note that there are only a few images (between 1 and 5% of the class, 
depending on what counts as “behind”) that show people behind 
fences
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Fig. 6   A Google reverse image 
search for this specific image, 
despite the fact that the image 
does not exist on the Internet 
anymore, and despite the promi-
nence of the person compared 
to the actual fence, produces 
the Wikipedia entry for “chain 
link fencing”, suggesting an 
unverifiable but likely connec-
tion between the Google image 
search algorithm and ImageNet/
ILSVRC2012. A text search for 
“chain-link fencing” produces 
no “people behind fences” 
scenes

Fig. 7   Regularized feature visualization of the “sunglass” class of an 
InceptionV3 CNN trained on the 1000 ImageNet classes in the ILS-
VRC2012 subset

Fig. 8   All images in the ILSVRC2012 “sunglass” class, sorted by 
VGG19 fc1 features and plotted with UMAP. Notice the cluster of 
“landscape mirror”-type images in the center
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The original dataset class, as a closer investigation reveals 
(Fig. 8), is heavily biased towards a specific depiction of 
sunglasses, popular with stock photo databases and hobby 
photographers alike: a close-up of a pair of sunglasses that 
also shows parts of the surrounding landscape (and/or the 
photographer). The fact that ILSVRC2012 was scraped from 
the Internet, disregarding aspects like diversity in compo-
sition and style, again, leads to an over-specificity of the 
learned representation. That the mirrored landscapes are 
desert landscapes (as originally assumed by the authors), 
however, is a chimera, showing how much artificial con-
textualization (bringing in additional information from the 
outside to aid interpretation) matters in both the technical 
and human interpretations.

9 � Conclusion

Analyzing and understanding perceptual bias in machine 
vision systems requires reframing it as a problem of interpre-
tation and representation, for which we have adapted W. J. T. 
Mitchells notion of the metapicture. Technical metapictures, 
we have argued, mirror the act of interpretation in the tech-
nical realm: regularization and natural image priors make 
feature visualization images legible before any interpretation 
can take place. Paradoxically, however, as the representa-
tional capacity of feature visualization images is inverse pro-
portional to their legibility, this pre-interpretation presents 
itself as a massive technical intervention as well, that discon-
nects the visualization from the visualized. Nevertheless, 
feature visualization can also provide a potential new strat-
egy to mitigate bias, if the fact that technical meta-images 
primarily encapsulate the limitations of machine vision sys-
tems is taken into account. All of this suggests that critical 
machine vision is an essentially humanist endeavor that calls 
for additional transdisciplinary investigations at the interface 
of computer science and visual studies/Bildwissenschaft.
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Abstract
What is the most important reason for using Computer Vision methods in humanities research? In this article, I argue that 
the use of numerical representation and data analysis methods offers a new language for describing cultural artifacts, experi-
ences and dynamics. The human languages such as English or Russian that developed rather recently in human evolution are 
not good at capturing analog properties of human sensorial and cultural experiences. These limitations become particularly 
worrying if we want to compare thousands, millions or billions of artifacts—i.e. to study contemporary media and cultures at 
their new twenty-first century scale. When we instead use numerical measurements of image properties standard in Computer 
Vision, we can better capture details of a single artifact as well as visual differences between a number of artifacts–even if 
they are very small. The examples of visual dimensions that numbers can capture better then languages include color, shape, 
texture, contours, composition, and visual characteristics of represented faces, bodies and objects. The methods of finding 
structures and relationships in large numerical datasets developed in statistics and machine learning allow us to extend this 
analysis to very big datasets of cultural objects. Equally importantly, numerical image features used in Computer Vision 
also give us a new language to represent gradual and continuous temporal changes—something which natural languages are 
also bad at. This applies to both single artworks such as a film or a dance piece (describing movement and rhythm) and also 
to changes in visual characteristics in millions of artifacts over decades or centuries.

Keywords  Computer vision · Digital humanities · Cultural analytics · Language of art

1 � Computer vision and digital humanities

Researches in humanities research, write and argue about 
cultural images. They analyze and interpret content, visual 
style, author’s intentions, audience reception, meanings, 
emotional effects, and other aspects of images’ creation and 
circulation. Researchers in Computer Vision field also work 
with images, but their goals are very different—to teach 
computers to automatically understand images and enable 
automatic actions using visual information. The examples 
of these applications include their use in self-driving cars, 
industrial and home robots, medical diagnostics, content-
based image retrieval.

What are the intellectual consequences of adopting Com-
puter Vision methods in humanities research? What hap-
pens to humanists’ understanding of images and assumptions 

about how to describe and study visual cultures in this meet-
ing? How can we bring together assumptions and goals of 
AI research in general and the assumptions and goals of the 
humanities that think of the study of cultural artifacts as their 
exclusive domain? (In addition to humanities fields such as 
art history, musicology, performance studies, cinema stud-
ies, literary studies, digital culture studies and game studies, 
these questions are also relevant for social science fields that 
deal with visual culture such as cultural anthropology, soci-
ology, culture studies, communication and media studies.)

In this article, I will discuss the most important conse-
quence of using Computer Vision in humanities, as I see 
it. Certainly, the achievements of Computer Vision such 
as detection of objects and scene types, people, and faces, 
pose estimation or optical character recognition all have their 
uses in art history, cinema and media studies, game studies, 
archeology, and so on. Working with the researchers in these 
fields, computer scientists also develop new tools for specific 
problems (Visart 2018). These applications and tools allow 
answering existing and generating new questions, and this 
work is certainly important. But in my view, they don’t affect 
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in a fundamental way how we see images in humanities. 
What does affects this is the way Computer Vision describes 
images, as I will explain below.

2 � Computer vision and digital humanities

We can find examples of using computational techniques to 
analyze single artworks or small groups of artworks carried 
out already for a number of decades. In the case of visual 
arts, such work was aimed to help in restoration, conserva-
tion, material and structure characterization, authentication, 
and dating. It made a good use of Digital Image Processing 
techniques, but it did not challenge existing methods of clas-
sifying, describing and narrating and exhibiting art. We can 
find a similar logic in other fields that use computational 
methods such as archeology. For example, one recent paper 
presents a method for automatically fitting together avail-
able artifact pieces together. This is a useful application for 
archeology, but it does not lead to big new ideas for the field 
(Derech et al. 2018).

While these applications were and continue to be domi-
nant, some researchers were also using methods from Image 
Processing, Computer Vision and Computer Graphics to do 
something new for art history—come up with mathemati-
cal descriptions of various characteristics of art images 
such as brushstrokes, lighting, and composition. As the key 
researcher in the area David G. Stork pointed out in his 2009 
overview of this research, “In some circumstances, com-
puters can analyze certain aspects of perspective, lighting, 
color, the subtleties of the shapes of brush strokes better than 
even a trained art scholar, artist, or connoisseur. Rather than 
replacing connoisseurship, these methods—like other sci-
entific methods such as imaging and material studies—hold 
promise to enhance and extend it, just as microscopes extend 
the powers of biologists” (Stork 2009). Today the use of 
computers to mathematically describe cultural artifacts and 
analyze quantitatively and interpret cultural patterns based 
on such descriptions has become popular in some areas of 
humanities such as literary studies and history. However, this 
did not happen yet on any significant scale in art history, film 
and media studies, game studies or other fields that analyze 
visual culture. However, there have been a few inspiriting 
researches projects done by computer scientists working 
together with humanists. Among them, I want in particular 
mention work by Impett and Moretti (2017). They carefully 
translate ideas of early twentieth century art historian Aby 
Warburg into an interactive tool while probing theoretically 
and critically Warburg ideas. Such work stands in contrast 
to more common references to books in art history, media 
production, graphic design and other fields in computer sci-
ence research that borrow ideas from these books to build 
automatic systems.

Although the humanists that study the visual have been 
slow to make use of computers, many researchers in Com-
puter Vision and also other areas of Computer Science, Arti-
ficial Intelligence and Machine Learning have started to do 
exactly this after 2006. The rise of social media platforms 
including Flickr and Instagram (launched in 2004 and 2010, 
respectively) and availability of their big data via APIs led to 
the burgeoning research presented in hundreds of thousands 
of conference papers and journal articles. While the earlier 
paradigm I described above subordinates the possibilities of 
Computer Vision to the goals and ways of working in art his-
tory discipline and museums, most of the relevant research 
in Computer Science does the opposite. The researchers take 
the goals of their field such as classification and prediction 
and apply them to a new type of data—large samples of 
visual user-generated content. So here cultural artifacts often 
are not approached in any different way than any other kind 
of data.

Both paradigms have their limitations. In this article, I 
take the outsider position. And this is why I start with the 
following question: How can we bring together assumptions 
and goals of two very areas of human knowledge which are 
fundamentally different, as opposed to subordinating one 
to another?

This article develops the following arguments: (1) Data 
representations of analog cultural artifacts used in Computer 
Vision, Music Information Retrieval, and Geospatial Com-
puting give us a new and a better language for describing 
these artifacts in comparison to human natural languages; 
(2) These data representations are also closer to how human 
senses and central system encode analog signals. This pro-
vides another justification for the use of computer methods 
to analyze culture in general and using Computer Vision to 
see” visual culture in particular.

If Stork suggested that computers can analyze some 
aspects of art images better then human experts in some 
circumstances, I claim that computers are always more pre-
cise in their descriptions of characteristics of analog cultural 
artifacts. However, in the case of art historical images, the 
use of computation for analysis is one option because his-
torical collections are small enough for us to study them 
directly. In the case of contemporary digital visual culture, 
using computer methods is the only way to see even small 
samples because of its scale. (Billions of images are shared 
every day on Facebook alone.)

My arguments presented in this article reflect my own 
practical experience of using Computer Vision with dozens 
of cultural datasets after I co-founded Cultural Analytics Lab 
at the University of California, San Diego (UCSD) in 2007. 
At that time, I defined “cultural analytics” as “the analy-
sis of massive cultural data sets and flows using computa-
tional and visualization techniques” (Manovich 2007b). For 
about 10 years, our lab was the only one focusing on using 
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Computer Vision to study visual culture at large scale from 
the perspectives of humanities. To the best of my knowledge, 
the first such project done outside of our lab in the U.S. that 
received attention was only published in 2017 (Yale Digital 
Humanities Lab).

Cultural Analytics is only one among a number of 
research paradigms that emerged in the second part of the 
2000s to take advantage of the availability of large cultural 
and social data. They include Digital Humanities, Computa-
tional Social Science, Social Computing, Digital Anthropol-
ogy, Digital History, The Science of Cities, Urban Informat-
ics, and Culturomics. In the same time, big cultural datasets 
started to be analyzed by computer scientists working in 
Machine Learning, Computer Vision, Natural Language 
Processing, Music Information Processing, Computer Mul-
timedia, and also in Communication Studies. In the early 
2010s, the “quantitative turn” begun in art history, and Inter-
national Journal for Digital Art History was established in 
2015. In 2020, the first large volume on digital art history 
was published:

The Routledge Companion to Digital Humanities and 
Art History (Brown 2020). In film studies, the first mono-
graph that uses quantitative methods and data visualization 
to analyze works of a single film director appeared in 2019 
(Heftberger 2019).

In parallel, the research in humanities using computa-
tional tools also started to grow. In 2003 it received the name 
Digital Humanities in 2003. In 2010s Digital Humanities 
kept growing, attracting more and more attention. However, 
the larger portion of the computational work in humanities 
so far focused on literary texts, historical text records and 
spatial data. In contrast, other types of media such as still 
and moving images and interactive media received relatively 
little attention. This situation is gradually improving but as 
I am writing this, analysis of visual media is still a small 
part of Digital Humanities (Digital Humanities Conference 
2019). You can see this yourself by browsing programs of 
annual conferences organized by The Alliance of Digital 
Humanities Organizations or looking at the field journals 
that include Digital Humanities Quarterly, International 
Journal of Digital Humanities, and Digital Scholarship in 
the Humanities. The field limitations are well summarized 
by the title of the article published in 2017 in Digital Schol-
arship in the Humanities: “Digital humanities is text heavy, 
visualization light, and simulation poor” (Champion 2017).

This is surprising because computer scientists started 
to develop methods for the analysis of images already at 
the end of 1950s. Today they are implemented in numerous 
digital services and devices, including web image search 
engines, stand-alone photo cameras and cameras in mobile 
phones, widely used image editing software such as Pho-
toshop, Pixelmator, Affinity Photo, and Luminar, image 
sharing services such Google Photos, and also available as 

programming libraries (OpenCV, MATLAB). In Computer 
Vision and Multimedia Computing, researchers have been 
publishing for many years new algorithms for automatic 
detection of image content, artistic styles, photographic 
techniques, user-generated and professional video and TV 
programs, and photos that are more interesting, memora-
ble, or original than others, and applying these algorithms 
to progressively larger datasets (Redi et al. 2017). In our 
lab we have been using some of these methods to analyze 
many types of both historical and contemporary visual 
media—20,000 photographs from the collection in Museum 
of Modern Art (MoMA) in New York, films by the pioneer 
of documentary filmmaking Dziga Vertov from Austrian 
Film Museum, sixteen million images shared on Instagram 
in seventeen global cities, one million Manga pages, one 
million artworks from popular art network DeviantArt, and 
other datasets.

3 � Describing images with words 
and numbers

Most representations of physical, biological and cultural 
phenomena constructed by artists, scholars and engineers 
so far only capture some characteristics of these phenom-
ena. Linear perspective represents the world as seen from a 
human-like viewpoint, but it distorts the real proportions and 
positions of objects in space. Contemporary 100-megapixel 
photograph made with a professional camera captures details 
of human skin and separate hairs—but not what is inside the 
body under the skin.

If the artifacts are synthetic, sometimes it is easy to repre-
sent them more precisely. Engineering drawings, algorithms, 
manufacturing details used to construct such artifact are 
already their representation in the finished state—however, 
we can’t predict human sensations and experiences of these 
artifacts only from these representations. But nature’s engi-
neering can be so complex that even all representational 
technologies at our disposal can barely capture a miniscule 
proportion of information. For example, currently best fMRI 
machines can capture the brain at a resolution of 1 mm. This 
may look like a small enough area—yet it contains mil-
lions of neurons and tens of billions of synapses. The most 
detailed map of the universe produced in 2018 by Gaia (the 
European Space Agency craft) shows 1.7 billion stars—but 
according to estimates, our own galaxy alone contains hun-
dreds of billions of stars.

And even when we consider a single cultural artifact cre-
ated by humans and existing on a human scale—a photo-
graph you took, a mobile phone you used to take it with, or 
your outfit consisting from items you purchased at Zara or 
COS—data representations of these artifacts often can only 
capture some of their characteristics. In the case of a digital 
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photograph, we have access to all the pixels it contains. This 
artifact consists from 100% machine data. These pixels to 
us will look a bit different from one display to the next, 
depending on its brightness, contrast, and color tempera-
ture settings, and its technology. And if we want to edit this 
image, what is possible is defined by particular software. (In 
my article There is Only Software (Manovich 2009) I argued 
that “depending on the software I am using, the “properties” 
of a media object can change dramatically. Exactly the same 
file with the same contents can take on a variety of identities 
depending on the software being used.”)

Digital pixel image is a synthetic artifact fully defined by 
only one type of data in a format ready for machine process-
ing (e.g., an array of numbers defining pixel values). But 
what about physical artifacts, such as fashion designs that 
may use fabrics with all kinds of non-standard finishes, com-
bine multiple materials, textures, and fabrics, and create unu-
sual volumes? (This applies to many collections produced 
since the early 1990s the 1980s by Rei Kawakubo, Dres Van 
Noten, Maison Margiela, Raf Simons, Issey Miyake, among 
others, and also to many fashion designers working in coun-
tries such as South Korea today.) How do we translate cloves 
into data? The geometries of pattern pieces will not tell us 
about visual impressions of their cloves, or experience wear-
ing them. Such garments may have unique two-dimensional 
and three-dimensional textures, use ornament, play with 
degrees of transparency, etc. And many fashion designs are 
only fully “realized” than you wear them, with the garment 
taking on particular shape and volume as you walk.

The challenge of representing the experience of material 
artifacts as data is not unlike calculating an average for a 
set of numbers. While we can always mechanically calcu-
late an average, this average does not capture the shape of 
their distribution, and sometimes it is simply meaningless 
(Desrosières 1998). In a Gaussian distribution, most data 
lie close to the average, but in a binomial distribution, most 
data are away from it, so the average does not tell us much.

Similarly, when we try to capture our sensorial, cognitive 
and emotional experience of looking at or wearing a fashion 
garment, all methods we have available—recording heart-
beat, eyes movements, brain activity, and other physiologi-
cal, cognitive and affective processes, or asking a person to 
describe her subjective experience and fill out a questioner—
can only represent some aspects of this experience.

But this does not mean that any data encoding automati-
cally loses information, or that our intellectual machines 
(i.e., digital computers) are by default inferior to human 
machines, i.e. our senses and cognition. For example, let’s 
say I am writing about artworks exhibited in a large art fair 
that features hundreds of works shown by hundreds of gal-
leries across a large space.

What I can say depends on what I was able to see during 
my visit and what I remembered—and therefore constrained 

by the limitations of my senses, cognition, memory, and 
body, as well as by the language (Russian, Spanish, Indone-
sian, etc.) in which I write.

In the twentieth century, modern humanities, the com-
mon method of describing artifacts and experiences was 
to observe one own reaction as filtered by one’s academic 
training and use natural language for describing and theoriz-
ing these experiences. In social sciences and practical fields 
concerned with measuring people attitudes, taste and opin-
ions, researchers used questioners, group observations and 
ethnography, and these methods remain very valuable today. 
Meanwhile, since the 1940s engineers and scientists work-
ing with digital computers have been gradually developing 
a very different paradigm—describing media artifacts such 
as text, shapes, audio, and images via numerical features. 
Humanities studies of visual art, architecture, design, video 
games, films, user-generated video and all other visual forms 
can adopt the same paradigm. Why it is such a good idea? 
My explanation is summarized in the next paragraph.

Numerical measurements of cultural artifacts, interac-
tions and behaviors give us a new language to talk about 
cultural artifacts and experiences. This language is closer to 
how the senses represent analog information (sounds, music, 
colors, spatial forms, movement, etc.) The senses translate 
their inputs into quantitative scales, and this is what allows 
us to differentiate between many more sounds, colors, move-
ments, shapes, textures than natural languages. So, when we 
represent analog characteristics of artifacts, interactions and 
behaviors as data using numbers, we get the same advan-
tages. This is why a language of numbers is a better fit than 
human languages for describing analog aspects of culture.

Using natural languages was the only mechanism human-
ities have been using for describing all aspects of culture 
until the recent emergence of Digital Humanities. Natural 
or ordinary language refers to a language that evolved in 
human evolution without planning. While the origins of nat-
ural languages are debated by sciences, many suggest that 
it developed somewhere between 200,000 and 50,000 years 
ago. Natural languages cannot represent small differences 
on analog dimensions which define aesthetic artifacts and 
experiences such as color, texture, transparency, types of 
surfaces and finishes, visual and temporal rhythms, move-
ment, speed, touch, sound, taste, etc. In contrast, our senses 
capture such differences quite well.

Aesthetic artifacts and experiences human species were 
creating during many thousands of years of their cultural 
history exploit these abilities. In the modern period, the arts 
started to systematically develop new aesthetics that strives 
to fill every possible “cell” of a large multi-dimensional 
space of all sense dimensions, taking advantage of the very 
high fidelity and resolution of our senses. Dance innova-
tors from Loie Fuller and Martha Graham to Pina Bausch, 
William Forsythe, and Cloud Gate group defined new body 
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movements, body positions, compositions and dynamics 
created by groups of dancers or by parts of a body such as 
fingers or speeds and types of transitions. Such dance sys-
tems are only possible because our eye and brain abilities 
to register tiny differences on these dimensions of dance.

In visual arts, many modern painters developed lots of 
variations of a white on white monochrome painting—
images that feature only one field of a single color, or a few 
shapes in the same color that differ only slightly in bright-
ness, saturation, or texture. They include Kazimir Malevich 
(Suprematist Composition: White on White, 1918), Ad Rein-
hardt (“black paintings”), Agnes Martin, Brice Marden, 
Lucio Fontana, Ives Klein, and many others.

In the twenty-first century, works by contemporary prod-
uct designers often continue the explorations that preoccu-
pied so many twentieth century artists. For example, in the 
second part of 2010s top companies making phones—Hua-
wei, Xiaomi, Samsung, Apple—became obsessed with the 
sensory effects of their designs. The designers of phones 
started to develop unique surface materials, unique colors, 
levels of glossiness of a finish, surface roughness and wavi-
ness. As the phone moves closer and closer to becoming 
a pure screen a or transparent surface, this obsession with 
sensualizing still remaining material part may be the last 
stage of phone design before the phone becomes complete 
screen—although we may also get different form factors in 
the future, where small material parts become even more 
aestheticized (Manovich 2007c).

For instance, for its P20 phone (2017) Huawei created 
unique finishes each combining a range of colors. Huawei 
named them Morpho Aurora, Pearl White, Twilight and 
Pink Gold. When looking at the back of a phone at different 
angles, different colors would appear. (Peckham 2018). The 
company proudly described the technologies used to create 
these finishes on its website: “The Twilight and Midnight 
Blue HUAWEI P20 has a high-gloss finish made via a ‘high-
hardness’ vacuum protective coating and nano-vacuum opti-
cal gradient coating.” (Huawei 2019) (The P30 Mate Pro I 
have been using during 2019 had one of these screens.)

What about minimalism that has become the most fre-
quently used aesthetics in the design of spaces in the early 
twenty-first century exemplified by all-white or raw concrete 
spaces, with black elements or other contrasting details? 
From the moment such spaces started to appear in the West 
in the second part of the 1990s, I have been seeking them so 
I can work there—hotel areas, cafes, lounges. Today you can 
find it everywhere from but in the late 1990s they were just 
a few such spaces. In my book The Language of New Media 
(Manovich 2001) completed in Fall 1999, I have thanked two 
such hotels because large parts of that book were written in 
their spaces—The Standard and Mondrian in Los Angeles. 
While not strictly minimalist in a classical way (they were 
not all white), the careful choice of textures, materials, and 

elimination of unnecessary details was certainly minimalist 
in its thinking. (Later in 2006–2007 I have been spending 
summers in Shanghai working on a new book and moving 
between a few large minimalist cafes—at that point, Shang-
hai had more of them then Los Angeles. Today, a city like 
Seoul probably has over 100,000 such cafes, each unique in 
its design.)

On first thought, such spatial minimalism seems to be 
about overwhelming our perception—asking us to stretch 
our limits, so to speak, to take in simultaneously black and 
white, big and tiny, irregular and smooth. I am thinking of 
famous Japanese rock gardens in Kyoto (created between 
1450 and 1500), an example of kare-sansui (“dry land-
scape”): large black rocks placed in the space of tiny grey 
pebbles. In 1996 a store for Calvin Klein designed by Lon-
don architect John Pawson opened in New York on Madison 
Avenue around the 60th Street, and it became very influen-
tial in the minimalist movement. Pawson was influenced by 
Japanese Zen Buddhism, and an article in the New York 
Times called his store “Less is Less.” (Goldberger 1996). 
The photographs of the store show a large open white space 
with contrasting with dark wood benches (Pawson 2020). So 
what is going on with these examples?

I think that minimalist design uses both sensory extremes 
for aesthetic and spatial effect, and small subtle differences 
that are our senses are so good at registering. The strong 
contrast between black and white or smooth and textured, 
or wood and concrete, and so on helps us to better notice 
the variations in the latter—i.e., the differences in shapes of 
tiny pebbles in Kyoto Garden, or all white parts of the 1996 
Calvin Klein store space which all have different orientations 
to the light coming from very large windows.

The famous early twenty-first century examples of mini-
malist design are all white and or silver-grey Apple products 
designed by Jonathan Ive in the 2000s. The first in this series 
was iPod in 2001, followed by PowerBook G4 in 2003, iMac 
G5 in 2004, and iPhone in 2007. In his article “How Steve 
Jobs’ Love of Simplicity Fueled A Design Revolution,” Wal-
ter Isaacson quotes Jobs talking about his Zen influence: “I 
have always found Buddhism—Japanese Zen Buddhism in 
particular—to be aesthetically sublime,” he told me. “The 
most sublime thing I’ve ever seen are the gardens around 
Kyoto” (Isaacson 2012). In the most famous Kyoto garden, 
which I was lucky to visit, the monochrome surface made 
from small pebbles contrasts with a few large black rocks. In 
Apple products of the 2000s, the contrast between all-white 
object and the dark almost black screen when the device is 
turned off made from different material works similarly. It 
makes us more attentive to the roundness of the corners, the 
shadows from the keys, and other graduations and variations 
in tone and shape of the device.

In general, minimalism is everything but minimal. It 
would be more precise to call it “maximalism.” It takes 
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small areas on sensory scales and expands it. It makes you 
see that between two grey values there are, in fact, many 
more variations than you knew (I call this aesthetics com-
mon today in Korea “50 shades of grey”); that the light can 
fall on a raw concrete surface in endless ways; that the edge 
in the textured paper cut into two parts by hand contains 
fascinating lines, volumes, and densities. Our senses delight 
in these discoveries. And this is likely to be one of the key 
functions of aesthetics in human cultures from prehistory to 
today—giving our sense endless exercises to register some 
small differences, as well as bold contrasts. And to clean 
visual, spatial and sound environment from everything else, 
so we can attend to these differences. To enjoy “less is less.”

4 � Human senses, numbers and the arts

For thousands of years, art and design have thrived on 
human abilities to discriminate between very small differ-
ences on analog dimensions of artifacts and performances, 
and to derive both pleasure and meaning from this. But natu-
ral languages do not contain mechanisms to represent such 
nuances and differences. Why? Here is my hypothesis for 
why this is the case.

Natural languages emerged much later in evolution than 
the senses—to compensate for what the latter cannot do—
represent the experience of the world as categories. In other 
words, human senses and natural languages are complemen-
tary systems. Senses allow us to register tiny differences in 
the environment, as well as nuances of human expressions 
(face expressions, body movements, etc.), while languages 
allow us to place what we perceive into categories, to reason 
about these categories and communicate using them.

Evolution had no reason to duplicate the already avail-
able functions, and that is why each system is great at one 
thing and very poor at another. The senses developed and 
continued to evolve for billions of years—for instance, the 
first eyes developed around 500 million years ago during the 
Cambrian Explosion. In comparison, the rise of human lan-
guages with their categorization capacities is a very recent 
development (sometime between 200,000 and 50,000 years 
ago).

When we use a natural language as a metalanguage to 
describe and reason about an analog cultural experience, we 
are doing something strange: forcing it into small number of 
categories which were not designed to describe it. In fact, 
if we can accurately and exhaustively “put into words” an 
aesthetic experience, it is likely that this experience is an 
inferior one. In contrast, using numerical features instead of 
linguistic categories allows us to much better aspects of an 
analog experience.

Our sensors and digital computers can measure analog 
values with even greater precision than our senses. You 

may not be able to perceive a 1% difference in brightness 
between two image areas or 1% difference in the degree of 
smile between two photos of people, but computers are able 
to measure these differences. For example, for Selfiecity 
we used online computer vision service that measured the 
degree of smile in each photo on 0–100 scale. I doubt that 
you will be able to differentiate between smiles on such a 
fine scale.

Consider another example—representation of colors. In 
the 1990s and 2000s, digital images often used 24 bits for 
each pixel. In such format, each pixel can encode grayscale 
using 0–255 scale. This representation supports 16 million 
different colors—while human eyes can only discriminate 
between approximately 10 million colors. As I am writing 
this, many imaging systems and image editing software use 
30, 36 or 48 bits per pixel. With 30 bits per pixel, more 
than 1 billion different colors can be encoded. Such pre-
cision means that if we want to compare color palettes of 
different painters, cinematographers, or fashion designers 
using digital images of their works, we can calculate it with 
more than sufficient accuracy. Certainly, this precision goes 
well beyond what we can do with small number of terms for 
colors available in natural languages (Gibson and Conway 
2017). Certainly, some natural languages have more terms 
for different colors then other languages, but no language 
can represent as many colors as digital image formats.

In summary, a data representation of a cultural artifact 
or experience that uses numerical values or features com-
puted from these values can capture analog dimensions of 
artifacts and experiences with more precision than a linguis-
tic description. However, remember that a natural language 
also has many additional representation devices besides sin-
gle words and their combinations. They include the use of 
metaphors, rhythm, intonation, stream of consciousness and 
other strategies that allow us to describe experiences, per-
ceptions and psychological states in ways that single words 
and phrase can’t. So, while natural languages are categorical 
systems, they also offer rich tools to go beyond the catego-
ries. Throughout human history poets, writers, and perform-
ers using speech (and best hip-hop and spoken word artists) 
today create exceptional works by employing these tools.

Not everybody can invent great metaphors. Numerical 
features allow us to measure analog properties of the scale 
of arbitrary precision and do this automatically at scale using 
computers. But this does not mean that data representations 
of aesthetic artifacts, processes, and performances that use 
numbers can easily capture everything that matters.

In the beginning of the twentieth century, modern art 
rejected figuration and narration, and decided instead 
to focus on the sensorial communication—what Marcel 
Duchamp referred to as “retinal art.” But over the course 
of the twentieth century, as more possibilities were fully 
explored and became new conventions, artists started to 
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create works that are harder and harder to describe using 
any external code, be it language or data. For example, 
today we can easily represent flat geometric abstractions of 
Sonia Delaunay, František Kupka, and Kasimir Malevich 
as data about shapes and colors and sizes of paintings and 
drawings; and we can even encode details of every visible 
brushstroke in these paintings. (Computer scientists have 
published many papers that describe algorithmic methods to 
authenticate the authorship of paintings by analyzing their 
brushstrokes.) But this becomes more difficult with new 
types of art made in the 1960s–1970s: light installations by 
James Turrell, acrylic 3D shapes by Robert Irvin, “earth-
body” performances by Ana Mendieta, happenings by Alan 
Kaprow (to mention only most canonical examples), as well 
as works of thousands of other artists in other countries, such 
as Движeниe art movement in USSR. Their works included 
Cybertheatre staged in 1967 and described in their article 
published in Leonardo journal (Nusberg 1969). The only 
actors in this theatre performance were 15–18 working mod-
els of cybernetic devices (referred as “cybers”) capable of 
making complex movements, changing their interior light-
ing, making sounds, and omitting color smoke. For some-
thing less technological, consider Imponderabilia by Marina 
Abramović and Ulay (1977): for 1 h, the members of public 
were invited to pass through the narrow “door” made by 
naked bodies of the two performers.

The experience of watching documentation left after an 
art performance is different from being present at this perfor-
mance; and what can we measure if an artwork is designed 
to deteriorate over time or quickly self-destructs like Jean 
Tinguely’s ”Homage to New York” (1960)? Similarly, while 
the first abstract films by Viking Eggeling, Hans Richter, and 
May Ray made in the early 1920s can be captured as numeri-
cal data as easily as geometric abstract paintings by add-
ing time information, how do we represent Andy Warhol’s 
Empire (1964) that contains a single view of the Empire 
State Building projected for 8 h? We certainly can encode 
information about every frame of a film, but what is cru-
cial is the physical duration of the film, its difference from 
the actual time during shooting, and very gradual changes 
in the building appearance during this time. The film was 
recorded at 24 frames per second, and projected at 16 frames 
per second, thus turning physical 6.5 h into 8 h and 5 min of 
screen time. (Very few viewers were able to watch it from 
beginning to end, and Andy Warhol refused to show it in 
any other way.)

5 � Conclusion

In this article, I have argued that the use of numerical repre-
sentation and data analysis and visualization methods offers 
a new language for describing cultural artifacts, experiences 

and dynamics. The human languages such as English or 
Russian that developed rather recently in human evolution 
are not good at capturing analog properties of human sen-
sorial and cultural experiences. These limitations become 
particularly worrying if we want to compare thousands, 
millions or billions of artifacts—i.e. to study contemporary 
media and cultures at their new twenty-first century scale. 
When we instead use numbers, numerical summaries such 
as Computer Vision features and also data visualization, we 
can better capture small differences between a few or very 
many artifacts. The methods of finding structures and rela-
tionships in large numerical datasets developed in statistics 
and machine learning such as cluster analysis, dimension 
reduction, and other fields such as network science allow 
us to extend the analysis to very big datasets of cultural 
artifacts. Equally importantly, numbers, features and data 
visualization also give us a language to represent gradual 
and continuous temporal changes—something which natural 
languages are also bad at.

Having a better language to describe the analog dimen-
sions of visual culture including single images, video, or 
a dance performance is invaluable. Digital computers that 
work on numerical representations are better at capture 
many dimensions which natural languages can’t describe 
in enough detail, such as motion or rhythm. We can now 
describe the characteristics of cultural processes which are 
hard to capture linguistically—for example, gradual histori-
cal changes in any visual culture over long periods, changes 
in visual form over the career of an artist, changes in cinema-
tography over the course of a feature film or a music video.

And this is what the phrase “language of art” in the title 
of this article refers to. In the twentieth century, many art-
ists, filmmakers, architects and theorists—especially within 
semiotics paradigm—were proposing that different arts 
and culture areas have their own languages comparable to 
human natural languages (Barthes 1997). In my view, these 
explorations did not reach satisfactory results partly because 
these theories were using natural languages to try to describe 
analog dimensions of art and culture. And as I argued here, 
such an attempt is inherently problematic.

I don’t want to argue for or against the idea that painting, 
fashion, food or space design communicate like languages. 
In fact, works by Goodman (1968), Sonesson (1989) and 
by other theorists developed more precise and productive 
concepts and theories that describe about the differences 
between languages and various art and cultural forms. What 
I did claim here is that now we can use digital computers 
to capture analog dimensions of artifacts and our aesthetic 
experiences as numbers. This numbers can use continuous 
scales that allows us to capture tiny differences between 
artifacts and details of artifacts with as much precision as 
we want. And we do can this for arbitrary large numbers of 
artistic and cultural artifacts.
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In other words, we now possess a new language for 
describing and talking about art and culture. In my view, 
this is very important because being able to describe any 
phenomenon more precisely than we could earlier is the first 
step for expanding our knowledge in any domain.
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Abstract
 In this article we introduce the concept of implied optical perspective in deep learning computer vision systems. Taking the 
BBC’s experimental television programme “Made by Machine: When AI met the Archive” (2018) as a case study, we trace 
a conceptual and material link between the system used to automatically “watch” the television archive and a specific type 
of photographic practice. From a computational aesthetics perspective, we show how deep learning machine vision relies 
on photography, its technical regimes and epistemic advantages, and we propose a novel way to identify the latent camera 
through which the BBC archive was seen by machine.

Keywords  Computational aesthetics · Philosophy of photography · AI television · Computer vision · Deep learning · 
Dataset archaeology

1  Introduction

Is that a person or a reflection? A man or a woman? Is the 
woman holding a mobile phone, or is it, rather, the statue 
of an ancient Egyptian king? Is the man wearing a shirt, or 
is it an elephant? Or a stuffed animal holding a banana…? 
(Figs. 1, 2, 3).

These are some of the mislabellings produced when a 
small team of technologists and researchers set a computer 
vision system to “watch” thousands of hours of British tel-
evision for the project “Made by Machine: When AI met the 
Archive”(MbM), whose outputs were eventually packaged 
and broadcast on BBC Four as an experimental “AI TV” 
programme in 2018.1

In line with the public purposes of the British broadcaster 
(BBC 2018), one of the main goals of the programme was 
to show to a wider audience some of the possibilities and 
limitations of AI, and in particular deep learning approaches 
that underlie many contemporary computer vision systems. 
From a research perspective, the project was also designed as 
prompt to explore just how exactly computers are said to be 
“seeing”. What type of knowledge is produced by computer 

vision and how does it inform the ways we understand and 
give currency to audio–visual media more generally?

In related work, such questions have generally been 
approached by focussing on training datasets and how they 
are assembled as well as how the resulting AI systems rep-
resent or fail to represent different sectors of society. Exem-
plary of this approach are the works of Kate Crawford and 
Adam Harvey:

“Training sets, then, are the foundation on which con-
temporary machine-learning systems are built. They 
are central to how AI systems recognize and interpret 
the world. These datasets shape the epistemic bounda-
ries governing how AI systems operate, and thus are 
an essential part of understanding socially significant 
questions about AI.” (Crawford and Paglen 2019)

“A photo is no longer just a photo when it can also be 
surveillance training data, and datasets can no longer 
be separated from the development of software when 
software is now built with data.” (Harvey and LaPlace 
2019)

Research using this approach has shown datasets to be 
deeply problematic, both in their politics of assemblage and 
of representation. The experience in MbM was no excep-
tion here. A team from BBC R&D implemented an auto-
mated dense captioning system pre-trained on the Visual 
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Genome dataset2; comprised of little over 108,000 images 
downloaded from Flickr and annotated by 33,000 Amazon 
Mechanical Turk workers, 61% of whom were under 35 and 
93% from the USA (Krishna et al. 2017, 43). This captioning 
system implementation was used to automatically annotate 

several hundred hours of television from the BBC archive, 
and these annotations used as metadata in an associational 
engine that concatenated new sequences of related television 
clips (Cowlishaw 2018; Chávez Heras et al. 2019).

Fig. 1   MbM still frame with predicted label ‘woman holding a cell phone’

Fig. 2   MbM still frame with predicted label ‘red and white stuffed animal’

2  https​://visua​lgeno​me.org/

https://visualgenome.org/
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One of the results immediately observed in these 
machine-generated clips was the system’s propensity to 
identify men in shirts. Although imbalance in gender repre-
sentation is a known issue in television, including the BBC 
(Cumberbatch et al. 2018), this effect was so pronounced 
that it prompted a closer inspection of the training dataset. 
“white” is the most common attribute, “man” most com-
mon object (with twice as many instances as “woman”) with 
“shirt” also among the top ten (Krishna et al. 2017, 50–53, 
63). Biases such as these have been consistently found in 
this and other large image training sets used in deep learning 
computer vision, the localisation and disaggregation of such 
biases being one of the main goals of Crawford’s proposed 
archaeology of datasets (Crawford and Paglen 2019).

However, by focusing on labelling images as the main 
layer of human intervention, i.e. the principal source of data, 
bias and error, such an archaeology very often overlooks 
other significant areas of human subjectivity encoded in 
these systems, namely the nature of the images themselves. 
These labels are produced not over direct observations of the 
world, but over photographic images of it; images that are 
technically and socially mediated in powerful ways that cre-
ate and sustain specific regimes of visibility and with which 
we hold a complex relationship before they become digital 
artefacts.

Following this line of thought, we set out to look at com-
puter vision through the (figurative and literal) lens of pho-
tography. Through a technical genealogy of photographic 
lenses, the types of images they afford and the social func-
tions given to these images, we show how AI is materially 

and conceptually connected to optical regimes of visibility. 
Based on this connection, in the last section we assemble 
a dataset with which to analyse photographic practice, and 
then use it to train a bespoke focal length classifier as a 
proof-of-concept for a system designed to investigate the 
optical perspectives implied in MbM.

2 � Epistemic discontents

An often unexamined fact about of deep-learning computer 
vision is that the millions of pictures it algorithmically 
mobilises are, for the most part, photographs. Perhaps one 
of the most revealing accounts about how this choice came 
to be seen as obvious comes from Fei-Fei Li, one of the 
creators of ImageNet3 and a key figure in the shift towards 
deep learning over the last decade. Li was asked recently 
about the choice of using photographs for ImageNet during 
an event celebrating the tenth anniversary of the dataset: 
“That’s a great question.” —she replied— “We didn’t really 
stop to think much about it (…). I suppose we wanted as a 
realistic representation of the world as possible” (Li 2019).

Li is not alone in her assumption about realism and pho-
tography. A widely shared intuition about photographic 
images is that “the camera does not lie” or that in any case 
it lies less than other methods of depiction. In an often-cited 
passage of his influential Ontology of the Photographic 

Fig. 3   MbM still frame with predicted label ‘reflection of a mirror’

3  https​://www.image​-net.org/

https://www.image-net.org/
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Image, André Bazin (1960[1958]) wrote that the invention 
of photography and cinema “satisfy, once and for all and in 
its very essence, our obsession with realism. No matter how 
skillful the painter, his work was always in fee to an ines-
capable subjectivity. The fact that a human hand intervened 
cast a shadow of doubt over the image.” (7). What he meant 
exactly by “realism” has been the subject of much debate, 
since but this view of photographs as trusted visual render-
ings of the world due to their alleged automatic mode of 
production has proved remarkably enduring.

Li’s response earnestly voices just such a view, where 
unlike for example drawings or paintings, which are inex-
tricably bound to the mental states and technical abilities of 
their authors (as well as the embodied command of these 
states and abilities), photographs appear to be pictures pro-
duced through mind-independent processes. They capture 
whatever is in front of the camera regardless of what the 
photographer believes about what is in front of the cam-
era, i.e. cameras can only show what is there to be seen. 
In philosophy, this idea of mind-independence mechanical 
process has served to explain the epistemic advantage of 
photographs over other types of images (Cavell 1979; Cohen 
and Meskin 2004; Walden 2005; Abell 2010).

One formulation of this argument proposed by Gregory 
Currie (1999) is that we treat photographs as traces as 
opposed to testimonies. The former are counter-factually 
dependant on nature, like a footprint, in a way that the lat-
ter are not, like the tale of how someone once took a step 
in the mud. For the footprint to be any different, Currie 
would argue, the sole of their shoe would have had to differ 
accordingly, while a description of the step taken, however, 
rich or detailed, necessarily implicates the intentions of the 
describer and belongs, therefore, to a different epistemic reg-
ister altogether. According to this view, the social credibility 
lent to photographs makes them more akin to light detections 
captured as a result of a mind-independent mechanical pro-
cess, while paintings and other pictures made by hand tend 
to be seen as someone’s depiction of a scene, this is, as the 
result of an embodied cognitive and creative process.

This is the dominant logic that underwrites computer 
vision too, at least in its current form and insofar as it is 
powered by photographic images, from which it inherits, 
exploits and amplifies their epistemic advantage founded on 
this mind-independent conjecture about the photographic 
process. When millions of photographs are aggregated into 
large datasets and used to train machine learning systems, 
the representational powers of photography and computa-
tion compound, to the point, where predicted labels are also 
seen as traces, face detection and not face depiction. The 
predictive tokens produced by computer vision are thereby 
presented as the counter-factually-dependent and mind-inde-
pendent detections of something or someone. This person 

or this object was seen automatically and, therefore, had to 
be there to be seen.

Recently, however, this view has been put under mounting 
pressure by the so-called new theory of photography, whose 
proponents argue for an expanded view of the photographic 
event as a multi-staged process of which only some parts 
can be said to occur automatically (Maynard 1997; Phil-
lips 2009; Lopes 2016; Costello 2017). Costello (2017), for 
example, identifies a contradiction in ascribing epistemic 
value to photographs on the basis of their supposed mind-
independence processes while simultaneously characteris-
ing these processes as automatic. A process cannot be both 
natural and automatic, he argues, without separating humans 
from nature (42). Automatic processes are causally-depend-
ant but not spontaneous according to Costello. For a process 
to be called automatic it should be possible to specify it 
in terms of the labour that is being delegated to a mecha-
nism, one that serves human ends and, therefore, necessarily 
involves human minds. Costello asks:

“just what is it exactly that is supposed to ‘happen by 
itself’? […] In photography, almost everything that 
expresses comparable choices [to painting] happens 
off the support—the choice of lens, distance, light-
ing, moment of exposure, point of view, etc.[…] This 
can give those who have no idea, where to look the 
impression that the photographer has done very lit-
tle, or that the mechanism is responsible. But this is 
plain ignorance. The fact that so many of the acts take 
place prior to the image appearing ‘all at once’ does 
not negate the photographer’s responsibility for what 
then appears. Merely noting depth of field markers in 
an image already tell us much about what the photog-
rapher was after. One needs to be a competent judge in 
photography as in any other domain; and this requires 
a basic grasp of the internal relations between focus, 
depth of field, and exposure that most Orthodox theo-
rists fail to evince.” (45) [italics in original].

From this perspective, photographs are seen as faithful 
visual representations by virtue of their mechanisms no less 
than by the ways in which such mechanisms are controlled 
and regulated by photographers. Following Costello, we 
need to also consider that our intuition of what is a “realis-
tic” image rests in the case of photography as much on what 
it shows than on how it shows it, which is to say that the pho-
tographic image is granted its privileged epistemic position 
in society by adding, not subtracting layers of subjectivity; 
not “without the creative intervention of man”(7), as Bazin 
would have it, but precisely because of it.

If the depicted is indeed inextricable from the process of 
depiction, we must then ask why should we not care about 
this process when it comes to computer vision?
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3 � The glass computer

One of the reasons photographic cameras appear to record 
the world automatically is that many of the calculations 
needed to render space visible are pre-programmed in the 
photographic devices themselves, most significantly in pho-
tographic lenses. When photographers pull an image into 
focus by adjusting the focus ring, the lens is doing some of 
the heavy lifting in terms of the calculations necessary to 
harness light convergence and render a slice of space visible 
in a specific manner. This is not to say the lens itself thinks, 
but rather that thought has been put into the lens, quite liter-
ally crystallised in its design, and that the photographer is 
able to interface with it through the camera controls.

From a cognitive standpoint, like the Sumerian abacus or 
the medieval volvelle, photographic lenses can be thought 
of as a type of analogue computer: a system that allows its 
user to actively externalise memory to a programmable cal-
culating object and in this way distribute the cognitive load 
required to perform a specific task. Configured in this man-
ner, user and object enter into an interaction feedback loop, 
creating “a coupled system that can be seen as a cognitive 
system in its own right” (Clark and Chalmers 1998). That 
photographers need not perform optic calculations to mobi-
lise their effects is one of the most salient affordances of 
photography as a technology, and connects it to computer 
vision in their shared overarching project to automate visual 
labour through the computation of space (Pasquinelli 2019), 
with the obvious difference that in the case of photographic 
lenses such computation is analogue.

If we have not traditionally thought of photographic 
lenses as machinery with which to calculate4 is perhaps 
because their inputs and outputs are presented as images 
and not numbers or letters. We do not know, for example, 
whether an image is in focus if presented as a matrix of 
pixel values (or a tensor); we need to see the results as an 
image “all at once” to evaluate it. However, the intermedi-
ate steps of interaction involved in producing photographic 
images are in fact heavily mediated by numerical parameters 
and standardised metrics: focal length, exposure, aperture 
and ISO. These are all given as numbers that describe the 
internal relations of the photographic mechanism, and from 
this point of view a key aspect of photographic practice as 
an imaging technology is to understand, control and har-
ness different permutations of these relations for a variety of 

lenses. An equivalent process in machine learning would be 
the understanding and control of hyper-parameters.

Take focal length as an example. Today, it is widely used 
as a standard measure for lens classification, since it cor-
relates with the size of the image plane5 and the aperture6 
of the camera to define, among other things, the field of 
view, i.e. how much of a given scene fits into the frame, 
and the depth of field, i.e. how much of it is in focus at any 
given time. For a full-frame format,7 a wide angle lens (e.g. 
28 mm) will cover a wider field of view and have a deeper 
focus range, while a telephoto (e.g. 300 mm) will magnify to 
a narrower area and have a shallower focus range. In between 
we find a 50 mm, often called a “normal” lens.

Over time, the effects produced by different focal dis-
tances get thematised and are attached to specific social 
narratives. Long telephotos tend to be used in sports and 
nature photography, where subjects are often moving at a 
distance and backgrounds can be out of focus. Wide lenses, 
on the other hand, privilege field of view and focused scenes 
instead of magnification. Depicted through a different lens 
the same subject can be made to look in fraganti in a leaked 
mobile phone picture (28 mm) or like a model fit for the 
cover of a fashion magazine (175 mm) (Wieczorek 2019).

Different lenses contribute in this way to our understand-
ing of what pictures are about. Our argument is that it is 
precisely this “aboutness” of vision that we feel to be con-
spicuously absent or compromised in the tokens of predic-
tion produced by systems like the one used to machine-see 
the BBC television archive, a type of computer vision which 
only points to what images are of.8 Drawing from this dis-
tinction, we can clearly see how lens aesthetics are not inci-
dental to photography but rather a fundamental dimension 
of its epistemic advantage insofar as they enable distinct 
relations between the see-able and the know-able; between 
knowledge and the appearance of knowledge. That images 
are seen to be about something inasmuch as of something 
suggests that we put our faith in photography not because 
it offers undistorted images of the world, but because we 

4  However there are a lot of optical calculations crystallised in photo-
graphic lenses. One notable example that links optics with computing 
is how in 1840 Joseph Petzval, an Austrian mathematician, employed 
several human computers to aid in the design a new four-element lens 
capable of under-one-minute exposures: the famous Petzval Portrait 
(See: Peres 2007, 159).

5  Usually given in millimetres as the diagonal measure of a rectangu-
lar projection surface or screen onto which an image is formed when 
reflected light is projected through a lens.
6  Known as f-stop or, somewhat confusingly, f-number (N), calcu-
lated using the formula: N = f/D (where f is focal length and D the 
diameter of the iris or pupil that allows light into the lens.
7  35 mm (36 mm × 24 mm frame) film negative or equivalent digital 
sensor. Many digital cameras have smaller sensors, thereby modify-
ing (cropping) the field of view of lenses. The smaller the sensor is 
in relation to a full-frame the larger its crop factor. Conversely, by 
knowing the crop factor of a given sensor, one can estimate a lens’ 
full-frame equivalent focal length. Mobile phones, for example, have 
much smaller sensors and lenses, an iPhone X has a 4  mm lens, 
28 mm equivalent in a full frame camera.
8  For a discussion on this distinction see (Maynard 1997).
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believe that photographic distortions are meaningful. Com-
puter vision, we argue, gains it powers by treating photo-
graphs not as detections of the world, but as measurements 
of these beliefs, and in doing so it assumes an implied opti-
cal perspective.

4 � A machine made of images

Let us now return to MbM and ask what optical perspec-
tive is implied in it. What lens or lenses are encoded in 
the computational gaze we set upon the BBC Television 
archive?

We know the Visual Genome uses images originally 
sourced from Flickr (Krishna et al. 2017, 47) and that the 
photo platform hosts many of its images along with their 
EXIF data,9 which is an international metadata standard for 
digital images and sound that includes tags for camera set-
tings and lens information.

EXIF is far from perfect. Its metadata structure is bor-
rowed from TIFF files and is now over 30 years. A notable 
drawback to working with this type of data is, therefore, its 
inconsistency, given the quick pace at which digital cameras 
changed over the last decades and the many differences in 
how they used the standard over time, even among cameras 
from the same manufacturer. What is more, some manufac-
turers like Nikon use custom format fields not common to 
any other brand and encrypt the metadata contained in them. 
This makes it very difficult to extract, disaggregate and pro-
cess EXIF.10 Finally, this type of metadata is not usually 
available for not-born-digital photographs, i.e. taken with 
analogue cameras or images that were scanned.11

These caveats notwithstanding, EXIF is still the most 
widely used metadata standard for photography and as such 
a key resource to research the equipment and technical prac-
tice that underlies the creation of photographic images in the 
digital age. And precisely because of its longevity and perva-
sive use, it is one of the few ways to trace a technical lineage 
from lenses to computer vision. It is quite possibly the only, 
where such a lineage can be done at a larger scale, given 
the size of the collections of images used in deep learning.

We extracted EXIF metadata from all the images whose 
Flickr IDs matched the ones present in the Visual Genome. 
The metadata standard is comprised of over twenty thousand 
tags, but we only selected tags that were general enough so 
as to be reported by most cameras. Within these, we only 
focused on the ones containing data about the parameters 
over which photographers tend to have more choice and con-
trol, namely their choice of camera and lens, as well as the 
aperture, exposure and focal length settings. Table 1 shows 
a list of the tags that were queried and an example of the 
values extracted. Table 2 shows an overview of the extrac-
tion results.

The extraction process yielded a relatively dense distri-
bution, with over 83% of accessible images returning meta-
data in at least one of the five of the queried tags. The one 
exception was < Lens info > , for which only 10% of acces-
sible images returned values. In light of this, we decided to 
consolidate data for all tags except < Lens info > , which was 
kept separately for later analysis. We also parsed over aper-
tures and focal lengths to bin them into categories: twelve 
bins corresponding to full f-stops for apertures—from f1 to 
f45,12 and seven focal distance bins corresponding to a com-
monly used classification13:

Table 1   Example of Exif tags extracted

Tag Value

Camera manufacturer Canon
Camera model Canon EOS 7D
Exposure 1/1600
Aperture (F-number) 2.8
Focal length 145.0 mm
Lens info 0EF70-200 mm 

f/2.8L IS II 
USM

12  There are wider and narrower apertures, for example f/0.95 of the 
Shenyang Zhongyi Mitakon Speedmaster 50 mm. However these are 
very rarely encountered and were not observed in our dataset.
13  These categories are not policed or enforced by any particular 
institution, as the boundaries are seen as irrelevant in most areas of 
photographic practice. They are, rather, more of a tacit agreement 
among photographers, lens and camera manufacturers. Of the tags 
queried, focal distance was the most challenging because, as we noted 
earlier, these values are relative to the size of the sensor. The stand-
ard “full frame” sensor was adopted as an equivalent of 35 mm film 
stock, but as digital cameras shrunk in size so too did their sensors. 
The effect is particularly stark in mobile phones, whose sensors are 
particularly small, so in order to compare their focal length to that 
of larger cameras one needs to multiply their reported Exif value 
by a crop factor so as to obtain a 35 mm equivalent. This crop fac-
tor is different across models and manufacturers, for example many 
Apple iPhone models have a sensor crop factor of 7.6, if the focal 
length in their Exif metadata is 4.3, the 35  mm equivalent is a lit-
tle over 30 mm. If one were to accurately measure focal length one 

9  Developed in 1998 by the Japan Electronic Industries Development 
Association (JEIDA), eventually absorbed by the Japan Electronics IT 
industries association (JEITA) and the Camera & Imaging products 
association (CIPA). (See: JEITA Standards).
10  https​://exift​ool.org/TagNa​mes/Nikon​.html#LensD​ata01​
11  A scanned photo, for example, will sometimes include EXIF data 
from the scanner, but obviously no lens or other information about 
the camera with which was originally taken. It is possible, however, 
to manually write or re-write EXIFtags of a digitised photograph (or 
nearly any other digital image for that matter). For the most authorita-
tive source on working with EXIF see Phil Harvey’s Exif Tool: https​
://exift​ool.org/

https://exiftool.org/TagNames/Nikon.html#LensData01
https://exiftool.org/
https://exiftool.org/
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•	 Ultra wide (< 24 mm)
•	 Wide (24–35 mm)
•	 Normal (35–85 mm)
•	 Short telephoto (85–135 mm)
•	 Medium telephoto (135–300 mm)
•	 Super telephoto (+ 300 mm)

We also parsed over exposures to remove faux entries 
(e.g. a small number of older mobile phones reported infinite 
or zero values for exposure), and manually matched some 
camera manufacturers names (e.g. ‘NIKON’ and ‘Nikon 
Corporation’). The consolidated data frame includes all val-
ues in all remaining tags for a total 68,085 entries, which is 

66% of all images that comprise the Visual Genome (v1.2). 
An example of our working data frame is shown in Table 3.

Our analysis of EXIF data shows the clear dominance of 
DSLR over other types of equipment, with Canon and Nikon 
being the two major manufacturers combining for over 64% 
of all cameras, more than eight times the share of the third 
largest manufacturer, Sony, at 8% (Fig. 4).

From these, the ten most popular camera models all cor-
respond to Canon EOS and Nikon DX systems, with the 
only exception of the Apple iPhone 4, at number nine. The 
most common camera in our dataset is Nikon’s D90, an 
entry-level DSLR released in 2008, and the first model with 
video-recording capabilities. The second most popular is 
the semi-professional Canon 5D Mark II, released the same 
year, closely followed by the 7D also from Canon, released 
in 2009.

In terms of how these cameras were used, our analysis 
identifies large apertures f 2.8, 4, and 5.6 as the most popu-
lar, accounting together for 74% of photographs (Fig. 5).

For focal length, lenses between 35-85 mm are the most 
common, accounting for 50.7% of the images, with the least 
popular being the super telephoto, only used to take 1.6% of 
the photos in our dataset (Fig. 6).

Exposure was more evenly distributed between the 
extremes with the notable exception of 1/60, identified as 
significantly more popular than all other shutter speeds. This 
is possibly due to the common belief that this is the slowest 
shutter speed one can expose without needing a tripod.14 

Table 2   Overview of the 
extraction results

Category Count Percentage

Total number of IDs processed 103,077 100.00%
Unavailable URL request (500 error) 18,521 18.00%
Available image but with no data in the queried tags 443 0.40%
Available images with data in at least one queried tag 84,113 81.60%

Table 3   First five observations 
of our working data frame, 
shaped 68,085 rows × 5 columns

Camera manufacturer Camera model Exposure Aperture Focal length

Canon Canon PowerShot S2 IS 1/640 4.0 72.0 mm
Panasonic DMC-FX9 1/13 3.6 9.9 mm
Canon Canon EOS 20D 1/250 11.0 560.0 mm
Nikon NIKON D50 1/250 5.0 125.0 mm
Canon Canon PowerShot SD600 1/320 2.8 5.8 mm
… … … … …

14  This is commonly known as the “1/focal length rule”. According to 
it, for a 50 mm lens (75 mm in most APS-C sensors), the longest expo-
sure that still produces sharp images with hand-held cameras would 
be approximately 1/60. This is only a guideline, as many other factors 
impact sharpness: ISO, time of day, weather, and indeed how much 
one’s hand shake. Still, as rule of thumb for DSLR aficionados, it might 
contribute to explain the popularity of this particular shutter speed.

would need to extract the size of the sensor from Exif (assuming this 
is not given as the 35  mm equivalent), calculate the crop factor for 
each individual camera model, and then match it to the corresponding 
entry in the dataset. We did not have the time or resources to do this. 
However, through controlled manual sampling we identified entries 
that reported focal lengths consistent with two types of cameras 
widely available at the time these pictures were taken: 3G Mobile 
phones (~ 15 k entries, e.g. iPhone 4 to 5), compact and ultra com-
pact point and shoot cameras (~ 12  k entries, e.g. Canon Powershot 
and Pentax Optio series). Based on this we compensated for these two 
groups by applying a weighted average crops factor of 7.6 and 4.8, 
respectively. From a similar sampling at the other end, it was appar-
ent that this process not necessary for long focal lengths, which were 
mostly taken with full frame or APS-C or APS-H cameras, which 
magnify the image even more.

Footnote 13 (continued)
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Figure 7 shows the ten most common combinations of aper-
ture, focal length and exposure parameters in images in the 
Visual Genome, all of which are under direct control of their 
photographers.

These findings are consistent with the practices of a 
“proficient consumer” community of photo enthusiasts 
working with DSLR equipment.15 These are generally non-
professional photographers who nevertheless are willing to 
invest in a bulkier and more expensive camera and take the 
time to learn how to operate it manually. Users of the Nikon 
D90 are often recent converts migrating upwards from the 

Fig. 4   Camera manufacturers of images in the Visual Genome

Fig. 5   Distribution of apertures in images from the Visual Genome

15  Single-Lens Reflex cameras (both digital and analogue). This type 
of camera allows for interchangeable lenses and has a mirror system 
that allows the photographer to use a view finder to see through the 
camera lens in order to compose their photographs. When the shutter 
is pressed the mirror flips and the sensor or film stock gets directly 
exposed to light coming in through the lens. The acronym is often 
used to differentiate these cameras from point-and-shoot models, 
which are much smaller and have fixed (often retractile) lens, or from 

so-called mirrorless models, which do admit different lenses but do 
not have a mirror.

Footnote 15 (continued)
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common point-and-shoot photography. Or they might also 
be more established and committed users of a Canon 7D, 
who probably own a few lenses already and might be close 
to going professional. This grouping is also supported by our 
smaller sample of lens data from the < Lens Info > tag, which 
shows inexpensive lenses that come bundled with cameras 
to be very popular, e.g. the 18-55 mm f/3.5–5.6 included in 
both Nikon and Canon starter kits (camera body + lens), but 
also include a few more expensive lenses (particularly on 
longer focal lengths, e.g. the 100–400 mm f/4.5–5.6L or the 
EF70-200 mm f/2.8L, both by Canon).16 We believe these 

lenses overlap with professional practice and were prob-
ably acquired as second or third lenses for purpose-specific 
photography, specifically wildlife or sports, both of which 
featured heavily in a manual sampling we conducted over 
images taken with these two models.17

By identifying the dominant photographic practices of 
this community of DSRL enthusiasts in the Visual Genome, 
we show the implicit optical perspective mobilised in 
MbM. If one were to ask not about the accuracy in detecting 

Fig. 6   Focal length categories in images from the Visual Genome

Fig. 7   Combined aperture, focal length and exposure* of images in the Visual Genome. *Exposure is given as the denominator of a fraction of a 
second, e.g. 250 is equivalent to 1/250, or 0.004 s

16  We believe it is possible that Canon lenses on this range make 
more consistent use of the < Lens Info > tag. 17  We looked at about 10% of the images taken with these two lenses.
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what is depicted, but about the latent camera of this particu-
lar computer vision system, we could now reply with some 
degree of confidence that this perspective falls within the 
focal range of a 18–55 mm lens on a APS-C or APS-H cam-
era; apertures between f3.5 and f5.6, and a likely exposure 
1/60 s. Casting aside some of the other complexities of MbM 
for a moment, we could say that in general terms this was the 
lens through which the BBC archive was seen.

Today, DSLR photography of this kind is a somewhat 
dying practice, as sales of this type of camera have been 
steadily declining over the past decade (CIPA 2019). Eve-
ryday photographs are now taken with mobile phones and 
circulated through social media (Herrman 2018). However, 
while the equipment and the communities that supported 
this visual regime recede into history, lens aesthetics are 
anything but history. On the contrary, the standard of pho-
tography set by DSLR practitioners is now being reimagined 
under the logic of digital computation and mobile phones,18 
pursued through software and through AI (See for example: 
Yang et al. 2016; Ignatov et al. 2017).

With this in mind, we suggest turning computer vision to 
itself and asking whether it is possible to engineer a machine 

that tells us about the becoming of images; not only what 
they depict but how. If we concede that the “aboutness” 
with which we invest photographic images—including their 
epistemic advantage—is a function of the depicted no less 
than of the depiction modality, such an aesthetic machine, 
we argue, is as justified as one that distinguishes cats from 
dogs, or hot-dogs from other sandwiches. Could we not train 
machines to learn about optical perspectives as well as what 
these perspectives are used for at given times in history?

To close this article, we offer a prototype along these lines 
as a proof-of-concept, which is purposefully designed to be 
blind to what photographs are of; a type of vision that cares 
nothing about recognising objects, people or scenes, and is 
instead programmed to learn only about how its images were 
made and the visual perspectives they embody, in this case 
the focal distance of the lenses with which they were taken.

Using the EXIF dataset we assembled and the images 
from the Visual Genome, we trained a Neural Network to 
classify focal lengths and to distinguish between photo-
graphs taken with a wide angle lens from those taken with a 
telephoto. The class boundaries are drawn at under 24 mm 
for the former and over 135 mm for the latter. Each class was 
given little over 12,000 training samples (Fig. 8). The model 
was trained from scratch using a VGG-based convolutional 
neural network (Fig. 9).

Our results show test accuracy of 83% after fourteen 
epochs of training. We manually tested the model at this 
checkpoint by running inference on several photographs not 
contained in the Visual Genome to confirm it performed as 
expected in evaluating out of sample images. But we are 
only at the beginning of our work here. Without probing 
further into the model and conducting more systematic tests, 
it is difficult to know what exactly the neural network has 

Fig. 8   Batch of four samples of inputs and labels

Fig. 9   15-layer Convolutional neural network architecture

18  Consider how large phone manufacturers like Huawei and Nokia 
partnered over the last decade with camera and lens manufacturers 
Leica and Zeiss, respectively, to produce multi-camera devices. In the 
case of the Huawei P series, such partnership was overtly marketed 
with the slogan “rewrite the rules of photography”, in direct reference 
to its capacity to reproduce and control lens effects such as shallow 
depth of field and bokeh, which occur at longer focal distances and 
narrower apertures, and had until recently been the sole province of 
photographic cameras, most notably professional and semi-profes-
sional SLRs. See: https​://consu​mer.huawe​i.com/uk/campa​ign/rewri​
tethe​rules​/

https://consumer.huawei.com/uk/campaign/rewritetherules/
https://consumer.huawei.com/uk/campaign/rewritetherules/
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learned from these images. One of our working hypotheses 
is that there are low-level features like the texture of bokeh 
or warmer green tones which might correlate strongly to 
longer focal lengths, since both the field view and speed of 
many of these lenses favours their outdoor use. In any case, 
our initial results already suggest that, with some exceptions 
such as irregularly shaped images from elongated panora-
mas, grainy images or images captured with optical zoom, 
the predictions of our classifier were reasonably accurate 
for photographs taken with either very long or very wide 
lenses. Figure 10 shows a comparison of two successfully 
classified images using this method. For the casual observer 
who sees these two images all at once, instead of counting 
them pixel by pixel, there are many apparent differences: 
one is the Shard in London, the other a baby orangutan in 
Borneo; one is a landscape, the other a portrait; one is a 
night scene, the other was taken in broad daylight. However, 
when it comes to the type of lens used to render these scenes 
visible, a posteriori knowledge might in fact be a task for 
which computer vision is much better suited. In particular 
deep convolutional networks can help with their progressive 
and content-agnostic abstraction of pixel relations.

Going back to MbM, we used our focal length classi-
fier on frames from one of the mislabelled sections men-
tioned at the beginning (Fig. 11). Comparing the predictions 

outputted by the two systems, our ‘telephoto’ classification 
seems intuitively more accurate than MbM’s ‘reflection in 
a mirror’. This might be an extreme example but it points 
us to a fundamental problem that is sometimes overlooked 
in machine learning. Which prediction tells us more about 
the image? What kind of knowledge is implied by each, and 
when or why would we prefer one kind over the other?

5 � Conclusions and future research

Initial results suggest that with more data, extended train-
ing and fine-tuning, a much more sophisticated lens clas-
sifier is possible. To our knowledge this has not been tried 
before, and therefore, we approached the design of the sys-
tem with naive confidence, in the hope that others might 
be intrigued and improve upon it. Similarly, we believe 
there are many other possibilities beyond a binary classi-
fier, even using this relatively small dataset, for example 
by looking at exposure as one of the immanent temporali-
ties of computer vision systems—photographers not only 
manipulate the shape of light but also its speed. These 
need not be isolated dimensions nor indeed separate from 
existing approaches aimed at naming objects or people.

Fig. 10   Photo on the left was taken with a mobile phone (28 mm); photo on the right with a DSLR (340 mm)
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Our contribution is, rather, an initial and tentative 
answer to a much larger question: how can computer 
vision evolve from systems designed to name what is in 
the picture, to systems that approximate more precisely 
what we see in the picture? In this paper, we show from a 
computational aesthetics perspective how diversity in pho-
tographed subjects ought not to be confused with visual 
diversity, nor indeed bias with error. To be clear, our argu-
ment is not that Crawford’s archaeology of datasets is not 
necessary, or that Harvey is mistaken when he states that 
a photo is not just a photo any more. It is rather that “just 
a photo” includes a whole field of meanings and technical 
mediations that are also encoded, abstracted and mobilised 
through machine learning and deep learning in particular. 
This is not to deny the digital dimension of these images, 
nor the latent computational powers of datasets, but to say 
that these powers are largely derived from the representa-
tional powers of photography. Therefore, our relationship 
with the photographic image underwrites our relation with 
computer vision more generally. From this perspective, 
a critical programme of computer vision, insofar as it is 
powered by this type of images, necessitates a techno-aes-
thetics of photography to explain how these images afford 
knowledge by distorting perspective, and how they can be 
seen as faithful representations beyond the factual events 
they depict. So here we must simply insist in incorporating 
insights from the study of the photographic and cinematic 
image in the technical milieu of AI to argue that mean-
ing is not something that can be extracted from pictures 
alone, but that is instead co-constructed with their audi-
ences through usage; photography is an imaging no less 
than an imagining technology, and so too must we learn 
to understand computer vision.
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Abstract
For millions of years, biological creatures have dealt with the world without being able to see it; however, the change in the 
atmospheric condition during the Cambrian period and the subsequent increase of light, triggered the sudden evolution of 
vision and the consequent evolutionary benefits. Nevertheless, how from simple organisms to more complex animals have 
been able to generate meaning from the light who fell in their eyes and successfully engage the visual world remains unknown. 
As shown by many psychophysical experiments, biological visual systems cannot measure the physical properties of the 
world. The light projected onto the retina is, in fact, unable to specify the physical properties of the world in which humans 
and other visually ‘intelligent’ animals behave; however, visual behaviours are habitually successful. Through psychophysi-
cal evidence, examples of the functioning of Artificial Neural Networks (ANNs) and a reflection upon visual appreciation 
in the cultural and artistic context, this paper shows (a) how vision emerged by random trial and error during evolution 
and lifetime learning; (b) how the functioning of ANNs may provide evidence and insights on how machine and human 
vision works; and (c) how rethinking vision theory in terms of trial and error may offer a new approach to better understand 
vision—biological and artificial—and reveal new insights into why we like what we like.

Keywords  Human vision · Machine vision · Brain · Artificial neural network · Visual appreciation

1  Introduction

It is possible to consider metaphors as a way to attribute 
human characteristics to an animal, object or any other 
subject. At the same time, it is important to consider that 
abstract (non-physical) phenomena are understood through 
the attribution of physical features to the phenomena. For 
instance, the sentence inflation rose in July is interpreted 
using two concrete physical phenomena: inflation (an 
increase in size) and rising (a change in position) (Pinker 
2013).

Metaphors are used in science and philosophy to explain 
the unknown, as well as a tool to generate new knowledge 
and provide a better understanding of many phenomena 
(Zarkadakis 2015). Every century, perhaps even every dec-
ade, has its own metaphors, and “when the use of a specific 
metaphor ceases and a new metaphor takes its place, we have 

a ‘paradigm shift’ in the way science explains the world” 
(Zarkadakis 2015).

One main source of metaphors is the human brain and 
body. In the Book of Genesis Adam, for instance, is created 
out of dust and then life is infused into it—interestingly, 
the word human comes from the Latin humus, which means 
ground or earth. Later on, in the third century BCE, the 
invention of hydraulic and pneumatic systems provided a 
new paradigm to understand the human body as a “dynami-
cally moving fluid within a mechanical body” (Zarkada-
kis 2015). In the sixteenth century, again, René Descartes 
described the human body as a complex machine, comparing 
muscles and bones to cogs and pistons.

The arrival of computer technology, however, changed 
the paradigm once more. The brain started to be compared 
to a computer, as it processes the information much similar 
to how a computer does. The computer–brain analogy per-
haps finds its roots in the fact that information is transmitted 
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through electrical signals. Neurons,1 like electronic compo-
nents, indeed transmit information through a voltage change 
that much resembles the binary logic—0 and 1—used by 
computers.

From the 1950s, however, with the advent of Artificial 
Neural Networks (ANNs), this metaphor has begun to be 
revised. Unlike a computer, ANNs operate empirically, 
based on trial and error and on what worked best in the past, 
with no rigid rules or specific steps to follow—this distinc-
tion, which may seem to be of no particular importance, is 
fundamental to the understanding of this paper.

Using the new brain–ANN analogy, this paper introduces 
a new understanding of visual perception. Section 2 provides 
some essential information on the structure and functioning 
of the nervous system and briefly discusses its advantages. 
Important terminology is defined to better understand the 
entire text. Section 3 provides a basic understanding of the 
functioning of the ‘visual brain’ and introduces the idea that 
vision should be understood in empirical terms arising from 
trial and error during evolution and life-long learning. Sec-
tion 4 provides a basic understanding of the functioning of 
ANNs. Section 5 clarifies the position of culture in visual 
understanding. Additionally, it provides insights into com-
prehend why we like what we like. Lastly, Sect. 6 presents 
some implications and possible consequences of ‘accepting’ 
the brain–ANN paradigm.

2 � The nervous system

Trichoplax adhaerens is a marine animal roughly one mil-
limetre in diameter without a nervous system (Senatore 
et al. 2017). However, despite this lack, as shown by Sena-
tore and colleagues, Trichoplax is capable of a variety of 
behaviours typically found in animals with nervous systems. 
Trichoplax can track space, communicate through cellular 
transmission and exhibit different feeding behaviours: it can 
arrest its ciliary movement, used for locomotion, when algae 
are detected, showing that it has a sensory system able to 
detect nutrients and to communicate over short distances 
via chemical secretion. Plants also lack a nervous system 
but, like bacteria and protists, they can use environmental 
information to generate behaviours that enable them to sur-
vive and reproduce.

What are the evolutionary advantages of having a brain, 
then? Answering this question risks falling into some kind of 
hierarchical division, with organisms with a nervous system 
at the top of the pyramid of life and others at the bottom. 
It is certainly true that having a nervous system provides 

numerous advantages. Nevertheless, having a brain is not a 
fundamental requisite for an ‘intelligent’ life form: most past 
and extant organisms are without a nervous system, and this 
absence does not seem to have caused them any particular 
problems.

No one knows when the first nervous system appeared; 
however, the need to survive in a constantly changing envi-
ronment seems to have benefited those organisms ‘gifted’ 
with a nervous system (Purves 2019). The key distinction 
between non-nervous system organisms and those with a 
nervous system seems thus a quantitative distinction in the 
range of possible behaviours. The appearance of nervous 
systems and later on of central nervous systems enabled bio-
logical creatures to respond to the external environment in 
more sophisticated and useful ways (Robson 2020).

The nervous system is composed of specialised cells 
known as neurons and glia.2 It is described for convenience 
as the central nervous system (brain and spinal cord) and 
the peripheral nervous system—both areas are of course in 
continuity. The task of the nervous system is to carry sen-
sory information (e.g., heat) from the periphery to the brain 
to promote a behaviour (e.g., remove your hand). Each neu-
rons signals via a bioelectrical signal, known as an action 
potential, which travels along the nerve cell and communi-
cates the information to another neuron—the synapse.3 Each 
cell remains independent and separate. In the case of vision, 
when photons stimulate photoreceptors cells in the retina, 
the sensory input is transformed into a neural signal and sent 
to specific areas within the brain. The information is then 
processed, and a behavioural response occurs.

Is certainly true that creatures gifted with excitable cells 
able to perceive and convey information about the outside 
world have evolutionary advantages compared to creatures 
without such cells. For instance, in the case of vision, the 
ability to create a visual representation of the world—e.g., 
identify a predator. Nevertheless, as previously stated, the 
majority of living beings that have existed and that currently 
exist lack a nervous system. Thus, having cells that can ‘rep-
resent’ the world and coordinate such representation with 
a behaviour (e.g., movement) should be seen as increasing 
the possibilities to representing the outside environment 
(Churchland 1989) rather than a fundamental requirement. 
Although the behavioural catalogue of different creatures 
varies tremendously, living organisms with and without 
nervous systems have developed strategies to pair sensory 

2  Glia cells are non-neural cells in the nervous system. Their main 
role is to provide structural support to neurons. They are not directly 
involved in the transmission of signals.
3  Synapses are connections between neurons and a target cell. The 
role of synapses is to allow communication by receiving or transmit-
ting chemical signals.

1  A neuron is a specialised cell for the transmission of electro-chem-
ical signals.
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inputs with useful behavioural answers (Purves 2019). In 
summary, the advantage of having a nervous system seems 
that of having a richer behavioural repertoire.

3 � Vision

According to Andrew Parker’s light switch theory (2004), 
the change in atmospheric conditions during the Cambrian 
period and the subsequent increase in light has triggered 
the sudden evolution of vision and the consequent evolu-
tionary benefits. Despite the fascinating idea proposed by 
Parker and the consequent belief of the supremacy of vision 
over other senses, this theory does not explain how organ-
isms have been able to usefully pair a visual stimulus4 (e.g., 
the ‘image’ of a prey) with a useful behaviour (e.g., eat the 
prey). After all, at that time, vision was a new and, therefore, 
unknown source of information. How have simple organ-
isms and more complex animals been able to develop useful 
behaviours in response to visual stimuli, or put differently, 
how visually gifted creatures5 have been able to create mean-
ing from the light that enters their eyes?.

The plain individual is probably convinced to see objects 
with a specific shape, because those objects have those 
certain physical features or to see them at a certain dis-
tance, because they are actually at that distance (Kanizsa 
1997). However, as further explained in this paper, despite 
the apparent simplicity, how vision works, is still largely 
unknown—which is why, from their first appearance more 
than 50 years ago, computer vision systems remain to date, 
under certain circumstances, inaccurate, unreliable and eas-
ily deceived. Indeed, the need to further understand and rep-
licate vision has only recently arisen, with the dream and 
need to build ‘visually intelligent machines’ (Treccani 2018).

The conventional idea is that light carries with it infor-
mation about the world that somehow resembles the world 
as it is (e.g., I see a house because the light input received 
by the sensory apparatus carries with it some ‘houseness’ 
information, such as shape). This belief is probably based on 
old theories of vision such as intromission theories, which 
see vision as light rays emitted by objects, and extromission 
theories, which instead understand vision as the emission of 
light rays from the eyes towards external objects. This idea 
is, however, incorrect, because light does not carry with it 
any information other than energy. Furthermore, the human 
perceptual apparatus cannot measure the physical param-
eters of the world, because it lacks the necessary instruments 

and thus cannot retrieve the real properties of the world (as 
described more in detail later in this section). Besides, as the 
world cannot be assessed, even the idea of a representation 
of the world close enough to reality must be incorrect.

According to Parker’s theory, the advantages appearing 
from the evolution of vision gave rise to numerous new ani-
mal behaviours. Seeing in colour, for example, is undoubt-
edly an immediate asset. As pointed out by Purves, “a visual 
system that can identify object boundaries based on the 
spectral distribution of light energy will, therefore, be more 
successful in responding to images” (Purves 2019). Here, 
Purves refers to the possibility of perceiving boundaries 
given by colours. Achromatic animals, for instance, cannot 
distinguish boundaries between two objects with a spectral 
difference but the same luminosity (i.e., brightness). Col-
ours, a fundamental source of information that animals use 
to identify predators and poisonous plants or for reproduc-
tive purposes, are, however, a brain construction.

Colours are defined by variations in the wavelength (or 
frequency) of light. Red, for instance, has a wavelength of 
between 700 and 635 nm, whereas blue is between 490 and 
450 nm. However, light wavelengths themselves do not cor-
respond to any colours. The variation in the frequency of 
the wavelength, commonly understood as colour variation, 
is a vibrational variation (moving photons) in the amount of 
energy in a light wave. In addition, light waves that reach the 
retina always entail a combination of illumination, reflec-
tance, and transmittance (Fig. 1a), and there is no analytical 
method to unravelling how these factors provide visually 
appropriate answers (Purves and Lotto 2003).

How do humans perceive colours? The capacity of the 
human eye to discriminate spectral variations is based on 
the sensitivity of retina cells to different light frequencies. 
Humans have two types of photoreceptor cells in the retina: 
rods and cones. Rods seem to play a minor part in colour 
detection. The three different types of cones are each char-
acterised by a different type of photopigment. Each type of 
cone is sensitive to a different light frequency (i.e., colour). 
Yet this explanation does not seem to fully explain how and 
why colours are perceived. Additionally, the way geometric 
properties are perceived shows the inaccuracy of the human 
vision in discerning reality once more. The human visual 
system, in fact, cannot retrieve the geometrical properties of 
the world. As shown in Fig. 1b, objects with different incli-
nations, sizes and at different distances can indeed generate 
the same retinal image. As human eyes, and more generally, 
the entire perceptual system, cannot retrieve the ‘real’ prop-
erties of the world, it is clear that visual perception must be 
a generated perception (Purves et al. 2014).

To explain the operation of visual perception, 
DalePurves proposed the idea that vision should be 
understood in empirical terms “in which perceptions 
reflect biological utility based on past experience rather 

4  In biology an event, in the form of energy, that provokes and acti-
vates a receptor cell.
5  Biological creatures gifted with photoreceptors able to transmit 
information about the outside world.
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than objective features of the environment” (Purves 
et al. 2015). Retinal images,6 continue Purves “conflate 
the physical properties of objects, and therefore cannot 
be used to recover the objective properties of the world. 
Consequently, the basic visual qualities we perceive – e.g., 
colours, form, distance, depth and motion – cannot specify 
reality” (Purves et al. 2015). Visual perceptions, therefore, 

must emerge independently from any measurement of the 
world, as these measurements are not reliable. To para-
phrase Purves, the perceptual information—the visual 
world—we experience, is determined by the frequency 
of light pattern7 and its consequent importance in terms 
of survival. The association between the frequency of 

Fig. 1   a The conflation of illu-
mination, reflectance and trans-
mittance. Many combinations 
of these objective parameters 
in the real world can generate 
the same values of luminance 
at the retina. b The conflation 
of physical geometry. The same 
image on the retina can be 
generated by objects of different 
sizes, at different distances from 
the observer, and in different 
orientations (Purves 2019).

6  Images should be intended both as the light pattern detected by 
the retina, as well as the visual result of the processed light-pattern, 
meaning its visual representation—e.g., the image of a cat.

7  It is important to highlight that a light pattern does not resemble the 
physical world, nor any ‘image’ of the world produced by the human 
brain. A light pattern should be intended as the light configuration 
that is perceived, determined by its frequency of occurrence and its 
consequent usefulness (for more, see Purves et  al. 2015., Yang and 
Purves 2004 , Rao et al. 2002).
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occurrence of a light stimulus (light pattern) and its con-
sequent useful (successful) behaviour thus arises from trial 
and error during evolution and life-long learning.

If, as previously stated, animals’ visual perceptual appa-
ratus cannot assess the physical properties of the world, how 
are then images of the world formed? For Purves, if a given 
light stimulus occurs often, its value will be high. At first, 
different and random behaviours will appear in response to 
this stimulus. However, over time—evolutionary time and 
individual lifetime—an automatic link between the stimu-
lus and the most successful behaviour will arise. Accord-
ing to Darwin and neo-Darwinian theory (the integration 
of Darwin’s theory of evolution by natural selection and 
Mendel’s theory of genetics as the basis for inheritance), 
when a mutation occurs and is randomly associated with 
a neural response that promotes survival/useful behaviour, 
this mutation and its consequent neural activity will tend to 
be passed to subsequent generations. In other words, if the 
image that arises from a given luminous-configuration and 
its consequent behaviour proves to be useful for evolutionary 
purposes, a link will be created. This successful creation will 
be disseminated to the next generation following evolution-
ary processes (thus, a non-useful behaviour will not tend to 
be passed to future generations).

Purves, even if referring here to the process of hearing, 
gives an explicative example that can be likewise transferred 
to vision: “This strategy works because it establishes an objec-
tive-subjective association in biological machinery that does 
not depend on the measurements of sound sources in physi-
cal reality. As before. The role of the physical world in this 
understanding of sensory neurobiology is simply an arena in 
which neural associations are empirically tested according to 
survival and reproductive success” (Purves 2019).

As humans perceive light “categorically—usefully but 
not at all accurately—because it is an extremely efficient way 
of perceiving visual stimuli that allow us to save brain cells 
to devote to the neuroprocessing of our other senses” (Lotto 
2017), vision should be seen as a fast answer to a visual 
stimulus. Consider, for instance, the knee-jerk reflex. This 
reflex is simply an evolutionary ‘answer’ that establishes 
a successful behaviour. The activation of the nervous sys-
tem, which is rapid and precise and without the need for any 
‘brain computation’, promotes a response (i.e., extend the 
leg) that is useful (i.e., extend the leg to avoid falling if an 
object hits you). In this sense, vision should be considered 
a reflex: an automatic, quick and useful answer to a visual 
stimulus that does not require any measurement of the world 
(Purves et al. 2015). The role of vision, and more generally 
of the nervous system, is, therefore, to promote a biologi-
cal advantage rather than to reveal how the world looks like 
(Purves 2019). In short, the role of vision is to promote what 
was useful to see in the past.

4 � Artificial neural networks (ANNs)

Evidence of neuroscientific practices has been found in 
ancient societies all around the world. However, only with 
the advent of electronic technologies did scientists start to 
try to replicate the functioning of the brain. In the 1940s 
(following Turing’s work in the 1930s), McCulloch and 
Pitts, respectively a neurophysiologist and a mathematician, 
began to investigate the possibility of neural computation. In 
1943, they published a paper on the operational functioning 
of neurons and the construction of ANNs that could compute 
logical functions (McCulloch and Pitts 1943). With the idea 
of building a machine able to solve any logical operation, 
McCulloch first, with the help of Pitts later, embarked on 
the design of a mathematical model—a network—of brain 
functioning.

Towards the end of the 1940s, Donald Hebb published 
The Organization of Behavior (2002), in which he demon-
strated that the more a neural pathway is used, the stronger 
it becomes. This concept is of fundamental importance: it 
shows that connections between neurons can change their 
synaptic weight, i.e., the strength of the connection. The 
stronger the connection, the more likely an association 
(stimulus-behaviour) will be to appear in the future. It is 
essential to understand this idea, as it is critical to the way 
humans and machines learn to see the world. In contrast, if 
seeing a stimulus—input—in a particular way shows itself 
not to be useful, it is less likely that the same neural pathway 
will appear.

In the past 10 years, ANNs seem to have gained the upper 
hand over algorithmic processing. Indeed, the “abilities to 
recognize patterns, make inferences, form categories, arrive 
at a consensus ‘best guess’ among numerous choices and 
competing influences, forget when necessary and appropri-
ate, learn from mistakes, learn by training, modify decisions 
and derive meaning according to context, match patterns 
and make connections from imperfect data” (Greenwood 
and Bartusiak 1992) have made ANNs particularly success-
ful—this is also why, all around the world, neuroscientists 
use ANNs to simulate the brain functioning. As example, a 
paper presented in 2018 by the DeepMind group (Google) 
(Silver et al. 2018) shows how the AlphaZero system beat 
the best human Go player in the world. Instead of using the 
force of an algorithm—following fixed procedures—Alp-
haZero learned, tabula rasa, how to win by playing against 
itself millions of time via a process of trial and error. By 
random trial and error (i.e., reinforcement learning), the sys-
tem learns from wins and losses (i.e., empirical evidence) to 
adjust the parameters (i.e., synaptic weight) of the network, 
making it more likely to choose useful moves in the future. 
By ranking the frequency of winning moves, AlphaZero 
quickly learns how to become the strongest player in Go 
history.
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In other words, differently from traditional game engines 
like IBM’s Deep Blue8 that rely on thousands of rules, fixed 
procedures and heuristic moves chosen by human experts, 
AlphaZero learns how to become the best player, without 
in-built knowledge—except the rules of the game—but by 
random self-play—trial and error (Hassabis et al. 2018).

Even if first created more than 50 years ago, it is only 
recently that ANNs have achieved satisfying results. ANNs 
are now used for image recognition tasks, to automatically 
identify objects, people, actions and places in a given image. 
Image recognition technologies are used by companies and 
governments to execute tasks such as guiding robots and 
vehicles, content searching in images, image labelling and 
medical diagnosis. Facebook, for instance, uses ANNs to 
help visually impaired users to identify people or objects in 
a photograph. Self-driving cars use ANNs to locate pedestri-
ans and vehicles, and airports use facial recognition technol-
ogies as a biometric confirmation to allow entry to a country.

For the purposes of this paper, it is of great importance 
to clarify the driving principles of an ANN’s functioning, 
as their understanding seems to provide insights into com-
prehend how the brain solve visual issues.

In his book Intelligence Emerging, Keith L. Downing 
explains the operating of an ANN as follows: “Take a brief 
pause from reality and imagine that you are the first-year 
coach of a professional basketball team. It is the first game 
of the season, and the score is tied with only seconds remain-
ing. You call a timeout, consider your multitude of strate-
gic options, and then decide to set up a play for the guy 
that everyone calls C. The play begins, C gets the ball, and 
though double-covered by two hard-nosed defenders, gets 
off a long shot. Swish! The ball goes through the net, you 
win the game, and C is carried off the court on the shoul-
ders of his/her teammates. You have now learned some valu-
able information that will help throughout the season: C is 
a clutch performer” (Downing 2015). Let us also imagine a 
few other scenarios.

In a second case, a player known as D gets the ball and 
shoots, but the ball does not reach the basket, and the match 
is lost. The newspapers will attribute the defeat to D.

In a third scenario, as described by Downing, C passes 
the ball to B, who shoots and wins the match. In this case, 
both C and B will be glorified by the media and acknowl-
edgement will be given to both—indeed, as Downing notes, 
basketball statistics include assists as evidence of a player’s 
value.

In a fourth new scenario, “C passes to B who passes to 
(the guy everyone just calls) A, who makes the winning shot. 
A gets the points and the shoulder ride to the locker room, 
B gets the assist, but does C get (or deserve) anything? It 
could be the case that, before passing to B, C faked a pass 
or dribble attack that froze A’s defender in place. This made 
it easier for A to come free to get the ball and shoot the win-
ning basket. Such a contribution by C would not show up on 
a statistics sheet, though you may notice it. You may even 
praise C more than B or A afterwards in the locker room, 
since his/her fake-then-pass was obviously the key to the 
whole play. He set up a situation that then became routine 
for B and A” (Downing 2015).

After many games, it becomes clear that C plays a criti-
cal role during the final minutes of each game. In fact, the 
value of C is proved by the statistical significance of his 
performances. The proved value (i.e., usefulness) of a player 
during the closing minute of a match is essential to plan the 
strategy and organisation of the team through the rest of the 
season. Moreover, it is necessary to highlight that all shots, 
faults, mistakes, defensive impact, points, passes and all 
the events that precede the win are equally important when 
assigning value to a player or a particular team configura-
tion. Was L fundamental for the winning of the game during 
his/her 2 min on the court? Was C a valuable player during 
the first part of the tournament but less valuable during the 
last part of the season? Was D a valuable player throughout 
the season despite the shooting error in the last game?

In short, the sum of all the trials and errors of the coach’s 
choices and the consequent accumulation of experiences 
describe the essence of the functioning of an ANN—rein-
forcement learning.9

The more the trial and error search space is extended, the 
more likely is that a useful strategy will be found, although 
the incredibly large size of the search space and the difficulty 
of taking into account all of the possible variables do not 
allow the success of a decision to be determined with cer-
tainty. In the case of an object recognition task, for instance, 
it is difficult for a machine vision system to identify all the 
possible variables—e.g., size, shape, colour, orientation—
of an object—e.g., a chair. Furthermore, an object can be 
partially hidden by other objects (a chair partially hidden 
by a table) or reflected into a mirror, creating even further 
difficulties (Treccani 2018). However, the ability of an ANN 

9  Reinforcement learning, in machine learning’s context, refers to 
the ability of an agent to learn by trial and error without supervision. 
Reinforcement learning, unlike supervised learning, does not require 
any labelled data. In the context of machine vision, a labelled data, 
for instance, might be a photograph in which the objects represented 
are specified—e.g., a cat, an apple or a house. Labels are usually 
obtained by asking annotators—humans—to make judgments about 
the content of a given image.

8  On 11 of May 1997, after a 6-match game, Deep Blue beat the 
world-best chess player—Garry Kasparov. The Deep Blue’s win had 
an important symbolic significance in the advancement of ‘intelli-
gent’ machine–artificial intelligence.
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to successfully solve a task—for instance, detect every chair 
present in a given picture—increases over time. Increasing 
the exploration of the search space for the possible solution 
increases the possibility of a successful result.

Like Downing’s first-year coach at the season’s start, 
an ANN begins with a series of random decisions (e.g., to 
choose player D instead of C)—exploration. Over time and 
through numerous attempts, the network uses the informa-
tion gathered to craft more useful decisions—exploitation. 
As the ANN explores the space of possible choices, it learns 
that certain decisions or actions lead to a reward while others 
lead to negative consequences.

In short, an ANN solve the problem of vision by millions 
of random trial and error or, in other words, through a well-
indexed database of past experiences and not through logical 
procedures. Just as an ANN system learns how to recognise 
faces among millions of other faces, distinguish different 
dog breeds or recognise and describe a scene, a biologi-
cal system learns how to see by countless trials and errors 
during evolution and individual lifetimes. In light of this, 
a new, wholly empirical understanding of the way humans 
and machines see based on trial and error is therefore needed 
(Purves et al. 2015).

5 � The snake

The idea that vision emerges empirically, by trial and error, 
during evolution, life-time experience and training period—
in the case of an ANNs—was previously presented in Part 
II and III. Extending this hypothesis to the cultural and aes-
thetic realm, part IV, will suggest that also visual apprecia-
tion should be understood as a useful behaviour emerging 
by trial and error.

Culture plays an important role in visual understanding. 
Nevertheless, culture has to be understood in evolutionary 
and biological terms, which means emphasising the evo-
lutionary advantages of developing cultural traits—ideas, 
technologies and behaviours—that can be transmitted from 
an individual to another via parenteral and social learning. 
This idea implies that culture can be seen as a biological 
extension or, as noted by Creanza, as “the extension of biol-
ogy through culture” (Creanza et al. 2017).

Relevant in this regard is the case of snake detection 
theory, which holds that “humans and other primates can 
detect snakes faster than innocuous objects” (Van Le et al. 
2013). In The Fruit, The Tree, and The Serpent: Why We See 
So Well, Lynne Isbell argues that “When snakes (the Ser-
pent) appeared, a particularly powerful selective pressure…
favored expansion of the visual sense” (Isbell 2009). Isbell 
argues that the environmental pressure caused by the appear-
ance of snakes—as competitors and predators—and their 
threat to survival was a possible trigger for the complexity of 

the primate visual brain, its enlargement and the particular 
sensitivity towards snakes. “Across primate species, ages, 
and (human) cultures, snakes are indeed detected visually 
more quickly than innocuous stimuli, even in cluttered 
scenes. Physiological responses reveal that humans are also 
able to detect snakes visually even before becoming con-
sciously aware of them” (Van Le et al. 2013).

Interesting is the reference that the author makes to the 
events of the Garden of Eden described in the Old Testa-
ment. Eve’s mistake was, in fact, noticing the snake. If she 
had not noticed the animal, she probably would not have 
eaten the apple. Snake references are found not only in 
Judeo-Christian confessions but also in other religions and 
cultures. Snake representations are found in pre-Christian 
societies, on Sumerian amulets, Iranian boxes, Greek and 
Chinese mythology. The presence of snakes in different cul-
tures and the fear of snakes (ophidiophobia), seems thus to 
have an evolutionary explanation—a visual reminder that 
snakes are dangerous. As Isbell noted, “ophidiophobia may 
go way, way back, to at least 30–35 million years ago when 
the first Old World monkeys and apes, the so-called catar-
rhine primates, are thought to have appeared. Ophidiopho-
bia may even extend farther back to 60 million years ago 
when the first generalised simian primates, the anthropoids, 
are thought have appeared. If so, this timeline might help 
explain the shared ophidiophobia of all anthropoids, includ-
ing humans” (Isbell 2009).

The enlargement of the visual brain in primates, for 
Isbell, seems to have provided a fast and automatic ‘predator 
detection system’ (Isbell 2009). “The ancestral environment 
of primates uniquely affected them to link vision with auto-
matic, fast, accurate, and adjustable reaching and grasping, 
and to improve upon vision as a way to detect and avoid 
predators” (Isbell 2009). As also pointed out by Purves (see 
Sect. 3), Isbell seems to refer to vision as an automatism. 
The advantages of understanding vision as a reflex are in 
fact: to provide a fast, direct and accurate response to the 
external environment that does not require any computa-
tion or processing, as the ‘computation’ have “already been 
accomplished by laying down connectivity instantiated by 
feedback from empirical success over evolutionary and indi-
vidual time” (Purves et al. 2015). The capacity of humans to 
visual discriminate an object, for instance, is in fact in the 
order of tens of milliseconds—this may also provide insights 
on why, when looking a particular painting, for instance, we 
are immediately captured by it.

Snakes visual sensitivity and ophidiophobia thus appear 
to be an evolutionary aid: those who did not respond to 
snakes with a proper behaviour (e.g., running away) would 
have fewer chances to survive compared to animals with a 
more useful behavioural answer (Isbell 2009). The presence 
of snakes in human artefacts and religions can be explained 
through the behavioural advantages that arise from the 
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ability to visually detect snakes. In other words, a particular 
visual sensitivity towards snakes seems to have had cultural 
repercussions that justify the presence of this animal and 
its visual appreciation10 in artistic productions all around 
the world.

It is certainly important to understand the value of culture 
in the transmission of useful behaviour, for instance, of tech-
niques related to the construction of a tool. It is well known 
that several non-human species exhibit cultural transmis-
sions. Chimpanzees and macaques, for instance, can build 
tools like hammers to open nuts using stones. However, even 
the value of transmitting visual appreciation skills should not 
be underestimated, it should be read instead as an evolution-
ary aid in the same fashion of a chimpanzee’s ability to build 
a hammer, although with more degrees of separation.

As shown by Michael Baxandall in Painting and social 
experience in fifteenth century Italy (1988), having the abil-
ity to appreciate a painting was a necessary social skill to 
master for the upper middle and aristocratic Italian classes of 
the Renaissance. Possessing these visual skills gave access to 
a series of benefits in the form of social connections. In this 
fashion, artistic visual competence can be seen as an evolu-
tionary aid. These visual capacities, although not immediate, 
must be understood as useful answers to the environmental 
and social ‘selective pressure’. Every given period, in fact, 
has its own ecological ‘selective pressure’ and its consequent 
useful visual behaviour.

To trace the biological value of visual appreciation is 
surely complicated. However, exploring in this direction can 
reveal meaningful insights into why we like what we like. 
Furthermore, understanding vision and visual appreciation 
arising from trial and error during evolution and life-long 
learning can provide a new understanding to study human 
perception and culture.

6 � Conclusion

The idea that the visual brain may operate like an ANN, and 
that vision works in empirical terms poses considerable dif-
ficulties both in the science and the humanities; however, as 
previously shown, there is much evidence that justifies this 
new analogy. Reconsidering vision in terms of trial and error 
implies the necessity to revise some of the ideas proposed in 
this regard, particularly in the fields of psychology and the-
ory of perception studies. However, visual perception issues 
also need to be rethought in the perspective of brain–ANNs 

analogy, since it seems to provide some insight into how 
human see and visually understand the world.

As demonstrated in Sects. 3 and 4, there are clues that 
suggest that vision emerges empirically as an automatic 
answer to a stimulus. The link of the frequency of a light 
stimulus and consequent useful behaviour determines what 
is seen. In the same fashion, by exploring all the possible 
behaviours (e.g., actions, choices) and changing the rela-
tive synaptic weight until the best ‘move’ is found, ANNs 
successfully learn how to solve a visual task (e.g., object 
classification, scene classification and image segmentation), 
possibly as biological creatures have done during evolution. 
The analogy should then be clear: the way humans and other 
animals build their way to visually understand the world 
closely resembles the operational functioning of an ANN—
and vice versa.

This idea may seem suspect to many and generate a cer-
tain antipathy in others, but the possibility of exploring the 
vision (and, more generally, the functioning of the whole 
brain) in terms of trial and error can provide a first model 
of why we see what we see, to date still missing. Although 
the theories of the last century, especially in the field of 
psychology (such as Gibson’s bottom–up theory and Greg-
ory’s top–down theory) and later in neuroscience (such as 
Marrs’s computational theory), had the merit of providing 
further elements of understanding of how the visual system 
may work. Likewise, these theories were not able to provide 
a clear explanation of how, and most importantly, why the 
‘visual world’ is constructed (i.e., the relation between the 
physical properties of the world, the visual stimulus that falls 
onto the eyes and the consequent mental image).

As previously discussed in this paper, the physical prop-
erties of the world cannot be measured, and the degree of 
discrepancy between reality and perceived reality must be 
substantial. Thus, the idea that a subject is able to respond to 
a stimulus, based exclusively on the features of the stimulus 
itself (bottom–up theory) appears insufficient. Furthermore, 
the idea of seeing as knowing (top–down theory) seems 
equally insufficient, since the state of the world is unknown. 
However, by random trial and error, by ranking the fre-
quency of the appearance of a light stimulus, the success of 
the response to that particular stimulus and the consequent 
neural wiring, animals, and more recently machines, seem 
to have been able to create a useful visual representation 
of the world. The role of vision then “is not to reveal the 
physical world, but to promote useful behaviours” (Purves 
et al. 2015).

In trying to understand visual perception and its guiding 
principles, it has to be clear that the human brain evolved 
from earlier brains, and that its capacity and limitations have 
a historical basis (Churchland 1989). The selective pres-
sure that developed visual perception—and more generally, 
all perceptions—did not arise rationally and logically but 

10  Visual appreciation refers not only to the aesthetic appreciation of 
a work of art but also to the ability to analyse, describe, interpret and 
make connections between works of art and their cultural context.
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instead from the need of living beings to successfully deal 
with the surrounding world. As the world cannot be con-
quered by the visual sensory system, animals—including 
humans—have learned to usefully represent and respond to 
the physical world through trial and error during evolution 
and individual learning. As an ANN learns how to solve a 
visual task by randomly trying the possible ‘moves’, so the 
brain has learned how to successfully respond to the world 
outside itself.

Comprehending how visual understanding was won by 
simple organisms first, more complex animals later and—
partially—by machines recently, may be of great help as it 
may help to unhinge wrong assumptions and test the validity 
of new ones. Abandoning the nest of common-sense concep-
tions about vision—both biological and artificial—will cer-
tainly lead to further complications that nevertheless deserve 
to be investigated to better understand and provide a first, 
albeit imperfect, answer to the relationship between what we 
see and what we know (Berger 2008).
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Abstract
This article uses Memo Akten’s art installation Learning to See (Akten https​://www.memo.tv/portf​olio/learn​ing-to-see/, 
2017) to challenge the belief that machine learning and machine vision are neutral and objective technologies. Furthermore, 
this article follows Bernard Stiegler to contend that not only machine vision but also human vision is the result of constant 
training processes that rely directly on technology (understood as a technical surface of inscription). From this perspective, 
human vision is always already technical. Likewise, in an age dominated growingly by machine learning technologies, it is 
possible to speak not only of machine vision but also of a machinic imagination and a machinic unconscious, two notions 
that can be illustrated through Akten’s art installation.

Keywords  Machine vision · Machine bias · Bernard Stiegler · Algorithmic art · Black box

1  Introduction

The notion of vision machines was first introduced by Paul 
Virilio in the 1980s. According to him, the latest stage in the 
history of industrialisation would be the automation of visual 
perception. Following the shift in manual labour from the 
artisan to the assembly line, and the standardisation of intel-
lectual activity by the culture industry, the rise of artificial 
vision would now “delegate the analysis of objective reality 
to a machine” (Virilio 1994: 59). Since the years Virilio 
anticipated this mutation, the development of machine learn-
ing algorithms has turned machine vision into a concrete 
technology with multiple real-world applications. Assem-
bly lines, drones, logistics and transportation, CCTV, bor-
der control, are some of the domains where the automation 
of visual perception is being used to detach the production 
and circulation of commodities from human labour. Back in 
the nineteenth century, Marx forecast that modern industry 
would reduce the human worker to the role of a “watchman 
and regulator of the production process” (1973: 705). With 

the automation of visual perception, however, even the task 
of supervising the production process is being delegated to 
machines, accelerating the exodus of living labour from the 
sphere of commodity production.

Echoing Virilio, Trevor Paglen (2016) has introduced the 
term “invisible images” to refer to those types of images 
“made by machines for other machines”. According to 
Paglen (2016), “the overwhelming majority” of images today 
belong to this invisible domain. Furthermore, the expansion 
of invisible images and vision machine technologies

is starting to have profound effects on human life, 
eclipsing even the rise of mass culture in the mid-
twentieth century. Images have begun to intervene in 
everyday life, their function changing from represen-
tation and mediation, to activations, operations, and 
enforcement. Invisible images are actively watching 
us, poking and prodding, guiding our movements, 
inflicting pain and inducing pleasure (Paglen 2016).

As mentioned above, machine vision has been made 
possible mainly due to significant progress in the field of 
machine learning algorithms. The complexities of visual 
perception and image recognition make it almost impossi-
ble for rule-based algorithms to achieve these tasks since 
computer engineers would need to know in advance every 
possible visual input (Greenfield 2017: 214; Fry 2018: 11). 
Machine learning algorithms, instead, operate by identifying 
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complex patterns that are later used to match a given image 
to a specific label. These patterns, however, are not pre-
defined by human programmers, but are instead produced 
through a training process in which thousand or even mil-
lions of labelled images are fed to an optimization algorithm 
that will progressively improve its efficiency by adjusting its 
weights (Greenfield 2017: 215). Put differently, “machine 
learning is the process by way of which algorithms are 
taught to recognise patterns in the world, through the auto-
mated analysis of very large data sets” (Greenfield 2017: 
216).

This article uses Memo Akten’s art installation Learning 
to See (2017) to challenge the belief that machine learning 
and machine vision are neutral and objective technologies. 
Furthermore, this article follows Bernard Stiegler (2010, 
2011, 2016) to contend that not only machine vision but 
also human vision is the result of constant training processes 
that rely directly on technology (understood as a technical 
surface of inscription). From this perspective, human vision 
is always already technical. Likewise, in an age dominated 
growingly by machine learning technologies, it is possible 
to speak not only of machine vision but also of a machinic 
imagination and a machinic unconscious, two notions that 
can be illustrated through Akten’s art installation.

2 � Black boxes and biased machines

Two major issues in the field of machine learning are the 
‘black-box effect’ and ‘machine bias’. These two issues are 
symptomatic of some of the political and ethical dilemmas 
of the several uses of machine vision. Given the scale of the 
training datasets and the speed of the training process, many 
machine learning algorithms become real “mysteries” to 
their programmers. This means that in many cases, the way 
these algorithms identify patterns and take decisions remains 
obscure to a human observer (Fry 2018: 11; Mordvintsev 
and Tyka 2015). As machine learning becomes “more com-
plicated and their workings more inscrutable to users, it may 
become increasingly difficult to understand how autonomous 
systems arrive at their decisions” (Danks and London 2017: 
4691). Frank Pasquale has forged the notion “black-box soci-
ety” (2015) to emphasise how the contemporary world is 
relying more and more on algorithmic judgements that are 
extremely difficult to explain in human terms. This black-
box effect is reinforced by corporate secret and intellectual 
property rights that keep algorithms undisclosed from pub-
lic access. Several authors (Boulamwini and Gebru 2018; 
Danks and London 2017; Fry 2018; Pasquale 2015; Zarsky 
2011) advocate for more transparency in the way machine 
learning algorithms function to avoid conflicts that could 
arise from the application of this technology by government 
agencies or private corporations. The European Union, for 

example, produced in 2018 a Data Protection Regulation 
that includes not only the ‘right to be forgotten’ but also 
the ‘right to explanation’ whereby “a user can ask why an 
algorithmic decision was made about him or her” (Gar-
cia 2016: 115). Nonetheless, the appeal to transparency is 
still limited by the issue of scale. Even if corporations and 
governments made their algorithms public, the scale and 
speed of the training process make it extremely difficult for 
a human observer to identify the logic behind the decision 
tree. Machine learning technologies are so complex and 
obtuse that in many cases, their mode of operation is not 
intelligible to human agents (Garcia 2016: 116; Goodman 
and Flaxman 2016).

The second issue is that of ‘machine bias’. Megan Garcia 
(2016: 112) defines this phenomenon as the process in which 
“seemingly innocuous programming takes on the prejudices 
either of its creators or the data it is fed”. According to her,

more and more computers are tasked with making cru-
cial decisions, often on the basis of their perceived 
impartiality. For example, police use algorithms to 
target individual populations, and banks use them to 
approve loans. In both instances, computer results have 
been discriminatory—a reminder that learning how to 
account for algorithmic bias is increasingly important 
as more financial and legal decisions are driven by 
artificial intelligence (Garcia 2016: 113).

The issue of machine bias “is particularly worrisome for 
autonomous or semi-autonomous systems, as these need not 
involve a human being ‘in the loop’ (either active or passive) 
who can detect and compensate for biases in the algorithm 
or model” (Danks and London 2017: 4691). Since machine 
vision depends largely on machine learning algorithms, the 
issue of machine bias is a key aspect of the political and 
ethical questions surrounding the automation of perception. 
On the one hand, there is a group of authors who call for an 
improvement of the datasets to train less biased algorithms. 
For them, using a more representative training set would 
create more ‘objective’ algorithms. Boulamwini and Gebru 
(2018), for example, argue that “since computer vision tech-
nology is being utilised in high-stakes sectors such as health-
care and law enforcement, more work needs to be done in 
benchmarking vision algorithms for various demographic 
and phenotypic groups” (Boulamwini and Gebru 2018). 
Similarly, Tal Zarsky (2011: 312) argues that machine bias 
is not an ‘inherent feature’ of algorithmic technologies, but 
is rather the result of ‘poor training data’. This means that 
actual cases of algorithmic bias can be solved by improving 
the training data and/or the training process. If data mining 
and training process are “sufficiently transparent”, Zarsky 
(2011: 312) argues, algorithmic bias can be “effectively 
overcome”. Furthermore, Zarsky claims that since a well-
trained algorithm has the potential to become more objective 
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and less biased than human agents and institutions, this tech-
nology should be considered an essential aspect of fairer 
societies (2011: 311).

On the other hand, it could be argued that since machine 
learning algorithms are by default the result of a concrete 
training process, the possibility of an ‘objective judgement’ 
must be ruled out completely. It has been mentioned above 
that machine learning algorithms are taught to recognise 
patterns through a training process involving large data-
sets. According to some authors, class, gender and racial 
structures are transferred from the datasets to the algorithm, 
and in that process these algorithms are in fact “automating 
inequality” (Angwin et al. 2016; Eubanks 2018). Hence, 
critics of machine vision have highlighted that instead of 
mathematically neutral, these algorithms are ‘biased’ in their 
very constitution. From this perspective, the ideological jus-
tification of machine vision as a neutral technology could 
be seen as a reification and reinforcement of existing social 
asymmetries which are contained in the training datasets 
and codified into the algorithm. Trevor Paglen (2016), for 
example, contends that

there is a temptation to criticize algorithmic image 
operations on the basis that they are often “wrong”. 
These critiques are easy but misguided. They implic-
itly suggest that the problem is simply one of accuracy, 
to be solved by better training data. Eradicate bias from 
the training data, the logic goes, and algorithmic oper-
ations will be decidedly less racist than human–human 
interactions. Program the algorithm to see everyone 
equally and the humans they so lovingly oversee shall 
be equal.

Furthermore, Paglen (2016) adds that “ideology’s ulti-
mate trick” is to “present itself as objective truth”, that is, 
to “present historical conditions as eternal” and “to present 
political formations as natural”. Automated systems tend to 
denote neutrality and objectivity, concealing that they may 
work as “immensely powerful levers of social regulation that 
serve specific race and class interests while presenting them-
selves as objective” (Paglen 2016). In this sense, machine 
vision should be understood as “a kind of hyper-ideology 
that is especially pernicious because it makes claims to 
objectivity and equality” (Paglen 2016).

The possibility of objective judgement has been a ter-
ritory of vivid dispute since long before the appearance of 
machine learning and machine vision. According to Richard 
Rorty (1991), there are two main ways of defining objectiv-
ity: as correspondence or as agreement. He calls the first 
‘realism’ and the second ‘solidarity’. In the case of objec-
tivity as correspondence, a given statement is ‘objective’ 
if it is in conformity with ‘reality’. To achieve an objec-
tive judgement, then, a person must rule out any precon-
ceived idea inherited from his or her community and attempt 

to access ‘reality as such’. In the case of solidarity, truth 
appears not as a direct and unmediated relation to reality, 
but as an agreement between the members of a community. 
For Rorty, contemporary social sciences are the “heirs of the 
objectivist tradition, which centres around the assumption 
that we must step outside our community [and the opinion 
of its members] long enough to examine it in the light of 
something which transcends it” (1991: 22). The scientific 
search for ‘underlying structures’, ‘culturally invariant fac-
tors’, or ‘biologically determined patterns’ in society is an 
example of the predominance of the ‘realist’ conception of 
objectivity (Rorty 1991: 22).

Machine learning, through its immense capacity for pat-
tern recognition, has become the latest instrument for pur-
suing pure objectivity. Apologists of this technology claim 
that thanks to machine learning and big data, theories will 
no longer be needed to explain the world (Anderson 2008). 
Instead, a real-time picture of reality will be permanently 
accessible offering “a whole new way of understanding the 
world” (Anderson 2008). From this perspective, algorithms 
will finally achieve the realists’ old dream of an unmediated 
image of the world free from preconceived ideas, opinions, 
and theories. The problem is that since machine learning 
depends directly on the training process, these precon-
ceived assumptions are transferred from the datasets to the 
algorithm. In Rorty’s terms, it could be said that machine 
learning algorithms take one form of truth as ‘agreement’ 
and objectify it, presenting it no longer as agreement but as 
correspondence with ‘reality’. From a critical perspective, 
it must be emphasised that, at least in the case of machine 
learning, the ‘ruling out’ of prejudices that underlies the 
‘realist’ conception of objectivity is structurally impossible 
since the system itself requires preconceived elements in 
order to train itself. Hence, a machine learning algorithm 
capable of ‘objective’ and ‘neutral’ judgements that ‘bracket 
off’ preconceived ideas would be a contradiction in terms.

3 � Memo Akten’s Learning to See

Learning to See is an ongoing series of works based on 
machine learning technologies developed by artist Memo 
Akten. The series is composed of both an interactive art 
installation and a number of videos. This article will focus 
mainly on the interactive installation which was part of 
the 2019 Barbican exhibition “AI: More than Human”. It 
will also refer briefly to one of the videos from the series 
titled We are Made of Star Dust #2. According to Memo 
Akten (2017), the Learning to See interactive installation 
consists of “a number of neural networks” which “analyse 
a live camera feed pointing at a table covered in everyday 
objects” (Fig. 1). “Through a very tactile, hands-on experi-
ence”, Akten (2017) adds, “the audience can manipulate the 
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objects on the table with their hands, and see corresponding 
scenery emerging on the display, in real-time, reinterpreted 
by the neural networks”.

Two images are projected on the wall of the gallery: on 
the left, a ‘live feed’ of the objects on the table as captured 
by the camera while, on the right, a ‘reinterpretation’ of the 
‘live feed’ by a neural network (Figs. 2, 3). The image on 
the left comes across as ‘objective’, since it resembles what 
we have become accustomed to perceive through photo and 
video cameras. This effect of objectivity is enhanced by the 
real-time nature of the live feed: participants can identify 

their own hands as they manipulate the objects on the table. 
The image on the right, instead, is a reinterpretation of the 
first image by machine learning algorithms trained with very 
specific datasets. Akten (2017) explains that

every thirty seconds the scene changes between dif-
ferent networks trained on five different datasets: the 
four natural elements: ocean and waves (representing 
‘water’), clouds and sky (representing ‘air’), fire, flow-
ers (representing earth and life); and images from the 
Hubble space telescope (representing the universe, 
cosmos, ether, void or God).

Every object that enters the camera’s visual field alters 
the output of both images. The participant’s hands manipu-
lating the objects on the table are ‘seen’ by two different 
forms of machine vision: a traditional type of video image 
and a novel type of neural network image. The layout of 
these images—one next to the other—stresses how a sin-
gle input produces two different outputs depending on the 
type of vision technology. This creates a tension between the 
‘objective’ and ‘neutral’ image of the live feed on the left 
and the biased image on the right in which the algorithm can 
only see “through the filter of what it already knows” (Akten 
2017). In this sense, Akten’s art installation functions as a 
concrete illustration of the core aspects of machine bias: by 
opposing an objective image to a biased one, Learning to 
See is addressing how the training datasets directly modify 
the output of the neural network.

One interesting aspect of this work is the fact that the 
objects on the table are objects of everyday life such as 
phone chargers, cleaning cloths, headphones, car keys, 
glasses, pens, USB cables, etc. All these objects are so 
ingrained in our daily life that they usually become invis-
ible: they are not meant to be looked at, but rather to be 
used in an automatic and inattentive manner. They become 
visible only when their immediate use fails or is interrupted. 
In this sense, the objects selected by Akten in this artwork 
recall Martin Heidegger’s (2008) distinction between ‘pre-
sent-at-hand’ [vorhanden] and ‘ready-to-hand’ [zuhanden]. 

Fig. 1   Memo Akten, Learning to See [Installation view], 2017 (https​
://www.memo.tv/works​/learn​ing-to-see)

Fig. 2   Memo Akten, Learning to See [Video view A], 2017 (https​://
www.memo.tv/works​/learn​ing-to-see)

Fig. 3   Memo Akten, Learning to See [Video view B], 2017 (https​://
www.memo.tv/works​/learn​ing-to-see)

https://www.memo.tv/works/learning-to-see
https://www.memo.tv/works/learning-to-see
https://www.memo.tv/works/learning-to-see
https://www.memo.tv/works/learning-to-see
https://www.memo.tv/works/learning-to-see
https://www.memo.tv/works/learning-to-see
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The first term refers to a theoretical disposition in which 
one is detached from the object and can hence objectify it 
as an object of contemplation, scientific observation, and 
thorough analysis. For Heidegger, Western science and phi-
losophy have been grounded mainly on this form of relation 
to non-human beings. The second refers to a more primor-
dial relation to the world which is previous to the process of 
objectification. The ‘ready-to-hand’ relation is exemplified 
in our day-to-day use of tools and devices that make up our 
most immediate world. As Hurbert Dreyfus (1991: 61) puts 
it, Heidegger “proposes to demonstrate that the situated use 
of equipment is in some sense prior to just looking at things 
and that what is revealed by use is ontologically more fun-
damental than the substances with determinate, context-free 
properties revealed by detached contemplation”. Since this 
relation to the world is prior to the theoretical disposition 
that objectifies it, Heidegger claims that ‘ready-to-handi-
ness’ should become a methodological guideline and the 
starting point for a new phenomenological philosophy. In 
Learning to See, Akten chooses objects that we commonly 
relate to as being ‘ready-to-hand’: not objects of contempla-
tion but objects of daily use that remain ‘hidden’ behind our 
ordinary relation to them. A cable becomes visible when it 
gets tangled, a cleaning cloth when instead of cleaning it 
makes something dirty, a pen when it stops writing. Even 
most significant is the example of glasses, that specific piece 
of equipment which allows seeing other objects as long as it 
remains invisible. Akten’s art installation collects all these 
‘invisible objects’ and makes them visible through a very 
particular vision machine that shifts our ‘ready-to-hand’ 
relation to them towards the contemplative domain of the 
‘presence-at-hand’.

4 � Immersion or coexistence?

A first impression may suggest that Akten’s interactive art 
installation produces an immersive experience. The piece 
is set up in a dark room with just three sources of light: the 
table with the objects and the two projected screens. These 
light sources work as attention points that stand out from 
the fading background. The participant can, hence, transit 
between three different experiences: the ‘direct’ perception 
and manipulation of the objects on the table, the contempla-
tion of those objects on the live feed camera projected on 
the left screen, and the interactive construction of images on 
the right screen. The room’s darkness and the interactivity 
between the table and the images seem to reinforce a sense of 
immersion in which reality is blurred out or ‘parenthesised’. 
In particular, the relation between the direct manipulation 
of objects on the table and the construction of interactive 
algorithmic images on the right screen could be seen as a 
sort of ‘live-painting’ software that stimulates an immersive 

experience. Immersion can be described as the situation in 
which one perceptive experience is replaced by another 
one (Boyer 2015). Pure immersion, if possible, requires the 
complete replacement of one for the other. Accordingly, 
any conflict between the two would interrupt the immersive 
experience. In the case of Learning to See, it could be sug-
gested that had Akten just kept the table and the neural net-
work screen on the right, the installation would have offered 
the conditions of possibility for an immersive experience in 
which the neural network image, capturing the participant’s 
gaze, replaces his or her direct perception of the objects on 
the table. However, Akten opted for a different format which 
included also the live feed from the camera, hence halting 
the immersive experience. Unlike a videogame or virtual 
reality software, Akten’s art installation does not simply aim 
at a pure immersive experience. Instead, the piece contrasts 
both images projected on the wall and interrupts the possi-
bility of immersion by claiming back the participant’s atten-
tion. Rather than an immersive experience, the installation’s 
set up accentuates an experience of coexistence in which one 
perceptual content does not substitute another: in Learning 
to See the three described experiences coexist and compete 
for the participant’s attention.

According to Edmund Husserl (1983), the correct phe-
nomenological method requires a process of ‘reduction’ 
[epoché], that is, a type of ‘parenthesizing’ or ‘bracketing 
off’ of everything that does not belong to ‘originary percep-
tion’. This phenomenological reduction is the condition of 
possibility for an analysis of a pure act of perception that is 
not contaminated by cultural prejudice and, therefore, the 
condition of possibility for objective judgement. This led 
Husserl to distinguish between “simple founding acts” and 
“complex founded acts” (1983: 277). The former refers to 
an experience of pure, originary, perception. It is a founding 
act since all other forms of experience are grounded on it. 
The latter refers to secondary experiences that are founded 
on primary perception. Founded acts include experiences 
of representation such as memory and imagination, as well 
as any form of relation to external representations (images, 
paintings, screens, etc.). From a Husserlian perspective, 
Learning to See offers both types of experiences: a found-
ing act of perception of the objects on the table and two 
founded acts of vision of the images projected on the wall. 
Furthermore, the image on the left gives the impression of 
objectivity since it is closer to the originary perception of the 
objects on the table, while the image on the right gives the 
impression of artificiality since it diverges from and trans-
forms it. Furthermore, Akten’s algorithm can be considered 
‘biased’ for the simple fact that it relies on memory (training 
datasets) and is structurally incapable of ‘parenthesising’ 
this founded act.

Once again, the question of objectivity is reduced to the 
act of bracketing off perception from preconceived ideas. 



1182	 AI & SOCIETY (2021) 36:1177–1187

1 3

The fact that the image on the left comes across as ‘objec-
tive’ implies that it is free from preconceived ideas, opinions 
and beliefs. It is closer to the founding act of perception. The 
image on the right, instead, comes across as biased because 
of its inability to bracket off the restricted dataset it was 
trained with. Nonetheless, this reading tends to naturalise 
our relation to the live video camera. Akten’s installation, 
through the coexistence of three different experiences of the 
same objects, aims not only at a critique of computer vision. 
It also attempts halting the ‘ready-to-hand’ relation to tech-
nical images and digital technologies (which has become so 
naturalised by our everyday use of them). By interrupting 
this initial relation to the image on the left (just like it inter-
rupts our usual relation to the objects chosen), Learning to 
See challenges its alleged ‘objectivity’ in opposition to the 
‘artificiality’ of the one on the right, putting into question 
the sheer possibility of a non-biased judgement.

5 � Soft‑montage and technical images

The experience of coexistence is achieved in Akten’s art 
installation by placing the two screens side by side. This lay-
out reminds us of Harun Farocki’s ‘soft-montages’ (2009). 
Used first in Farocki’s 1995 video installation Interface 
(Fig. 4), the double projection was meant to produce a two-
fold sense of simultaneity and succession: “the relationship 
of an image to the one that follows as well as the one beside 
it; a relationship to the preceding as well as to the concur-
rent one” (Farocki 2009: 71). Soft-montage aims at an expe-
rience of coexistence in which one image operates as the 
commentary or interruption of the other. Between 2000 and 
2003, Farocki used the soft-montage technique in his Eye/
Machine series (Fig. 5). Inspired by the work of Paul Virilio, 
these video installations explore the birth of machine vision. 
Farocki (2009: 72) puts forth the thesis that the automation 
of visual perception for industrial and military purposes was 
first achieved by a technical system that compared a pre-
defined template (what he calls a ‘pre-image’) to an actual 

image provided by a live camera feed. In this primitive form 
of machine vision, “contours and significant details” were 
stored in the autonomous system and then “compared to 
with the actual item” (Farocki 2009: 72). Farocki (2009: 
74) writes that one of the key concerns when creating this 
art installation was that the “mode of presentation” (soft-
montage) would be “justified by the subject matter itself” 
(machine vision). For him, the double projection in his soft-
montages replicated the act of comparison that took place 
in the first forms of machine vision between a ‘pre-image’ 
and an ‘actual image’. This was a primitive form of machine 
vision in which a stored pattern was used to classify images 
from the real world. The difference with contemporary 
forms of machine vision is that the pattern had to be defined 
in advanced by a programmer, which meant that it could 
only work for basic shapes in controlled environments. In 
any case, the connection between the mode of presentation 
(soft-montage) and the subject matter (machine vision) in 
Farocki’s Eye/Machine series is replicated in Akten’s Learn-
ing to See.

In Akten’s art installation, the comparison between the 
two screens reinforces reading both images projected on the 
wall as the result of a technical process. Hence, the image on 
the left should not be perceived as a ‘natural’ image opposed 
to the ‘artificial’ image on the right. Instead, by placing them 
side to side, Learning to See reveals that both images share 
the same technical input (a video camera placed on top of 
the table) and output (a light projection on the wall). Addi-
tionally, both images appear as the result of a specific techni-
cal process: digital video coding on the left and algorithmic 
video processing on the right. Like Farocki’s soft-montage 
in the Eye/Machine series, the double projection works as a 
metaphor of the inner workings of machine vision. To fully 
grasp how Learning to See deploys a critique of machine 
vision in both screens and, hence, prevents regarding the 
image on the left as ‘objective’, it is useful to recur to what 
Vilém Flusser (2000) has called ‘technical images’.

In his Philosophy of Photography, Flusser defines the 
technical image as “an image produced by an apparatus” 
(2000: 14). According to him, traditional images were 
produced in the imagination of the artist, who transferred 

Fig. 4   Harun Farocki, Interface, 1995 (https​://www.harun​faroc​ki.de/
insta​llati​ons/1995.html)

Fig. 5   Harun Farocki, Eye Machine, 2000 (https​://www.harun​faroc​
ki.de/insta​llati​ons/2000s​/2000/eye-machi​ne.html)

https://www.harunfarocki.de/installations/1995.html
https://www.harunfarocki.de/installations/1995.html
https://www.harunfarocki.de/installations/2000s/2000/eye-machine.html
https://www.harunfarocki.de/installations/2000s/2000/eye-machine.html
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them by means of the tool (paintbrush, chisel, etc.) onto a 
material surface (2000: 15). The invention of the technical 
image, instead, involved an externalisation of the faculty of 
imagination. In this process, the capacity to produce images 
is transferred from the black box of the imagination to the 
black box of the apparatus (2000: 16). Additionally, Flusser 
claims that an apparatus is defined by its programme, that is, 
by the set of instructions that, given a certain input, produce 
a specific output (2000: 26). This defines a finite number 
of outputs that each apparatus can produce. Every time an 
apparatus is put to work, it actualises the programme con-
tained in it and reduces by one the amount of possible out-
puts (2000: 26). Photography, film, video and digital images 
all belong to the category of ‘technical images’ as defined by 
Flusser. With the massification of these technologies, human 
beings are becoming more and more dependent on appara-
tuses. This phenomenon, in turn, is demanding a new phi-
losophy of the technical image (or a “philosophy of the black 
box” as Flusser sometimes defined it). To fully grasp the 
significance of technical images, this new philosophy must 
begin by opening up the apparatus’ black box and ‘elucidate’ 
the inner working of its programme (Flusser 2000: 16).

Traditionally, technical images were considered objective 
because they were produced by an apparatus that captured 
the world without interference from a human hand (Zylinska 
2017: 70). It could be argued, however, that by removing 
the human from the process, technical images overcome the 
representationalist domain in which the question of objectiv-
ity can be even posed. Joanna Zylinska (2017) suggests that 
technical images are the result of a non-human process that 
bypasses the mediation between a subject and the world. 
As it was mentioned, objectivity depends on the possibil-
ity of either correspondence or agreement. In both cases, 
representation works as an element of human mediation: 
either between the subject and reality, or between the subject 
and the community. Once the representationalist perspec-
tive is replaced by the non-human perspective of technical 
images, however, the question of objectivity can no longer 
be posed and must be replaced by the non-human problem 
of effectivity.

Akten’s art installation is a hands-on exploration of the 
black box behind machine vision. Specifically, this piece 
highlights how machine vision relies on training datasets 
to interpret the world. According to Akten (2019), “the 
work exposes and amplifies the learned bias in artificial 
neural networks, demonstrating how critical the train-
ing data is to the predictions that the model will make” 
(Akten 2019). This experience is emphasised by the fact 
that the trained algorithm changes every thirty seconds, 
showing how the same input generates entirely different 
outputs depending on the training datasets. Hence, “when 
the trained network looks out into the world via the cam-
era, it can only see what it already knows” (Akten 2019). 

Machine bias is, in this sense, essential to machine vision. 
At the same time, however, Flusser’s notion of technical 
image makes it possible to suggest that since both images 
in Learning to See are technical, and since technical 
images demand moving away from a representationalist 
approach, it is no longer possible to evaluate either of them 
using the distinction between ‘objectivity’ and ‘bias’.

6 � Inceptionism

It is important to point out that the technique employed 
by Akten is different to that of style transfer, “in which 
the ‘style’ of one image is transferred onto another image, 
which provides the ‘content’” (Akten 2019). Style transfer 
produces “an output image via an optimization process”, 
while Learning to See uses a neural network that produces 
“a predictive model” (Akten 2019). This predictive model 
“contains knowledge of the entire dataset, hundreds of 
thousands of images” (Akten 2017).

Akten (2015) learns about the difference between style 
transfer and predictive algorithms through the analysis of 
Google’s Deep Dream (Fig. 6). According to Alexander 
Mordvintsev and Mike Tyka (2015), “one of the challenges 
of neural networks is understanding what exactly goes on 
at each layer”. With this aim in mind, these Google engi-
neers created Deep Dream, and application which inverts 
the image recognition algorithm in order to see its internal 
operations. As Mordvintsev and Tyka (2015) put it,

Fig. 6   Google’s Deep Dream (https​://www.vice.com/en_us/artic​le/
zngm9​4/no-they-dream​-of-puppy​-slugs​-00007​03-v22n8​)

https://www.vice.com/en_us/article/zngm94/no-they-dream-of-puppy-slugs-0000703-v22n8
https://www.vice.com/en_us/article/zngm94/no-they-dream-of-puppy-slugs-0000703-v22n8
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One way to visualise what goes on is to turn the 
network upside down and to ask it to enhance an 
input image in such a way as to elicit a particular 
interpretation. Say you want to know what sort of 
image would result in ‘banana’. Start with an image 
full of random noise, then gradually tweak the image 
towards what the neural net considers a banana […] 
We call this technique ‘inceptionism’.

Considering that Google’s search engine is a constant 
flow of nearly six billion searches per day around the 
world, Google’s Deep Dream can be literally read as the 
dreaming machine for the world’s social unconscious. As 
Hito Steyerl puts it, “in a feat of genius, inceptionism man-
ages to visualize the unconscious of prosumer networks: 
images surveilling users, constantly registering their 
eye movements, behaviour, preferences” (Steyerl 2017: 
57). In this context, she adds, “Walter Benjamin’s ‘opti-
cal unconscious’ has been upgraded to the unconscious 
of computational image divination” (Steyerl 2017: 57). 
Back in 1930, Benjamin suggested that photography and 
cinema were optical devices capable of rendering visible 
previously unconscious elements, just like psychoanalytic 
techniques would allow objectifying unconscious elements 
of the psyche (2008: 287–79). Machine vision, likewise, 
can help rendering visible a new unconscious: that of the 
social structures engrained on the training dataset. If one 
overcomes the illusion of objectivity, machine vision can 
be read symptomatically as the ‘index’ of an unconscious 
content present on the dataset.

In 2015 Akten wrote an article on Google’s Deep Dream 
where he described it as “mind-blowing”. In particular, he 
was fascinated by how ‘inceptionism’ would iterate the 
algorithm’s initial intuition to explore the neural network’s 
hidden layers:

What was an initial “maybe I see inklings of little liz-
ard-like features over here” on a deep sub-conscious 
level, starts to become “yea, I think that might be liz-
ard-like features”, to “oh definitely, that’s a lizard-skin 
puppy-slug” at a well-defined, visible high level. These 
activations are now strong enough not to dissipate and 
disappear in the depths of the network, and can prop-
agate to higher levels, potentially even affecting the 
final output or decision. (Akten 2015)

By iterating seemingly insignificant elements, Google’s 
Deep Dream algorithm

creates a positive feedback loop, reinforcing the bias 
in the system. Building confidence with each iteration. 
Transforming what was subtle, unnoticeable trends 
deep within the network, to strong, visible, defining 
biases that affect the decisions of the network. (Akten 
2015)

The issue is that previous to the emergence of machine 
learning technologies, this unconscious content hidden in the 
dataset would remain invisible, just like the optical uncon-
scious remained concealed to the naked eye before the inven-
tion of photography.

In the case of Learning to See, the unconscious content 
of machine vision is made visible by explicitly narrowing 
the training dataset. Furthermore, it could be argued that 
Learning to See uses the technique of soft-montage to con-
trast two different forms of machinic unconscious: an optical 
unconscious on the left and an algorithmic unconscious on 
the right. In this sense, both images appear as the result of a 
machinic imagination, that is, a machinic black box respon-
sible for the production of images. This becomes more evi-
dent in a video version of Learning to See titled We Are 
Made of Star Dust #2 (Fig. 7). In this version, the screen on 
the left shows a high-definition and highly detailed close-up 
of the artists’s face captured with a microscopic lens. The 
screen on the right, instead, shows a reinterpretation of these 
microscopic images by a neural network trained exclusively 
with images produced by the Hubble telescope. This creates 
an interaction between the microscopic images of the artist’s 
face and the telescopic images of the universe. Microscope 
and telescope are two concrete examples of what Benjamin 
would call, like photography and cinema, technical sources 
of an ‘optical unconscious’. This optical unconscious is con-
trasted with the algorithmic unconscious rendered visible 
by the image on the right. An analogy, emphasised by the 
title of the artwork, is then forged between the microscopic 
particles that compose our body and those that compose the 
universe. The soft-montage technique in this piece reinforces 
this idea.

7 � The technicity of human perception

But Learning to See, Akten (2017, 2019) tells us, is not only 
about how “an artificial neural network looks out onto the 
world, trying to make sense of what it’s seeing, in context 

Fig. 7   Memo Akten, Learning to See [Video view C], 2017 (https​://
www.memo.tv/works​/learn​ing-to-see)

https://www.memo.tv/works/learning-to-see
https://www.memo.tv/works/learning-to-see
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of what it’s seen before” (Akten 2017). Learning to See is 
also a reflection on human vision, calling into question how 
humans “may construct meaning” (Akten 2019). Just like 
machine learning algorithms “which can only see through 
the filter of what they already know”, human vision looks 
at things not as they are, but as the result of who “we are” 
(Akten 2017). In Akten’s words, Learning to See uses 
machine learning technologies

to reflect on ourselves and how we make sense of the 
world. The picture we see in our conscious mind is not 
a mirror image of the outside world, but is a recon-
struction based on our expectations and prior beliefs. 
(Akten 2017)

This means that not only the projected screens are the 
outcome of a technical imagination and a technical uncon-
scious. It means that also the participant’s ‘direct’ perception 
of the objects on the table should be understood as the result 
of a training process that is intrinsically technical.

As mentioned above, the fact that Akten decided to keep 
both screens (and not just the one with the neural network) 
can be read as a sign that his main aim was not to gener-
ate an effect of immersion, but rather to create a contrast 
between both images. This contrast is mirrored by the par-
ticipant’s experience who does not look at the objects on 
the table through his or her ‘naked eyes’, but rather through 
the mediation of two types of technical images. This can be 
read as a metaphor for the regular experience of perception: 
instead of a pure and naked relation to reality, perception 
is always mediated by the technical apparatuses that com-
pose our relation to the world. This implies that the impos-
sibility of an ‘objective’ relation to the world (free from 
inherited prejudices) applies not only for machine vision but 
also for human vision. Put differently, if we accept Akten’s 
(2017) claim that Learning to See is a reflection “on how 
we make sense of the world”, then it must be deduced that, 
like machine vision, human vision is intrinsically techni-
cal, traversed by a machinic faculty of imagination and a 
machinic unconscious.

At this point, Bernard Stiegler’s theory of “originary 
technicity” (2010,2011,2016) becomes a useful framework 
to advance the analysis of Learning to See. According to 
Stiegler (2011: 60), technics (from the most primitive tool 
to the latest smartphone) function as a surface of inscription 
through which individuals inherit a specific culture and a 
specific relation to the world. Humans are, thus, constituted 
through a “process of exteriorization” in which “intergen-
erational support of memory [material culture] overdeter-
mines learning and mnesic activities” (Stiegler 2010: 9). 
This means that technics ‘always already’ precede the con-
stitution of human perception and human memory. Stiegler 
uses Husserl’s notions of primary and secondary retention 
in order to argue that human perception and human memory 

are constantly shaped by these external surfaces of inscrip-
tion, or tertiary retentions (2010: 8, 2011: 4, 2016: 480). 
Technics, as surfaces of inscription, modify “the relations 
between the psychic retentions of perception, which Husserl 
referred to as primary retentions, and the psychic retention 
of memory, which he called secondary retentions” (Stiegler 
2016: 480). And since technics evolve over time, so does 
“the play between primary retention and secondary reten-
tion” (Stiegler 2016: 480). In other words, with the advent 
of each new technical surface of inscription comes a new 
organisation of our perception, our memory and our imagi-
nation. The history of media is both “the history of technics” 
and the history of the organisation of an individual’s “inte-
riority” (Stiegler 2011: 78).

Stiegler replaces Husserl’s phenomenological analysis 
of an ‘originary perception’ for a study of the ‘originary 
technicity’ that constitutes our perception, memory and 
imagination. Following Jacques Derrida (1973: 45), Stiegler 
challenges the radical distinction (‘heterogeneity’) between 
perception and imagination in Husserl. The external surface 
of inscription (‘the trace’) works as an ‘originary technic-
ity’ which, as Derrida (1978: 203) puts it, simultaneously 
“erases the myth of a present origin”. Likewise, Learning 
to See erases the myth of a pure perception as the basis for 
objective judgement. In doing so, it challenges the opposi-
tion between natural and artificial perception. To rephrase 
Stiegler, it could be said that in Learning to See ‘my vision’ 
is always ‘that of others’, since it is never original or authen-
tic, but rather inherited through external memory supports. 
This means that vision can never be detached from a non-
lived past. Hence vision is always biased. From the perspec-
tive of Stiegler, there is no natural perception since percep-
tion is always already determined by the technical surfaces 
of inscription that constitute our relation to the world. As he 
puts it, if we accept that “lived reality is always a construct 
of the imagination and thus perceived only on condition of 
being fictional, irreducibly haunted by phantasms” then we 
are “forced to conclude that perception is subordinated to 
the imagination” (Stiegler 2011: 16). This means that there 
is “no perception outside imagination” and that perception 
is “imagination’s projection screen” (Stiegler 2011: 16). 
Objective judgements are, thus, impossible, since individu-
als always look at the world through eyes that have been 
mediated by technical devices. The ‘bracketing off’ of inher-
ited prejudice to perceive reality ‘in itself’ is an illusion that 
conceals the fact that technology permanently modifies our 
internal senses of perception and memory. Naked human 
vision too is always already machine vision. Human vision, 
like machinic vision, depends on the surfaces of inscrip-
tion that function as an external faculty of imagination. In 
Learning to See the participant perceives his or her hands 
manipulating the objects on the table mediated by the two 
types of technical images that capture his or her gaze. These 
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technical images function as an external faculty of imagina-
tion that mediate his or her specific perception of reality. The 
soft-montage in Learning to See functions as perception’s 
prosthesis: it opens up the black box of machine vision and 
renders visible the invisible process through which external 
surfaces of inscription constantly shape human vision. Since 
human vision is always technical, it is always already biased.

In relation to the specific case of machine learning algo-
rithms, Stiegler (2016: 480) suggests that this technology 
is putting forth a systematic automation of the “faculty of 
discernment” (or faculty of imagination). Traditionally, the 
faculty of imagination is conceived as the human capacity 
to connect perception and memory. For Stiegler, instead, 
the imagination functions as a “post-production centre”, a 
“control room” that assembles “the montage, the staging, the 
realisation and the direction, of the flow of primary, second-
ary, and tertiary retentions” (2011: 28). With the advent of 
machine learning algorithms, however, the montage of per-
ception and memory is being delegated to an external faculty 
of imagination, just like the production of technical images 
was previously delegated to apparatuses (Flusser 2000). Fur-
thermore, Stiegler adds that since tertiary retention consti-
tute an external memory that precedes interiority, technical 
surfaces of inscription should be thought of as an uncon-
scious, “if not the unconscious” (2010: 8, 2011: 17). Yet, 
Stiegler’s use of the notion of the unconscious should not be 
understood metaphorically. Technical surfaces of inscription 
are, in fact, an (external) domain that defines our conscious 
capacities (interiority), hence halting the possibility of a 
non-biased, neutral perception. Learning to See highlights 
a profound connection between machinic vision, machinic 
imagination and machinic unconscious. For Stiegler (2011: 
17), the unconscious needs to be understood more generally 
as a technical surface of inscription. This argument repli-
cates that of Derrida (1978) which regards the unconscious 
as writing. Freud’s ‘psychic unconscious’, Benjamin’s ‘opti-
cal unconscious’, and Akten’s ‘algorithmic unconscious’ are 
all result of a process of externalisation through which invis-
ible structures become visible. Clint Burnham (2018: 9), for 
example, claims that since the internet “contains what we 
forget, or do not know that we know”, it can tell us some-
thing about the unconscious in the contemporary world. This 
becomes clear in the case of Google’s Deep Dream, in which 
Steyerl (2017: 57) has identified a concrete potential to visu-
alise the unconscious of search engines and social media 
through a process of iteration. Likewise, it was mentioned 
that Learning to See unveils the algorithmic unconscious of 
neural networks by limiting its training dataset.

In all these examples, an external memory functions as 
the unconscious content that shapes individual perception 
and individual imagination. The apparatus’s black box is 
not an externalisation of an internal capacity, but rather 
the constitutive element of any interiority. This implies 

that human vision is always already technical and, as such, 
always already biased since it cannot bracket off the uncon-
scious elements that structure it. The claim for algorithmic 
neutrality is a strong ideology that conceals the structuring 
character of technicity. Acknowledging this is a key step 
towards defining the politics of machine vision and hence 
developing, as Stiegler puts it, a “new political economy of 
consciousness” (2011: 39). According to Akten (2019), “in 
an increasingly polarised and divided society, we believe in 
the significance of trying to be sensitive to the idea that we 
ourselves may be as biased as one of these artificial neural 
networks, seeing the world through the filter of our own life 
experiences”. Learning to See provides a first step towards 
this significant and necessary task.
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Abstract
Augmented Reality (AR) is itself a technology in which two ways of seeing are crossed. Our field of vision is thereby 
superimposed with digital information and images. But before this, the real environment is already perceived by machine 
seeing, it is redoubled by a 3D-model, scanned, located and linked. In this brief investigation, I will face the way of seeing 
in AR with traditional procedures, like ‘trompe-l’œil’ and the so-called ‘velo’, to distinguish between what remains classic 
and what has changed. It is important to examine this as layering, because it is a very thin stack of techniques, technology, 
materials and media, we seek to watch through. Subsequently, I shall analyze a painting of the contemporary artist Laura 
Owens in which both ways are crossed, the traditional one and the one concerning AR.

Keywords  Augmented Reality · (Digital) layering · Stack · Superimposition · Transparency · Trompe-l’œil · Velo (veil)

1  Introduction

The field of vision in Augmented Reality (AR) challenges 
our way of seeing by registering digital images and objects 
onto the real environment. Sometimes these images and 
objects emerge as registered and sometimes, they blur the 
boundaries between the digital and the real area. It is my 
approach to face AR with its cognates in art history to sort 
out the specific strategies and procedures of layering. It is 
not the goal to prove some continuous development from 
ancient illusion techniques to newer technologies. Rather, 
the new should be divorced from the already known to 
examine our current way of seeing in AR more profoundly. 
The view through the glasses of AR enables a new perspec-
tive onto the tradition. The technology merges various tech-
niques and procedures; in particular, it crosses two ways 
of seeing: our view through the eyes and that of machine 
seeing. The latter processes the data, received by the sen-
sors and cameras, within our field of vision to calculate a 
hybrid view. However, this leads into a double blindness, 
as each participant is blind to the other for a certain extent 
of the way.

In general, AR may be defined as an operation of super-
imposition. It overlays the real environment and one has to 
perceive them together. For this, there are various scenarios 
in earlier procedures. For example, Filippo Brunelleschi’s 
two experiments in front of the Baptistery San Giovanni 
and at the Piazza della Signoria, placing cut-out paintings 
surrounded by the movement of clouds or the living city. 
We must also think of the phantasmagoria, within which 
ghosts are projected into the real space and in real time 
(Elcott 2016). Furthermore, the schüfftan-process, perhaps 
less common, also establishes an interplay of real fragments 
with illusionistic complements. Finally, there are analogue 
panoramic boards that provide information about the loca-
tion, at the location. All of these are relatives which are not 
the same, but are particularly suited to highlight differences.

In this text, I would like to focus particularly on the layer 
of superimposition itself. It is placed between an imaginary 
and a real interface. To look at this at least semitransparent 
layer I suggest to investigate Leon Battista Alberti’s “how-
to-do-it apparatus”, the so-called ‘velo’ (veil).

 *	 Manuel van der Veen 
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2 � Metaphor and apparatus: about the ‘velo’ 
as a layering procedure

To analyze the ‘velo’ as an apparatus depends on the obser-
vation that the device itself establishes a way of seeing. As 
noted above, AR tends to blur the boundaries between digital 
images and the real surroundings. In contrast to the career of 
immersion into the image, which is generally associated with 
virtual reality, in AR immersive images are placed. Their 
status as images is covered to appear as a part of reality, 
which connects the current view to the traditional proce-
dure of ‘trompe-l’œil’. However, it has not yet been decided 
whether AR will pursue an all over camouflage. My research 
project ‘Augmented Reality. Trompe l’oeil and Relief as 
Technique and Theory’, of which the considerations here 
form an excerpt, suggests to describe ‘trompe-l’œil’ and 
sculptural relief as immersive and emersive1 images. Since 
the ‘velo’ provides a layer to think the technological implica-
tions of AR and at the same time plays an important part in 
the interpretation of ‘trompe-l’œil’, it is particularly suitable 
for the following investigation.

In 1435 Alberti wrote in his treatise on painting and per-
spective ‘De pictura’ that the rectangular frame of paint-
ings should be seen as an open window (‘aperta finestra’). 
This very well-known section from ‘De pictura’ also carries 
well-known difficulties. First, the solid and opaque surface 
of the canvas is denied. And second, what is seen through a 
window is the here and now; a painting of the fifteenth and 

sixteenth centuries instead usually shows a somewhere and 
a sometime else of an ‘istoria’. The extensive discussion of 
the window metaphor cannot be pursued further here. For 
now, it seems more interesting to look up another passage 
from Alberti’s treatise in book two. Here, he does not only 
describe a metaphor, but also an actual apparatus, a device. 
This apparatus stretches out a semi-transparent cloth with 
a grid of threads as a layer between the artist and the motif 
(Fig. 1). It is precisely this cloth, which I proposed as a rela-
tive of the information and object layer, that we are dealing 
with in AR.

The technology circulates as a procedure, which places 
figures in the environment, as in the popular application 
‘Pokémon Go’ (Niantic). But even before a figure, an image 
or an object occupies our field of vision, the technology per-
ceives the environment, doubles or multiplies the pair of 
eyes through cameras and sensors to set up a (almost invis-
ible) layer through which we perceive the environment. It 
might be helpful to quote Edmund Husserls ternary image 
theory, which consists of three layers of seeing: physical 
image—image object—image subject (Husserl 2005: 20). 
The physical image is for example the carrier, the physi-
cal support. The images of AR and of ‘trompe-l’œil’ are 
problematic as such because they seem to have no carrier.2

Due to that lost carrier, the layer of projection and the 
performance of the machine are suppressed. And with 
them, the place is blurred where the two ways of seeing, of 

Fig. 1   Device for perspecti-
val drawing of a landscape. 
Anonym, 1710. PD-Art/PD-
old-100 = /1810/?; PD-US

1  Thanks to a productive conversation with Matthias Bruhn, about 
emersion and emersiv images, the parallel to the procedure of sculp-
tural relief could be drawn.

2  The missed physical image in Augmented Reality in relation to 
Husserl’s image theory was mentioned during a presentation by Ste-
phan Günzel in Weimar, Germany (Das Diorama: Durch…Denken) 
called ‘Augmented Reality: Zur (In)Transparenz des Bildes’.
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machine and body, are crossed. Everything that becomes 
visible through the glasses of AR is already processed. Hus-
serl’s image theory is based on the difference between image 
and environment, the difference that is at stake in AR and 
‘trompe-l’œil’. Thus, for Husserl, the image manifests itself 
in a conflict and this conflict is not caused by the realistic 
depiction (Husserl 2005: 51): “The appearance belonging 
to the image object is distinguished in one point from the 
normal perceptual appearance. This is an essential point that 
makes it impossible for us to view the appearance belong-
ing to the image object as a normal perception: it bears 
within itself the characteristic of unreality, of conflict with 
the actual present. The perception of the surroundings, the 
perception in which the actual present becomes constituted 
for us, continues on through the frame and then signifies 
‘printed paper’ or ‘painted canvas’.” If the carrier is lost, 
the conflict with the actual present disappears, which in turn 
leads to an uncertain image perception in AR.

The motivation to look out for the carrier is not based 
on its status of being lost or hidden, which would end up 
in chasing a deception. Rather, it is due to the observation 
that the carrier is shifted instead. A ‘trompe-l’œil’ occupies 
a classical support, but only to be its alienation, because 
the procedure stacks other depicted supports onto the image 
support (e.g. planks of wood, papers, canvases, etc.). With 
each depiction, the physical support is pushed forward 
piece by piece (Fig. 2). Therefore, we could record that the 
carrier is suppressed by both, its multiplication and by its 
disappearance.

In AR a carrier also exists as a (semi-transparent) display 
in the optical-see-through technique, which directs the image 
to the eye and as a touchable screen in the video-see-through 
technique of handheld devices. To call it see-through thus 
ties the technique directly with that of perspective as a see-
ing through. But the carrier is already slipped. On one hand, 
the video-see-through technique shows both, the actual sur-
roundings behind the screen and the superimposition on 
the screen. In the optical-see-through, on the other hand, 
the carrier is placed directly in front of the eyes to appear 
imaginarily over there, in the middle of the surroundings. 
The carrier is, therefore, no longer a background, but rather 
shifted forward. In ‘trompe-l’œil’ and AR, the three lev-
els of image perception collapse: the environment seems to 
become the carrier and finally, determines image object and 
image subject.

In summary, the physicality of the carrier, as well as the 
status as an image, become instable. However, the fact that 
the carrier is shifted, multiplied or transparent changes the 
way of seeing beyond a mere deception. In the following, I 
would like to introduce the ‘velo’ as a layer to think the lost 
carrier as a literal interface. Not as a background—but as a 
layer between the observer and the surroundings, which also 
requires a shift in perception. In AR we do not just look at 

an image, we also look at the world through a layer. A layer 
which organizes the complex of world and image and thus 
our way of seeing. With the ‘velo’, different ways of this 
organization are to be worked out. The layer of the ‘velo’ is 
first constitutive as a translation function, then it is perceived 
with its own materiality, only to finally give up its material-
ity again and become an operation of structuring.

2.1 � The ‘velo’: a layer for translation

The ‘velo’ is a semi-transparent cloth with a gridded sur-
face through which one can see into depths. Decisive for 
the change in mind is the transition from a metaphor of an 
open window to a real studio tool. The framework contin-
ues inside the ‘velo’ and leads to the crucial difference to 
the metaphor, which is highlighted by Anne Friedberg: “but 
while Alberti suggested the rectangular frame and planar 
surface of a metaphoric ‘window’; as a device for geomet-
ric calculation, his ‘velo’ did not require the calculation of 
orthogonals and vanishing points. It was, instead, depend-
ent solely on its frame and its inset quadrants as a device to 
‘map’; the three-dimensional world onto a two-dimensional 
plane.” (Friedberg 2006: 38).

Fig. 2   Cornelis Norbertus Gysbrechts, Quodlibet or “Vanitas-Stillle-
ben”, 1675. oil on canvas. 41 × 34,5 cm. Wallraf-Richartz-Museum & 
Fondation Corboud, Köln, Inv.-Nr. WRM 2828. Copyright: Rheinis-
ches Bildarchiv Köln, Rolf Zimmermann, rba_c011283. https​://www.
kultu​relle​s-erbe-koeln​.de/docum​ents/obj/05011​135

https://www.kulturelles-erbe-koeln.de/documents/obj/05011135
https://www.kulturelles-erbe-koeln.de/documents/obj/05011135
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This mapping procedure is a translation and not a 
construction. If one looks through the ‘velo’, the image 
is already in the frame or better, within the many small 
frames—it just needs to be transferred onto the paper. Round 
bodies and their relief are already present on the surface, 
likewise to a projection. While turning the gaze back and 
forth, the artist translates what he sees, frame by frame onto 
the similar grid on the sheet of paper, watching the outside—
not to orientate in the landscape but rather on the drawing. 
Emmanuel Alloa describes this translation, in reference to 
the ‘velo’, as a taming of the mobile. Contrary to this, he 
emphasizes the greater mobility of the individual elements 
in the grid, which causes the subdivision of the objects 
(Alloa 2011: 156). This description includes an important 
difference to AR, which does not translate an image onto a 
sheet of paper. It translates the actual view in real time, by 
superimposing data, also in real time—with that, it is rather 
an unleashing of the mobile. A popular effect of AR is to 
translate fixed images into moving ones. In doing so, these 
images are superimposed by themselves, but in motion.

2.2 � The ‘velo’: a layer with its own materiality

Regarding the translation function, it must be concluded that 
through the ‘velo’ only what is in situ can be perceived, 
what actually is placed behind the frame. Hence, behind 
that surface a fiction is impossible—but on the surface it 
can be reintroduced. ‘Trompe-l’œil’ as a procedure is related 
to the ‘velo’ in making its materiality visible and with this, 
a further function can be assigned to the layer. A ‘trompe-
l’œil’ usually starts with a redoubling of the image carrier. 
Thus, it frees itself from the Albertian window and begins 
to approach the object, to the opacity of the canvas itself. 
Sybille Ebert-Schifferer shows this approach in her text ‘Der 
Durchblick und sein Gegenteil’. For her, the ‘velo’ is a pro-
jection surface and this surface becomes a membrane which, 
although transparent, is a material separation between the 
space of the viewer and that of the picture (Ebert-Schifferer 
2016: 16). The ‘velo’ refers to both the classical representa-
tion and to the object status of the painting, thus it creates a 
hybrid view. For ‘trompe-l’œil’, it is important to appear as 
an object at first, not as a picture. Therefore, it uses differ-
ent techniques to make its own materiality credible. Hence, 
the space of ‘trompe-l’œil’ is extremely flat. According to 
Ebert-Schifferer, in ‘trompe-l’œil’, the membrane of the 
‘velo’ stretches slightly forwards and backwards. She ima-
gines how artists have attached notes onto the ‘velo’ or that 
a fly came to rest on it. If the ‘velo’ is understood as a mate-
rial layer, then new possibilities show up: first, one may use 
the space in front of the ‘velo’ and second, the motif behind 
it can be superimposed. It is precisely this space in front of 
the layer, that makes ‘trompe-l’œils’ as objects so believable 
and which connects the traditional procedure with AR. As 

a material layer, it becomes an object of use—to pin some-
thing into it or to write on it.

2.3 � The ‘velo’: a layer as a way of seeing

Above, we have noted that the grid of the ‘velo’ causes the 
subdivision of the objects. Reading between the lines, one 
could say the grid provides an organization. The individual 
quadrants are elements of a relationship—a relationship that 
can be changed. From a translation function to the visuali-
zation and use of its own materiality, the path of the ‘velo’ 
branches out even further. It slowly leaves the place of the 
studio to expand into the everyday perception. To follow this 
path, it is illuminating to look at a few didactic illustrations, 
which are designed close to the actual field of vision. A trace 
for this transfer is found in the books mentioned by Samuel 
Y. Edgerton. He examines technical and scientific treatises, 
which have been printed since 1520 with numerous illustra-
tions. In these books, word and image build a unity as never 
seen before, which Edgerton attributes to the imaginary grid 
celebrating its career at that time in cartography. He empha-
sizes that it was the ‘velo’ that educated artists to see the 
underlying geometry in nature. This didactics spread, there-
fore, all educated people were able to think this invisible, 
but indispensable grid that underlies every picture (Edger-
ton 2004: 181). Due to the technical, didactic and practical 
advantages, a unique image form developed, which Edgerton 
calls an ‘incongruent sign convention’. This is described as 
a superimposition of otherwise illusionistic scenes by flat, 
abstract geometric diagrams placed directly above them to 
explain the underlying mathematical principle. As shown in 
Fig. 3, the superimposition marks a perfect workflow. And 
if we look closely, it is recognizable that there is more than 
one layer. The second angle is place between the two fig-
ures, the layer is multiplicated and shifted into space. The 
practical component of the grid was discovered from the 
autodidactic craftsmen-technicians. A hybrid image was the 
result of that incongruent sign convention—as if one depicts 
something in depth through the grid, to draw afterwards on 
the ‘velo’ itself, which means preserving the ‘velo’ and 
registering it into the image. The gridded layer as interface 
was used to add constructively specific information. These 
technique books invented increasingly incongruent draw-
ing conventions that move further and further away from 
the mere illusionistic representation of perspective: they 
duplicate objects several times in one picture, mix perspec-
tives and explode assembly drawings. To see the underlying 
geometry of nature meant, being able to depict an object 
unnaturally from different perspectives within one image 
and without any logical separations. The objects are dis-
mantled, labeled and didactically prepared, but placed in a 
natural landscape. To illustrate this, Figs. 3 and 4 show how 
the superimposition in AR is live instead, but the similarity 
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is still quite recognizable. An engineer’s field of vision (and 
with this live guidance, certain competencies become more 
irrelevant) is overlaid with a workflow that both presents 
an order and anticipates an action. What we see is directly 
translated into an understandable view, a program to follow, 
for more efficiency movements and for learning by doing. 

The surroundings are visually redoubled by an animation 
and this animation can be cut up and rearranged. Further-
more, the superimposition by textual marking itself already 
generates a structure for the perceived.

In short, the ‘velo’ changed a way of seeing. Its mate-
rial semitransparency is expressed in the theoretical and 

Fig. 3   Woodcut from Cesare 
Cesarianos edition of Vitruvius, 
1521. Collection Metropolitan 
Museum of Art. Creative Com-
mons CC0 1.0 Universal Public 
Domain Dedication

Fig. 4   Application based animation by RE’FLECT for engineering, repair concept https​://www.re-flekt​.com/hubfs​/REFLE​KTONE​_Repai​rConc​
ept_1920x​1080.jpg?hsLan​g=de

https://www.re-flekt.com/hubfs/REFLEKTONE_RepairConcept_1920x1080.jpg?hsLang=de
https://www.re-flekt.com/hubfs/REFLEKTONE_RepairConcept_1920x1080.jpg?hsLang=de


1194	 AI & SOCIETY (2021) 36:1189–1200

1 3

practical ambivalence of the apparatus. The ambivalence 
of perspective painting (to have a flat surface, but depict 
depth)—is not concealed by the ‘velo’, but rather exposed. 
Represent depth and draw on the surface. Ultimately, it is 
not about switching between the two views: both are to be 
kept in the same field of vision. Starting as a translation 
function in the studio, its own material structure becomes 
more and more visible, as if the artists could not ignore the 
field of vision and the materiality of this tool in the working 
space. In the end, the interface of the ‘velo’ is transferred 
onto thinking. One begins to take the invisible layer as a 
structuring operation. What is seen through the layer is made 
more understandable on the layer.

For AR, the translation function, the materiality of the 
layer, as well as the operation of structuring are decisive. 
In the first place, there is always a translation function. 
For the current AR applications on handheld devices, the 
environment is translated into a 2D video image which is 
directly superimposed. ‘Head-Mounted Displays’ (HMDs), 
like the ‘HoloLens 2′, recognize the real environment by 
spatial mapping and translate it to a live 3D model. What 
also happens in the optical-see-through technique occurs 
explicitly in the handheld device. The translation function, 
the reduction to a flat plane, is augmented to an operation 
of structuring. By superimposing, the objects and the data 
are compressed into a flat unit of meaning. Before we look 
at different opportunities how this unit of meaning could be 
organized, a further difference should be marked.

In AR the translation of the space is not done by the artist, 
but by machine vision. Viewers are blind to this process. For 
example, the world is perceived by the cameras and sensors 
via spatial mapping, so that objects can be placed credibly 
in the surroundings. In some applications a grid is animated 
that spreads over the environment, following its ups and 
downs, which in turn is only a representation of machine 
vision, since there is no direct communication between the 
code and the perception. Within the machine vision works 
a program, which stipulates our point of view, what is the 
meaning of program (in Greek: ‘pro-graphein’). Katja Glaser 
and Jens Schröter point out that augmentation describes a 
program of efficiency, functionalization and optimization. 
And with AR, this program also inscribes itself into its prac-
tices and its field of vision (Glaser and Schröter 2013: 44). 
Without a carrier the images do not appear as programmed, 
what one sees is just the representation of the computed 
surroundings.

Ultimately, both ways of seeing are blind to each other 
for a certain extent of the way—our field of vision is pro-
grammed, but our perception also includes aspects that are 
beyond the reach of the sensors. The glasses of AR can also 
provide what is seen and with that the viewers are able to 
inscribe themselves into the world to program it.

3 � Bundle, loose stack, and heap as models 
of layering

In AR, the material carrier is a semi-transparent surface 
which is slightly darkened. Images projected onto it appear 
as if they were on site by adjusting their size to the depth 
of the space. It is as if the real surface of projection itself 
is projected and extended into the room, exactly this layer 
itself is sometimes depicted in the field of vision—at least as 
a pinboard or interface like those in the application ‘Spatial’ 
by ‘Hololens 2′.3 This makes it possible to place something 
in front and behind this layer. The imaginary surface can 
also be multiplied, thereby the individual layers overlap each 
other and suggest space. Ultimately, this layer is superim-
posed with information, pictures and objects relating to what 
can be seen through the semi-transparent surface.

Translation, materiality and structuring operations are 
inscribed as meta-levels into the grid of the ‘velo’. There-
fore, I would like to describe the layering process as a stack 
of these different functions and operations. A stack is charac-
terized by the fact that different levels can be gathered in one 
place as well as it shares the hybrid status between theoreti-
cal and practical characteristics. For this, a stack works also 
transformatively—it gathers individual, mostly flat elements 
(for example sheets of paper as in ‘trompe-l’œil’), brings 
them into a common relationship and generates space. In 
theory, a stack assembles different levels of autonomous 
functions, but in superpositions, it is a passageway through 
all of these functions. The view through the glasses of AR 
is a view through a stack of layers, both literally and meta-
phorically. A thin stack of different technologies, techniques, 
media, materials, functions and operations. With the ‘velo’, 
the layers of these stack could be bundled between the opera-
tion of translation and the function of structuring.

Additionally, a stack contains an intensive aesthetic 
potential, which presents a unique way of seeing. A stack 
oscillates between horizontal and vertical. It determines the 
space of ‘trompe-l’œil’, the computer desktop and AR. The 
use of a stack shifts from the desk to the desktop, as Fried-
berg notes: “The user would manipulate from a position as if 
in front and also above […] ‘desktops’ that defy gravity and 
transform the horizontal desk into a vertical surface with an 
array of possible documents and applications: ‘icons’ that 
represent objects or, more exactly, object-oriented tasks.” 
(Friedberg 2006: 226). This is crucial in AR—due to the 

3  To see the animation adequate, please watch the demonstration 
video at 9:00  min. https​://www.youtu​be.com/watch​?v=uIHPP​tPBgH​
k.

https://www.youtube.com/watch?v=uIHPPtPBgHk
https://www.youtube.com/watch?v=uIHPPtPBgHk


1195AI & SOCIETY (2021) 36:1189–1200	

1 3

better legibility the text is usually set up parallel to the view-
ers own field of vision.4

In ‘trompe-l’œil’ papers are stacked to leave the surface 
minimally behind, thereby different layers are visible at 
the same time. What we see is a stack of sense-fragments, 
of text-quotations and picture examples which come out 
towards the viewer (Fig. 2). With that, a stack piles up flat 
units into something three-dimensional transforming the 
work of art into an everyday object at the same time. A 
transformation that encompasses the core of the ‘trompe-
l’œil’. Every etching, drawing or text bundled with a rib-
bon in ‘trompe-l’œil’, turns into something to use instead of 
something to look at. Wade Guyton organized an exhibition 
at the Aspen Art Museum in 2017. He stacked his paintings 
on the wall, which can be seen as a typical studio situation. 
Isabelle Graw mentioned they would become a sculpture. 
The consequence—they cannot longer be experienced aes-
thetically, instead they have been transformed into a product 
that can be packaged, exchanged, and traded (Graw 2017: 
238). Usually, a stack is bound to gravity, but on screen 
and in AR the individual layers can be vertically aligned 
and may appear semi-transparent. In this way, they create a 
linked image together with the background. In AR, these lay-
ers additionally refer to what is visible in the surroundings. 
Above, I drew a few parallels between the ‘velo’, ‘trompe-
l’œil’ and AR. Within the following, I present two different 
ways in which the stack of layers transform our seeing in the 
named procedures, beginning with ‘trompe-l’œil’ to switch 
to AR. Both procedures model an interplay of different lay-
ers, because they are visible simultaneously. Subsequently, 
I will propose a third possibility, a thought experiment—the 
concept of the heap, to confront order with chaos.

3.1 � The stack as bundle

A painterly reflection as well as the current technological 
one might be examined through the layers extending into 
depth. The surface of ‘trompe-l’œil’ can be indicated by 
cracks and fissures. They refer to an aging process and to a 
fragility of the specific materials as well as to a deeper level 
underneath. This allows the viewer to see different layers at 
the same time. However, the cracks are not placed by chance. 
In a text about the broken glass in ‘trompe-l’œils’, Monika 
Wagner shifts the focus of attention to the materiality, actu-
ally depicted through cracks and their structural function as a 
comment. She also emphasizes the significance of the ‘velo’ 
as a medium of flatness. As the ‘velo’ helps to translate the 

space into the flatness of the picture, the broken and thus 
visible glass ties the illusory space to the surface (Wagner 
2010: 41). What is far apart in reality can thus be connected 
in the flatness. In other words, a reference is created, because 
two different things seem to be on the same layer. Using 
glass, different patterns beside a squaring are possible. This 
example is about the transparent materiality of glass, the 
very glass that is the carrier for the projection in AR.5 The 
glass as a carrier of information and as a transparent layer 
between the observers and the image. The broken glass in 
the painting of Laurent Dabos about 1808 becomes visible 
(Fig. 5). It thus provides both, protection (of the underlying 
layer) and visibility (of the content below). In case of a self-
aware positioning of these cracks, it is possible to organize 
the image through the cracks. Highlighting specific areas on 
it and making other less clear. Thanks to the transparency of 
the glass it is possible to superimpose the annotated image 
with the visual comment, without erasing the image (Wag-
ner 2010: 45). Both share the same field of vision and yet 
not the same depicted layer. However, it only achieves this 
through its material-specific properties. The ‘trompe-l’œil’ 
of Laurent Dabos shows a stack as well as a broken glass. 
The origin of the cracks is the text, from which different 
lines link the individual pictures and figures. The figures’ 
view, highlighted, because it is free of glass, is as sharp as 
the edges.

The ‘trompe-l’œil’ thus found an extremely specific layer 
structure: a layer structure in which the individual layers 
simultaneously remain in the area of the visible. On the 
solid, wooden surface are various images and texts arranged, 
superimposed with a broken glass. These three functionally 
different layers are bundled into one fixed unit. The unity of 
that bundle is constituted on one hand by the everyday object 
of the picture in the frame and on the other hand by the fact 
that all layers are structurally related to each other.6 Finally, 
the layer of the glass, if it is perceived, decides how we have 
to read the lower levels.

3.2 � The stack as a loose stack

The possibilities of AR are based on similar strategies as 
‘trompe-l’œil’, which allow to illuminate and expand each 
other. The things that in reality are far apart can thus be 
compressed to the same layer with its superimposition. It 
is the challenge to bundle the information superimposed 

4  In his book Cultural Techniques Bernhard Siegert examines the 
‘trompe-l’œil’ as a conflict between two cultural techniques, gazing 
and reading (Siegert 2015: 164–191). Which also refers to the verti-
cality and the horizontality of a picture.

5  Referring to precisely these fractures and cracks, AR often ani-
mates a wall breakthrough to allow fictitious elements to break into 
the real space. This emphasizes the materiality of the wall.
6  Thanks to a discussion with Carolin Meister, the concept of the 
bundle could be worked out as a fixed stack in which the two outer 
layers hold an in-between together.
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on the glass with the related object as tightly as possible. 
To make this clear, although the arrangement in ‘trompe-
l’œil’ and in AR seems similar, AR does not present a fixed 
bundle. Therefore, it could be described as a loose stack 
in which every layer is able to change its positions imme-
diately, without a reasonable cause. With reference to a 
museum related device developed by the ArLab Weimar, 
Oliver Fahle describes the possibilities of the technology 
and how it changes the concept of the image. Instead of 
the common term of immersion, usually referring to virtual 
reality, Fahle explains the technique of AR as participation. 
It creates a view on another visual layer of the same image 
(Fahle 2006: 93). He applies this to the specific construc-
tions of Arlab, in which earlier stages of the same painting 
are projected onto its present layer, thereby the chronological 
succession is less visible. Decisive for the argumentation is 
the view onto other layers of the same picture. According to 
Fahle, the picture is thus augmented by a visual halo, which, 
however, does occupy the picture itself. The final layer is 
confronted with earlier stages and information, therefore 
the pictorial event intervenes in the one unchangeable work 
and mediates between the one and the many (Fahle 2006: 
95). The previously invisible pre-stages now participate 

with the visible original. The chronological order can be 
reversed and restacked. The stability of the final work is 
weakened, without actually being transformed. It shows up 
as a layer-network that constantly creates new references 
and thus evokes a shift in mind. The work of art itself is a 
shift in mind, but the participation of different layers allows 
to think about layering, temporarily as well as spatially, and 
to reconsider the final work.

3.3 � The stack as a heap

I would like to stress a third possibility of a stack to under-
mine the impression that it is always about a comprehensible 
system of layering. What I have in mind is a stack fallen 
down from the desk, which is scattered all over the ground. 
This kind of layering is a heap, a random arrangement of 
data and images. The paradox of the heap is that its structure 
is not recognizable and furthermore, the heap itself cannot 
be determined. One cannot define how many elements com-
prise a heap and yet you know that it will remain a heap if 
you remove some elements. AR is, therefore, also capable of 
superimposing the field of vision with layers in such a way 
that it appears to be filled up. The superimposition is that 
rich in number, that one cannot see what is superimposed: a 
data heap which collects information from all around to tear 
the field of vision into pieces.

The possibility of accumulation deprives the stack of its 
stability in several aspects, firstly, because it introduces dis-
order and secondly, because it shows that each augmentation 
includes a reduction—any superimposition, no matter how 
transparent, carries the possibility of a concealment. With 
the concept of the heap, the question of the limits of super-
imposition comes into view. AR aims to filter the diversity of 
reality for more efficient use by linking specific information 
to objects. For now, as one opportunity, the infinite diver-
sity of the world and the huge data heap of possible links 
collide. A stack offers the promise of an understandable 
arranging, even if it reorders chronological and spatial rela-
tions. In ‘trompe-l’œil’, a mess is always a calculated one, 
in AR, the reference to the place protects from randomness. 
If an object and an information appear connected, we imply 
a logic—however, we imply a unit of meaning that does not 
necessarily belong to it, just because it is visually bundled.

Furthermore, just imagine that anyone could leave mes-
sages with AR or that all available information about a 
place would be visible simultaneously—the place would 
be covered by comments. The commented would drown by 
its comments. This is only a thought experiment—hence, 
every superimposition includes the possibility of filling up 
the field of vision, which opposite would be the uncovering. 
The model of “heaping” is an extreme case of the superim-
positioning, which reminds us, that knowledge is not only an 
accumulation. Nevertheless, there is something constructive 

Fig. 5   Laurent Dabos, trompe-l’œil with print of tsar Alexander I 
of Russia, together with other prints and drawings behind a broken 
pain of glass, ca. 1808. oil on panel 63,5 x 50,5 cm. PD-Art/PD-
old-100 = /1835/France; PD-US
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about this extreme case. Assume that our perception is 
always occupied: a grid of knowledge through which we 
interpret the environment (Serres 2010: 74). Hence, AR can 
make us aware that our way of seeing is superimposed by the 
already known—to work on its uncovering.

4 � About the reactivation of ‘trompe‑l’œil’ 
in the age of digital layering

Layering is a constitutive procedure, which redistributes the 
way of seeing. If tied to specific techniques and technolo-
gies, the sequence of layers begins to shift. The ‘velo’ as an 
apparatus, which at first has stretched out a layer in front 
of the eyes, mediates, theoretically as well as practically, 
between the ‘trompe-l’œil’ and AR. Our gaze, confronted 
with this current field of vision, is forced to consider a new 
way of thinking and seeing. The image structure of ‘trompe-
l’œil’ and the construction of the ‘velo’ are useful to analyze 
newer procedures of layering and vice versa the newer pro-
cedures allow a more precise description of the traditional 
ones. To conclude this line of thought, I wish to focus on 
a work of art in which both ways, tradition and innovation, 
are crossed.

For this essay, I would like to end up with a brief analy-
sis of Laura Owens’ untitled diptych from 2015, which is 
exhibited in the Museum Brandhorst in Munich, Germany 
(Fig. 6). Laura Owens applies different techniques known 
from ‘trompe-l’œil’, which she elegantly transfers into a 
thinking of the digital. The thesis is that Owens reactivates 
the ‘trompe-l’œil’ as a traditional procedure, because it is 
an adequate analytical tool for digital image culture. Digital 
images are not welded together with a carrier. Hence, they 
show a floating weightlessness. One can allocate a carrier to 
digital images, but in fine arts the invariance, the unchange-
able and necessary mutual conditionality of image and car-
rier is decisive. For example, a painting has a fixed size and 
this specific size is necessary for its appearance. Very strictly 
formulated by Henri Matisse, who, therefore, could not even 
make a sketch of a smaller format than the original: “If I 
take a sheet of paper of a given size, my drawing will have a 
necessary relationship to its format. I would not repeat this 
drawing on another sheet of different proportions” (Flam 
1995: 38). ‘Trompe-l’œil’ is characterized by the fact that 
it unsettles the alliance between image and carrier. The 
carrier of ‘trompe-l’œil’ pretends to be a part of the real 
environment (a wooden board, a pin board, etc.) instead of 
being part of the picture. Moreover, ‘trompe-l’œil’ passes 
off the figures on the carrier as carriers themselves (a sheet 
of paper). AR also disguises the carrier, to make the image 
float and assert it as a true part of the environment. Owens’ 
image production may be described as one that makes use 

of the congruence and difference of these two procedures to 
work onto the alliance of image and carrier.

In the diptych, different techniques structure the various 
levels of the picture plane. Oil, acrylic paint, Flashe Vinyl 
Paint, charcoal and gesso assemble on the canvas. I will 
start with the core layer, the newspaper that fills several 
‘trompe-l’œils’ and provides a career in cubism. Owens uses 
original silkscreen plates from the 1942 Los Angeles Times, 
which she found in her studio. It thus already begins with an 
anachronism, which is pursued even further. The technique 
of screen printing is applied, but then digitally manipulated 
and blown-up to the size of the canvas (350.5 × 264 cm). 
The blow-up shows a variance of the original as well as it is 
credible, since the digital newspaper does not have a strict 
format. The canvases look like two big screens. I call the 
newspaper a core layer, because there are further levels both 
in front of and behind it—a membrane stretched on both 
sides. To speak of a core layer already rises the suspicion 
that the carrier has been shifted. The picture is not about 
foreground and background, it is about different layers, with 
different functions.

The lowest layer in this work is a drawing of thin, grey 
strokes, which form a landscape on the canvas. They appear 
as wallpaper that seems to be placed independent of the lay-
ers above. As if the drawing has already occupied the back-
ground, which is now challenged by the newspaper. How-
ever, this conflict is calmed down by the fact that Owens 
has digitally perforated the newspaper. These remind us of 
the broken glass. It is not the physical materiality, rather it 
is its digital surrogate which is cut. Small holes that allow 
to look through them. Those small holes which structure 
the ‘velo’ to organize the space behind. Due to the frontal-
ity of the writing, the newspaper marks a solid layer which 
is impregnated, while the shadows, especially in the cut-
out parts, expose the layer as being above the background. 
The newspaper itself is superimposed by apparently gestural 
brushstrokes, as well as by cut-outs from the newspaper. 
Some brushstrokes and cut-outs also cast shadows and thus 
float on another level above the newspaper. Single strokes 
of color, such as the striking black in the lower left half of 
the right-hand picture emerge almost haptic and stretch the 
membrane forward towards the viewer.

I tried to sort three layers in this painting, but this sort-
ing is deceptive, as Owens interweaves the different levels. 
The superimpositions and procedures have references to 
each other. Therefore, in the lower right corner of the left 
picture, single fragments are cut out of the wire netting 
and depict a pair of eyes next to those of the cats. From 
the photograph, an elongated shape runs upwards, which 
continues the digital cut-out above. This cut-out of the 
newspaper again is behind the newspaper to add a further 
layer. Moreover, the color gestures, which are highlighted 
by an artificial shadow, are definitely no longer gestures. 
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They are the result of a planned approach. On the other 
hand, the impasto applied oil bulges build up a material-
ity which was just negated in the floating constellation. 
Finally, Owens introduces blanks into the newspaper and 
replaces some articles from 1942 with recent or perhaps 
invented ones. Although there is still much to say about 
this painting that cannot be fully elaborated here, instead 
of a layer structure I would like to name three meta-levels.

4.1 � Layering of different production techniques

Occasionally, reference is made to skeuomorphism in rela-
tion to the paintings of Owens (the strategy in which a 
traditional process is digitally imitated without retaining 
its function or materiality). The familiar perception makes 
it easier to handle the new objects. This could mean both 
the artificial shadow and an artificial impregnation on the 
screen. In the painting discussed, the layers generate a 
transfer of various production processes, as well as the 
transition from imitated to physical materiality. Owens 
combines digital techniques with traditional ones in one 
field of vision. What represents information without a 

carrier in the digital world can appear materially capti-
vated, and what is traditionally associated with a carrier, 
begins to float on the surface. Different production tech-
niques are displayed and refer to the craftsmanship which 
ultimately culminate in a representation of these opera-
tions. Print, photography, color, drawing, writing, all of 
them are individual layers and media that mutate into a 
cipher, each oscillating between the traditional and the 
digital.

4.2 � The layering of different spatial levels

The plane of the newspaper draws an inner frame, which 
can then be crossed by a pasty mass of paint. This over-
stepping of the inner frame is supported by shadows. Like 
a staple, the turquoise color mass at the bottom left con-
nects the newspaper to the carrier. Further techniques and 
layers creep in and remind us of nailing and cutting in tra-
ditional ‘trompe-l’œil’. Furthermore, there is type, which 
is traditionally entangled with a carrier and thus supports 
the materiality of the core layer. Next to the type, however, 
there are images that burn holes into the solid plane, as 

Fig. 6   Laura Owens, untitled, 2015. Oil, acrylic paint, Flashe Vinyl Paint, charcoal and gesso assemble on the canvas. 350.5 × 264 cm. Collec-
tion Museum Brandhorst Munich Copyright: Laura Owens, bpk, Bayerische Staatsgemäldesammlungen, Haydar Koyupinar
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the digital cuts do. A membrane stretched on both sides 
without creating an illusion of a physical object. The free 
drawing behind the newspaper and the brushstrokes that 
seem to be dancing in the air prevent a comprehensible 
order. The carrier is pushed forward by the newspaper and 
simultaneously calmed down by the haptic reality of the 
color mass.

4.3 � The layering of different temporal levels

Both the integrated newspaper articles and the different spa-
tial levels allow an anachronistic sequence that is constantly 
interrupted to continue at another location. At least there is 
a carryover from the tangle of different layers to the produc-
tion process, which cannot be clearly traced back. Hence, the 
modern paradigm of painting to show a transparency of the 
made as made, is negated, suggesting interchangeability of 
both, the arranging of layers and of production sequences. 
Viewing the different layers as being apparently at the same 
height makes it possible to create new references. Owens’ 
painting can be described as a stack, in which it is never 
clear which side is at front or which element was placed 
at the beginning. However, this allows different levels and 
techniques to be linked. Owens’ arrangement is a layer-
network of different relations that can be re-articulated and 
re-contextualized over and over again, a stack of layers in 
which each side seems to be connected to each other. As if 
each layer is represented by a pane of glass and thus has its 
own background. Each of them is transparent and stands 
out from the layer below at a real distance, but at the same 
time, these layers are constantly being penetrated anew. For 
the view, units of meaning are created when different layers 
seem to be close to each other, however, with the movement 
of the eyes the layer structures change and the units of mean-
ing are restacked with them.

The thesis that Owens reactivates the ‘trompe-l’œil’ 
as an adequate analytical tool for digital image culture is 
based on the following overlaps. The ‘trompe-l’œil’ works 
into the association between image and carrier in order 
to undermine its alliance. There is no figure in front of a 
background, rather every possible figure camouflages itself 
as a further carrier which appears bundled together by a 
representation of operations, such as stapling, nailing or 
gluing. The representation in ‘trompe-l’œil’ is now linked 
to the indirectness of digital operations: skeuomorphism, 
representation of object-oriented tasks, or finally the well-
known representation of touch. In Owens’ picture, all these 
indirect operations are linked. This process, she extends to 
art-historical operations, like the physical gesture (which 
absolutely requires a direct physical application of paint). 
To interrupt directness, a layer, more precisely, a shadow 
layer, is slid in between. The shadow is, therefore, present 
before the application of paint. The ‘trompe-l’œil’ unsettles 

the carrier, which was never a binding one in the digital. 
Since ‘trompe-l’œil’ stacks carrier on carrier, there is no 
background anymore. A circumstance which Owens trans-
fers to the digital image culture: the newspaper is not the 
background, instead it appears as a core level from which it 
can act forward and backwards. The invariance, i.e. the fixed 
alliance of image and carrier, is decomposed together with a 
strict sequence of readability, both spatially and temporarily. 
AR tends to merge technology and reality, as ‘trompe-l’œil’ 
tends to embed an image into reality—Owens combines both 
tendencies, to work at the border between technology, image 
and reality. The ‘trompe-l’œil’ in awareness of digital image 
culture leads Owens to combine and cross information that is 
traditionally associated with a carrier and information that is 
not. Both AR and ‘trompe-l’œil’ are not isolated instances, 
they want to infiltrate everyday life and everyday perception 
with the potential to reflect on it.

5 � Summary

Due to the carrierless appearances that AR throws into 
space, the ‘velo’ was questioned as a semi-transparent layer 
in which the space behind remains visible together with the 
structure of the grid. The ‘velo’ as interface is an apparatus 
of translation, whose materiality and structure, as crucial 
differences to the window metaphor, become constitutive 
for the field of vision in ‘trompe-l’œil’ and in described 
illustrations. As in AR, the semitransparent layer is used 
to map something onto it that relates to what is displayed 
in depth—a mode of thinking and seeing that establishes 
a layer between the viewer and the visible, commenting on 
what is seen. This technique can also be found in ‘trompe-
l’œil’, although the layers are pressed very tightly together 
so that they unalterably bundle a fixed order. While digital 
images do not require a specific carrier, AR reintroduces 
the invariance of placement through the back door. They 
are not tied to one place and yet they are bound to it by a 
reference. The ‘velo’ was built as a translation of depth into 
flatness, this transfer overlaps the field of vision of AR and 
thus guarantees the proximity of superimposed information 
with the object—as if they were connected on one layer. It 
can superimpose objects—with previous or future versions 
of this object or with references to other images or objects. 
A flat object can also be superimposed with a deepening or 
heightening that transforms spatiality. Also fixed images can 
be superimposed by motion. Strict orders, whether chrono-
logical or in spatial depth, thus become loose and can be 
restacked. Hence, even these new orders are not fixed, which 
means that the projection can overlay an object without eras-
ing it as well as it can be removed again without leaving 
any residue. Since the relationship is not a fixed one, this 
demonstrates a great potential for open, flexible and variable 
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commitment. The information is then also not definite, 
because the space of information is constantly shifted. Ulti-
mately, classical categories such as background and surface 
are no longer stable, as they have become interchangeable 
through digital superimposition. The way of machine seeing 
in AR recognizes the real environment. To superimpose the 
real environment means to transform the perception of this 
environment. The biggest challenge for this new way of see-
ing is to define the limits and differences of the new field of 
vision, as these are constantly stretching and become blurred 
in the process. “Crossroads of seeing” ultimately means to 
pause at this crossroad, not only to look at the intersection, 
but also to see where the ways divide.
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Abstract
During 2018, as part of a research project funded by the Deviant Practice Grant, artist Bruno Moreschi and digital media 
researcher Gabriel Pereira worked with the Van Abbemuseum collection (Eindhoven, NL), reading their artworks through 
commercial image-recognition (computer vision) artificial intelligences from leading tech companies. The main takeaways 
were: somewhat as expected, AI is constructed through a capitalist and product-focused reading of the world (values that 
are embedded in this sociotechnical system); and that this process of using AI is an innovative way for doing institutional 
critique, as AI offers an untrained eye that reveals the inner workings of the art system through its glitches. This paper aims 
to regard these glitches as potentially revealing of the art system, and even poetic at times. We also look at them as a way 
of revealing the inherent fallibility of the commercial use of AI and machine learning to catalogue the world: it cannot 
comprehend other ways of knowing about the world, outside the logic of the algorithm. But, at the same time, due to their 
“glitchy” capacity to level and reimagine, these faulty readings can also serve as a new way of reading art; a new way for 
thinking critically about the art image in a moment when visual culture has changed form to hybrids of human–machine 
cognition and “machine-to-machine seeing”.

Keywords  Institutional critique · Computer vision · Error · Image analysis · Contemporary art

1 � Introduction: Duchamp’s Fountain is 
a urinal

MORESCHI: On 23 October 2017, Gabriel sent me an 
email. In it, there were two images—a painting of Christ 
and Duchamp’s Fountain. The email went on with a series 
of graphics, percentages and keywords analyzing these two 
images. At no point were they interpreted as art. Duchamp’s 
Fountain was described as a plumbing fixture, product 
design and as… a urinal. Behind this reading was Google’s 
state-of-the-art AI: Google Cloud Vision  (Fig. 1). 

The image of Duchamp’s Fountain is especially relevant 
as a starting point. With this artwork, as Calvin Tomkins 
(1998) details in his biography of Duchamp, the French art-
ist aimed to test how democratic the New York Society of 

Independent Artists was in the selection process for their 
salon. Those who work with art may be familiar with this 
controversial story: after having lunch with Walter Arens-
berg and Joseph Stella, Duchamp invited them to accompany 
him to J. L. Mott Iron Works, a store in New York that spe-
cializes in sanitary equipment. There, he bought a porcelain 
Bedfordshire urinal. Later, in his studio, Duchamp flipped 
the urinal upside down and signed the bottom left side with 
the name R. Mutt and the year (1917). He then submitted the 
piece to the exhibition, without a return address. According 
to Tomkins, when the package was opened by the salon’s 
jury, the juror George Bellows cried out: “It’s indecent! It’s 
indecent! We cannot show this. This thing is nothing more 
than what it is.”1

Today, Duchamp’s Fountain is considered one of the 
most influential artworks of the twentieth century, an iconic 
image that is widely known in the popular imaginary. The 
act of transforming the urinal into a fountain by placing it 

 *	 Gabriel Pereira 
	 gabrielopereira@gmail.com

1	 Department of Digital Design and Information Studies, 
Aarhus University, Aarhus, Denmark

2	 Faculty of Architecture and Urbanism, University of São 
Paulo, São Paulo, Brazil

1  The story of the Fountain has been under dispute in recent years. 
Research by historian Irene Gammel indicates there is evidence that 
the piece was actually created by dada artist Baroness Elsa, although 
Duchamp was the one that ultimately proposed it to the jury.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-020-01059-y&domain=pdf
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in the artistic space is a crucial ontological shift proposed 
by contemporary and conceptual art. But 100 years later, 
when Google’s Cloud Vision looked at the image of this 
artwork, its “eyes” didn’t see anything different than Bel-
lows’: “ceramic, product, urinal.”

Google Cloud Vision is the result of much human and 
machine labor. It is based on Google’s recent expansion into 
the new and promising field of computer vision: using algo-
rithms, machine learning, and a lot of data to train “smart” 
machines to see and understand the world around us. Fei-Fei 
Li, a Professor at Stanford and also former Chief Scientist 
at Google, is one of the most prominent voices of the com-
puter vision research field. In her widely watched Ted Talk 
How We’re Teaching Computers to Understand Pictures, she 
explains what this means: “Just like to hear is not the same 
as to listen, to take pictures is not the same as to see, and by 
seeing, we really mean understanding. (…) Vision begins 
with the eyes, but it truly takes place in the brain.” (Li 2015).

This difference between taking pictures, seeing, and 
understanding is intriguing, especially in a moment when 
the utopian computer vision discourse (as above) claims that 
it is possible “to teach the machines to see just like we do: 
naming objects, identifying people, inferring 3D geometry 
of things, understanding relations, emotions, actions and 
intentions” (Li 2015). But, as we first experimented at that 
moment, commercially available computer vision algorithms 
from leading tech companies are not trained to “understand” 
artworks—they do not understand the context, the subtext, 
the emotion. When they do interpret it correctly, from the 
point of view of the human observer, they read them in their 
superficiality: the “thing as nothing more than what it is.”

Going back to the case of Duchamp’s Fountain, the jury 
of the salon finally decided not to exhibit the piece. When 
the artist got it back, he took it to the famous photographer 

Alfred Stieglitz, to be photographed using the same method 
as a sculpture. The Fountain itself probably had the same 
destination of many other of Duchamp’s ready-mades 
(the trash bin)—replicas of the work now abound in many 
prominent museums. But the image of the artwork by Stieg-
litz remains, and is now on the cover of books, magazines 
and widely available on Google Image Search. This story 
reveals the way in which art and its history are constructed 
and experienced through images (rather than through the 
works’ materiality). Now, using artificial intelligence, like 
the one by Google, it is also clear that these images are not 
embedded with what these artworks mean, their context, 
history, and subtext. But this is not necessarily a problem in 
itself, as there is a rich possibility in all of this: because com-
mercial AIs are not at all familiar with works of art, we have 
interpretations of their images that are almost always devoid 
of a more “subjective” sense of art and its context—which 
were so vital to Duchamp and indeed other artists.

PEREIRA: I’ve just watched the first episode of “Ways 
of Seeing,” the influential BBC TV show by art critic John 
Berger. I’m particularly impressed by the scene where he 
asks kids to describe a painting of Christ by Caravaggio. 
The kids (very adorably) speak incessantly, conjecturing 
what the subjects are doing (maybe stealing the food or 
about to kiss?), and who they are (male or female? Jesus?). 
Berger points out how these kids “demystify” the artistic 
work by looking at it “very directly,” from their own experi-
ences, ignoring the context in which the images exist (Fig. 2). 

The AIs that power computer vision can only understand 
the world based on their own “experiences” when making 
assessments about the world. AI requires data to be trained 
on, from which it generates a model; for example, pointy 
ears means cat, floppy ears means dog. This model is most 
often not visible or interpretable by humans, and frequently 

Fig. 1   Print from the e-mail that Moreschi received from Pereira, with the reading of Duchamp’s Fountain by the AI Google Cloud Vision. None 
of the results considered the image a photograph of an artwork
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involves patterns that are not visible to the human observer 
(Olah et al 2018). Could AI then be used to bring a fresh, 
denaturalized set of “eyes” to art, expanding and levelling 
what artworks are (or could be)? But also, if art is such a 
new thing to the “eyes” of computers, could it also reveal 
what its underlying experiences are, much like the kids use 
their experience to talk about Caravaggio’s painting? It 
was with these questions that we began this research. How 
revealing are these “eyes” that have never entered a museum, 
and how can we make use of them to see for ourselves? How 
could we use these non-human perspectives to “illuminate 
our understanding of the world,” thus unsettling “the rela-
tions between what we see and what we know in new ways”? 
(Cox 2017: 14).

We were invited to work with the Van Abbemuseum (NL) 
collection and proceeded to reading their images using com-
mercial image-recognition (computer vision) artificial intel-
ligences from leading tech companies. The museum’s col-
lection, consisting of conceptual and contemporary art, as 
well as some older and lesser known works, was particularly 
suitable for our proposed inquiry.

In the first part of this article, we describe our methodol-
ogy and how we approached the creation of the platform for 
reading images through AI, how we analyzed the results, 
and what categories came out of it. In the second part, we 
look at the question: what happens to art (i.e. images of 
artworks) when it is read through commercial AIs? This 
means putting art through a system that is not specifically 
made for it, where it is not protected by the elements of 
the artistic apparatus. Drawing from institutional critique, 
we investigate how this may work to expand and level the 
meaning of artworks. In the third part, we follow with: how 
does commercial AI react to art, a content that is different 
from what it is used to? And, what does this procedure reveal 
about the underlying values and epistemologies of popular 

AI tools? Here we borrow from literature on critical AI/algo-
rithm studies and other academic research on technology/
data, where algorithms are considered in their sociotechni-
cal complexity. We conclude by stating the contributions 
we offer, as well as our considerations for future research 
and practice.

2 � Methodology: “Honor thy error 
as a hidden intention”

The Van Abbemuseum collection is generally made up of 
contemporary and conceptual art. We received all the images 
of the collection (about 2500 high-resolution photographs 
of artworks), but decided to focus on two of the permanent 
exhibitions, The Making of Modern Art and The Way Beyond 
Art. This resulted in working with a total of 654 images.2

To create a new way of interpreting this set of images, 
Pereira created a script to send the images of the artworks 
to six of the most commonly used commercial AI services 
from Google, Microsoft, Amazon, IBM, Facebook, and the 
widely used open-source YOLO library. The results obtained 
for each artwork are shown through a custom web inter-
face (Fig. 3), which is accessible and open-source (enabling 
other readings and analyses) through this link (https​://testi​
ngdat​aviz.githu​b.io/VAD0.4/). 

This centralized AI results interface was created prior to 
the official start of Moreschi’s residency at Van Abbemu-
seum. This meant that our first contact with the works in the 
collection was digitally mediated. Following this logic of 
physical detachment, even though he stayed only a couple 
of blocks away from the museum and its collection, the first 
two weeks of Moreschi’s stay in Eindhoven did not focus on 
the museum itself (and its physical works). Instead, he dedi-
cated all his time to the analysis of the approximately 55,000 
results obtained from the analyses of 654 works (available 
on the Recoding Art interface), and to the construction of a 
method capable of organizing the results through identified 
patterns.

“Honor thy error as a hidden intention.” This card, from 
the set of cards Oblique Strategies created by Peter Schmidt 
and Brian Eno to aid in the artistic process, epitomizes 
our methodological approach. This advice was valuable 
in a selection process involving interpretations that at first 
seemed like blatant misunderstandings by dumb machines. 
We decided to steer away from a feeling of superiority, in 
relation to technological systems. Minimal attention was put 

Fig. 2   Frame of episode 1 from Ways of Seeing, TV show written and 
presented by British art critic John Berger in 1972 (BBC Two) and 
adapted from a book of the same title

2  They were chosen because the first exhibition deals directly with 
the changes in the status of art in modernity, especially its reproduc-
ibility, and the second is dedicated almost exclusively to contempo-
rary art, much of which dissociates what is seen from its signification.

https://testingdataviz.github.io/VAD0.4/
https://testingdataviz.github.io/VAD0.4/
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on results that were “true” or “correct.” On the contrary: we 
decided to value the unexpected outcomes.

Although the struggle for algorithmic auditing, account-
ability, and ethics is very important, given the amount of 
problems AI is already causing and how these errors affect 
people (especially underserved minorities and marginalized 
communities), focusing exclusively on “solving bias” may 
serve as a diversion from critically interrogating these sys-
tems and understanding them in their complexity (Powles 
and Nissenbaum 2018). Here, we turn to commercial Com-
puter Vision systems’ failures as a way of critically and 
imaginatively speculating on the machinations of the sys-
tems of both AI and Art.3 It is about critiquing the operat-
ing logic of algorithms and showing that they are neither a 
“given,” nor “certain,” and thus complicating the “mythical, 
objective omnipotence” (ibid.) that they so often evoke.

During the analysis process, Moreschi classified works by 
results with similar characteristics. The same work could be 
included in more than one of the groups, which are discussed 

in the next section. It was only after coding and categorizing 
the collection’s images that Moreschi visited the museum’s 
two exhibits in person. During the third week of work, this 
approach to the artworks happened in the most traditional 
way: walking through the exhibition space like any other vis-
itor. However, during the fourth and final week of research, 
the mediation with the works was again denatured during 
the filming of Recoding Art, a short film which integrates 
the outcomes of this research.

During the last week of work, Pereira and Moreschi 
worked together in person. Quite familiar with the new col-
lection of artworks that emerged from the AI analyses, we 
decided to interact with Amazon Mechanical Turkers, as a 
way to better understand the human layers of AI and avoid 
the oversimplified idea that AI is completely automatic. 
These workers are responsible for doing tasks that are still 
impossible for computers, such as classifying images inside 
of predefined categories, thus creating the training data for 
AIs. We surveyed a random sample of Turkers, asking them 
for descriptions of some of the artworks from the collection, 
and if they considered these so-called artworks to be art.

Fig. 3   Recoding art, an open-source website with the Van Abbemuseum’s art works reading by AIs

3  It is worth noting that the subject matter of this research (artworks 
from a collection) is particularly suitable for this approach, since, 
unlike predictive policing and other egregious algorithmic systems, 
these errors do not directly cause harm.
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3 � Denaturalizing art through AI: a possible 
institutional critique 2.0

The glitches and mistakes of AI help us to denaturalize the 
art system and its functioning. The art system is highly codi-
fied and embedded with power/value systems. When we start 
considering the AI results that do not necessarily follow the 
structures of specialized meanings of art, we are unmasking 
much of what specialized discourses attempts to disguise. In 
this sense, many of the results obtained from the AIs invited 
us to think about important issues regarding the art system, 
which are not always apparent. In addition to that, many of 
these results can help mediate these works to non-special-
ized audiences, initiating a more accessible relationship with 
these objects. Among the results are:

3.1 � Art as everyday objects

Interpretations such as these show that artworks are, 
beyond their discourse, made of materials that are also 
found outside of the museum context, in everyday life. As 

is the case when Duchamp’s Fountain is read as an actual 
urinal, these readings invite us to see works of art in a 
way that is disconnected from the idea of authorship. To 
analyze these results is to think about the process of sym-
bolic transformation of artworks, one of the processes that 
underpin contemporary art. These results, much like the 
results across the next pages, help to remove the so-called 
aura from the art object and transform a very important 
art collection into an assortment of easily recognizable 
objects (Figs. 4, 5, 6, 7).   

3.2 � IKEA shopping cart

The vast majority of the works (almost 90%) were read, 
in at least one of their results, as consumer products that 
are easily found in department stores. Such results are 
valuable in critical art studies for reinforcing the fact that 
works of art are essentially commodities—even if much 
more expensive than curtains—and placing our current 
understanding of what art is within the context of capital-
ism and consumer society (Figs. 8, 9, 10, 11, 12).

Fig. 4   Licht-raum Modulator (1922–1930, replica 1970), by László 
Moholy-Nagy, described by Microsoft’s AI as “a lamp that is lit up 
at night,” a similar result to Google’s AI (“lighting,” “lamp,” “light 
fixtures”). Darknet YOLO (open-source AI) goes further and sees the 

work as a possible “boat,” which helps us to construct an interesting 
speculative hypothesis: that, from the interpretive logic of AIs, the 
circular reflection on the wall can be a full moon in the high sea
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Fig. 5   Aux Abords De La Grande Cité (1960), by Corneille, read as 
“ejection seat” and “a close up of an old computer.” A considerable 
part of the works analyzed by Microsoft Azure’s AI is understood as 
approximations of something. Since the AI’s gaze does not operate 

from the human logic of physical distance between the observer and 
the observed, the concepts of approach and depth radically change 
here—anything not recognizable at first may indeed be the detail of 
an everyday object

Fig. 6   Interrogation (What Kind of Bird Are You?) (1956–1958), by 
Max Ernst, read by IBM’s AI as a “jack-o’-lantern,” the pumpkin that 
is traditionally carved on Halloween in the United States—an exam-
ple that shows how the interpretations by AIs are constructed from 
a U.S. ethnocentric logic. This example also shows that the fact that 

works by well-known artists in the collection were read as art does 
not prevent them from being interpreted as things that are unrelated to 
the artistic context. It is curious to see the multifaceted ability of AIs 
to offer, within the same set of results, both the legitimated layer of 
the image as well as its pre-artistic state
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3.3 � Self‑promotion

In figurative paintings, AI tends to read people as posing 
for the camera, which poetically shows how art is a space 
for human exhibitionism—including selfies and people 

practicing sports. These results invite us to think of art 
(and its contemplation) as an essentially social and egoic 
practice by human beings, a process of constant self-affir-
mation (Fig. 13).

Fig. 7   Some images received interpretations that prioritize the physi-
cal structures that protect or support the works (“picture frame,” 
“framework,” “supporting structure”) rather than their legitimized 
artistic contents. This occurred with White Relief (1936), by Ben 
Nicholson, often understood by the AIs as merely a frame, and 
Untitled (1980), by Jannis Kounellis, which, for Google, has to do 
with the image of a shelf, which in fact is something necessary for 

exhibiting the work. Results such as these “de-structure” the hierar-
chy between layers of the art object that are considered to be artistic 
and non-artistic, and invite us to view envelopes and bases as part of 
the artistic structure that is often indispensable in the legitimation of 
what is art. Framed works are also often read as television monitors, 
which lead us to the second group of results
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3.4 � New titles

Microsoft Azure Computer Vision is an AI service that 
describes images in short sentences. During our experi-
ment at Van Abbemuseum, we performed an exercise in 
detachment with regard to the artist and their intentions: 
we began to use these descriptions as new titles for works 
in the collection. Procedures like this help to demystify 
the authorship and origin of art objects, creating less fet-
ishized paths of comprehension. Because they are almost 
always funny, phrases such as these can be valuable mate-
rial for art classes for non-specialists and young students. 
Also regarding textual results: Google’s AI sometimes 

identifies texts where there actually are none, thus creat-
ing curious descriptions (Fig. 14).

3.5 � Passages: windows, doors and (why not?) some 
tables

Poetically, this shows that the space contained by the 
frame of an artwork creates a space that follows different 
rules than the space outside of the frame, and that goes on 
beyond the wall where the artwork is placed—a microsys-
tem that has values and significations of its own. Almost 
every time there was an interpretation of a “window,” there 
was also a “TV monitor.” Although it is a typical case 

Fig. 8   Femme en vert (1909), by Pablo Picasso, as a “gargoyle,” “ornament” and “phone.” And Concetto Spaziale: Attese (1960), by Lucio Fon-
tana, as a “refrigerator,” “stove” and “kitchen.”
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Fig. 9   Cubist works and those with textual content tend to be related 
not only to marketable objects (“product design,” “bottle”), but also 
to specific companies or more general ideas of the business world. 
This is the case with L’accordéon (1926), by Fernand Léger, asso-
ciated with Tetraskelion Softwares, a company in Jaipur (IN) that 
offers technological solutions for travel agencies. The same is true for 
LAT. 31° 25′ N, LONG. 8° 41′ E (1965), by On Kawara, (“brand,” 

“business,” “corporate identity”) and the poster Sorry, Sweetie, Way 
To Go, Dude! (1994), by Guerrilla Girls, (“license,” “advertising,” 
“joint”). This demonstrates that the capitalist logic in AI readings is 
broader than just interpreting images as products—it also includes 
notions and practices from consumer society that are not necessarily 
material
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within the first and second groups of this list (art as objects 
and IKEA shopping cart), identifying monitors also sug-
gests a depth expansion of the exhibited work. The works 
read as tables certainly had these results because a framed 
painting may visually look like a table when seen from 
above. This recurring result can be seen as an invitation 
to view paintings from other perspectives, not only face to 
face or at eye level (Fig. 15).

3.6 � New temporalities

When AIs do not understand the historical context of an art-
work, it allows us to look at art as another kind of object—
stripping it away from authorship and historicity. Readings 
such as these can help in the construction of new narratives 
of art history, helping to build new associations between 
societies from different regions and/or periods. Moreover, 

Fig. 10   Gleichzeitigkeitsstück (Nr. 23, 1. Werksatz) (1967), by Franz 
Erhard Walther as “a white shirt,” “military uniform,” “handbag” 
and a lot of t-shirt images as visually similar. Balance (Nr. 26, 1. 
Werksatz) (1967), by Franz Erhard Walther as “a bag of luggage,” 
“clothes” and a lot of trouser images. Politisch (Nr. 36, 1. Werksatz) 
(1967), by Franz Erhard Walther, as “fabric.” Performance fabrics 

are almost always read as fashion clothes or accessories by the AIs, 
which makes some sense, since many of them were worn by artists 
and/or the public. Here, we have an interesting moment where the AIs 
actually agree with contemporary art, since most artists, curators, and 
art critics do not consider these fabrics actual works of art either, but 
documentary remnants of a previous artistic experience
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Fig. 10   (continued)

Fig. 11   As with La Roche-guyon (1909), by Georges Braque, and 
Vaas met Bloemen (1929), by Jan Sluijters, colorful paintings tend 
to be read as cushions, which remind us how the visual content of 
works of art can expand beyond the museum and fit into more popu-

lar, household products. Results such as these also relate to museum 
shops and their practices of transforming images of artworks into 
souvenirs



1212	 AI & SOCIETY (2021) 36:1201–1223

1 3

some of the new temporalities offered by the AIs do not 
transform the image into something of a different time but 
suggest more recent or later moments of what is represented 
there (Figs. 16, 17).

3.7 � Personification processes

Often images of artworks were read as flesh and blood peo-
ple, or as performing human tasks. Images read as people 

Fig. 12   As with Oogst (ca. 1932–193), by Victor Dolphijn, images 
containing people are interpreted based on the objects that appear 
within them. In virtually every case with human representa-
tions, there were results related to their clothing and other personal 
objects—including moments in which only those objects were iden-
tified and not the humans holding them. Results such as these are a 

reminder of how part of building an individual’s identity in capitalist 
society is formed with the help of the objects they possess, and the 
properties of such objects. The same painting was also described as 
“a group of people posing for the camera” and as a possible “dance 
pose,” which brings us to the idea of displaying these products, and to 
the third category

Fig. 13   Javaanse Danser (ca.1921–1922), by Isaac Israëls, described as “a group of people posing for a photo.” Slapende Boer (1936), by Hen-
drik Chabot, as a skater doing tricks
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show how the AI’s understanding system does not differen-
tiate between the concepts of representation and presence. 
There were also many cases of sculptures (not necessarily 
human bodies) that were read as people, which emphasize 
the physical strength of large works. It was also interesting 
to note the human attributions related to some works, such 
as a sit-down painting—a typical process of prosopopoeia 
(Fig. 18).

3.8 � Visual similarities, new and more democratic 
possibilities

The fact that AIs associate museum artworks with other 
images of similar visual forms in their databases results in a 
maximized mode of experiments that have long character-
ized the study of artistic images. Many of the associative 
processes of these “intelligences” have to do with practices 
developed by historians such as Aby Warburg (2010) and his 

Mnemosyne Atlas. Due to this, considering these results may 
be important for expanding this field (Fig. 19).

3.9 � Incomprehensible results, that are very poetic 
(and that we really like)

Many of the results of the AIs were not fully categorizable 
into homogeneous groups of results, as is always the case 
with some works in any museum collection. This shows that 
art and AI have in common a high load of unpredictability. 
These results also suggest a possible use of the AI readings 
in the expansion of the poetic layers of art, contrary to the 
productivist and efficiency-focused logic of those who argue 
that AIs must necessarily provide precise results (Fig. 20).

As made evident by the above examples, our experience 
in using AIs to interpret images of artworks can be seen as 
new mode of a practice known as “institutional critique.” 
The term is related to a series of procedures that seek to 

Fig. 14   According to Google Cloud Vision, the painting Nature 
Morte (1920), by Juan Gris, contains the Georgian word “ ” 
which translated into English by Google Translate becomes “display.” 
Augustusbrücke Dresden (1923), by Oskar Kokoschka, was summed 

up by Microsoft’s AI as “water next to the ocean,” adding more 
poetry to the scene. The Discovery of the Sardines (1971), by Ger van 
Elk, is described as “a bird flying over a body of water,” completely 
reversing the image’s idea of aridity
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reveal the structures that make the art system function. His-
torically, the institutional critique practice operates from the 
critical repertoire of conceptual art and conceptualisms of 
the 1960s and 1970s, especially in the expanded concept of 
art (Freire 2006).

According to Andrea Fraser (2005), this mode of analyti-
cal approximation of art and its elements follows the prem-
ise of considering the social context as intrinsic to art—to 
her, art is never the object of art, but rather a network that 

is interconnected with this object of socially constructed 
elements. Our AI experiments were successful in revealing 
elements of this construction: when we took photographs of 
works away from the context of a museum and into that of 
computer vision algorithms, art seemed to lose its support, 
and the results obtained were almost never related to the art 
system. The highly specialized and elitist codes that perme-
ate the artistic field—well protected and validated by power-
ful actors such as art institutions, curators, gallery owners, 

Fig. 15   Composition En Blanc Et Noir II (1930), by Piet Mondriaan, was read as “a close up of a window,” “window frame,” “window sash” 
and “table.” Compositie XXII (1922), by Theo van Doesburg, was read as “a close up of a door.”
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specialized critics and even artists—were visibly ignored by 
computer vision, which instead offered different paths for 
understanding the artworks.

In other words, when looked at without prejudices and 
with an open mind, seeing art through the glitchy results 
of computer vision allowed us to distance ourselves from 
specialized meanings and create relevant materials for 
the critical study of artistic works and the system they are 
inserted in. Bringing art and AI together in a critical way 
serves not only to reveal the latent power structures of the 
artistic field, but also to democratize it, opening its mean-
ing and significations to the people who engage with art 
(as espoused by institutional critique). This way of seeing 
and its potential should be understood and appreciated in its 
partiality, though, as it intentionally doesn’t engage with the 
wide context of art history and its specialized discourses.

The unexpected ways computer vision sees art, both 
by levelling and expanding the potential meanings of art-
works, is also particularly innovative and relevant in a 
moment when visual culture has changed form to hybrids 
of human–machine cognition and “machine-to-machine 
seeing” (Paglen 2016), with a plethora of limitations and 
problems which we address in the following section.

4 � Denaturalizing AI through art: looking 
critically at algorithms

Another possible course of action is to use all the glitches 
we have just seen to denaturalize AI’s gaze. The results: a 
list of analyses of every single image of the art collection, 
when looked at carefully, can work like a reverse engineer-
ing of these systems, exposing some of how computer vision 
“sees” the world. Beyond pointing inefficacies, we can inter-
rogate AI “not only as modes of adjudicating in the world, 
but also and in their very essence, modes of knowing about 
the world” (Elish and Boyd 2018: 74). They help question 
AI’s positioning as a magic “view from nowhere” (Haraway 
1988), and the power of their epistemologies and ontolo-
gies of understanding the world. This critical reading of AI 
understands it as one of the many ways of understanding 
the world that privileges certain values and renders other 
things invisible.4

Fig. 16   Lehrender Christ (1931), by Ernst Barlach, read as “Buddha,” “sarcophagus coffin,” and associated to images of Ancient Greek sculp-
tures

4  For more scholarship critically exploring the limitations of com-
puter vision’s ways of seeing see, e.g.: Mintz et  al (2019), Buolam-
wini and Gebru (2018), Crawford and Paglen (2019), and other arti-
cles in this special issue.
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The commercial AI systems we used, as any other algo-
rithm, are “designed to work without human intervention, 
they are deliberately obfuscated, and they work with infor-
mation on a scale that is hard to comprehend” (Gillespie 
2014: 192; see also Gillespie 2016). The AIs did not need 
to stare at an image for seconds, minutes, or even days to 
assess what it means. Instead, they offer multiple results 
(often conflicting), alongside “confidence ratios”: a percent-
age of how much the prediction can be trusted. Moreover, 
they do not expose how they actually work under the rig, 
being presented as inscrutable black boxes: their processes 
are not directly interpretable to the user. Although some of 
them, i.e. Facebook Detectron and Darknet YOLO, are open-
source, they still operate in a highly specialized way that is 
not inviting to a deeper understanding of the system. And 
so, as we looked at the results and tried to make sense of 
them, a few questions kept coming up (some of which were 
considered in the previous section):

MORESCHI and PEREIRA: Why so many windows? Why 
so many tables? Why so many cushions? Why so many close 
ups? Why so many elephants? Why so many cats? Why so 
many things related to skate? Why so many computers? Why 
so many umbrellas? Why so many “Sky plc—company tv 
cables”?

These questions become interesting as they expose the 
issues that underlie contemporary machine learning training 
datasets. The basis of machine learning, and what makes 
it different from traditional AI, is the idea that algorithms 
can, with enough data input, build themselves by making 
use of large-scale data. In the case of image classification, 
which is our focus here, “a dataset is used to train a typical 
machine learning device, a neural net, and the neural net 
classifies subsequent images probabilistically” (Mackenzie 
2017: 4). A “reading” by the AI must be understood as a 
prediction, which necessarily “depends on classification, and 
classification itself presumes the existences of classes, and 
attributes that define membership of classes” (Mackenzie 

Fig. 17   Dorp in de lente (1936), by Constant Permeke, was associ-
ated by Google’s AI to images of firewood, which suggests a later 
moment for the trees represented in this bucolic painting. The same 
AI related the frame of the video Martha Rosler Reads Vogue (1982), 

by Martha Rosler, with the image of a younger woman—it could be 
a younger Rosler, but in fact is another artist, the Spaniard Cristina 
Garrido
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2015: 433). The classes within the training datasets, along 
with the images that compose these classes, are responsible 
then for defining what the AI can “see.” What’s interesting 
is how two very disparate things (or “classes”) may become 
approximated with each other, whether they look like each 
other or not for our human eyes. For example, a 1936 paint-
ing of a man sleeping by Hendrik Chabot (see Fig. 13) is 
read by Microsoft Azure as “a man doing a trick on a skate-
board,” which is not what the image depicts—there is, how-
ever, some similarity because of the body’s position, which 
becomes visible after engaging with the AI’s interpretation.

The prototypical construction of a dataset to enable com-
puter vision occurred through Fei-Fei Li’s ImageNet initi-
ative.5 This project was responsible for gathering a huge 
number of images (3.2 million images in total), which were 
originally organized into categories: 12 subtrees with 5247 
synsets (Deng et al 2009). To define what these categories 

Fig. 18   In the painting Winterbild (1930), by Max Beckmann, the 
readings of different AIs complement each other. For Microsoft 
Azure Computer Vision, the work is “a painting sitting in front of a 
window.” Seated where, exactly? Probably in one of the two chairs 

read by Darknet YOLO’s AI. Similarly, the sculpture in the back-
ground of the painting Schilder Met Zijn Vrouw (1934), by Carel 
Willink, was read as a person, standing alongside the couple

Fig. 19   Some associations of images created approximations of 
consecrated works with artistic manifestations that are not consid-
ered “museum art.” This is the case of Zomer (1932), by Constant 
Permeke, compared by Google’s AI to an amateur painting by an 
unknown artist. Landschap (1910), by Jan Sluijters, was interpreted 

as a possible painting by a child, corroborating with the idea that 
modern art was interested in abstract and unconscious experiences, 
as opposed to the academic realism of the late nineteenth and early 
twentieth centuries

5  To be clear, not all of the commercially available AIs we used are 
based on ImageNet, but the project was responsible for triggering a 
spark. By providing plenty of data about objects and their properties, 
and creating multiple competitions around it, the field became legiti-
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would be, the project made use of a previously existing 
structure called WordNet. Created in 1985 by Stanford psy-
chology professor George Armitage Miller, with funding 
from the military and DARPA, WordNet was devised to 
work like a dictionary, but one in which words existed in 
relation to others (not in alphabetical order). This index of 
words in a machine-readable logic would become the cat-
egories used for all images: dogs, pudding, tracks, excava-
tion. Behind ImageNet is a desire to have “more data” for 
training machine learning algorithms, thus allowing them to 
recognize more objects in images. In the dataset, for exam-
ple, there are 1289 images of skateboards: “A board with 
wheels that is ridden in a standing or crouching position and 
propelled by foot.” (ImageNet 2019)

ImageNet took images from the photo-sharing website 
Flickr, where users upload their personal photos and often 
choose to keep them copyright-free, allowing others to use 
them. It is interesting to think about the origin of dataset’s 
images and how they make direct use of user-generated data, 
crowd-produced by all of us. As Cheney-Lippold (2011: 
178) warns, the “algorithm ultimately exercises control 
over us by harnessing these forces through the creation of 
relationships between real-world surveillance data [Flickr, 

in this case] and machines capable of making statistically 
relevant inferences about what that data can mean.” In the 
end, the ways of seeing of these computer vision AIs are 
directly tied to the origin of their datasets.

As can be noted in our results, art is not a “material” 
that commercial AIs are extensively trained on. Images of 
art and artistic works are only a tiny fraction of what users 
upload to Flickr, which mainly consists of imagery of con-
temporary life and social practices, mostly from the United 
States, where Flickr is most popular (estimated over 25% 
of its content). We have seen previously how AIs read an 
immense number of artworks as products, especially depart-
ment store or home decor products. These are highly acces-
sible, but diverse in value (which is slightly ironic when 
talking about artworks): tables, shelves, curtains, refrigera-
tor, furniture, cushions, clothing, mobile phones, computer/
laptop, TV monitors, etc. These products are part of the wide 
catalogue of stores such as IKEA, but also present in the 
modern home imagery. Besides products, the high frequency 
of sports, cats, dogs, selfies, mirrors, are other indications of 
the origin of these images in contemporary day-to-day life. 
The fact that artworks are read as that (although they seldom 
represent these things) attests to the high frequency of these 
things in the original training databases.

These readings point not only to the origin of images, 
but to the way images become useful for the clients of 
commercial AIs. Google, Amazon, Facebook, and others 
build their AIs to identify, categorize, and see the world 

Fig. 20   In the painting, Moeder en Kind (1922), by Gus de Smet, an 
elephant (marked in blue) is read in the room by Facebook’s AI. This 
was also one of the beautiful cases in which a work was read as a 
“mirror,” referring to the idea that the understanding of an artwork 
is a reflection, a consequence of the way of thinking of those who 
look at it. Microsoft’s AI went beyond the idea of object and added 

in the conceptual work B 12,000,030 = 25 =  = 16X17 = NOIR BLANC 
BLEU (1975), by André Cadere, the information “air”—the true con-
text of art and all other things of this world. But, of course, since not 
everything is poetry in the AIs, Google has associated this conceptual 
work to the image of a lamp

Footnote 5 (continued)
mated and useful for the industry. If an AI does not use it, it is cer-
tainly made in connection to it.



1219AI & SOCIETY (2021) 36:1201–1223	

1 3

as commodities.6 Other frequent results, such as business 
cards, advertisements, and billboards are not products per 
se, but are also related to contemporary capitalist life. All 
of this reasserts the way these AI systems embed values that 
are ideologically capitalist and focused on value-production 
for the companies that use it.7 A client featured on Google 
Cloud Vision’s home page, Urban Outfitters, an American 
multinational lifestyle retail corporation (i.e. clothes shop), 
uses the AI system to “automate the product attribution 
process by recognizing nuanced product characteristics like 
patterns and neckline styles” (Google 2019). No wonder the 
performance fabrics seen before (Fig. 10) are almost always 
read as fashion clothes or accessories, metaphorically trans-
formed into Urban Outfitter’s hipster turtleneck long sleeve 
t-shirts.

AIs also often identify “raciness” in abstract sculptures, 
and where there are images of women, undressed or not.8 
Although these images come from a context that is consid-
ered different from a pornographic image, they nonetheless 
fall under the same category and classification. The con-
sequence of this is felt when these same machine learning 
systems are used for content moderation, often without sub-
sequent human analysis, thus frequently determining art-
works as pornographic (see Gillespie 2018). When we look 
at ImageNet as a prototypical training database, the nude 
female body appears in a sexualized way, an object of the 
male gaze (see Fig. 21), not too differently than throughout 
much of the history of art (see Parker and Pollock 2013). 
This understanding of the female body, among other prob-
lematic categories/classes, trickles down to the systems that 
are used for image recognition in social media and other 
platforms, through the training data they use (see Crawford 
and Paglen 2019). This is just one way that AI systems flat-
ten images of artworks by ignoring their context, or what 
their images mean in a broader sense.

Fig. 21   Screenshot of some of the images that are under the synset “Nude, nude painting” (“A painting of a naked human figure”) in ImageNet. 
There are a total of 1229 images, most of which represent a sexualized, naked, thin, white woman

6  And to support the military, but this arguably happens through 
other systems based on the commercially available ones; or through 
military grants, which also underlie the whole system.
7  A possible consequence of this is: why are museums using these 
same AIs, in so many projects with Google Arts & Culture, for exam-
ple?

8  Images with nude women, as in the painting Liggend Naakt (1931), 
by Jan Sluijters, or even dressed, as in Moeder en Kind (1922), by 
Gust de Smet, and Boerderij (1919), by Heinrich Campendonk. The 
same has also happened with images of more abstract sculptures, per-
haps because of possibly phallic shapes, such as in My neck, my back 
curve silently (1930), by Karin Arink.



1220	 AI & SOCIETY (2021) 36:1201–1223

1 3

Taking this even further, we argue that the obsession of 
these AIs with nakedness through categories such as “racy” 
(from Google Cloud Vision) and “pornographic” conceals 
their lack of contextual comprehension through a numerical 
result, thus normalizing problematic categories. Bowker and 
Star (2000: 35) in their classic book Sorting Things Out, dis-
cuss classification as a way of seeing the world and naming 
it. They are interested in “how basic categories and standards 
are formed, and how they are formed as ordinary,” to exam-
ine the power these systems embody. They state:

The advantaged are those whose place in a set of classi-
fication systems is a powerful one and for whom power-
ful sets of classifications of knowledge appear natural. 
For these people, the infrastructures that together sup-
port and construct their identities operate particularly 
smoothly (though never fully so). For others, the fitting 
process of being able to use the infrastructures takes a 
terrible toll. To “act naturally,” they have to reclassify 
and be reclassified socially (2000: 225).

AI’s categories have a lot of power, as they become 
embedded in our everyday world, as previously discussed by 
many other scholars (see Noble 2018; Eubanks 2018; O’Neill 
2016; D’Ignazio and Klein 2020; Crawford 2018). This cer-
tainly happens as AI systems become carelessly incorporated 
into public services, such as policing (Brayne 2017), but also 
more subtly through image recognition in our day-to-day life. 
It is imperative to recognize that categories such as racy, 
pornographic, etc. do not engage with any context or mean-
ing behind images, and thus can ever only be of partial use 
to really engaging with visual culture. But even when the 
machine is not sure, it generates results; leaving no possibil-
ity of not knowing, contrary to art. As discussed by Amoore 
(2019), by transforming doubt into weighted probabilities, a 
number between 0 and 1, “the single output of the machine 
learning algorithm is rendered as a decision placed beyond 
doubt; a risk score or target that is to be actioned.” This epis-
temology confounds correlation with causation: formal simi-
larities are the way to understanding, and if something looks 
like something else, it must be that. Jesus Christ being read as 
a man (or even a woman) shows exactly how the surface-level 
reading does not engage with a more embodied, cultural, and 
contextual reading of reality. This is a crucial way of showing 
that AI represents only one of the many ways of knowing and 
working through the world.

5 � AIs and the exploitation of labor 
in technological capitalism

MORESCHI: On the last night of work, I asked Gabriel an 
essential question: What, in this process, was not machine, 
but human? That’s when he told me about Turkers. People 

who are paid meager cents of a dollar to categorize images 
in systems such as ImageNet. We wanted to talk to them 
to understand how they made their choices. We requested 
a survey of the collection’s images, sent to them without 
any additional information. We asked them to describe the 
images and whether or not they considered those images to 
be art (Fig. 22). 

In our experiment with these “lower levels” of the AI 
stack—the Turkers—we were able to get a glimpse of how 
datasets such as ImageNet are built. Although AI systems are 
branded as an external, non-human, objective, “view from 
nowhere” (Haraway 1988), as its mathematical and statisti-
cal analysis claims its way of understanding the world as the 
only possible way (rationalization), they have their origins 
in these workers, spread out throughout the world (75% in 
the US, 16% in India, and many other countries in a lesser 
degree; see Difallah et al. 2018), who are being paid meager 
salaries. It is imperative to make clear that AI’s backbone is 
constituted by human thought, labor and clicks on a screen: 
these systems are built on “workers’ invisibility” (Irani and 
Silberman 2013). Platforms such as Amazon Mechanical 
Turk “commercialize the thesis that humans are important 
cogs in computational machines” (Finn 2017) and treat them 
as such.

More than invisible, Gray and Suri (2019) define the work 
of Turkers as “ghost work” in their book-long review of on-
demand digital work performed by this vast, invisible human 
labor force. This term highlights the central irony of how 
on-demand work is prevalent today, hidden in the shadows 
of so-called artificial intelligence. It is this “ghost” aspect 
that makes it so that we often cannot see what is behind 
the scenes, hiding AI’s materiality (see Crawford and Joler 
2018). As Gray and Suri explain, “Mturk workers are the 
AI revolution’s unsung heroes. (…) Humans trained an AI 
only to have the AI ultimately take over the task entirely” 
(2019: 8).

When asked to describe images of artworks from the col-
lection, Turkers presented quick, direct, and not particularly 
analytical readings of the visual material. As they attempt to 
complete the HIT (Human Intelligence Task) in the shortest 
time possible, which, in this case, ended up being just over 
a couple of minutes, they engage with the image with a par-
ticular distance, not looking for or relating it to any context 
that is not offered, or even from their own perspective. The 
descriptions attempt to maintain a detachment and objectiv-
ity. Their answer to what they think of the artwork is also 
quick and direct, exposing the very brief relation with the 
image: it is “bland”, “sexual,” “ugly,” “classy,” or something 
else.

The “artificial artificial intelligence,” as Turkers are 
described by Amazon (Finn 2017), give many of the same 
responses as we have seen with the AIs that were previously 
analyzed: they seem to treat things based on what they look 
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like, a “first-impression,” made in the haste of their race 
for generating enough income. What is essential in these 
responses, though, is that Turkers “at the heart of this system 
not only take on the challenge of endless micro-tasks manag-
ing ambiguity—they also take on the affective work of act-
ing as a human element inside of a computational applica-
tion” (Finn 2017). By this, it is meant that HITs expect from 
Turkers “a response that is both mechanically reliable and 
reliably human… constantly negotiating between computa-
tional and cultural regimes of meaning.” In the end, these 
descriptions and opinions about artworks may sound like 
they are coming from the AIs, as they are made manifest 
through a direct, objective, distant format that fits into the 

expected computational tone, but they are generated by a 
real human seeing, their human mind, culture, idiosyncra-
sies, and context.

“Artificial artificial intelligence” is only valued because 
it is intrinsically different from artificial intelligence. 
Unlike AI, Turkers are humans: they have feelings, opin-
ions, agency, families, and bills to pay. Although directly 
participating in a precarious, neoliberal, pro-employer 
marketplace, where they have very little say or protection, 
and are identified as an alphanumeric code, their responses 
must be understood as human: they come from a different 
position of power than that of AI, a position which must 
be understood critically. When Irani and Silberman (2013) 

Fig. 22   Painting Liggend Naakt (1931), by Jan Sluijters, as described by five different Turkers. One of them thinks it is “very sexual,” while 
another says “the woman is ugly.” All of them take just over 2 min to complete their task. They all agree: the image is Art

Fig. 23   A scene from Recod-
ing Art (a short film based on 
this research) wherein Turkers 
analyze works of art. The film 
premiered at IDFA Competition 
for Short Documentary 2019, 
Amsterdam
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asked Turkers what their major concerns were with the 
platform, workers pointed to Amazon and how it does not 
really care about them, exposing a clear power imbalance 
where the needs of workers are not prioritized. As put by 
one of their Turker respondents, “I don’t care about the 
penny I didn’t earn for knowing the difference between 
an apple and a giraffe, but I’m angry that MT will take 
requester’s money but not manage, oversee, or mediate the 
problems and injustices on their site.” (2013: 615) The dif-
ference between an apple and a giraffe, between an artwork 
or something else, when analyzed by Turkers, and later by 
the AIs that are built from their labor, must all be under-
stood as part of this larger system of worker invisibility, 
low pay, lack of rights, instability, and Amazon’s political 
economy of monopoly.

PEREIRA: Thinking about non-specialists in AI, we 
found it important to show the human labor behind these 
machines, as a way of raising awareness of what AI actu-
ally is. In the short video we made (Fig. 23), we tried to 
use an accessible language to show this infrastructure, 
explain the role of Turkers, and use their own voices to 
read descriptions they would give to images of artworks, 
thus foregrounding their contribution to AI systems. At the 
same time, we denaturalize artificial intelligences as both 
AI and human Turker readings are shown to have similari-
ties (as well as differences).

This process not only demonstrated the importance of 
bringing these discussions of critical infrastructure to soci-
ety in general, but also the importance of creating inter-
disciplinary research teams that can operate from different 
backgrounds and perspectives. In this moment where image 
recognition algorithms become embedded across society 
through social media platforms, as well as through the use 
of technology by museums and archives, we must be atten-
tive as to how these algorithms operate, what they obfus-
cate, and which kinds of invisible labor they rely on. And, 
more radically, we must be concerned with the increasing 
pervasiveness of the logic of the algorithm, the “if–then” 
causal understanding of categories that confuse seeing with 
understanding, correlation and causation, nudity and por-
nography. As described by Simanowski (2016: 55), “If rea-
son is reduced to formal logic, then any discussion becomes 
unnecessary because if–then relations do not leave any room 
for the ‘but’ or the ‘nevertheless,’ nor for ambivalence, irony, 
or skepticism; algorithms are indifferent to context, delegat-
ing decisions to predetermined principles.”

Our experiment with denaturalizing AI through art points 
exactly to this intrinsic instability of the “artificial” in “arti-
ficial intelligence”: the lack of seeing more than what things 
are. The artistic space, with its openness to different logics 
and “ways of seeing,” serves as fertile ground for exposing 
AI’s binary, capitalist, and value-laden gaze. At the same 
time, however, it also provokes us to reconsider, to be more 

creative and explorative. What are we really seeing in an 
artwork? And how could we ever be so sure?

6 � Conclusion

The process of seeing paintings, or seeing anything 
else, is less spontaneous and natural than we tend to 
believe. A large part of seeing depends upon habit and 
convention (Berger 2008).

We have explained in this article how commercially 
available AIs can work, through their glitches, to level and 
reimagine artworks, giving us a fresh set of eyes for under-
standing art. At the same time, these very glitches can serve 
as a peek down the stack of ever-present algorithmic image 
recognition systems, helping us speculate on their inner 
workings and critique their limited perspectives.

Art is historically formed through internal deconstruc-
tions, some of which become paradigmatic like Duchamp’s 
Fountain. These processes of self-critique and analysis are 
essential for the field and its relation to the world, as notably 
proposed by institutional critique. The intermingling of art 
and AI described in this article continues this self-critical 
artistic practice in a time of “ways of machine seeing.” Like-
wise, this research also aims at incorporating the creative 
practices from the artistic world into the AI field, provoking 
it to be more (self-)critical and experimental.

We present our research in this article, alongside differ-
ent artistic outputs, as a way of experimenting with research 
methodologies and interdisciplinary positions. This research 
was also presented at the museum whose archive we ana-
lyzed, creating a crack for reflexivity within an elitist, codi-
fied space. This can be seen as a contribution to art edu-
cation in museums: we propose that people, as exhibition 
visitors, be invited to experiment with the distanced look of 
AI as a way of critically thinking about the art system. We 
hope such practices help to create new relationships, open-
ings, and connections for those who are non-specialists to 
explore art critically. Instead of museums using commer-
cially available AI from Big Tech in an uncritical way, why 
not make more radical and creative uses of technology?

As AI continues to expand, change and “improve,” we 
understand these results in their limitations: they are a snap-
shot of how they worked when we tested them. As more and 
more data are produced in our everyday lives and interac-
tions, and as companies continually train their models, it 
also continually changes how art is read. In our experience, 
throughout our research, we have seen both minor and major 
changes, which we think point to the simultaneously produc-
tive and critical instability of AI and art.
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Abstract
Digitised collections and born digital items, such as photos or video, exist beyond the scale of human viewing. New methods 
are required to read, understand and work with the data, resulting in computation becoming increasingly central to both 
creation of a cultural reality and as the interpretative tool and practice. If artists’ look, then how might a machine see as 
a critical tool? Developing work on computational culture and the Next Rembrandt project as unstable digital object, this 
paper considers how the medium affects computational critical practice. Drawing on Heidegger’s view of causality and 
Derrida’s grammatology, this paper explores how the medium acts a locus between the human and machine readings and 
the remediations that occur within the reading. This is developed as through a reading of how the interface translates the 
signs and symbols and how this affects the reading. By reconsidering the critical assemblage and using it to think with, the 
human and the machine are seen as critical partners. Attending to the materialities of the reading through a playful approach 
that decentres potential meaning encourages us to glimpse beneath the surface and gestures towards a critical practice as 
understanding both computation and its materiality.

Keywords  Materiality · Causality · Digital humanities · Computation · Interface

1  Introduction

Digitised collections and born digital items, such as photos 
or video, exist beyond the scale of human viewing. New 
methods are required to read, understand and work with the 
data, resulting in computation becoming increasingly central 
to both creation of a cultural reality and as the interpretative 
tool and practice. If artists look, then how might a machine 
see as a critical tool? Developing work on computational 
culture and the unstable digital object, my aim in this paper 
is to consider how the role of the medium affects computa-
tional critical practice. Situated in a critical Digital Humani-
ties (Dobson 2018; Berry and Fagerjord 2016) perspective, 
this paper considers form and how this affects materiality. 
Heidegger’s (2012) consideration of causality to consider 
what computational criticism reveals about itself. Consider-
ing the computer as the first metamedium (Manovich 2013) 

allows us to question the fourth causality, that of the maker, 
and how this affects cognitive practice through interfaces.

This paper develops a previous consideration of the com-
putational object (Emsley 2019) as a digital pharmakon, an 
object that is both poison and medicine. This is particularly 
useful when thinking of the Next Rembrandt (2016) and the 
superficiality of the image’s surface, hiding its constructed 
nature in plain sight. The project is a machine-generated 
image based on a reading of digitised Rembrandt portraits 
from museums and collections and is created by TU Delft, 
J. Walter Thompson (JWT) Amsterdam, Mauritshuis, ING 
and Microsoft. The project was intended to raise questions 
about the power of data for Microsoft’s customers and as 
a playful way of demonstrating ING’s support for Dutch 
cultural institutions, working in tandem with other Dutch 
institutions. Versions of the image are available digitally on 
the project’s website and it was printed using a 3-dimen-
sional printer. The latter material form echoes painting but 
is manufactured from ink and a computational object.

Its surface might provide an appealing form, either aes-
thetically or epistemically, whilst simultaneously hiding 
issues and ideologies in its structures. Code can embed an 
argument deep within its structures and through its manner 
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of assembly, one that requires software and code studies 
skills to begin to read and interpret. This assumes that the 
code or the training data are available to be read. The image 
output may require a supporting human reading, such as 
gender and class, and a computational one. Yet the surface 
is perhaps too perfect and requires readings of its substrate 
and a material understanding of the medium of the creators 
and their role. When studying an image using digital meth-
ods, we use a machine to see and remediate it from bits to 
models and grammars. These structures both create, and are 
created by, the interface effect (Galloway 2012) resulting in 
a grammatology (Derrida 2016a). I want to think about how 
the techne is created through a series of patterns that gener-
ate patterns, moving from an abstract concept to a concrete 
epistemic object.

By reconsidering the critical assemblage and using it 
to think with, we see the human and the machine as criti-
cal partners. Attending to the materialities of the reading 
through a playful approach that decentres potential meaning 
encourages us to glimpse beneath the surface. The reading is 
considered within a wider economy but to begin recognising 
those constraints and that theory might be embedded in tools 
that are deployed as critical practice. In reflective moment, 
we might consider our own positions as consumers but also 
as producers and to think about how we can be critical of 
critical tools and consider that they may have their own posi-
tions built into their assemblages. From this, I contend that 
the condition of the post-digital underpins the analytical pro-
cess and reading computational culture that considers both 
human and machines in the process.

1.1 � Situating the computational in culture

Situating potential readings as both computational and 
human reveals a potential issue. The tools for machine see-
ing are embedded in the same social and cultural economy as 
the object under study. These issues present a case for learn-
ing how to engage with and understand how the discourses 
merge and represent a cultural reality.

A consideration of the way the cultural object is created 
presents challenges in reading them. The consideration that 
the work of art is created within a series of codes (Greenblatt 
1984) can be useful extended to consider the code itself as 
both containing and presenting code of culture. In learning 
how to read them, Anderson and Pold’s (2014) considera-
tions of writing being dangerous are echoed as they may 
contain hidden purposes from their creation. Viewing the 
Next Rembrandt as a piece of art provokes not only ques-
tions about the artistic work but also the purposes in cre-
ating it. How might machines engage with Rembrandt’s 
own art to create a new image? Given that this image uses 
computational material, how might it be read and with what 
tools? Manovich’s conception that computers are the first 

metamedium, that the medium can be used to build other 
mediums and tools, raises a potential issue in the notion in 
the act of inscribing the data which I will attend to through 
Derrida’s grammatology. It provokes questions to what is 
being written and how is it being translated whilst making 
the object.

Having created this epistemic object, we need to reflect 
on what the new ways of seeing might bring to culture and 
computational culture more widely. While the object cannot 
be removed from the conditions that creates the object, we 
can take a critical view of these condition to understand its 
effects on culture (Liu 2012). Acknowledging the role of the 
computation goes to the making the role of criticism less 
incomplete and to begin reconsidering the way that compu-
tation creates a series of objects as a grammatology. Having 
identified this gap, a change of tack is required to begin a 
closer reading of the digital object.

2 � Creating a digital object

The Next Rembrandt and critical approaches to it are both 
pharmakon and designed objects. What I want to consider is 
this portrait as digital object derived from a distant reading 
of the portraits and, in particular, the agential workflows 
that enable it to exist. The painting’s very name suggests a 
new Rembrandt, created 350 years after his death. It may be 
derived from Rembrandt’s work but clearly cannot be by him 
or his school. Its real creators are not identifiable from the 
name but requires some reading of the secondary material. 
The name’s provocation suggests that viewers may be wary 
of the object’s superficiality.

The image’s existence as a digital object suggests a func-
tional transformation from images collected from different 
museums to becoming a digitised collection in storage. This 
representation is enabled through the function of digitisation 
and the workflows that it enables, suggesting that this data 
is the final form that emanates from a series of software 
processes and workflows. Each of these workflows suggest 
organisational and technological influences and patterns to 
make the work possible.

This digitisation of a collection of physical artworks into 
a digital object suggests a notion of art or culture as a poten-
tial computational form. A painting becomes a mathemati-
cal matrix where the colours and their positions create an 
alternate materiality. This transposition leads to a loss of 
information and a forgetfulness (Ellul 1965) as they con-
vert the painting into a numeric form and language. The 
parts that cannot be digitised are discarded. The images 
require digitisation so that the final portrait could be cre-
ated. It can only read the data in a way that the thing to be 
read supports. A critically meaningful response may come 
from an intentional, playful challenge but this still requires 
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an understanding of the material (Berry 2014). To create a 
reading, one must develop a tool to create the machine rep-
resentation and one that is written in the medium being read, 
so requiring us to consider how and what is being written 
and read with a machine.

The final image was created using facial recreation 
algorithms to determine the patterns that bring the image 
together. The data was derived from the digital reading using 
facial recognition algorithms. Using a model, the cultural 
images are converted into a digital format as paint becomes 
a pixel, representing a colour using a standard and a posi-
tion. The mapping of a human epistemic object to a techni-
cal epistemic object requires a translation. Not only is one 
conceptual pattern being translated from a human concern, 
but the form is also translated into a technical one; one that 
can see within the generated numeric symbols. A human 
reading of the eyes in a portrait may be computationally 
read as a measurement of the varying colours in the pixels 
of an eye, its circumference and the distance between the two 
eye features. Within the context of the training data given 
to it, the reading may understand that the eyes are typically 
placed either side of the nose feature and has a mathemati-
cal relationship to other salient features. The salient features 
might be derived from the same training set or assumptions 
made. The computational process views the picture through 
technical relationships that are reliant on the underlying digi-
tal object. The Next Rembrandt team used 6000 points to 
classify the features (Dutch Digital Design 2018) to create 
a typical Rembrandt face from the data, having analysed 
specific features such as ears, nose and mouth. In part, this 
moves from the concrete form of the face to an abstract 
mathematical model of one. Converted into a model, the 
idea of face can be read at scale.

The abstraction allows the machine to create the pattern 
of the face. At this moment, the use of these features is a 
form of inference. The facial creation draws on the patterns 
identified facial recognition to guess at how the face might 
look before the proportions, also machine calculated, were 
applied. This concrete pattern for the machine is used to 
create an abstract concept of a face that is represented as a 
picture. In the act of the computational becoming a maker, 
the created symbols become signifiers and are interpreted 
and re-presented. The face exists as a numeric model in 
a space made by the pixels but it only becomes viewable 
once the pixels are converted from numbers to colours in a 
position. The viewable image is represented through a file 
which can be printed out digitally or as a 3-dimensional 
printed image. Rather than leave the image in 2-dimensions, 
a height model was created to simulate the paint layers for 
the printed object. The act of printing raises questions about 
the remediation of the digital image into a painted one and 
the embedded interpretations that might be interpreted by 
viewers. This version of the digital object is not one that 

enables a potential feedback loop into the underlying data 
but imposes itself. The paint simulation echoes the original 
medium but cannot be of it.

Our ability to read the pattern is affected by the use of a 
human set of experts who helped determine the final image 
and the group who guided the final form. A human team 
determined that the image would be a male within demo-
graphics. Whilst the machine is able to determine light and 
shape as patterns and associate these with features, even 
testing them by writing unexpected wrinkles into the eyes, 
it is reading the computational object. While it has its uses, 
the pattern has limitations and are challenging to learn to 
read. One way of reading patterns is that they identify ways 
of writing software or interaction design as a learned way 
of working with the machine. As machines learn from an 
abstract pattern, it then perhaps considers its own pattern 
to create and write. These patterns then create a new sense 
of interaction but one at a cognitive practice. By recognis-
ing the difference between the makers behind the provided 
responses, we might begin to see that the sense of self in this 
work is made by both humans and machines. Unpicking this 
process provides a space for reflection and interpretation to 
engage with the object.

2.1 � Reading with the machine

Instead of being fixed in the manner of dried paint or a 
printed text, data points and models can be manipulated and 
queried. This form of data enables the grammatology of the 
digital model through its existence, but it also erases itself 
and its construction in the representation. We might begin 
to reveal this form through using software to read the image 
in and then translate it between formats, to query it or to 
write in errors and glitch it. These processes use patterns 
of concepts to approach the forgotten materiality though, 
in some cases, the operation may be quite easy. An image 
might have a simple file conversion from a JPG to a PNG 
format than can be achieved either through a script or a 
desktop programme, such as Preview on an Apple machine. 
These conversions abstract the protocol and material trans-
formation models from the user to change the form. The 
very ability to be able to alter the underlying structure with 
little apparent changes to the final form suggests that there 
is a remediation of these forms to show the image. Although 
these changes hint at the existence of an object, it still does 
not allow it to be read. It suggests a superficial model that 
is already hiding the software processes that brought it into 
existence. The image is partially revealed as a shell. Before 
turning to its creation, I briefly consider critical approaches 
through glitch studies.

Glitching (Menkman 2011) can be seen as a critical mate-
rial approach to deconstructing form. If the glitch is deliber-
ate, rather than exploiting an unforeseen situation, then it 
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requires an understanding of the potential for the symbol of 
the interface and might be seen as a pattern. In its playful-
ness, the application of the glitch reveals the remediating 
model though it contains its own understandings of the sym-
bols and what they might signify. It is a critical reading of 
the computational surface that deconstructs the model and 
its remediations.

The Rembrandt image relies on a close reading of 346 
paintings to create the units of distance as a ‘form of knowl-
edge’ (Moretti 2007). This scale of reading may be beyond 
the human ability to read these in a scholarly fashion. Where 
this project created one final image as their output, Manovich 
(2012) cultural analytics project on Manga scanlation pages 
points to different ways of reading. Using scans of Manga 
pages, tagged by a community, the project used digital image 
processing to create a computational reading. Using the 
numeric forms of the colours to extract features based on 
them, they were able to take a quantitative approach to the 
pages. The resulting data is shown on a 2-dimensional graph, 
such as a scatterplot or image plot, to show the new form of 
relationship. Where Next Rembrandt focuses on human fea-
tures to extract through computational patterns, the Manga 
project uses the computational data to explore relationships 
between pages using the numerical representation of colour 
and how the machine creates it in the file format.

Using visualisation as a descriptive system (Manovich 
2012), the project uses the medium as metamedium to com-
municate what the critical tool is discovering. Computation 
is being used as a tool to translate a question into a pattern 
search and then to build its own response from the same 
medium. Although visualisation is not limited to machines, 
these of it here makes the computational reading sensible 
to humans. The type of visualisation affects this through its 
layout model and how the data points are constructed. Where 
Next Rembrandt falls more into an art historical recreation 
of cultural objects, the Manga project presents an analysis 
of the project’s underlying data. Yet without knowledge of 
the underlying data and processes, it is hard to read the scat-
terplot and appreciate the arguments involved in it. One has 
to learn the language of graphs and visualisation to begin 
questioning and reading them.

Echoing the relationship between recognition and crea-
tion, the question about the maker—machine or human—is 
raised. The computational tools work with existing media, 
such as painting and print, once they are digitised. Menk-
man’s glitching is another expression of this where the com-
putational materiality enables tools to work with it and to 
alter it, but it is still the artist that creates the glitch. Within 
the other two projects, the computational tool is more appar-
ent as a joint maker with humans. The assemblage becomes 
the site of theorising, either through testing the materiality 
or using it to read data. Using the patterns within the com-
putational object in different ways to an intended purpose, 

the tools write an epistemic object that it is created as a 
visualisation to make it sensible for a human. The machine 
enables the reading to take place through the application 
of a mathematical model as the data is not really human 
readable and it can provide a reading. This must then be 
interpreted to consider what and how the response is cre-
ated. It points towards a material issue with computational 
techniques where the reading is constructed from the same 
medium as the subject under test. It also demands a com-
puter literacy to either code or to understand the response. 
As the computational object is approached, it hides itself 
behind the projected form as an entity derived from the form 
that is requested either through the purposes, such as a pro-
jection of economic or technical power through culture, or 
the critical question posed about it.

2.2 � Patterns as forms

Before considering the issue of reading and writing, a 
consideration of patterns as forms that both mould and 
are moulded from the materiality of the digital is useful. 
I want to suggest here that the pattern is a way of thinking 
as well as affecting the material, demanding a considera-
tion of the materiality of the pharmakon to begin to read 
it. The word pattern needs a consideration here, as both a 
thing that is found as well as something that is desired to be 
found. I think that it is useful to consider these in the light 
of the mix of functionality and representation that Ander-
son and Pold (2014) argue for but to consider it in the light 
of using machine driven tools. Patterns can be seen as a 
generative act (Derrida 2016a) or, in the sense of dark pat-
terns, to create a misreading (Dieter 2015). Using a pattern, 
such as facial recognition, a machine learning algorithm 
uses a model against the data structures. In many ways, the 
machine can read the patterns more closely than a human to 
a generate a new model, or a sign. Knowing of these models 
and how they are constructed sets up a series of links that 
tie in the sets of models. These links might be considered as 
ways of generating meaning and as a way to divert attention 
from questions of purpose. By trying to identify the patterns 
used, we can begin to approach the concept, the form, of 
the thing that is to be made. As the abstract concept of the 
form, such as a theory or pattern, combined with materiality 
towards the presented object. A consequence of the transpo-
sition through models is the creation of a digital double of 
the original object.

In digitisation, the location of memory and understand-
ing is moved from the human to the computational as the 
reading is only made possible through the translation of the 
cultural into a technical form. Rembrandt’s portraits had 
to be scanned and digitised for the algorithms to complete 
their viewings, yet the digital is not aware of the portrait’s 
life before the scanning process. It is only when paint is 
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transposed into pixels that their computational use is made 
possible and that a new critical reading is required to under-
stand the technical and social means of production of the 
final form. As the material is fundamentally changed, the 
digital must make a copy of the image rather than translate 
it. A successful reading of the doubling understands this 
materiality and the languages and logics that are required 
to interact with it (Stiegler 2019). These logics are not only 
computational to understand the new material form but also 
cultural to understand the remediated object.

When a new version of the reading is begun, existing 
results and data may be irrecoverably lost. It becomes a 
“redoubling” (2019), where Stiegler points to the forget-
fulness or lack of history in the reading. Unless a pattern 
is used to act as a form of storage, either of the results or 
the provided parametric model, the reading loses its own 
history and context. This redoubling continues the move to 
the technical through allowing it to create its own present 
and historical realities. The tradition of comparing readings 
of the same object or artist requires access to these read-
ings, not only in the final paper form but to also understand 
the forms used in the reading. Although this points to the 
open knowledge and data discourses, this paper’s concern 
is the way that the post-digital reading creates a gramma-
tology within the digital object. Each reading becomes a 
micro epochal moment, an interruption that becomes a new 
moment in time, through the presentation of itself but forces 
a recognition of this use of time as model. Such forgetful 
re-presentations may alter the perceived grammatology and 
patterns used in the reading.

Critical computational methods are created to under-
stand this computational double. Having explored the sur-
face understanding of the translations between human and 
machine form to create the conditions for a reading, I want 
to turn inwards to the computational to consider the next 
challenge. The form that is being considered is remediated 
through the interface, a meeting point of two components, 
where the individual parts translate the model or data given 
to them. Processed in order, the concept is continually reme-
diated through a series of models, either as data structures 
or implemented algorithms, to create a pattern matching 
machine. These patterns can either read a pattern as it is or 
statistically infer it.

As such, we might read the Next Rembrandt as a series 
of statistical inferences based on existing historical data 
that reveals the hidden computational judgements. The 
inferences are judgements based on existing knowledge and 
readings. Unlike a human critic who may raise some of these 
in the final output or leave enough traces for the reader to 
infer the judgement, the machine uses a logic to make an 
inference based on a set of models. We may raise a different 
consideration raises a different question: who is the maker, 
the entity that causes this to come into being? In Heidegger’s 

example, the chalice has one maker, the silversmith, who 
crafts the metal into the chalice (2012). The digital object 
may have at least two makers: the computational assemblage 
that receives and creates the object and a person, or team, 
who design the assemblage. The designer or coder creates 
the possibilities for the computational when the workflow 
is designed and built. This object may then be remade to 
read it critically.

The person who uses the interface, either through code, 
graphics or haptics, creates a conception of the desired form 
through the provided options. These may be through search 
terms, filters of percentages (such as network closeness) or a 
representational model such as a sonic or visual way of map-
ping the data. The computational assemblage reads these 
through interfaces that translate the concept into a techni-
cal form, which is then remade and mapped to the underly-
ing data structures to create the computational object to be 
read. The human is an original maker who creates the initial 
form to be found and either provides the options within an 
interface or constructs a machine to process the form. The 
constructed machine accepts the input and creates the object 
according to the logics given to it by the builder and the 
data. Humans and machines become cognitive extensions of 
each other. The underlying machine processes are required 
to operationalise the theoretical concept and concretise the 
model as error or representation, depending on its fit to the 
interface. A cultural object is rendered artificial for the tech-
nical process. Simultaneously, the machine requires a model 
to begin the process of concretization from an abstract con-
cept of a system, a scientific image (Sellars 1962) or repre-
sentation (Simondon 2017), and the cultural one that might 
be considered as a natural object. The artificial object that 
is accepted is re-presented as a natural object. The mate-
riality that is shown to be interpreted is derived from the 
concretisation that might not reach the abstract image that 
either party has in mind. It is the result of an imperfect set 
of transpositions and translations but it is embedded in the 
creation of culture.

The critical reading provided by the critical user as form 
becomes a negotiation with the underlying data. Once the 
transposed double is made, it is read by machines to be pre-
sented as seeing through a series of patterns that standard-
ise the natural, cultural object behind the surface. As the 
cultural computational form is queried, it may be altered 
into desired response. It is a made object and there are mak-
ers that become revealed when the causality is questioned, 
revealing the technology involved. Having considered the 
forms and makers who create it, the materiality’s form 
can be considered as being created and altered through 
grammatology.

The digital object is created from the reading and writ-
ing processes that convert the original computational form 
from digitisation into the relevant models. An effect of the 
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concretisation is the transposition and translation of concepts 
through a series of languages. This points to the medium as 
a site of transcoding.

The change of medium enables the processing of the data, 
from the finding of patterns to reformatting and presenta-
tion, but demands a change in the way that it is written. The 
machine reading, hiding itself as a model, uses interfaces to 
mediate the translation of the cultural data between the soft-
ware components. The construction of the interface defines 
what signifiers it can accept and so what symbols that will 
be created. Any deviation from these definitions suggest an 
(un)intended break. I use this to point to the materiality of 
the symbols and the role of interfaces in computational read-
ing and writing to create the digital object. The interfaces 
abstract the role of the digital in interpreting the given signs 
through the divergent ways that they are written as code and 
as computer language, which itself maybe general purpose 
or a domain specific. The code written to determine aspects 
of the data, such as dominant colours or features, uses a 
numeric way of creating the pattern that is defined by what 
the underlying language allows through its own grammar. 
Read these against computational forms before presenting 
them as a model, either as a table or a colour, the pattern 
requires translations of the underlying data to be able to 
access the code to read it.

The surface image of the Next Rembrandt is derived from 
a remediated pattern used in a file format that is created by 
a reading. This format is derived from algorithmic patterns 
using digitised data through a series of patterns. Reading 
and considering these patterns relies on a different pattern 
language: networking. The series of services, switches and 
routers to allow the computation and data to meet is hid-
den but should be understood. Given the example that has 
been used of the Next Rembrandt, this network might be 
considered through the physical network of museums and 
galleries who has allowed the pictures to be digitised. The 
physical form can be read as an artistic work but it hides the 
nature of computation required in its surface. Using a series 
of measurements, the painting has a series of raised areas 
where the image may be thicker, either by choice, such as 
overpainting, or accident, such as a drop. In this act, the con-
crete behaviour of the artist might be read as the algorithmic 
imagination of a study of paint surfaces.

Building on the concept of the location of reading and 
writing, the symbols are written and developed through 
human and digital interactions. Having considered this 
through the medium, it is useful to think of this through 
deconstruction. There is a gap between the signifier and the 
symbol that creates the meaning but can also through the 
different types of creation machine that creates a sense of 
the pharmakon. The realisation of the poison and remedy 
is revealed in this reading. The image that is constructed 
is a visual representation that might use colour, which 

potentially has a significance that can be read into it. Made 
from either a pixel or collection of pixels as a numeric entity 
that was derived from an internal process, the material form 
of a colour is altered and represented as numeric symbol 
on the screen but the human symbolic reading is removed. 
The human reading is reliant on the machine reading and 
the symbols that it creates and has to be recreated by the 
viewer. The symbol’s context might be altered through a 
change in the underlying computational model as the com-
putation returns the form that it has gained from its reading 
of the data.

A deconstructionist reading here that can reveal the pro-
cesses where patterns are read and written. This has the 
consequence of using the underlying computational models 
as texts to be read and interpreted. As part of différance, 
Derrida (2016b) uses the concept of play as a deliberate 
destabilising of meaning can be used to consider the way 
that meaning is being constructed. Engaging with the lan-
guages and structures to understand how they are written 
and read through iteracy (Berry 2014) to view how the data 
becomes an image or a graph. I see the act of interrogating 
the symbols and forms through the interface objects as part 
of computational thinking to understand how the code reads 
and writes. As such, it becomes possible to consider how the 
original images are constituted as a new cultural object using 
the material nature of the computational object. Rather than 
seeing culture as material object or text that can be rewrit-
ten, we might approach the role of the medium and techné 
in the process of a creating a cultural and epistemic object.

3 � Conclusion

Computational culture is approached in this paper through 
questions of causality and grammatology to engage with the 
materiality. A computational image, created from a reading 
of transposed images, is used as a way of understanding the 
nature of the computational to make the image through pat-
terns and models as well as being constructed as a model to 
find models. I contend that machines seeing can be used to 
augment human seeing as a critical act but that it requires 
a critical reading not only of the material but the tool that 
creates it.

In the act of seeing culture through a computational lens, 
we need to understand how the medium affects the material. 
I build on the idea of a post-digital criticism through con-
sidering the patterns used in tools and how this affects the 
grammatology. Although we might not see the underlying 
computational object, approaching it using critical tools and 
destabilising the presented form provides critical insights 
into how the cultural text is being actively created. Yet we 
need to also contextualise the object within the wider role of 
not just the techniques but also from the entities who have 
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caused it to be constructed to consider why the tools have 
seen the way that they might. Questions of causality and 
grammatology enable the reader to understand the techne 
that underpins the cultural image as epistemic object.
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Abstract
Algorithmic vision, the computational process of making meaning from digital images or visual information, has changed 
the relationship between the image and the human subject. In this paper, I explicate on the role of algorithmic vision as a 
technique of algorithmic governance, the organization of a population by algorithmic means. With its roots in the United 
States post-war cybernetic sciences, the ontological status of the computational image undergoes a shift, giving way to the 
hegemonic use of automated facial recognition technologies towards predatory policing and profiling practices. By way of 
example, I argue that algorithmic vision reconfigures the philosophical links between vision, image, and truth, paradigmati-
cally changing the way a human subject is represented through imagistic data. With algorithmic vision, the relationship 
between subject and representation challenges the humanistic discourse around images, calling for a critical displacement of 
the human subject from the center of an analysis of how computational images make meaning. I will explore the relationship 
between the operative image, the image that acts but is not seen by human eyes, and what Louise Amoore calls an “emergent 
subject,” a subject that is made visible through algorithmic techniques (2013). Algorithmic vision reveals subjects to power 
in a mode that requires a new approach towards analyzing the entanglement and invisiblization of the human in automated 
decision-making systems.

Keywords  Algorithmic vision · Big data · Operational image · Machine learning · Algorithms

Portraiture, the act of making a portrait of one’s self or 
someone else, has a multifaceted meaning in an era of mass 
social media amidst a swell of digital images that ubiqui-
tously flood our everyday sensorium. A portrait, especially 
a self-portrait, a representation of the self, has relations to 
the term “profile” in its colloquial use. I take a photo of my 
face, I post it to my Instagram story. I am adding to my pro-
file, myself as data, an outline of myself sketched through 
a series of loosely connected points. My portrait dissolves 
into an abstract contour composed from the lines between 
likes, clicks, status updates, my depiction in datafied form. 
In contemporary discourse, computation has retooled the 
digital image, with the repercussion that images are not rep-
resentational, but have an active capacity to perceive and 
produce new information through 21st-century data analytic 
practices.

1 � Does one have a right to an image of one’s 
face?

I kept coming back to this question last spring when I 
learned about the controversy surrounding a data set created 
by the Duke University Computer Science. DukeMTMC 
(Multi-Target, Multi-Camera), a large-scale database of 
images of students and faculty captured by Duke researchers 
using a university-sanctioned campus surveillance camera 
system in 2014, was previously one of the largest and most 
frequently utilized data sets for video re-identification, a 
process that uses computer vision and artificial intelligence 
to identify and track targeted individuals within live video 
feeds (Ristani et al. 2016).

Duke researchers claim that the project, funded by the 
US Army Research Office and National Science Founda-
tion, was originally intended to improve systems for motion 
detection of objects in video, regardless of “whether [the 
objects] are people, cars, fish or other” (Ristani et al. 2016), 
and was subsequently made available for download on the 
Duke Computer Vision research website (Saticky 2019). The 
data set was recently taken down after it came under fire in 
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April 2019 for ethical and privacy violations following an 
exposé by researcher Adam Harvey that prompted Duke’s 
Institutional Review Board to revisit the terms of the collec-
tion and use of the image data (Harvey and LaPlace 2019). 
Harvey’s research reveals that the data set has been irrevers-
ibly implemented in computer vision, body tracking, and 
facial recognition systems by academic, governmental, and 
military institutions across the globe. Significantly, the data 
set has been traced to research papers published by Chi-
nese AI SaaS companies associated with the surveillance 
techniques used by the Chinese military to target and moni-
tor the activities of Uyghur populations in remote north-
west China (Buckley and Mozur 2019; Harvey and LaPlace 
2019). As Harvey points out, this implementation is aligned 
with the original motivation of the Duke researchers, who 
published a subsequent paper in 2016 titled “Tracking Social 
Groups Within and Across Cameras” (Solera et al. 2016) and 
yet the context makes all the difference.

While this data set is no longer available through official 
Duke affiliated websites, by the time it was taken down it 
had already been cloned into many databases around the 
world. When I learned of this episode, I easily recovered an 
edited version from a publicly linked cloud drive. Scroll-
ing through the data set, which contains images of students 
entering and leaving academic buildings and places of wor-
ship, one might see how this information could easily be 
weaponized to target and discriminate against marked indi-
viduals. In Harvey’s analysis, this is but one example of “an 
egregious prioritization of surveillance technologies over 
individual rights” (2019). As I sifted through thousands of 
blurry images, hardly discernable faces aside from a pair of 
glasses here, a baseball cap there, I wondered whose indi-
vidual rights were actually at stake? To what extent is the 
specificity of the images contained within the DukeMTMC 
data set relevant to their use?

To trace the relation between DukeMTMC’s images and 
its implementation on the other side of the world begets an 
analysis of the algorithmic techniques used to process this 
imagistic information. In rural China, Xi Jinping’s “peo-
ple’s war on terror” implements algorithmic profiling to 
doubly correlate religious extremism with all expressions 
of Uyghur Islam, and all Uyghur Muslims with quantifiable 
biometric characteristics (Sound Vision Foundation 2019). 
Through invasive surveillance practices like the Integrated 
Joint Operations Platform (IJOP) which monitors Wi-Fi, 
CCTV cameras, and government IDs, governmental officials 
have both detained targeted individuals in “re-education” 
centers and submitted them to further biometric profiling to 
form a comprehensive data print of the individual (Buckley 
and Mozur 2019; Human Rights Watch 2019; Cooper 2020). 
This data is then fed back into their system to train machine 
learning algorithms that are designed to target Uyghurs’ 
physiognomy. Drawing together information that ranges 

from “the color of a person’s car, to their height down to 
the precise centimeter” to activities that would otherwise 
be considered lawful, like “not socializing with neighbors”, 
officials use the IJOP to flag individuals deemed high risk to 
prompt further investigation (Human Rights Watch 2019: 2).

In the name of preempting “unsafe actors,” the Chinese 
government has adopted a strategy enforced through tech-
niques of risk—in other words, the Chinese government 
defines the category of risk, and feeds a system data until it 
is trained to automate decision making, crystalizing an ad 
hoc type of governmental intelligence. President Xi’s “sta-
bility maintenance” initiative exemplifies an automated risk 
calculus that takes the entire Uyghur population as a testbed 
for techniques of data extraction (Byler 2019). The logic 
of pattern recognition is found in a 2016 researcher police 
report on the operations of IJOP:

if a person usually only buys 5 kilos of chemical ferti-
lizers, but suddenly [the amount] increased to 15 kilos, 
then we would send the frontline officers… to check its 
use. If there is not a problem [they would] input that 
into the system and lower the alert level (Ningning 
2016, emphasis mine).

Where there is incomplete information on each citizen, 
the IJOP performs a continuous disaggregation and reaggre-
gation of noncausal data, constantly shifting the relations 
until a pattern deemed significant emerges. Here, algorithms 
fracture and fragment a data set, to the extent where it has 
very little to do with its underlying referent. It is recombined 
and projected forward to the effect that a new visualization is 
made to emerge—a diagram of the lines that cut across the 
data set rather than what is contained within.

The Chinese government calls upon knowledge provided 
by data analytic and security companies. These companies 
then can make use of infinite troves of data to form infi-
nite correlations between samples, generating an essentially 
infinite number of proprietary algorithms to sell to govern-
ment and corporate contractors. Among these government-
contracted companies are Chinese AI SaaS SenseTime and 
SenseNets, both of which Harvey linked to the DukeMTMC 
case (Murgia 2019; Harvey and LaPlace 2019). Research-
ers from both companies published a paper that proposes a 
method of training a neural network that uses DukeMTMC 
to perform feature composition analysis on pedestrian 
images taken in crowded or noisy public spaces to overcome 
problems of occlusion—it fills in what cannot be seen by the 
machine eye (Xu et al. 2018). In a sense, the circulation of 
DukeMTMC has enabled the expression of state power that 
acts through something that literally does not exist in the 
collected data set, it fills in a gap. An unknown risk yields 
to the constitution of a data subject.

The paradox around contemporary demands for rights 
to one’s data and ethical regulations around future use of 
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personal information becomes clear when we realize that, 
regarding the DukeMTMC case, we don’t see ourselves 
reflected in the algorithmic system on a personal level. It 
does not index us as individuals. In other words, our images 
break from representation in the sense that they no longer 
mean what they appear to mean, and sometimes don’t even 
appear at all. In the following, I argue that algorithmic vision 
appears in tandem with a paradigmatic shift in the status 
of the technological image itself. Stemming from post-war 
United States cybernetic sciences that led to developments 
in computation, algorithms operationalize images for use 
in systems that appear to function automatically without a 
“human in the loop.” The presumed disappearance of the 
human, I suggest, is a product of a technoscientific discourse 
that produces a veneer of objectivity. In contrast to the full 
automation of human thought and eradication of human 
error, I argue that human experience is fundamental to the 
operations of digital images in systems of algorithmic gov-
ernance that weaponize novel techniques of subjectification. 
This provocation leads to the following—the techniques of 
algorithmic governance today beget a critical analysis that 
brackets simple techno-determinism in favor of understand-
ing how machinic systems constantly reconfigure the human 
subject in question, suggesting the entangled, malleable and 
nonhuman essence of subjectivity.

2 � From image to data: 
a non‑representational paradigm

For Roland Barthes, to have one’s portrait taken is to expe-
rience a micro death, to feel oneself slide from subject to 
object position. When we pose for a portrait, we enter a 
“closed off field of forces,” a closing in of self that at once 
over codes us in a field of representations and affirms us to a 
future viewer. When we look at a photo of a face, we witness 
the conquest of a subject by the apparatus of photography, 
an obfuscation of self undertaken to represent oneself to the 
world (Barthes 1981).

The conquest of the world as a picture is articulated by 
Vilém Flusser in his Towards A Philosophy of Photography 
(2000). The photographic universe, he tells us, is charac-
terized by an inversion in the Cartesian model—concepts 
no longer signify the universe, but rather the universe is 
programmed to signify concepts. The camera, the first appa-
ratus for changing symbolic meanings in the world, “knows 
everything and is able to do everything in a universe that 
was already programmed in advance for this knowledge 
and ability” (2000: 68). The photograph has a future effect, 
it casts a magic spell. It has the ever-developing ability to 
program culture in its image through constraining possibility 
and habituating action.

Enter what Flusser calls the technical image, that illusory 
abstraction that appears to be a direct index of reality but is 
really a meta abstraction of text, which is itself already an 
abstraction of a traditional image. Although they appear to 
touch the real, technical images are ‘encoded’ with concepts 
of the world. They project those concepts back out onto the 
world, inhibiting humans from their capacity to understand 
reality. Here, we are met with the crisis of representation, an 
overabundance of information, and a multiplication of sig-
nification. Our images and texts alike become encoded with 
concepts that are nested far too deep for human interpreta-
tion. Characteristic of the technical image is its ability to 
create information, to create new meaning out of thin air (or 
rather, un-photographed, un-informed nature). This raises 
the ur-question of Flusser’s explication, and a paradox that 
maps onto our contemporary computational regime—if there 
is no deeper meaning underlying cultural existence, how do 
we separate noise from information without slipping into 
mass paranoia?

Although Barthes tells us the slippage of the photograph 
occurs in the failure to distinguish between the thing and 
its representation, how does the digital image complicate 
the status of the thing? The slippery ontology of the digital 
facial image warrants further contemplation in a moment, 
where digital images have gained new significance in the 
operations of global capitalism. Paradoxically, as images 
of faces are amassed in digital form, the face recedes from 
our sight. As we are flooded with news of global terror and 
domestic injustices validated by surveillance technologies 
and predatory commercial practices grounded in data ana-
lytics, we ironically lose touch with the ability to see the 
images that are said to be underneath such surface effects. 
Images become invisible with their absorption into data 
sets—the universe of raw matter through which algorithms 
touch reality. It is in this vanishing act that digital images 
function as one component of algorithmic vision.

To the eye, algorithmic vision appears to operate on an 
ontological plane that breaks from human experience, under-
girded by a regime of digital images that do not represent 
an object or subject through the modes that images have 
been traditionally analyzed in humanistic discourse. To this 
extent, one popular critical response has been to understand 
machine learning systems technically through theoreti-
cally opening the “black box,” a term used to describe their 
opaque and unknown latent operations (Seaver 2017; Paglen 
and Crawford 2019). Alternatively, however, if we are to 
understand algorithmic vision as a process that not only 
abstracts and simulates, but also imbricates human cogni-
tive processes, we might arrive at a different configuration of 
the black box, and some different conclusions around what 
we might do with it.

For Flusser, the black box of photography didn’t so much 
cast aside the human as it crystalized a thinking process, 
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concretizing and ultimately reifying a way of producing 
information—the camera is an apparatus that “is invented to 
simulate specific thought processes” for the sake of extend-
ing the human capacity to generate new information thought 
work (2000: 31). An apparatus is a tool unique to a postin-
dustrial world presumed to be informatically dense. Here, 
the automation of labor undergirds a never-ending combina-
torial game. In this world-game, shifting symbolic patterns 
constantly recast relations between humans and machines. 
To map an alternative relationality of human subjects and 
computation, then, is to emphasize that automation is his-
torically bound to the division and reassemblage of human 
and machinic components in the postindustrial workplace 
that undergird the economy of digital images to come.

Automation retools the digital image such that it is not its 
ability to represent subjects, but rather, its ability to produce 
subjects that becomes a core feature of its amenability to 
modes of algorithmic governance. Computational imaging 
practices including techniques for storing, processing, and 
manipulating discrete imagistic information in ways that 
preempt human sensation are a quintessential component 
to the machine learning systems that are increasingly ubiq-
uitous in both political and commercial domains (Apprich 
et  al. 2018; MacKenzie and Munster 2019). Analyzing 
computational imaging itself is immanent in analyzing the 
operations of algorithmic vision technologies underlying the 
subjective experience of algorithmic culture. Here, I sug-
gest that pattern-finding is a core technique of computational 
imaging that structures the participation of images in algo-
rithmic vision systems. Algorithmic vision systems classify 
and produce images through logics of pattern-finding that 
beget critical media theoretical analysis. Through patterning 
information, algorithmic vision not only simulates a codified 
notion of human cognition, but actively participates in the 
articulation of human subjectivity.

3 � How does an algorithm see? From data 
to image

Deep learning, as described by Ian Goodfellow, is an 
advanced form of machine learning that uses a layered 
neural network to perceptualize patterns to train a classi-
fication algorithm (Goodfellow et al. 2016). Deep learning 
techniques, writes Goodfellow, are intended to simulate 
the intuitive reasoning methods that humans use to make 
decisions in the real world, where complex variables and 
incomplete information negate the possibility of relying on 
a pre-codified means for arriving at complex decisions.

Explains Goodfellow, neural network-based artificial 
intelligence technologies are developed to overcome the dif-
ficulty of computationally modeling human decision making 
when faced with an enormous amount of information. That 

is to say, humans have subjective and intuitive knowledge of 
the world, and a capacity to learn from previous experience, 
a quality not inherent to computation. Thus, the artificial 
neural network was developed out of a desire to imbue com-
putational systems the “ability to acquire their own knowl-
edge by extracting patterns from raw data. This capability 
is known as machine learning.” (2016: 3) The problem of 
granting a computer the capacity to make meaning from a 
rich and densely subjective reality is solved through break-
ing representations down into simpler representations, ad 
infinitum.

To give a concrete example, contemporary object recog-
nition algorithms often make use of what is called a con-
volutional neural net (CNN). In reductive terms, a CNN is 
trained to recognize certain objects processes a digital image 
by extracting low-level features based on pixel values. As 
features (like edges, corners, and thresholds) are fed for-
ward, higher-level features are identified at each level until 
the algorithm deems the output probability high enough that 
it can safely determine it has recognized an object.

Important to the design of CNNs is the use of convolu-
tional layers called tensors that are used to weight input data 
according to a specific array of parameters. This array is 
referred to as the bias. Other layers of the neural net perform 
an operation called pooling, which downsamples informa-
tion to reduce dimension, retaining only the features deemed 
most important to the algorithm. In sum, input data is ini-
tialized with random weights and processed through a set 
number of convolutional and pooling layers and the output 
is compared to the expected result to calculate the error. This 
calculated error is then propagated backward into the hidden 
layer(s) to tune the learning algorithm, the process repeated 
a specified number of times or until the desired error rate 
is achieved. Crucial to this operation is the introduction of 
randomness—the multiplication of data by any number of 
possible states—to infer patterns within information. In a 
way, CNN algorithms act as a playground for programmers 
to tweak the variables of weighted layers until the economi-
cally desired outcome is derived (Amoore 2019).

Emergence of a form proceeds through patterning across 
scales. In effect, patterns are fed forward to the next level of 
the neuron, a layering of micro-decisions that generate new 
propositional structures through compressing random pixel 
data. Patterns drawn from noise are effectively hallucinated 
into something akin to a form.

This operation requires a few key components to func-
tion in tandem. Apart from a learning algorithm that must 
be trained up until a computational or human supervisor 
decides it is performing optimally, and a model application 
that allows it to be applied to different classification tasks, 
it needs a vast set of training data that is used to “teach” the 
intelligent application how to extract different associations 
as patterns. In other words, the data is a key component in 



1237AI & SOCIETY (2021) 36:1233–1241	

1 3

structuring what constitutes “meaning” for the model appli-
cation. Significantly, this entire operation is undergirded by 
many institutional databases made possible by mass digiti-
zation efforts post World War II, stemming from academic, 
government, and military-funded initiatives.1 That is, the 
mass digitization of image information was a preconditional 
necessity for the operation of algorithmic vision technolo-
gies today (Franklin 2015).

The humanistic idea of a semantically structured and 
reasonable mind is all but eliminated in the CNN, which 
fuses biologically metaphors of neural nets with statisti-
cally derived programs bolstered by massive troves of train-
ing data. Recent scholarship on the relevance of United 
States post-war cybernetic sciences has contributed to an 
understanding of the emergence of new ideas around con-
sciousness and cognition during this time, and the epis-
temic transformations this legacy wrought across science, 
communication, and design (Halpern 2015; Franklin 2015; 
Mirowski 2002). Stated reductively, in an attempt to apply 
systems thinking in the name of war, cybernetic discourse 
displaced the question of how to describe knowledge, truth, 
and consciousness in favor of the question of how a structure 
might be operationalized. The questions of Enlightenment 
reason (what is a mind?) are displaced by a methodology 
of rule-based rationality (what can a mind do in its abstract 
form?).

While describing the variegated technological and con-
ceptual experiments across the biological and social sci-
ences during the post-war moment is beyond the scope of 
this paper, this period significantly recast questions around 
vision and perception in the light of technological automa-
tion. Importantly, early cybernetic experiments conducted 
by Warren McCulloch’s Research Laboratory of Electronics 
at MIT concluded that the perceptual circuits in the eye of 
a frog emit impulses to the brain in response to certain pat-
terns of visual stimuli—variations and edges between light 
and dark—suggesting that visual perception itself is a type 
of pre-conscious cognition (Lettvin et al. 1959; Halpern 
2015). In broad and generalizing sweeps, this experiment 
was taken by others to suggest that perception might be dis-
embodied, modeled, and therefore, automated.

Further experiments around depth perception and form 
recognition by Hungarian engineer Béla Julesz at Bell Labs 
in 1959 aimed to locate the physical location of object detec-
tion within the human visual apparatus using a stereogram—
a random-dot image created from characters produced on 
a microfilm plotter on a 1024 × 1024-pixel grid (Patterson 

2015). Julesz concluded that depth perception in random 
noise could be measured and reproduced through patterns. 
The perception of patterns became a way to discover mean-
ing. Cognition became about the operation of scanning a 
vast amount of information in a quest for meaningful cor-
relations, where what is “meaningful” is programmatically 
defined. Perception in Julesz’s images is a form of thinking 
abstracted from a human subject and prior to linguistic sig-
nification. This type of machinic visuality does not depend 
on a stable or individuated subject, but rather posits that 
an observer might be attuned through patterns. The human 
subject is destabilized in pattern-finding techniques in favor 
of finding the “essence” of a data set, the methodology of the 
algorithmic vision of today. The ability to know an object in 
the world becomes a function of the statistical distribution 
of pixels on a screen, foreshadowing data analytic practices 
to come.

If cybernetic science charts an attempt to render visible 
and knowable the virtual space of data through human per-
ception of patterns in noise, the artificial intelligence algo-
rithms of today are more complex—they perceive patterns 
that surpass the limits of human perception (see Parisi 2013; 
Hansen 2014). CNNs show us that computational imaging 
fundamentally alters the concept of the image as one that 
represents an object to one that creates an object. Cyber-
netic science laid the grounds for a field of image processing 
that substitutes cognition with the production of informa-
tion hallucinated from patterns. Cybernetic science shifts 
the notion of the “image” from one that has a primary rep-
resentational to primarily operational function. The image 
of contemporary computation is, in essence, the function of 
a temporal and dynamic relationship between data points, 
giving rise to what has been called the algorithmic or oper-
ative image (Farocki 2004; Hoel 2018; Hoelzl and Marie 
2015:100).

Noting the disjuncture between human and machinic per-
ception as it played out in the development of automated 
warhead technologies, filmmaker Harun Farocki describes 
“operative images” as “images that do not represent an 
object, but are part of an operation” (2004). In Farocki’s 
well-cited account, operative images are those that do some-
thing in the world by providing a program for action. Key to 
the operative image is that it maintains an unclear relation-
ship to its object—its representational aspects are considered 
somewhat arbitrary to the information it contains.

While the types of real-time target tracking and missile 
guidance systems that Farocki scrutinized still appeared to 
the human controller in the form of visualizations, an emerg-
ing paradigm in media theory takes the operative image to 
have vanished completely. Artist Trevor Paglen coins “invis-
ible images” to describe those images “made by machines 
for machines” that effectively take humans “out of the loop” 
(2016). For Paglen, machine-readable images become 

1  For recent critical and artistic research into the origins of many of 
the datasets that have become standard for training facial recognition 
algorithms today see Adam Harvey and Jules LaPlace’s online plat-
form project, Megapixels (megapixels.cc).
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literally divorced from human sensibility—a feedback loop 
that constantly reconfigures the distribution of the sensible at 
any given moment. With machine learning, operative images 
are notably black boxed, that is, they are part of an operation 
shielded from the human eye. These images are operational 
abstractions of information that may be patterned accord-
ing to a given logical method—they are an expression of a 
paranoid machine that functions to establish order within the 
incomputable mess of the world.

Simultaneously we note that although most digital images 
are no longer seen by human eyes, predatory and preemptive 
modes of algorithmic identification, such as those used for 
predictive policing in the United States, are used to justify 
decisions on human life. What role do digital images hold 
in straddling this apparent divide between micro-temporal 
computational calculations and the human experience of 
structural violence? If algorithmic vision is predicated on 
the abstraction of information and indeed the erasure of 
the human body, how do computational imaging practices 
evolve human concepts of perception and knowledge that 
shape human subjectivity? In the following, we extend 
beyond an analysis of algorithmic vision as a concretized 
mode of human thought to map the ways that the automation 
of perception destabilizes subjectivity itself.

4 � Algorithmic subjectivation: data 
reembodied

Algorithmic vision technologies have changed our facial 
images. First, they disappeared into a black box. When they 
came back, they were bounded by a thin green box, an out-
line that denotes a labeled area of interest for a computer 
vision algorithm. For digital images to be useful in train-
ing an object recognition algorithm, they must be organized 
in accordance with some type of knowledge system, that 
is, they must be arranged in a taxonomic form so that an 
algorithm might deem what is and is not notable informa-
tion in a certain context (Pasquinelli 2015; Paglen 2016). A 
taxonomy applies names to objects to reify them as part of 
an epistemology (Bowker and Star 1999). Boxes, in their 
supreme ability to standardize according to a norm, give 
form to the “governing of databased bodies” on a larger-
than-life scale (Browne 2015).

In drawing the lines between what counts for what and 
what does not count at all, algorithmic vision can normal-
ize certain types of behaviors, appearances, and codes of 
conduct in society. By installing a norm, algorithmic vision 
also defines what counts as an anomaly, obfuscating the log-
ics that determine what counts as irregular (see Foucault 
2009; Pasquinelli 2015; Amoore 2019). The use of algo-
rithmic vision as a normative way of seeing begets urgent 

aesthetic and political problems (see O’Neil 2016). Writes 
Jackie Wang:

If what we can perceive with our senses delimits what 
is politically possible, then how do we make legible 
forms of power that are invisible? How can we imagine 
ourselves out of a box that we don’t even know we’re 
stuck inside? Like a character in a Franz Kafka story, 
we are called into presence, managed, confined, and 
punished by an authority that we struggle to locate 
or identify, and every time we embark on a quest for 
answers, there is just infinite deferral and postpone-
ment. (2017: 52).

As Wang notes, we cannot see the systems that are operat-
ing on us, so how can we begin to understand what rationale 
they are following? Algorithmic vision technology is enig-
matic as it necessarily hides its images to operate. These 
images do not adhere to visual critical analysis, because 
they complicate our given philosophical notions of the links 
between visuality and knowledge. When “intelligence” is 
recast as the algorithmic production of more information, 
pattern-finding becomes a methodology for generating 
knowledge in the face of overabundant data (see Steyerl 
2014; Pasquinelli 2019). This makes any defined set of 
images into a program for hallucinating the future in the 
form of digital visual information. Algorithmic vision has a 
magical capacity to construe evidence from possibly mean-
ingful correlations, patterns read into data.

Seeing like an algorithm requires a risk calculus—a 
derivative form that incorporates uncertainty to array pos-
sible futures. Louise Amoore explains that techniques of 
governance have shifted post 9/11 towards algorithmic 
means of calculating possible futures states (Amoore 2013). 
This sensibility shot through with the anxiety of potential 
catastrophe gave authority to new calculation techniques to 
incorporate unaccountable contingencies. Amoore explains 
that in the absence of sufficient data, the security algorithm 
“if a and b, in association with c, then x” is used to onto-
logically associate unknown values (2013: 59). This abstrac-
tion involves a continuous disaggregation and reaggregation 
of noncausal data, constantly shuffling the relations until a 
pattern deemed significant emerges. Algorithmic patterning 
facilitates decision-making processes based on what is not 
present to account for what possibly could be.

The creation of a proxy—or a stand-in that represents an 
unknown value—allows for the visualization of a portrait of 
a subject through non-visual means (Chun 2018). Algorith-
mic hallucination of subjects as a function of biopolitical 
control becomes a performance, run amok of an archive. 
Risk calculus is at play in the creation of a mutable norm 
that prioritizes economic decisions over truth so that action 
can be taken in the present moment (see Foucault 2008). 
Amoore explains how border technologies express this logic 
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in a space of unknown possibilities by drawing data from 
diverse sources, like fingerprints, linguistic analysis, travel 
habits, and financial records, to attach risk factors to indi-
vidual subjects who are not part of this database already (see 
Lyon 2007). Sovereign decisions are made at the border on 
individuals that are created as governable subjects by the 
“life signatures” that are inferred onto them (see Agamben 
2005; Ong 2006). The “biometric border” she explains, 
creates an emergent subject through combining fragments 
(2013). The subject is made through a correlation of ele-
ments composed of other subjects, objects, and the relations 
between them. She is drawn up in a profile that is taken as a 
governable body. She is visualized, in the sense that she is 
assembled in the process of computationally revealing some-
thing that isn’t actually present. Subjects are disaggregated 
and reaggregated as proxies made out of data hallucinated 
into the shape of a face.

The role of algorithmic vision technologies is key in an 
apparatus that images a population to render them invis-
ible. The digital facial image, while sometimes linked to a 
real body, has the power to remake the body as a function 
of sovereign power, a life signature given form through a 
recognized face. A suspension of basic legal rights is justi-
fied through technological means. How does the very literal 
power that algorithmic systems have to define who does and 
does not count as a human recast the relationship between 
images and subjects? No longer bearing a primarily repre-
sentative function, we see the power of algorithmic vision 
today is its ability to craft an algorithmic subject that is 
always open to contingency. There is always more the algo-
rithmic subject than what meets the machinic eye.

5 � Towards nonhuman visuality

In Farocki’s video work “I Thought I Was Seeing Convicts,” 
we are guided to consider the surveillance techniques used 
by a high-security prison in Corcoran  (Farocki 2000). 
Farocki juxtaposes images together, showing us footage 
from security cameras alongside visualizations used by an 
analytics corporation to calculate the purchasing patterns 
of customers in a supermarket. “What can be accelerated 
and increased in prison?”, Farocki wonders. Body scan dia-
grams appear in the lower corner of the screen, bringing to 
mind the type of procedure familiar to anyone who has ever 
had to pass through the TSA. What can be accelerated and 
increased in prison?

Here, an astute viewer notices the timestamps on the 
security footage might assume the meeting of these live 
feeds in some sort of central control center, where this foot-
age could be recorded and sorted to accumulate a profile of 
a certain inmate. Foucault’s panopticon levels up and gains 
an ability to see through both space and time (Foucault 

1995). We learn that the profiles are amassed as evidence 
to determine what a specific inmate should and should not 
have access to, the yards they are permitted to occupy, and 
the inmates they are allowed to interact with. These images 
are not seen by the inmates but may be used by guards, for 
example, to place two inmates from opposing gangs in the 
same yards, resulting in deadly standoffs that are preempted 
by the guards for their own entertainment.

For Farocki, the security camera stands in metaphorically 
for the gun. Inmates need not be accosted with literal guns to 
be made to die. They are convicted based on patterns drawn 
by guards through the accumulation of data. A proxy of 
the inmate is sent in to standoff in the yard. Farocki reveals 
that this black box of decisions that caused one man to take 
another’s life contained nothing but a human corruption of 
power.

In the black box of algorithmic vision, perception is not 
just a mechanical program that epistemologically frames a 
subject, but it is also an operation. In this sense, algorith-
mic vision less like Barthes’ camera, and more akin to what 
Deleuze calls visibilités, or non-discursive processes that 
are discursively enacted to make subjects visible to power in 
certain assemblages (Deleuze 1988). Put differently, visibili-
tés bring together power and its object in a way that makes 
the object visible in a determined way at any given moment. 
An evocation of futurity, where determination and realiza-
tion are allowed to remain open until the moment they are 
closed in upon by power. In this sense, the subject known 
to computer vision is never out of the loop, so to speak, 
but a point along a continuum of images that constitute the 
assemblage from which individuals might be imaged again 
and again. Making an image of a subject is an operation 
necessarily enacted by algorithmic vision to capitalize upon 
virtual potentiality.

So, what of the ontological status of the operational 
image within algorithmic vision? When the image is con-
sidered within humanist discourses of visuality and repre-
sentation, we might agree that the image has vanished from 
sight. However, to expound upon the operational nature of 
these images is to position them within both a material and 
technical universe, where potential images have the capac-
ity to act on each other. To see like an algorithm is not to 
perceive an image of something or someone, but to produce 
a world of relations, the grounds from which subjects are 
made, seen, and named.

To argue for the necessity of human participation in the 
production of information and meaning, and ultimately as 
the arbiter of the development and direction of future tech-
nical objects is an ethical supplement to a critical analy-
sis of computation that encourages the mutual coevolu-
tion of technics and culture towards more equitable ends. 
To claim the eradication of the human in the machine is to 
produce a conceptual blind spot, allowing for exploitation 
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and extraction to falsely appear an unfortunate side effect of 
technoscience, as opposed to paradigmatic. A more useful 
consideration might be to articulate the philosophical pre-
suppositions of the human given through the very models 
of perception birthed by cybernetic science. To what extent 
do we need to modify our understandings of humanism in 
light of systems that do not have a human in the loop? The 
tension between the human and nonhuman contained within 
every system might be a starting point for critical thought to 
find new ways to challenge the visions created by systems of 
algorithmic governance.

Acknowledgements  Thanks to Brett Zehner, Quran Karriem, Ben-
jamin Crais, Jordan Sjol, Sophia Goodfriend, Mark Hansen, Mark 
Olson, Luciana Parisi, and the extended community around Computa-
tional Media, Arts & Cultures at Duke University for their input and 
comments.

Funding  Not applicable.

Data availability  Not applicable.

Code availability  Not applicable.

Compliance with ethical standards 

Conflict of interest  Not applicable.

References

Agamben G (2005) State of Exception. University of Chicago Press, 
Chicago

Amoore L (2013) The Politics of Possibility: Risk and Security Beyond 
Probability. Duke University Press, Durham, NC

Amoore L (2019) Doubt and the algorithm: on the partial accounts of 
machine learning. Theory Cult Soc 36(6):147–169

Apprich C, Steyerl H, Chun W, Cramer F (2018) Pattern Discrimina-
tion. University of Minnesota Press

Barthes R (1981) Camera Lucida: Reflections on Photography. Hill 
and Wang, New York

Bowker G, Star S (1999) Sorting things out: Classification and its con-
sequences. MIT Press, Cambridge

Browne S (2015) Dark Matters: On the Surveillance of Blackness. 
Duke University Press, Durham

Buckley C, Mozur P (2019) How China Uses High-Tech Surveillance 
to Subdue Minorities. New York Times.  https​://www.nytim​
es.com/2019/05/22/world​/asia/china​-surve​illan​ce-xinji​ang.html. 
Accessed Dec 2019

Byler D (2019) China’s hi-tech war on its Muslim minority. The 
guardian. https​://www.thegu​ardia​n.com/news/2019/apr/11/china​
-hi-tech-war-on-musli​m-minor​ity-xinji​ang-uighu​rs-surve​illan​ce-
face-recog​nitio​n

Chun W (2018) On patterns and proxies, or the perils of reconstructing 
the unknown. e-flux Architecture: Accumulation. https​://www.e-
flux.com/archi​tectu​re/accum​ulati​on/21227​5/on-patte​rns-and-proxi​
es/. Accessed Nov 2019

Cooper D (2020) Invisible desert. e-flux Architecture: New Silk 
Roads. https​://www.e-flux.com/archi​tectu​re/new-silk-roads​/31310​
3/invis​ible-deser​t/. Accessed Feb 2020

Deleuze G (1988) Foucault. University of Minnesota Press
Farocki H (Director) (2000) I Thought I Was Seeing Convicts [Motion 

Picture]
Farocki H (2004) Phantom Images. PUBLIC 29:12–22
Flusser V (2000) Towards a Philosophy of Photography. Reaktion 

Books
Foucault M (1995) Panopticism. Discipline and Punish: the Birth of 

the Prison. Vintage Books, New York, pp 195–230
Foucault M (2008) The Birth of Biopolitics. Palgrave Macmillan, New 

York
Foucault M (2009) Security, Territory, Population. Palgrave Macmil-

lan, London
Franklin S (2015) Control: Digitality as Cultural Logic. MIT Press, 

Cambridge
Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press
Halpern O (2015) Beautiful Data: A History of Vision and Reason 

since 1945. Duke University Press, Durham
Hansen MBN (2014) Feed-Forward: On the Future of Twenty-First-

Century Media. University of Chicago Press, Chicago
Harvey A, LaPlace J (2019) DukeMTMC. MegaPixels: origins, ethics, 

and privacy implications of publicly available face recognition 
image datasets. https​://megap​ixels​.cc/. Accessed Dec 2019

Hoel A (2018) Operative Images. Inroads to a New Paradigm of Media 
Theory. Image – Action – Space. De Gruyter, Berlin, Boston. https​
://doi.org/10.1515/97831​10464​979-002

Hoelzl I, Marie R (2015) Softimage: Towards a New Theory of the 
Digital Image. Intellect Ltd, Chicago

Human Rights Watch (2019) China’s algorithms of repression: reverse 
engineering a Xinjiang Police Mass Surveillance App. Human 
rights watch. https​://hrw.org. Accessed Dec 2019

Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the 
frog’s eye tells the frogs brain. Proc IRE 47(11):1940–1951

Lyon D (2007) Surveillance, security and social sorting. Int Crim Jus-
tice Rev 17(3):161–170

MacKenzie A,  Munster A (2019) Platform seeing: image ensembles 
and their invisualities. Theor Cult Soc 36(5):3–22. https​://doi.
org/10.1177/02632​76419​84750​8

Mirowski P (2002) Machine Dreams: Economics Becomes a Cyborg 
Science. Cambridge University Press, Cambridge

Murgia M (2019) Who’s using your face? The ugly truth about facial 
recognition. The financial times. https​://www.ft.com/conte​nt/
cf19b​956-60a2-11e9-b285-3acd5​d4359​9e. Accessed Sept 2019

Ningning Z (2016) Big data “out of traffic”. Southern Magazine.  https​
://epape​r.south​cn.com. Accessed Sept 2019

O’Neil C (2016) Weapons of Math Destruction: How Big Data 
Increases Inequality and Threatens Democracy. Crown, New York

Ong A (2006) Neoliberalism as Exception: Mutations in Citizenship 
and Sovereignty. Duke University Press, Durham

Paglen T (2016) Invisible Images (Your Pictures Are Looking at You). 
The New Inquiry. https​://thene​winqu​iry.com/invis​ible-image​
s-your-pictu​res-are-looki​ng-at-you/. Accessed May 2019

Paglen T, Crawford K (2019) Excavating AI The Politics of Images in 
Machine Learning Training Sets. https​://excav​ating​.ai. Accessed 
Sept 2019

Parisi L (2013) Contagious architecture: Computation, aesthetics, and 
space. MIT Press, Cambridge

Pasquinelli M (2015) Anomaly detection: the mathematization of the 
abnormal in the metadata society. transmediale. Berlin

Pasquinelli M (2019) How a machine learns and fails: a grammar of 
error for artificial intelligence. Spheres, vol 5

Patterson Z (2015) Peripheral Vision: Bell Labs, the S-C 4020, and the 
Origins of Computer Art. MIT Press, Cambridge

Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C (2016) Performance 
measures and a data set for multi-target, multi-camera tracking. 
European Conference on Computer Vision workshop on Bench-
marking Multi-Target Tracking

https://www.nytimes.com/2019/05/22/world/asia/china-surveillance-xinjiang.html
https://www.nytimes.com/2019/05/22/world/asia/china-surveillance-xinjiang.html
https://www.theguardian.com/news/2019/apr/11/china-hi-tech-war-on-muslim-minority-xinjiang-uighurs-surveillance-face-recognition
https://www.theguardian.com/news/2019/apr/11/china-hi-tech-war-on-muslim-minority-xinjiang-uighurs-surveillance-face-recognition
https://www.theguardian.com/news/2019/apr/11/china-hi-tech-war-on-muslim-minority-xinjiang-uighurs-surveillance-face-recognition
https://www.e-flux.com/architecture/accumulation/212275/on-patterns-and-proxies/
https://www.e-flux.com/architecture/accumulation/212275/on-patterns-and-proxies/
https://www.e-flux.com/architecture/accumulation/212275/on-patterns-and-proxies/
https://www.e-flux.com/architecture/new-silk-roads/313103/invisible-desert/
https://www.e-flux.com/architecture/new-silk-roads/313103/invisible-desert/
https://megapixels.cc/
https://doi.org/10.1515/9783110464979-002
https://doi.org/10.1515/9783110464979-002
https://hrw.org
https://doi.org/10.1177/0263276419847508
https://doi.org/10.1177/0263276419847508
https://www.ft.com/content/cf19b956-60a2-11e9-b285-3acd5d43599e
https://www.ft.com/content/cf19b956-60a2-11e9-b285-3acd5d43599e
https://epaper.southcn.com
https://epaper.southcn.com
https://thenewinquiry.com/invisible-images-your-pictures-are-looking-at-you/
https://thenewinquiry.com/invisible-images-your-pictures-are-looking-at-you/
https://excavating.ai


1241AI & SOCIETY (2021) 36:1233–1241	

1 3

Saticky J (2019) A Duke study recorded thousands of students’ faces. 
Now they’re being used all over the world. The Chronicle. https​
://dukec​hroni​cal.com. Accessed June 2019

Seaver N (2017) Algorithms as culture: Some tactics for the 
ethnography of algorithmic systems. Big Data Society 
4(2):205395171773810

Solera F, Calderara S, Ristani E, Tomasi C, Cucchiara R (2016) Track-
ing social groups within and across cameras. IEEE Trans Circ Syst 
Video Technol 27(3):441–453

Sound Vision Foundation (2019) About Uighurs. Save Uighur Cam-
paign. https​://doi.org/saveu​ighur​.org. Accessed Oct 2019

Steyerl H (2014) Proxy Politics: Signal and Noise. e-flux journal. https​
://www.e-flux.com/journ​al/60/61045​/proxy​-polit​ics-signa​l-and-
noise​/. Accessed May 2019

Wang J (2017) Carceral Capitalism. MIT Press, Cambridge
Xu J, Zhao R, Zhu F, Wang H, Ouyang W (2018) Attention-aware 

compositional network for person re-identification. 2018 IEEE/
CVF conference on computer vision and pattern recognition, pp 
2119–2128

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://dukechronical.com
https://dukechronical.com
https://doi.org/saveuighur.org
https://www.e-flux.com/journal/60/61045/proxy-politics-signal-and-noise/
https://www.e-flux.com/journal/60/61045/proxy-politics-signal-and-noise/
https://www.e-flux.com/journal/60/61045/proxy-politics-signal-and-noise/


Vol.:(0123456789)1 3

AI & SOCIETY (2021) 36:1243–1252 
https://doi.org/10.1007/s00146-020-01064-1

ORIGINAL ARTICLE

Seeing threats, sensing flesh: human–machine ensembles at work

Perle Møhl1

Received: 30 July 2019 / Accepted: 18 August 2020 / Published online: 9 September 2020 
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Based on detailed descriptions of human–machine ensembles, this article explores how humans and machines work together 
to see specific things and unsee others, and how they come to co-configure one another. For seeing is not an automated 
function; whether one is a human or a machine, vision is gradually enskilled and mutually co-constituted. The analysis 
intersects three different ways of human–machine seeing to shed further light on the workings of each one: an airport, where 
facial recognition algorithms collaborate with border guards to grant passage to particular travellers and not to others; a 
luggage-scanning system, where potential security threats are assessed by a complex of X-rays and human intro-spection; 
and a hospital operating room, where human–machinic surgical robots find their way and operate on the insides of human 
bodies, touching only by seeing. In these examples, human and machine ways of seeing merge together, seeing in particular 
apparatuses of material, political, organisational, economic and fleshy components. The article analyses the practical work 
of human–machinic collaboration and explores how the different material and social constituents, not necessarily always 
working from the same agenda, come to configure what can be seen and sensed and what cannot.

Keywords  Human–machine interfaces · Visual enskillment · Sensory anthropology · Facial recognition · X-ray scanning · 
Robotic surgery

1  Introduction

This article describes how agencies engaged in border con-
trol and robotic surgery see in the technological taskscapes 
they are engaged in for specific predefined purposes. It is 
based on and largely consists of detailed descriptions of 
three settings in which humans and machines work together 
to see specific things—and unsee others—as defined by their 
professional tasks and the technological and human sensori-
alities, instruments, capabilities and automatisms they have 
at their disposal. A main point is that seeing is not an auto-
mated function, whether one is a human or a machine. The 
contention behind the article is that vision is enskilled and 
that the technological specifics, together with the specific 
tasks and material settings, co-configure the collaborative 
enskillment and work of seeing and sensing. Human and 
machine ways of seeing merge together to produce particular 
seeing apparatuses that are constituted by material, political, 

organisational, economic and fleshy components. The aim 
is to explore how all these constituents, which do not neces-
sarily work in the same direction, come to configure what 
can be seen and sensed and what cannot.

The article takes us to three different settings: an auto-
mated border control booth in an airport, where facial rec-
ognition algorithms collaborate with border guards to grant 
particular travellers passage and not others; an intricate 
luggage-scanning system in another airport, where poten-
tial security threats are assessed by a complex of X-rays and 
human eyes intro-specting the contents of suitcases; and a 
hospital operating room, where human–machinic surgical 
robots find their way and operate on the insides of human 
bodies, touching only by seeing. The three different ways of 
human–machine seeing may, when intersected, shed further 
light on the workings of each one.
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2 � Fields of inquiry and some theoretical 
anchorages

Most of the analytical work in this article takes the form 
of empirical descriptions and discussions. The analytical 
deliberations nevertheless find affinity and anchorage in the 
theoretical concepts presented in the following.

A first such affinity concerns seeing. It is not because 
you have eyes that you can see. Seeing is not an inherent 
physiological capacity, nor an invariable mode of perception. 
It is a learned “technique of the body”, ingrained through 
apprenticeships that vary from practice to practice, from 
society to society (Mauss 1973). ‘Culturally inculcated and 
socially performed’ (Grasseni 2011: 20), vision undergoes a 
particular enskillment (Grasseni 2007, 2011). Enskilled see-
ing is a situated practice, related to particular “taskscapes” 
and involving particular forms of expertise and particular 
ways of knowing that emerge in “communities of practice” 
(Grasseni 2011; Ingold 2000; Lave and Wenger 1991). An 
enskilled vision is a purposeful albeit often implicit way of 
scrutinising the world. A distinction is often made between 
looking and seeing (e.g., Okely 2001; MacDougall 2006), 
between unreflectively letting light waves imprint them-
selves on one’s retina, mostly characterised as ‘looking’, 
and an attentive, purposeful, meaningful way of engaging 
and knowing characterised as ‘seeing’. Enskillment, how-
ever, replaces this dualism with a gradual getting to see 
and know that clearly characterises all engagement with 
the world, including perceptive, and the many particular 
modes of vision that take place in particular settings and 
their particular interactions and activities. I apply this idea 
of enskilled vision in this article and consequently use look-
ing and seeing indiscriminately, not as oppositions. Enskill-
ment can also be related to a pragmatic semiotic conception 
of signs and meaning as variegated, positioned, partial and 
related to a wide range of different agentive modes of experi-
ence and interpretation (Møhl 1997; Peirce 1998). Where a 
tourist sees a nice green spot for a picnic, the peasant sees a 
patch that needs harvesting, and the cow sees food.

Cattle herders and their capacity to see, the particular 
enskilled vision they develop, emerges as a frequent trope 
or figure in descriptions of such tacit ways of knowing by 
seeing: the particular visual expertise that it takes to know a 
good dairy cow when you see one, to assess its capabilities, 
the quality of its muscles, fur, horn, hooves and udders, and 
to distinguish two cows from afar, not to mention certain 
practical-aesthetic forms of visual know-how (Berger 1972; 
Berger and Mohr 1982; Møhl 1997; Grasseni 2004; Grim-
shaw and Ravetz 2005). Such visual ways of knowing go 
before words (Berger and Mohr 1982) and sometimes also, 
I contend, beyond words.

If vision is not inherent in the body, if ways of seeing 
are enskilled and change from one setting to another, what 
are the implications and effects of working with and seeing 
through a seeing machine? How does such a collaboration 
further enskill and configure human ways of seeing? And 
what does the practice of seeing together—co-sensing—say 
about human–machine interlacing and co/multisensory inter-
actions, or about the nature of the co-sensing ensemble? In 
other words, the discussion of visual enskillment necessarily 
takes a posthuman turn when practices of seeing are carried 
out in human–machine collaborations.

Using machines to see—see in greater detail, see further 
away, see things the human eye cannot look at, see from 
nonhuman/omniscient/god-like positions—goes far back 
in history, e.g., the use of magnifying lenses in Antiquity, 
eyeglasses and telescopes in the early seventeenth century 
and the photographic camera in the early nineteenth century 
(Hirsch 2017). In this article, direct human vision and cam-
eras both constitute fundamental elements of the settings 
being analysed. As Berger notes, one thing that changed the 
way humans saw was the invention of the camera (Berger 
1972:24). This idea runs as a red thread through visual 
anthropology: seeing through a camera creates other possi-
bilities for moving in and interacting with the world (Rouch 
1975; Rouch 2003), other ways of knowing and getting to 
know (MacDougall 1998; Grimshaw and Ravetz 2009; Møhl 
2011), other ways of telling (Berger and Mohr 1982), other 
ways of relating to people and “presensing” those who are 
far away in time or space (Deger 2006; Møhl 2011).1 Cam-
eras are integrated components of the sensing ensembles 
described in this article, whether in relation to border con-
trol, X-ray scanning or surgical robotics, and their mate-
rial specifics, therefore, contribute, along with other, more 
abstract constituents of seeing ensembles, to define what can 
be seen and sensed and what cannot.

Fundamental to any analysis of ways of machine seeing 
is also an understanding of human perception and sensing 
in general. Importantly, a fundamental point of departure for 
this article is the notion of the integration of the senses or, in 
Merleau-Ponty’s terms, the synaesthetics of perception, the 
fact that no sense ever works alone but is intricately inter-
woven with the other senses and with bodily and cognitive 
functions in general (2005). From a posthuman perspective, 
the notion of synaesthetics must be stretched beyond the 
human senses to integrate the full co-sensing apparatus—
cameras, optic sensors, recognition algorithms, X-rays and 

1  My own research projects have generally been based on the practi-
cal, intersubjective and epistemological aspects of working with and 
creating anthropological knowledge through a camera, as well as the 
particular ways in which the filming process configures and frames 
one’s approach to and interactions with the world (Møhl 1997, 2011, 
2012; Møhl and Kristensen 2018).
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image analysis algorithms, etc.—whether the collaboration 
takes place on a border or in an operating theatre. And when 
it comes to the enskillment of vision and the professional 
practices and “taskscapes” around which enskillment is 
organised (Ingold 2000:194; Grasseni 2004), the particular 
community of practice that comes to see necessarily also 
includes the material sensing components, as well as the 
people and institutions that developed and applied those 
components and their capacities to see certain things and not 
others. Thereby a broader network of agencies also comes to 
reconfigure the human operator’s sensory work and engage-
ments with the seen and the unseen in particular ways. The 
synaesthetic effect becomes far-reaching.

Another affinity concerns synaesthetics and the sensory 
apparatus. Berger discusses the interlacing of vision and 
touch and describes the effects of looking at a painting: 
“Every square inch of the surface of this painting, whilst 
remaining purely visual, appeals to, importunes, the sense of 
touch”, “what the eye perceives is already translated… into 
the language of tactile sensation” (Berger 1972: 138–139). 
Analysing film’s capacity to convey a sense of touch visu-
ally, Marks (2000, 2002) uses the term “haptic visuality” to 
describe “the way vision itself can be tactile, as though one 
were touching a film with one’s eyes” (2000: xi). Although 
she distinguishes haptic visuality from optical visuality that 
sees things from a distance (idid:162), she wishes to rein-
state vision in general as a form of contact, contrary to a 
post-Enlightenment rationality that sees vision as disembod-
ied and distancing (Marks 2002: xiii). These two analyses 
consider the haptic qualities of visual media. In this article 
I use the term “haptic vision”2 to describe the capacity to 
directly feel or touch with the eyes from a sensorially inter-
laced or synaesthetic perspective.

In the empirical descriptions, following Haraway (2017) I 
characterise the seeing human–machine ensembles or appa-
ratuses as bionic or cyborgs. In her approach, the cyborg fig-
ure constitutes a methodological tool and an epistemologi-
cal challenge that dissolves dichotomies and other blunting 
oppositions—between nature and culture, human and nonhu-
man, machinic and organic, as well as between the senses—
a tool that reconceptualises the agential object (Suchman 
2007; Lynes 2016; Haraway 1988). The cyborg is a good 
figure of speech. But I also see the cyborg as a matter of fact, 
a concretely existing working body in the present examples 
of airport control and robotic surgery, where humans and 
technologies merge together to perform specific tasks, mutu-
ally formatting and enskilling one another. I use the cyborg 

figure, because it illuminates how machine and human ways 
of sensing merge, extending a purely human synaesthetic 
effect to its material components. Indeed, the cyborg makes 
sense not only as an analytical tool or an allegorical figure 
installed to think and disrupt dichotomies, but here as an 
actual material-semiotic working body of flesh and metal 
and algorithms, where some parts make other parts sense in 
new ways. The cyborg is a more concrete figuration of the 
other concepts I also use, namely ensemble or apparatus, 
and a question, therefore, imposes itself: where the cyborg 
ends, if it does. For the agencies that take part in the tasks 
and sensory work are far-reaching.

3 � Empirical instances of seeing 
and co‑sensing

In the following I present three settings in which humans and 
machines work and merge together in a sensory task of intro-
spective vision work. The three examples are taken from my 
two most recent research projects on the visual, technologi-
cal and sensory aspects of border and security control and 
robotic surgery, respectively. In all three cases, human and 
machine sensitivities coalesce to form vision apparatuses 
that develop particular ways of seeing that are adapted to 
the tasks at hand. These tasks are carried out in very differ-
ent material, sensory, political and economic conditions that 
co-configure ways of seeing and objects seen and unseen. 
Intersecting the empirical descriptions of these three differ-
ent interlaced human–machine ways of seeing is a diffrac-
tive move that serves to highlight the sensory effects created 
by those differences rather than the differences themselves 
(Barad 2007; Haraway 1992).3 The intersections also allow 
us to discern some patterns in the political economies of the 
sensing ensembles and the difficulties involved in determin-
ing their limits.

The analysis starts with airport and border control, where 
humans and machines in different constellations inspect 
faces and luggage in the search for threats. As we shall see, 
three different modes of seeing are in action at the airport, 
and three different effects of seeing emerge. With the final 
example, these differences are further diffracted by yet 
another mode of machine seeing and touching by seeing, 
namely robotic surgery.

2  The term “haptic vision” is also sometimes used in the inverse 
sense to describe the capacity to see an object by touching it, a 
common example being the blind person. This does not, however, 
interfere with the project of dissolving the distinctions between the 
senses—on the contrary.

3  Diffraction, a term from classical physics, describes the effect of 
waves, e.g. light waves, being bent when they hit an obstacle. Dif-
ferent wavelengths are not bent to the same degree, resulting in a 
particular light pattern. What we see are not the differences in wave-
lengths but the effects of those differences when they are curved 
around an obstacle. As Haraway notes, “A diffraction pattern does not 
map where differences appear, but rather maps where the effects of 
difference appear.” (Haraway 1992:300).
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3.1 � ABC vision

Airports are sites of augmented vigilance and perpet-
ual monitoring, carried out for multiple purposes by a 
human–material and to varying degrees automated constel-
lation of cameras, one-way mirrors, optic and heat sensors, 
radars, X-ray scanners and human scrutiny, to mention just 
some. There are many ways of seeing. In surveillance and 
control, there is no purposeless looking, no casual or unin-
tentional glances; there is always some kind of analysis tak-
ing place, some kind of guided interpretation of what is seen.

At Copenhagen International Airport, a police officer is 
surveying passengers leaving Schengen through the Auto-
mated Border Control (ABC), a system using passport-scan-
ning and facial recognition. The officer, Hanne, has logged 
into the system, including the different national and interna-
tional police databases, and has two screens at her disposal, 
as well as a full view of the six open eGates. Her auxiliary 
screen lights up if the ABC detects a hit between data in 
the scanned passport and the databases, e.g., full records 
or sparse data on wanted or discretely surveyed persons. 
But Hanne’s attention is focused on the passengers and on 
her main screen, where she can follow the workings of the 
automated facial recognition system.

Travellers scan their passports, the first glass door opens, 
and the traveller is requested to stand on a pair of yellow 
footprints and face the camera. The ABC system scans the 
traveller’s face and extracts a series of “minutiae points” 
that are turned into facial recognition templates, which are 
compared with the equivalent template stored in the passport 
chip. The system requires a certain level of resemblance—
the recognition threshold—between the live face in the 
ABC, the passport chip and the ID photo. On the screen, 
Hanne and I can see how the comparison score moves up 
and down until it eventually meets the threshold and the 
second glass door opens. In sum, the system requires that 
the person in the eGate can present a face that sufficiently 
resembles the ID photo in the passport. This entails com-
plying with the requirements of the recognition system by 
removing hats, veils or earphones, not smiling too much 
and looking straight at the camera. Hanne explains that if 
the sunlight hits the camera it can’t see and if people have 
too much hand-luggage or wear t-shirts with printed faces, 
“it gets confused”. “It’s very sensitive”. If there’s too much 
confusion, it will spread to the other eGates like a virus, 
and they will have to restart the whole system, she explains.

So Hanne’s job is to keep an eye on people, but also on 
the machine’s state of mind. She has both to look through the 
glass at people “with her own eyes”, as she says, and also be 
able to “see like the machine”: what it detects, what it gets 
wrong, what will confuse it, and how can she keep confusion 
to a minimum so it doesn’t glitch. If the machine starts hesi-
tating—shifting between recognition scores or exhibiting 

red alert signs, indicating that it is seeing “more than one 
person in the eGate” or no resemblance whatsoever—she 
can override the machine and relieve it of its qualms. This 
requires her to be able to read the ID photo and the facial 
scan on her screen and compare them with the actual face 
she can see in the eGate. To this effect she is “learning to see 
in 2D”, she says, comparing the 2D ID-photos on her screen 
with the actual physical 3D faces out there and trying to see 
both resemblances and dissemblances. Checking if a person 
sufficiently resembles an ID photo is, of course, a recurrent 
task for most police and security controls, something Hanne 
herself often does in the “manual” passport control booth. 
But here she has to add several other layers to her seeing, 
mimicking the seeing of the machine and searching for pos-
sible dissemblances or other interferences that might be trig-
gering its dissatisfaction or lowering the resemblance score. 
In that sense, she has to see like but also see better than the 
machine, even though she does not dispose of its optic and 
computational capacities.

In this process of interlaced human–machine seeing, the 
officer learns to see what the machine sees to understand and 
override it. Where the police officer sees faces and crevices, 
wrinkles, bumps, colours and shadow zones, the machine 
sees surfaces, and extracts and compares minutiae points. 
Where the machine sees two persons in the eGate, because it 
detects faces and masses, the officer sees a woman with a lot 
of handbags or a person with a magazine front page showing 
a natural-size face. The operators gradually “get to know” 
how the machine sees, what it registers and how it gets “con-
fused”, and they learn to “see in 2D” like the machine.

Zooming out from Hanne’s booth, other issues and other 
types of machine seeing enter into the field. Passport control 
is an obstacle to steady passenger flows in the airport and a 
frequent issue of debate and negotiations between the police 
authorities and the private company running the airport. 
The company would like to see the resemblance threshold 
lowered so people can go across the border more smoothly. 
To this effect, a large screen in the police HQ displays the 
queueing for passport control “to urge police officers to 
lower their vigilance”, as some of Hanne colleagues explain 
it (see also Møhl 2019). They are worried about the pressure 
and negotiations. As one of the critics of the ABC system 
says: “its threshold can be lowered by the click of a mouse; 
mine can’t!” They clearly feel that their authority is being 
undercut by the automated system and by the economic and 
political pressures behind it. They also recognise that the 
ABC is not efficient enough to run the border by itself, at 
least not in the immediate future. But the unease about the 
future and about being surveyed by the airport company and 
other public and supra-state institutions regulating border 
control is palpable. There are cameras and presence sensors 
everywhere, as well as seeing at many levels and of many 
sorts in the airport passport control.
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3.2 � X‑ray scanner visions

In the following I describe two types of X-ray luggage-scan-
ning that take place at Gibraltar International Airport. The 
two processes might seem very similar, but they each impli-
cate particular ways of seeing that come out of and are con-
figured by technological specificities, temporal constraints, 
organisational requirements and preconfigured images of 
threats.

Deep inside the newly built airport building, luggage is 
transported from passengers’ hands into the departing air-
planes through a complex system of conveyor belts that run 
up and down at many levels, circumventing the lounges and 
transit areas, where passengers move through the airport. 
The back-stage conveyor belt system was clearly designed 
and assembled after the front-stage passenger areas were 
built, creating this intricate cobweb of impressive metal 
structures. The clanking of pulleys and rubber belts, strewn 
with sensors, cameras and scanners, rises to infernal levels 
and makes talking almost impossible. But above all we are 
here to see.

Around the conveyor belts, a four-layered system of secu-
rity levels, both computed and human and of varying degrees 
of automation, has been established. The first level, security 
level 1, is wholly automated: all luggage is run through an 
X-ray scanner that is set to make out objects and densities, 
and determine whether the pieces of luggage can go directly 
to the plane or require closer inspection. If known threats 
are detected (e.g., weapons, organic explosives, electronic 
circuits) or if the scanner cannot make out the details, the 
suitcase is pushed off the conveyor belt and onto a separate 
track.

Far from the conveyor belts and the noise, in an isolated 
room with thick walls that from the outside has the appear-
ance of a bomb shelter and may have been designed to give 
that impression of invulnerability, Jane, a police officer, is 
inspecting the X-ray images of the suitcases that the auto-
mated scanning system has deemed suspect and sent down 
the alternative track. A sign on the door reads “security level 
2”. The amount of luggage being sent on to this level is quite 
high, not because luggage often contains threats to flight 
security—in fact, very few if any have ever been found—
but because they contain objects or meshworks of electric 
gear that cannot be identified or simply because they are so 
densely packed that the scanner cannot make out the details. 
Therefore, Jane and her vision take over. She has twelve 
seconds to look through each image and decide whether 
the piece of luggage needs more meticulous inspection—if 
so, she presses the red button and sends it off to security 
level 3—or whether it can be considered safe and sent back 
into the normal circulation track, in which case she hits the 
green button. Jane can shift through the layers and change 
between different X-ray frequencies to reveal some of the 

compositions, densities and contours of the contents, but she 
rarely has the time to do so. If she takes too long, hesitates 
or is distracted, the virtual 12-s hourglass on her screen runs 
out, and the luggage is automatically sent on to level 3. Such 
instances of hesitation or unresponsiveness are analysed as 
inattention and are audited and presented to her at the end 
of the month, along with her pay check. In other words, as 
in passport control, it is not only the luggage but also the 
operators that are being screened and monitored here.

A new suitcase pops up on Jane’s screen, and I hastily 
make out some screwdrivers and what looks like safety 
shoes before the hourglass runs out and Jane hits the green 
button. Before a new X-ray image pops up on her screen, I 
ask her about the safety shoes to check my own visual skills, 
but she didn’t see them. In fact, she is incapable of telling 
me what was in the suitcase she’s just cleared and sent back 
to the ordinary conveyor track. “I don’t really look at the 
objects”, she says, “I don’t have time for that. I look for the 
usual threats, but I mainly try to figure out why the machine 
sent this suitcase on to me.” So in sum, her work is to try to 
see—figure out—what the machine saw or, in most cases, 
indeed, didn’t see. She is not looking for particular things but 
for the fuzzy zones, the questionable unknowns, turning her 
sight into a kind of inverted vision. In that sense, she and her 
scanner deploy a complicit form of non-seeing, carried out 
in a tiny human–machine community of practice, adapted 
to the very specific task at hand, and formatted by the fact 
that there are very rarely, if even ever, any real threats to be 
seen. This way of seeing emerges in the interaction or, more 
accurately, intra-action (Barad 2003), a searching for what 
cannot be seen that is formatted in this particular setting 
between Jane, the X-ray scanner, the densities, the tasks, 
and the time restriction and hourglass monitoring system.

There is, however, one particular type of object that does 
appear regularly on Jane’s screen and that she is required 
to notice and mark as seen by hitting the red button. This 
“object” is a so-called threat image projection (TIP), an 
image of a known threat—often handguns—projected onto 
a piece of luggage. These projections have a double func-
tion, according to the producers (Rapiscan 2017): to keep the 
operators alert to threats and to remind them what threats 
look like, exactly because they hardly ever see any real 
threats—as well as to check that they are alert and looking 
at the screen. Indeed, missed TIPs are counted and presented 
to Jane at the end of the month, she explains. The TIP sys-
tem uses a bank of images of known threats and thereby 
requires that the officers are able to detect only those known 
threats at the risk of being inattentive to hitherto unknown 
threats. This produces what I have called a visual agnosia to 
the unknown, because it undercuts what the police officers 
describe as their creative capacity for imagining things that 
are unknown and projected into the future, exactly what the 
pre-programmed vision of the machines cannot do (Møhl 
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2019, 2020a, 2020b). Besides configuring this function of 
recognising only the known, the TIP system also produces 
a particular form of operator vision that is alert to the sys-
tem’s internal threats, its built-in control mechanisms, and 
the particular colours and strange contours of the artificial 
TIP objects. Indeed, from what they say, when officers detect 
TIP images, it is actually not the object itself that they per-
ceive but the uncanniness of its projection, especially at this 
level of security, where time is a scarcity.

The way Jane comes to see mainly fuzzy zones and what 
cannot be seen in collaboration with her level 1 scanner—
their particular enskillment of an inverted vision—stands 
out, because it so clearly contrasts with the way the police 
officer and the more elaborate scanner on security level 3 
come to see. In addition, where these two modes of seeing 
meet and produce a diffractive potential, time seems to be 
of the essence to the different forms of seeing that appear.

When Jane hits the red button or lingers too long, the 
scanned piece of luggage is sent on to yet another conveyor 
belt track that rolls it right into security level 3, situated in 
the middle of the conveyor belt bustle and noise. An alert 
sounds, a lamp starts blinking, and the piece of luggage 
appears physically in front of the police officer who has to 
lift it into a huge and more proficient X-ray scanner. Here, a 
very different type on intro-spection starts, for at this level, 
there are fewer pieces to look at and much more time to 
go through the details. Paul, the officer, not only sees the 
outside of each piece of luggage, but can also minutely go 
through all the objects contained within it with the X-ray 
scanner. The X-ray scanner can show more details and scan 
the piece of luggage from all sides. But mainly, Paul has 
time to try out different visualisations, zoom in and out, and 
to look attentively at and identify the objects in the pieces of 
luggage. Paul is looking at content, not form. And only when 
the fuzzy zones persist and he cannot make out the contents 
is the piece of luggage sent onto the ultimate security level, 
security level 4, where the passenger is called down to an 
explosion-proof room to open the luggage and go through 
the contents. This happens only rarely, maybe once a week, 
Paul estimates.

Paul and his scanner are able to make out and identify 
objects, because some X-ray frequencies make certain parts 
stand out more clearly while making other parts invisible, 
and other frequencies make exactly those formerly invisible 
parts clearer. A pair of curved metal wires show up several 
times. He quizzes me, and I learn that they are metal wires 
in bras. Strange square plates with holes in them turn out to 
be metal inserts in leather shoe soles; Paul can identify more 
expensive, robust leather shoes by the fact that they do not 
have these metal inserts, he explains.

In making decisions, Paul works through qualified guess-
work and induction by positively identifying certain objects 
and inferring what the others might be, or by explaining 

the nature of the composition of objects by who the owner 
might be. He puts together life stories, as he says. He reads 
coherent life stories out of a selection of the material frag-
ments of those lives. A duffle bag held together by rope turns 
out to contain a series of long knives and some unidenti-
fiable objects entangled in electronics that were probably 
what made his colleague in level 2 hit the red button. Paul 
infers from the duffle bag and the knives that the travel-
ler is a Philippine chef disembarking in Gibraltar, and also 
that the unidentifiable objects in the bag must be some kind 
of kitchen utensil. A densely packed suitcase contains both 
women’s and men’s shoes, from which he infers that this is 
a couple travelling together with only one suitcase, which is 
why it is so heavily packed and difficult for the human and 
machinic seers on the former security levels to see through. 
There is a logical explanation to the particular constellation 
of objects, known and unknown, visible and fuzzy, as well as 
to the fuzziness itself, which clears the pieces of luggage of 
suspicion. It’s all about seeing the logics. 2 + 2 = 4. And it’s 
about having the necessary time to exploit the intro-spective 
scanner vision technologies to their fullest.

3.3 � Robot visions

At Herlev Hospital in the Capital Region of Denmark, sur-
geons operate with robots in three main domains, urology, 
gynaecology and gastrointestinal surgery. Herlev has four 
robots in the operating rooms, and an older model is used 
for training and simulation in the basement. They are all 
“da Vinci” robots produced by an American company, Intui-
tive Robotics, which has international monopoly of surgical 
robots. “But other companies are biting at their heels”, Niels, 
chief urologist and experienced robotic surgeon explains to 
his trainees, surgeons and surgical nurses who will soon be 
working with the robot. During the training program they 
learn to wrap the robot’s arm in disposable drapes, install 
it by the operating table, position the patient and insert the 
robotic instruments inside the patient. They also learn to 
deinstall everything very quickly in case something goes 
wrong and they have to switch to open surgery. Once eve-
rything is ready, they start learning to use the robot, taking 
turns at the console in operating on a dummy, working at a 
distance with hand controllers and foot pedals. They train 
to move the robotic arms and the camera, switch between 
instruments and make stitches on a phantom silicone organ 
positioned inside the dummy patient. Later in the training 
program, they move on to an animal model, where things 
become more lifelike and the tasks more acute. There is 
bleeding, real organs that can be injured and a real risk of 
killing the “patient”. From the console, they learn to use 
the robot to find their way inside the body, identify tissue 
and organs by means of the camera, and perform operative 
procedures such as separating connective tissue and partially 
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or totally removing organs, blood vessels and nerves, stop-
ping bleeding by cauterising and clamping vessels, making 
stitches and reconnecting tubular organs—all this at a dis-
tance by connecting to the robotic arms and instruments and 
seeing through the endoscopic camera.

The viewing experience is astonishing. It is 3D—3DHD 
in the latest version—and you can sense the depth and rela-
tive distances, you can move around very narrow passages, 
open tiny crevices, grab minuscule nerve-vessel bundles, 
and push tissue and organs with your small robotic hands. 
The camera is equipped with a strong light and works with 
a factor 10 magnification. Following a kidney operation on 
the screen in the OR, the movements of the hands in the 
abdominal cavity make me think of a miniature speleolo-
gist gradually progressing, cutting and slicing and search-
ing for openings, in a close-up subjective shot. The imagery 
produces a sensation of intimacy and immediacy, a very 
uncanny feeling of being there, inside the patient’s body.

Although surgical robots were originally built for tele-
operations, the surgeon consoles at Herlev are positioned 
inside the ORs at approximately 2–3 m from the operating 
table. The robotic system is equipped with a two-way sound 
system with microphones and loudspeakers at both ends, 
but the sound quality is not always optimal, and they are 
often turned down or off. This means the surgeons can only 
vaguely hear the discussions, comments and sounds from 
the operating field and patient. To communicate with the 
team, they often have to raise their heads from the console, 
momentarily halting the operation.

Surgeons speak with satisfaction of heightened precision 
and concentration, and how they actually like the distance 
and relative sensory isolation the robot provides. They 
can work for hours on end without getting tired. The robot 
arms even eliminate any possible trembles. Although the 
robot is not intelligent or even automated, and hence not 
a robot in the classic sense, there is a bionic quality to this 
surgeon–robot assemblage, where the robot’s many arms, 
3DHD vision, force and steadiness merge together with the 
human operator and enhance the surgeon’s acuity, precision 
and endurance.

When sitting at the console, looking down through the 
stereoscopic 3D viewfinder into the patient’s abdominal cav-
ity, the small robotic instruments move just like one’s own 
articulated hands, turning 360º, grasping tissue and passing 
needles, and the position of the “hands” in the viewfinder 
corresponds to where one’s own fleshy hands are manipu-
lating the console controllers. It is all very intuitive, as the 
company name also indicates. The robotic hands are more 
than bodily extensions; they take over the place and role of 
one’s own arms and hands, like a prosthesis, making the 
robotic ensemble look convincingly like a cyborg.

But like a prosthesis, the hands lack one essential feature: 
the sense of touch. The prosthetic hands do not feel anything, 

and the surgeon has no haptic feedback whatsoever. Because 
of the enormous force of the robot’s hands, this calls for 
extreme attention to movements and operative interventions 
inside the patient. This lack of haptic feedback is considered 
particularly challenging by robotic surgeons, both at Her-
lev and in medical scholarship in general (e.g., Bethea et al 
2004; Rangarajan et al 2020).

Thus the surgeon in the console cannot feel what the 
robotic hands are touching, what the instruments are doing 
and the force they are applying, and can barely hear what 
is going on in and around the patient. All the sensations 
that surgeons normally rely upon in their interactions with 
patients, including smell and proprio- and alteroception, are 
in sum reduced to and rely upon one single sense: vision. 
And although designers and industry are trying to remedy 
this limitation by searching for technological solutions, I 
believe the solution is to be found within the pre-existing 
robotic ensembles, where surgeons enskill their vision to 
carry out this haptic perception. This becomes apparent 
both in the training programs and in the OR, where the 
participants tacitly enskill their eyes to sense the densi-
ties and resistances of the different types of bodily organs 
and tissues. They are perfecting what can only be called a 
synaesthetic haptic vision. In keeping with Merleau-Pon-
ty’s notion of synaesthetic perception (2005), this faculty 
to feel with one’s eyes is already a human capacity that is 
then further enskilled, in the robot ensemble and its par-
ticular human–machinic constellation, to the particular 
tasks it needs to carry out. The phenomenon of interlaced 
senses contrasts with a prevalent taxonomic and anatomi-
cal ontology of the senses as perfectly isolated, correlating 
with a fragmented body and anatomically isolated organs—
a taxonomic and functional mapping out that Leonardo da 
Vinci incidentally partook in (Foucault 1972; Hillman and 
Mazzio 1997). It replaces sensory inputs of pressure magni-
tude with sensory inputs of the spectrum of electromagnetic 
waves of light. There is an inverted parallel in the way an 
STM (a scanning tunnelling microscope) forms an image of 
an atomic specimen by touching it with a tungsten tip, “an 
encounter that engages the sense of touch rather than sight” 
(Barad 2007: 52).

The way this bionic surgical robot feels with its human 
eyes is generally tacit and non-explicit. During training the 
problem of lacking haptics is usually mentioned, but there 
are no specific words for describing it, simply frequent 
calls to attention, “watch out, you’re pulling too hard”, “be 
careful near the kidney”, “don’t push the spleen so much”. 
Digital simulation tools built into the da Vinci robot are 
used to train and evaluate movement and precision, but 
not haptic vision as such. Nevertheless, the surgeons seem 
to rely on their prior open and laparoscopic experience, 
where they couple vision with a direct haptic sense of the 
instruments, tissues and organs they touch. They also learn 
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to estimate pressure from different kinds of visual signs. 
For one thing, they can directly see the movement of the 
tissue that the hands are touching and estimate the force 
applied—although in training they initially push too hard 
and sometimes perforate organs or pull stitching sutures 
through tissue. Secondly, some tissue reacts to pressure by 
changing colour, generally because of altered blood flow, 
and this is also used as an indication of pressure. Thirdly, 
pressure on organs can be visually evaluated by the light 
reflections on the reflective surfaces. But again, all these 
visual skills are generally tacit, only occasionally being 
made explicit in training situations and supervisions in the 
OR, as well as in my discussions with robotic surgeons. 
Indeed, vision not only comes before words, as Berger 
reminds us (1972), vision often also elides wording, espe-
cially when it comes to haptic vision.

In the robotic cyborg, human and machine parts are con-
nected and interlaced, just as the different sensory quali-
ties operating in the cyborg are synaesthetically interlaced. 
Human vision, as an integral part of the bionic ensemble, 
is co-configured by the machinic and the optical parts that 
it operates through, and is further enskilled to become a 
proficient sense of touch. And this assertion comes not from 
applying an abstract theoretical concept such as the cyborg, 
but out of the analysis of lived experience in the daily inte-
grated human–machine practice of training and operating 
with-in-as robot.

4 � Analytical deliberations: ways of human–
machine seeing

Through these three different examples of human–machine 
ways of seeing, some common traits, as well as some 
interesting differences, become apparent that may pro-
vide further insights about the ways in which the three 
ensembles and their constituents produce particular forms 
of human–machine co-sensing. These common traits 
concern the interlaced process of visual enskilment in 
human–machine ensembles and the resulting forms of vision 
that arise, the sensory entanglements and, zooming out, what 
can be said about the nature of the sensing ensembles.

In the surgical cyborg ensemble, as well as in the ABC 
and luggage-scanning ensembles, not only are the senses 
interlaced, but machine and operator skills and capaci-
ties mutually configure one another. The cyborg figures of 
flesh-and-mechanics operate in human–material mutuality, 
but that does not necessarily imply a symmetry (Suchman 
2007). Indeed, the machines are designed and configured 
by humans, often in ways that mimic human ways. But they 
impose their machinic particularities on the operators sitting 
in and in many respects melting together with them.

4.1 � Tele‑visions

The taskscapes described in the examples all involve see-
ing, sensing and identifying particular objects: photos and 
faces, threats and densities, crevices and organs. In all the 
examples there is a distance between observer and observed, 
and some kind of tele-vision involved, but it is not neces-
sarily a distanced gaze. We are often up close, even touch-
ing the scrutinized objects with our eyes. It is an interactive 
embodied vision, even in those cases, where it is carried out 
for control purposes.

Zooming out, however, other types and agencies of tele-
vision appear. Although the robot does not “see” in the sense 
of ongoing image analysis that it acts on, as the ABC and 
the X-ray scanners on Level 1 do, the videos of the opera-
tions are being recorded and are continually accessible to 
an Intuitive support team in Switzerland. If the surgeon 
has logged into the console, the video and data relating to 
each operation are linked to her or his profile and can sub-
sequently be reviewed. Thus in this setting there is also a 
type of “machine seeing” going on where user performances 
are being monitored, just as flow, operator efficiency and 
alertness on the borders and in security control are being 
monitored by external instances.

The examples above thus highlight how the notion of a 
visually enskilled community of practice must necessarily 
be broadened to comprise not only the technologies humans 
work with and that do their part of the seeing, but also the 
political, organisational and economic forces that surround 
and partake in defining the tasks and necessary technolo-
gies and the people who develop, install and maintain the 
machines, to mention only a few. The sun hitting the eye of 
the ABC camera also modifies the process of co-seeing, as 
does a momentary glitch in the Interpol connection or the 
rupture of a small artery blinding the tiny endoscopic camera 
eye. Such incidents and factors also have their role in the 
processes of seeing and defining what can be seen.

From that perspective, ways of machine seeing neces-
sarily take into account all the various agencies and fac-
tors that go into seeing, besides the machines and their 
material particularities. They do not simply oblige users to 
see particular objects in particular ways. Furthermore, the 
technologies may have been tailored for specific purposes, 
but those purposes often slip, the technologies come to be 
used in other ways, and they malfunction in particular set-
tings or for particular purposes. They have deficiencies, they 
cannot feel, they mistake a printed face for a person. And 
they necessarily have to work together both with complex 
and interlaced sensory apparatuses of the humans who are 
engaging with them and with a variety of contrasting agen-
das, like those that exist, for example, between employers 
and the employed, and private and public interests. Finally, 
passengers seeking passage and patients being operated on 
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also partake in the processes of seeing by complying more 
or less efficiently to those processes and contributing their 
own agendas and bodily particularities (see also Fog et al. 
2020). In that sense, it becomes impossible to say how far 
out the bionic ensemble reaches and where it ends, even if, 
in the immediate setting, we can identify a central node of 
co-sensing collaborators.

4.2 � Tunnel visions

Tunnels bring you from one place to another by eroding 
the obstacles in your way. But they also seem to lock your 
attention into to the immediate surroundings and make you 
focus only on your own movement and the light at the end 
of the tunnel. In several of the settings described here, dif-
ferent forms of tunnel vision are at work that strongly reduce 
what can be seen and even create certain forms of blindness. 
This happens when the police officer in the ABC comes to 
see in 2D like the machine, when the security officer sees 
only some objects, whereas others fall out of their field of 
attention and become invisible and, for the robotic surgeon, 
when the surroundings disappear from view, because see-
ing is up so close, focused on the centre of the action. This 
tunnelling comes out of the technologies involved, as well 
as out of the organisational, political and temporal factors at 
play. The resulting partial blindness comes from a temporal 
and organisationally installed necessity to apply what we 
could call a selective, ‘protective eye’ that filters away any 
excess information (Benjamin 1985 in Latham 1999: 464). 
The more information, the greater the need for protective 
filtering of what can be seen and sensed. The automation of 
visual tasks seems to be a common technological answer to 
this problem, but in the examples above it merely gives the 
human operator additional and more complex visual tasks.

4.3 � Automat visions

In the border and airport examples, machines do an impor-
tant part of the seeing and have their share of decision-
making. In the bionic robot, at least in its current version, 
the surgeon component makes the decisions, strengthened 
by the stereo-eyes and the dexterity and stabilising effects 
of the mechanics. But augmented reality, more proficient 
real-time visualisations, and automation based on artificial 
intelligence are making their way into also robotic sur-
gery. However, as we see in the examples, higher levels of 
automation require different modes of seeing and analysis 
on the part of the human operators involved. Whereas the 
surgeon’s eyes, by seeing through the stereoscopic eyes, 
can fully concentrate on the object in focus, the particular 
organ being seen and touched with the eyes, the border 
and security guards collaborating with facial recognition 

systems and luggage X-ray scanners use a considerable 
amount of their attention to understand how the machine 
sees, why it makes the decisions it does and when it needs 
to be helped or overridden. They deploy a split vision that 
the surgeon does not, at least for the moment. And they are 
also attentive to the visual signs of control and monitoring 
to which their own performance is subject. In that sense, 
heightened automation may lead to a progressive blurring 
or even blinding of human vision, with light coming in 
from too many directions, levels, instances and structures, 
and where sunglasses are not enough.

References

Barad K (2003) Posthumanist performativity: toward an understand-
ing of how matter comes to matter. Signs J Women Cult Soc 
28(3):801–831. https​://doi.org/10.1086/34532​1

Barad K (2007) Meeting the universe halfway quantum physics and 
the entanglement of matter and meaning. Duke University Press, 
Durham

Berger J (1972) Ways of seeing. Penguin, Harmondsworth
Berger J, Mohr J (1982) Another way of telling. Pantheon, New York
Bethea BT, Okamura AM et al (2004) Application of haptic feedback 

to robotic surgery. J Laparoendosc Adv Surg Tech 14(3):191–
195. https​://doi.org/10.1089/10926​42041​25544​1

Deger J (2006) Shimmering screens: making media in an aboriginal 
community. University of Minnesota Press, Minneapolis

Foucault M (1972) Naissance de la clinique. Presses Universitaires 
de France, Paris

Grasseni C (2004) Skilled vision: an apprenticeship in breeding aes-
thetics. Soc Anthropol 12(1):41–55. https​://doi.org/10.1017/
S0964​02820​40000​35

Grasseni C (2007) Introduction. In: Grasseni C (ed) Skilled visions: 
between apprenticeship and standards. Berghahn Books, New 
York, pp 1–19

Grasseni C (2011) Skilled visions: toward an ecology of visual 
inscriptions. In: Banks M, Ruby J (eds) Made to be seen: per-
spectives on the history of visual anthropology. The University 
of Chicago Press, Chicago, pp 19–44

Grimshaw A, Ravetz A (2005) Visualizing anthropology. Intellect, 
Bristol

Grimshaw A, Ravetz A (2009) Observational cinema: anthropology, 
film and the observation of social life. Indiana University Press, 
Bloomington

Haraway D (1988) Situated knowledges: the science question in 
feminism and the privilege of partial perspective. Fem Stud 
14(3):575–599

Haraway D (1992) The promises of monsters: a regenerative politics 
for inappropriate/d others. In: Grossberg L, Nelson C, Treichler 
PA (eds) Cultural studies. Routledge, London, pp 295–337

Haraway D (2017) A cyborg manifesto. In: Wolfe C (ed) Manifestly 
haraway. University of Minnesota Press, Minneapolis, pp 3–90. 
https​://doi.org/10.2307/31780​66

Hillman D, Mazzio C (eds) (1997) Introduction. In: The body in 
parts: fantasies of corporeality in early modern Europe. Rout-
ledge, London, pp xii–xiii

Hirsch R (2017) Seizing the light: a history of photography. Rout-
ledge, London

Ingold T (2000) The perception of the environment: essays in liveli-
hood, dwelling and skill. Routledge, London

https://doi.org/10.1086/345321
https://doi.org/10.1089/1092642041255441
https://doi.org/10.1017/S0964028204000035
https://doi.org/10.1017/S0964028204000035
https://doi.org/10.2307/3178066


1252	 AI & SOCIETY (2021) 36:1243–1252

1 3

Latham A (1999) The power of distraction: distraction, tactility, and 
habit in the work of Walter Benjamin. Environ Plan D Soc Space 
17(4):451–473. https​://doi.org/10.1068/d1704​51

Lave J, Wenger E (1991) Situated learning: legitimate peripheral par-
ticipation. Cambridge University Press, Cambridge

Lynes K (2016) Cyborgs and virtual bodies. In: Disch L, Hawkesworth 
M (eds) The oxford handbook of feminist theory, pp 1–21. https​://
doi.org/10.1093/oxfor​dhb/97801​99328​581.013.7

MacDougall D (1998) Transcultural cinema. Princeton University 
Press, Princeton

MacDougall D (2006) The corporeal image: film, ethnography and the 
senses. Princeton University Press, Princeton

Marks LU (2000) The skin of the film: intercultural cinema, embodi-
ment, and the senses. Duke University Press, Durham

Marks LU (2002) Touch: sensuous theory and multisensory media. 
University of Minnesota Press, Minneapolis

Mauss M (1973) Techniques of the body. Econ Soc 2(1):70–88. https​
://doi.org/10.1080/03085​14730​00000​03

Merleau-Ponty M (2005) Phenomenology of perception. Routledge, 
London

Møhl P (1997) Village voices: coexistence and communication in a 
rural community in Central France. Museum Tusculanum Press, 
Copenhagen

Møhl P (2011) Mise en scène, knowledge and participation: considera-
tions of a filming anthropologist. Vis Anthropol 24(3):227–245. 
https​://doi.org/10.1080/08949​468.2010.50870​7

Møhl P (2012) Omens and effect: divergent perspectives on emerillon 
time, space and existence. Semeïon Editions, Meaulne

Møhl P (2019) Border control and blurred responsibilities at the air-
port. In: Diphoorn T, Grassiani E (eds) Security blurs: the politics 
of plural security provision. Routledge, London, pp 118–135

Møhl P (2020a) Vision, faces, identities: technologies of recogni-
tion. In: Olwig KF, Grüenberg K, Møhl P, Simonsen A (eds) The 

biometric border world: technology, bodies and identities on the 
move. Routledge, London, pp 83–99

Møhl P (2020b) ID-entities, data and the sensory work of border 
control. Ethnos J Anthropol. https​://doi.org/10.1080/00141​
844.2019.16968​58

Møhl P, Kristensen NH (2018) At Bruge Billeder og Lyd: Sensorisk 
Antropologi. In: Bundgaard H, Mogensen H, Rubow C (eds) 
Antropologiske Projekter: En Grundbog. Samfundslitteratur, 
København, pp 224–244

Okely J (2001) Visualism and landscape: looking and seeing in Nor-
mandy. Ethnos J Anthropol 66(1):99–120

Peirce CS (1998) What is a sign? In: N. In: Houser N, Kloesel C (eds) 
The essential peirce: selected philosophical writings, vol 2. Indi-
ana University Press, Bloomington, pp 1893–1913

Rangarajan K, Davis H, Pucher PH (2020) Systematic review of 
virtual haptics in surgical simulation: a valid educational tool? 
J Surg Educ 77(2):337–347. https​://doi.org/10.1016/J.JSURG​
.2019.09.006

Rapiscan (2017) Threat image projection. https​://www.rapis​cansy​stems​
.com/en/produ​cts/rapis​can-threa​t-image​-proje​ction​. Accessed 4 
Dec 2017

Rouch J (1975) The camera and man. In: Hockings P (ed) Principles 
of visual anthropology. Mouton, The Hague & Paris, pp 79–98

Rouch J (2003) Jaguar. In: Rouch J, Feld S (eds) Ciné-ethnography. 
University of Minnesota Press, Minneapolis, pp 204–209

Suchman L (2007) Human-machine reconfigurations: plans and situ-
ated actions. Cambridge University Press, Cambridge

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1068/d170451
https://doi.org/10.1093/oxfordhb/9780199328581.013.7
https://doi.org/10.1093/oxfordhb/9780199328581.013.7
https://doi.org/10.1080/03085147300000003
https://doi.org/10.1080/03085147300000003
https://doi.org/10.1080/08949468.2010.508707
https://doi.org/10.1080/00141844.2019.1696858
https://doi.org/10.1080/00141844.2019.1696858
https://doi.org/10.1016/J.JSURG.2019.09.006
https://doi.org/10.1016/J.JSURG.2019.09.006
https://www.rapiscansystems.com/en/products/rapiscan-threat-image-projection
https://www.rapiscansystems.com/en/products/rapiscan-threat-image-projection


Vol.:(0123456789)1 3

AI & SOCIETY (2021) 36:1253–1262 
https://doi.org/10.1007/s00146-020-01062-3

ORIGINAL ARTICLE

Ground truth to fake geographies: machine vision and learning 
in visual practices

Abelardo Gil‑Fournier1   · Jussi Parikka1,2 

Received: 13 September 2019 / Accepted: 18 August 2020 / Published online: 7 November 2020 
© The Author(s) 2020

Abstract
This article investigates the concept of the ground truth as both an epistemic and technical figure of knowledge that is central 
to discussions of machine vision and media techniques of visuality. While ground truth refers to a set of remote sensing 
practices, it has a longer history in operational photography, such as aerial reconnaissance. Building on a discussion of this 
history, this article argues that ground truth has shifted from a reference to the physical, geographical ground to the surface 
of the images echoing earlier points raised by philosopher Jean-Luc Nancy that there is a ground of the image that is central 
to the task of analysis beyond representational practices. Furthermore, building on the practices of pattern recognition, 
composite imaging, and different interpretational techniques, we discuss contemporary practices of machine learning that 
mobilizes geographical earth observation datasets for experimental purposes, including tests such as “fake geography” as 
well as artistic practices, to show how ground truth is operationalized in such contexts of AI and visual arts.

Keywords  Remote sensing · Machine vision · Machine learning · Visual culture · Operational image

1  Introduction

“Knowing how to discern a groundless image from an image 
that is nothing but a blow is an entire art in itself”—Jean-
Luc Nancy (2005: 25).

Geographical knowledge starts with how we see, or even 
more accurately, with the production of images through 
which we see, observe, analyze, and identify. Images are the 
supportive instrument for understanding territorial forma-
tions, and their mediating role is crucial in establishing the 
seeing that defines geographical entities of knowledge. This 
can include the most (seemingly) inconspicuous practices, 
such as coloring maps or populating them with place and 
site names. It can include the observation of how everyday 
life is filled with a variety of forms of geographical knowl-
edge embedded in digital platforms for navigation and other 
purposes. Geographic information systems are the mainstay 

of such practices that emerge through the mobilization of 
data and electronic communication technologies where the 
physical and the virtual sign entangle (see Pickles 1994). 
What has been established by decades of critical research 
is that the relationship between geography and images is 
heavily overdetermined: the visual and epistemic systems 
giving a sense of landscape formations are embedded in 
multiple social, colonial, gendered, and other forms of rep-
resentational biases (see Rose 1993; Rogoff 2000; Thrift 
2008). What’s more, this complex role of images in geo-
graphical knowledge has also given rise to various forms 
of epistemic transfers that are addressed in media theory: 
maps are understood as media (Siegert 2011) and cities are 
mediated by maps that themselves are materially situated as 
part of multiple layers of technologies new and old (Mattern 
2017). Building on this work and related to questions of 
automation, calculation, and AI techniques, we are interested 
in how analytical and synthetic knowledge about surfaces of 
the world—landscapes and territories—shifts to knowledge 
about the surface of images.

This article focuses on the concept of ground truth that 
has both a technical and symbolic meaning in how it negoti-
ates relations between images, material surfaces (geographi-
cal, landscape, territorial) and their entangled relations—to 
echo Michel Foucault’s phrasing—in various institutional 
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arrangements of power and knowledge. Starting from ground 
truth as a grounding figure of knowledge in remote sensing, 
we build an argument about the synthetic landscapes experi-
mented within current contexts of AI, which we will refer 
to as “fake geographies” following a term already proposed 
in computer science research (Xu 2018). Such fabulated and 
speculative landscapes are intriguing experiments in the 
creative use of machine learning techniques that deal with, 
for example, geographical datasets, as they also relate to the 
figure of the ground truth that is not anymore grounded on 
Earth, and have become a shifting, ungrounded reference 
point that has epistemic and aesthetic value. As a contribu-
tion to issues of machine vision (as per this special issue), 
these questions deal with what becomes decipherable as an 
image and as a landscape in systems that function primar-
ily through data as their input. In short, we are interested in 
analyzing the shift where the notion of ground truth is no 
longer specific to the surface of the ground as a geological 
or geographic reference point. Instead, ground truth becomes 
read through the “ground” of the synthetic AI images them-
selves and how datasets are mobilized in machine learning 
techniques for visual ends.

Jean-Luc Nancy’s (2005) The Ground of the Image pro-
poses a similar shift that troubles a rigid distinction between 
the figure and the ground, the ground and its representation. 
For Nancy, the image already contains a ground. Even if 
Nancy’s focus is on classical art history and the philosophy 
of images that stems from Western art, it becomes a useful 
reference point for considering the image itself as containing 
the material ground imprinted onto it but also what is being 
cut into existence by the image. Nancy writes:

The image does not stand before the ground like a 
net or a screen. We do not sink; rather, the ground 
rises to us in the image. The double separation of the 
image, its pulling away and its cutting out, form both 
a protection against the ground and an opening onto it. 
In reality, the ground is not distinct as ground except 
in the image: without the image, there would only be 
indistinct adherence. More precisely: in the image, 
the ground is distinguished by being doubled (Nancy 
2005: 13).

This doubling is both philosophical and technical, as 
our article aims to show. This argument relates essen-
tially to a range of contemporary data and compu-
tational techniques and shifts as part of the broader 
framework of how we engage with questions of AI—
such as different machine learning techniques—as part 
of operational images: images that do not primarily 
represent but operate in scientific, military, and other 
technical systems and institutions (see Farocki 2004).

This article is structured around three key points: first, 
to address the scope of the notion of ground truth, we 
map the shift from the truth of the ground to pattern 
recognition as a significant transformation that also 
relates to questions of machine vision and machine 
learning techniques (even if we are not able to go into 
technical specifics in this article). Second, we show 
how, from the recognition of patterns, we can move 
to the building of datasets as a relevant part of the 
infrastructures of ground truth and machine vision. 
Third, we look at examples of synthetic geographies 
as experiments that help to understand the ensemble 
of images in which the ground becomes synthetized 
with meaningful aesthetic and epistemological con-
sequences.

At stake in our discussion is the claim that ground 
truth is read from a mass of images, instead of com-
paratively off the ground. This leads to the question of 
how these concepts and terms relate to the contempo-
rary situation of machine vision and, more specifically, 
machine learning and the production of synthetic land-
scapes, as we argue at the end of the article.

2 � Evidential paradigm: from truth 
on ground to pattern recognition

Ground truth, as used in geography and environmental 
sciences, designates the information provided by direct 
observation—usually at the level of the literal ground, the 
surface of the Earth—in relation to maps, models, and 
remote sensing technologies. It is a concept that operates 
by recognizing a distinction between different sources 
of data, which, by comparison, can be brought to verify 
certain features of geography. Ground truths emerge on 
location; they are local, specific, and situated so as to be 
able to offer a grounding for the network of technologies 
of sense and location.

Ground truth is premised on calibration as a central 
feature of remote sensing that includes how distances can 
be negotiated and become standardized against a set of 
features that are assumed to stay regular. Hence, ground 
truth is itself constantly situated in a set of dynamic pro-
cesses, which can be argued to be also about forms of 
social and economic power as some discourses in criti-
cal geography pointed out in the 1990s (Pickles 1994). 
Already in this phase of earlier research, it was noted that 
the computerized environments of geographical systems 
might fundamentally change the nature of ground truth, 
where the mediations are becoming distanced from the 
actual ground as a material and lived environment: “The 
computer promotes a remote, detached view of the world 
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as seen through the filter of the computer database. Inti-
mate knowledge of the world recedes into the background 
of ‘ground truth’ as the computer screen becomes the 
medium through which the geographer interacts with the 
world” (Veregin 1994: 100–101).

However, besides the discussions about the comput-
erization and mediatization of material landscapes, the 
notion of ground truth has found a new milieu in practices 
linked to machine learning, where it has become part of 
the standard vocabulary. In these contexts, ground truth 
refers to the data provided as sample output values to the 
training and testing phases. That is, it is the set of given 
outcomes—obtained by any means—used to build the 
model during the so-called learning process. Ground truth 
does not distinguish between sources of data but refers to a 
distinction between the outcomes produced by a model and 
the data provided as expected values to be compared with. 
Hence, this incorporation of the ground into the machine 
learning operations of producing models becomes a cen-
tral part —of not only this specialist practice—of how we 
understand image operations in AI culture: as an interplay 
of images, data, and material environments.

These two different contexts of use of ground truth unveil 
a significant transition in the role played by images as part 
of the monitoring complex of remote sensing of the Earth. 
In Earth Observation and other instrument and discursive 
practices, the surface becomes a site of grounding particular 
truths (see, e.g., Bishop 2011). As we will show next, these 
truths highlight how the image complex has evolved and 
displaced the Earth as an object of knowledge to Earth-data 
and datasets of images that constitute the primary reference 
point.1

Already as a linguistic term, ground truth can be recog-
nized to contain an oxymoronic heterogeneity. While refer-
ences to truth locate the concept in the seemingly imma-
terial space of epistemological values, the ground part of 
the concept alludes to a presumed tangible substrate of 
firm evidence included in its multiple uses across different 
philosophical discourses too. As Caren Kaplan observes, 
“‘Ground truth’ anchors contemporary preconceptions about 
physical geography to the comforting solid matter of the 
earth’s crust” (Kaplan 2018: 34). The idea of witnessing and 
proximity is closely related to this epistemological trope of 
ground truth, which thus resonates with Kaplan’s note about 
the implied solidity of truth, like a permanent and stable 
geological formation.

But while the rhetoric of epistemological positions is here 
already heavily laden with different layers, it is tempting to 
further interrogate how the solidity of the earth’s crust can 

be related to the practices of ground truth. Our approach 
comes from visual studies and critical artistic studies of AI 
culture while also drawing on material that has investigated 
questions of surfaces in both screen culture and in archi-
tectural and environmental approaches to territories. This 
means to account for the ways material surfaces become 
not only the object of systems of perception and analysis—
like in aerial photography—but how they become its core 
element, as the ground truth is subsumed in their operative 
logic: not only analytical observing but synthetic creation of 
images from images.

In this regard, it is important to recall that while the 
notion of ground truth seems to deal with a sort of unmedi-
ated set of facts that emerged directly from the earth, the 
idea of a pure observation has been extensively contested 
in the domain of science and technology studies (STS). 
Indeed, as is convincingly shown in many studies and con-
texts, observations are always theory-dependent and part of 
a more detailed back and forth movement of comparison 
and synthesis in contexts of the materiality of epistemic 
practices (Knorr-Cetina and Mulkay 1983; Hacking 1983; 
Latour and Woolgar 1986). Similarly, models are embed-
ded in remote sensing from the first point of contact, so 
to speak, which makes it impossible to maintain a binary 
between a (data) model and data (capture) through sensors. 
As Edwards (2013: xiii) puts it: “Today, no collection of sig-
nals or observations—even from satellites, which can ‘see’ 
the whole planet—becomes global in time and space without 
first passing through a series of data models”. To name an 
example: in environmental monitoring, the ground truth of 
measuring instruments in meteorological stations cannot be 
separated from the weather forecast modeling practices they 
are part of. Similarly, seismic data is collected as ground 
truth as it feeds the prediction of seismic movements.

In such domains, ground truth becomes an operation of 
validating and adjusting a model to a set of facts measured 
on the ground. While this intervention of the context of the 
research in the practices of collecting observations has been 
extensively acknowledged as mentioned above, we would 
like to emphasize how the notion of ground truth involves 
an epistemic realm linked to what Carlo Ginzburg (2013) 
named the “evidential paradigm” which emerged towards 
the end of the nineteenth century. In other words, ground 
truth has its own epistemic history as a figure of knowledge.

In the evidential paradigm, the observer—presented 
under the persona of the detective—is, on the one hand, 
able to identify a layer of clues and patterns on top of the 
undifferentiated roughness of matter, and on the other, to 
produce a plausible reconstruction of events taking place. In 
this domain, the analytical and the synthetic coalesce. While 
emerging in a different context than that of visual epistemol-
ogy or remote sensing, let alone the synthetic technologies 
of “fake landscapes” in AI techniques that we will turn to 

1  See the notion of data ensemble in Hoelzl and Marie (2014) or the 
one of image ensembles in Mackenzie and Munster (2019).
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later, this reference to Ginzburg helps to draw attention to a 
common trait that characterizes practices linked to ground 
truth: the idea that ground speaks through clues, signs, and 
evidence that a careful observation of the ground as a reg-
ister is able to distinguish. Among these are also forensic 
practices that are again part of the contemporary landscape 
of technical analysis of surfaces (Weizman 2017) and the 
mediated practices of witnessing (Schuppli 2020), which 
both seem to carry forward the evidential paradigm even if 
in more (technical) media-specific ways.

Ground truth applications are found in disciplines such 
as archeology, paleontology, and forensic research. In such 
knowledge practices emerging from remote sensing, ground 
truth is evoked in various contexts: settlement evidence is 
checked against their images taken from the air (St. Joseph 
1945), mass graves are unearthed in relation to the indexi-
cal appearance of certain species of plants (Cox, Flavel and 
Hanson 2008), and agricultural sites are correlated to the 
detection of phytoliths in soil probes under the microscope 
(Lombardo et al. 2020). Ground truth is actually a broader 
term for knowledge verification and calibration that cir-
culates in diverse contexts and practices. In other words, 
ground truth surfaces as an operation where sets of mate-
rial traces are distinguished as registers of information. If 
the detective recognizes and operationalizes the material 
arrangement of a footprint, the dust on a shoe or the ash of a 
cigarette as clues indicative of a potential event, in a similar 
way ground truth encapsulates a set of filtered objects to be 
mobilized as data.

Ground truth relates closely to Schuppli’s (2020) opera-
tive concept of material witness. This epistemological tool 
acknowledges not only the evidential role of matter as an 
active register of external events but also the intervention 
of explicit acts of scrutiny in the reading of imprints. Here, 
the “truth” of these “grounds” relies on the application of a 
series of techniques of demarcation, filtering, and observa-
tion, that is, a domain of practitioners and a material culture 
“that enable such matter to bear witness” (Schuppli 2020: 
3). The forensic method of reading material culture acknowl-
edges that ground alone tells no message; hence we are deal-
ing with “impure matter” (Schuppli 2012) affected by the 
acts of looking. Furthermore, in such contexts of ground 
truth being established by comparison and other methods, 
questions of analysis pick up another take on the evidential 
paradigm as it becomes involved in advanced computational 
techniques including machine learning—and how it stems 
from pattern recognition.

Not by chance, since the early 2000s, an educational 
game by NASA—“Where on Earth…?”—has been invit-
ing players to become “geographical detectives” (California 
Institute of Technology 2019). The game consists of quizzes 
where users are asked to locate the geographical area shown 
on a satellite image by using their abilities to extract visual 

clues from the image to recognize the place. The archive of 
quizzes displays islands, mountain ranges, deltas, volcanos, 
and other geographical landmarks, pictured from above and 
presented without any revealing textual key. This case would 
seem anecdotal if it were not for a recent machine learning 
project that aims to do something similar on Google’s plat-
form, the PlaNet neuronal network (Weyand, Kostrikov, and 
Philbin 2016). The project aims to build a machine learning 
model with the ability to determine the location of a photo-
graph by looking at its pixels, that is, without accessing any 
image metadata such as GPS information.

When comparing NASA’s educational game to Google’s 
PlaNet, the task’s similarity highlights the main difference: 
the detective player has been replaced by an algorithmic, 
big-data-driven process. Beyond the characteristic automa-
tization of pattern recognition in machine learning sys-
tems (Mackenzie 2017), we want to address an additional 
noticeable difference between the two examples. What is 
interesting here is an assumption underlying the context of 
the PlaNet project: that any image is supposed to contain 
in itself enough visual clues and patterns for a sufficiently 
trained AI model to be able to recognize the place on Earth 
where it was taken. While for the player in NASA’s game, 
the knowledge of geography linked to her pattern recogni-
tion skills is enough to complete the task, in the machine 
learning project the computational model is supposed to be 
able to identify the place shown in a photograph—once it 
has been trained with a large enough dataset of all sorts of 
outdoor images that are labeled with their geolocation. The 
physical immutability of the ground in geographical knowl-
edge is replaced by a machine-readable statistical correlation 
to be found among images when comparing one to another. 
This is what Adrian Mackenzie and Anna Munster name 
as the “invisuality” of “platform seeing”: “Collections of 
images operate within and help form a field of distributed 
invisuality in which relations between images count more 
than any indexicality or iconicity of an image” (2019: 16). 
That is, the ground for geographical detectives is replaced 
by an invisible ground of relations amidst the dataset in the 
context of statistical learning.

3 � Photomosaics and stitching ground truths

Although the term “ground truth” was not used widely until 
the 1960s,2the topographical techniques of “ground truth-
ing”—that is, synchronizing images and maps as part of 
epistemic procedures of verification and calibration—as well 

2  A Google Ngram search showing the use of several wordings for 
ground truth displays the growing popularity of the term since the 
1960s. For more on n-grams see Michel et al. (2011).
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as their relation to matters of triangulation as in telemetry, 
were deployed shortly after the invention of photography. 
Only ten years after Daguerre’s invention, French Army 
officer Aimé Laussedat produced the first aerial surveys 
with balloons; five years later, French photographer Nadar 
filed for a patent on the use of overlapping photos in these 
surveys (Cosgrove and Fox 2010: 24). Besides the early pho-
tography context that is interesting as part of the history of 
photogrammetry, we want to emphasize the centrality of the 
early twentieth century and the First World War as far as the 
operationalization of images about landscapes is concerned. 
As shown in detail by Saint-Amour (2003, 2011, 2014), after 
the development of airplanes, the military contexts on pho-
tography become instrumental in the image-map complex 
that shifted the ground of ground truthing.

Besides trained personnel with the fine-tuned capacity 
to read terrains and images, new technologies supported 
the task of image comparison and synthetic knowledge. On 
the one hand, interpreters were considered to be a “highly 
trained interpretive elite,” often compared to detectives 
(2003: 356) as they had learned to extract as many visual 
clues as possible from single aerial photographs. Here the 
link to the evidential paradigm persists clearly. On the other 
hand, “a complex technological matrix” (2003: 354) was set 
up to help in the execution of this task. This matrix included 
technologies such as the stereoscope, used with pairs of 
aerial images, the hyperstereoscope, an improved version 
of the latter relying on the constant speed of planes, which 
used two pictures separated by a known temporal gap (2003: 
360–361), and a specific adaptation of the body and the 
perceptive skills of the interpreters needed to operate these 
techniques. With the aid of this reconnaissance matrix—the 
“deadliest weapon in the war” (2003: 357)—armies were 
able to distinguish features on the images related to eleva-
tion, the third dimension of landscapes, such as differenti-
ating trenches from embankments, as well as seeing even 
what was hidden underneath bridges and forests (2003: 358). 
Thus, while the aerial image provides a way of transform-
ing landscapes into readable surfaces (Scott 1999), exam-
ples prove that when the dimensions of landscape exceeded 
the representational and encoding capabilities of isolated 
pictures, a set of operations involving the use of multiple 
images simultaneously had to be put into practice.

In addition to making elevations visible—in a way, inter-
preters accessed “a three-dimensional scale model” of them 
(Saint-Amour 2003: 358)—other technologies helped to 
produce pictures of areas of a large-scale that would have 
otherwise been impossible to portrait in a single shot, such 
as the areas occupied by trenches. In these cases, different 
images were stitched together to build a large photomosaic. 
As Saint-Amour has shown (2014), technicians relied on the 
appearance of several recognizable objects in the images. 
As if they were ground truthing the images, they identified 

these features as reference objects and used them as anchor 
points when stitching them together. In other words, tech-
niques of ground truthing had two functions in photomosa-
ics: referential objects were usually tracked to compare and 
link a particular image to the map of the ground, but here 
they were also employed to connect images to each other. 
That is, the ground truthing techniques used to keep images 
linked as maps that are useful for navigating and reading 
the surface of the earth also operated to keep images linked 
to each other. This is particularly relevant in this article’s 
scope, as it shows how the same techniques were used in two 
different operations. The same techniques used to verify the 
correlation between data (images) and ground were also in 
operation to keep hold of the domain of images itself, that 
is, to keep images connected, not only to the surface of the 
world but to each other as well. It is these operations of com-
parison, synthesis, synchronization, calibration that define 
the scope of ground truth as it emerges as a media technique 
even before contemporary versions of machine vision and 
machine learning.

The example of the photomosaic shows how techniques 
involved in the concept of ground truth were also central to 
enabling the up-scaling of photographic images by stitch-
ing them together. Ground truthing becomes—in this case—
relational, traveling from the stabilization of the image in 
relation to the map, onward to the interweaving of images 
while keeping them as legitimate geographical tools. The 
epistemic dimension of what is verifiably “there” is man-
aged through the media techniques mentioned above. Inter-
estingly, this is a relational dimension of the concept of 
ground truth that has been highlighted elsewhere. Writing 
about the concept of ground truth as used in the domain of 
contemporary planetary remote sensing, Jennifer Gabrys has 
observed how “the ground of ground truth is not, however, 
the final point of resolution in these sensor environments. 
Instead, it is a reminder of the constant need to draw con-
nections across phenomena. Ground here is connection and 
concretization” (Gabrys 2016: 71), which points to the simi-
lar traits we have put forward through the examples above.

Continuing on, we move to the question of media tech-
niques of ground truth by discussing another influential pro-
ject of the past decade, leading us to consider how aerial 
images are integrated into complex data-synthesizing envi-
ronments that fluctuate between the visual and invisual. Fol-
lowing Mackenzie and Munster (2019), we argue that this 
relates to how data is being prepared to be platform-ready 
and that visual data operates in invisual ways. This relates to 
the processes of synchronization of visual data, made opera-
tive for navigational and other purposes.
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4 � Environments of images: Google Ground 
truth

Continuing the recycling of existing terms in data-driven 
platform contexts, Ground Truth was also the name of one of 
Google’s core projects of the 2010s. First publicly described 
in The Atlantic (Madrigal 2012), the strategic relevance of 
the availability of detailed and accurate GIS systems in 
the context of the emergence of all-encompassing digital 
platforms (Gillespie 2010) fuelled development initiatives. 
These Google projects aimed to extract data from images at 
a massive scale, such as the reCAPTCHA project (Strauß 
2018: 11). Project Ground Truth focused on creating “accu-
rate and comprehensive map data, by conflating multiple 
inputs, via algorithms and elbow grease” (Lookingbill and 
Weiss-Malik 2013). Alongside aerial images, creating access 
to other combinable inputs—not least of which were Street 
View cars—was instrumental in offering the epistemologi-
cally significant synthesis operating at the back of the map 
services. The Street View images featured three particularly 
valuable characteristics: they were regularly updated, accu-
rately geolocalised, and displayed map-related information 
such as traffic signs, street names, and brands’ logotypes, 
among others. The Ground Truth Project has been respon-
sible for the developments geared at reading—as in Opti-
cal Character Recognition (OCR)—the information printed 
in the physical world, pictured afterward on Street  View 
images. Notably, these developments involved much more 
than software engineering, functioning on the coordinated 
extraction of vast amounts of hours of human cognitive 
labor—typical of contemporary AI projects (Crawford and 
Joler 2018; Ganesh 2020; Joler and Pasquinelli 2020). How-
ever, the relevance of the Ground Truth Project in relation 
to this article is not who or what is in charge of recognizing 
patterns, but instead, where this activity is performed. Sig-
nificant for our argument about the machine learning ver-
sion of ground truth is that the surface of images is the key 
holder of information. The remarkable aspect of this case is 
precisely the circulation where data from images in datasets 
is transferred to the images used as geographical maps. The 
evidence—the clues and signs—are extracted from the sur-
faces of the images and projected onto the tiled images that 
make up the map service.

Furthermore, this circulation presents a version of how 
the stitching of images mentioned earlier persists as a key 
trait of image analysis and machine vision from aerial 
images to a multitude of data-points where the ground 
becomes not a ground but a shifting set of techniques in 
which the ground is constantly established and calibrated. 
In this regard, drawing on Nancy and other sources, Ryan 
Bishop (2011: 276) argues that “[a]erial visual technolo-
gies and aesthetics are almost sole grounded, literally, in the 

terrestrial”. The inverted is also true when we consider the 
role of media that establishes the ground as an epistemologi-
cally existing composite: the terrestrial is grounded in the 
aerial (technologies) and, broadly speaking, in the circula-
tion of images. Aerial photography did, as a matter of fact, 
persist as a key reference point and infrastructural anchor 
for the development of remote sensing techniques. Early 
research on remote sensing in the 1960s shows how the need 
for geolocating the readings of sensors carried by surveying 
aircraft— such as spectrometers or radiometers—involved 
the same hardware as used in aerial photography. Before 
the availability of satellite-based positioning systems such 
as GPS, aerial images were the means to geolocate readings 
of in-flight sensors, thus connecting “the recorded sensor 
signals to the ground truth visible in or derived from aerial 
photographs taken in the course of the flight test” (Eppler 
and Merrill 1969: 665). Aerial photographs were shot simul-
taneously as the sensor measurements were produced, print-
ing, in some cases, the image of the ground next to the image 
of the sensor in the same plate (Grossman and Marlatt 1966). 
Then, be it through the bare ocular inspection of an investi-
gator, a computer-aided “photointerpreter” with a light-pen, 
or the operations of an automated system, all of the sensor 
data was printed on top of a map or an aerial image of the 
surveyed zone (Eppler and Merrill 1969) as if it were a layer 
of geolocated data in a geographical information system. Not 
by accident, these were works published simultaneous to Ian 
McHarg’s seminal book, Design with Nature (1991), which 
proposed the layer-cake model, acknowledged as a forerun-
ner of GIS (Steiner and Fleming 2019: 173).

The discussion in geography concerning the mediated 
“remote, detached view of the world” in computational 
geographical databases (Veregin 1994: 100–101) resonates 
again in the context of image circulations that precede GIS 
systems. The use of aerial photographs as a geolocating tool 
“projects an image of a de-materializing world” (Virilio 
1994: 13), where spatio-temporal coordinates are replaced 
with the circulation of images. While the reference to dema-
terialization is a characteristic part of the 1980s–2000s dis-
course concerning digital technologies, the way images are 
being understood is nowadays approached with a focus on 
the materiality of the media techniques that are formative 
of this image-complex. The ability to picture the ground 
and the sphere and needle of a measuring instrument was 
already used in the first aerial photograph surveys, where 
each shot of the ground included the image of an altimeter 
and clock placed under the camera. Framed initially by the 
altimeter and the clock, the aerial image acquired the role of 
a navigational tool itself, while later becoming replaced by 
some of the platforms already mentioned. The main point 
is, however, the focus on the shift from ground to images 
to data, which in the current context of experimental media 
arts and experimental use of geographical datasets, becomes 
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included in the construction of “fake” geographies that we 
turn to next.

5 � Ground truth and synthetic (“fake”) 
geographies

In this article, we have analyzed how the concept of ground 
truth entails a movement from observations practiced at the 
ground level to operations at the surface of the image. From 
images produced on aircraft to Google Street View vehi-
cles, the priority of datasets becomes emphasized as a core 
feature of ground truthing that is tied closely to environ-
ments of images. As such, the primacy of images ties two 
sets of recent contexts of imaging and ground truth in sur-
prising ways that also reveals something fundamental about 
such operational images and how they are also mobilized 
in contemporary experiments that further shift the notion 
of the ground truth to fictitious, and even extraterrestrial, 
land surfaces.

In extraterrestrial remote sensing, we are faced with 
image analysis where the lack of access to the ground means 
a complete absence of “absolute ground truth” (Smyth et al. 
1995: 109). Operations such as the exploration of Venus’ 
surface through the images taken by the Magellan Mission 
during the 1990s are peculiarly similar to examples such 
as Google’s PlaNet. A dataset of human-labeled images of 
planet surfaces—samples of images of craters and other pat-
terns of landscape filtered by expert observers—is separated 
from the ensemble of images obtained from the mission and 
distinguished as ground truth for a statistical learning pro-
cess aimed at classifying, at a massive scale, the geographic 
features on the surface of the planet (Smyth et al. 1995). In 
outer space, the ground of extraterrestrial planets emerges 
from the techniques embedded in the technological infra-
structure of orbiting vehicles. Ground truth is reliant on 
spacecraft systems, just as earlier cultural techniques were 
carried by travelers and colonizers on their ships (Siegert 
2015).

Complementing the complex and costly procedures of 
extraterrestrial imaging projects and “comparative planetol-
ogy” (Likavcan 2019), contemporary experimental media 
arts projects, including work that elaborates calibration such 
as Geocinema’s Framing Territories,3 deal with AI methods 
too; they produce a version of synthetic “fake” landscapes. 
For instance, in the context of experimental computer sci-
ence, the Satellite Image Spoofing project (Xu and Zhao 

2018), proposes a technique aimed at creating fake datasets 
of satellite images, just as deep fakes produce the illusion 
of portraying non-existing faces. Deep fake landscapes shift 
both the focus of machine vision and AI systems from the 
individual face and demonstrate that any image surface—
face, landscape, earth, or extraterrestrial—can be treated in 
similar ways and subject to similar considerations that push 
questions of ground truth off the ground. In a way, Asunder, 
the art installation by Tega Brain, Julian Oliver, and Bengt 
Sjölén (2019), works in this way too. The machine-learn-
ing driven simulation of imaginary (future) landscapes are 
examples of how a fictional AI Environmental Manager not 
only observes but reorganizes specific locations on Earth 
based on existing environmental data assembled into (at 
times absurd) projections. While this work is more about 
the variety of assumptions of rationality built into climate 
models and projections, it also works with the “machine 
vision” of fabricating images of terraforming.

Also within techniques designated “fake geography,” the 
relation between the aerial view and its intrinsic calculability 
is explored in generative artworks where images of lands are 
merged with algorithmic textures, such as in Neural Land-
scape Network by Gregory Chatonsky (2016) or Invisible 
Cities by Gene Kogan (2016). With similar techniques, Shi 
Weili’s Terra Mars mobilized artificial neural networks 
(conditional GAN in this case) and trained it with “with 
topographical data and satellite imagery of Earth.” This 
model was then applied to “see Mars differently,” to make 
it look like Earth, as one visual commentary on imaginaries 
of terraforming and, as per the artist’s own words, creative 
use of AI technologies. In a similar vein, the Terraformed 
Mars twitter bot by the physicist Casey Handmer (2018) 
offers images of “simulated terraformed Mars landscapes 
every six hours” that are based on datasets such as the Mars 
Orbital Laser Altimeter (MOLA) dataset.

Often, such works are discussed in terms of the creative 
uses of algorithmic techniques and AI. Instead, we want to 
highlight how the image environments themselves are gen-
erative, based on data and details extracted and mobilized 
from comparative techniques. Instead of merely creative AI, 
we want to refer to Russian filmmaker Lev Kuleshov’s con-
cept of “creative geography” from the 1920s, a concept that 
already formulated the ability to build “unique spatial reali-
ties […] out of shots taken in different geographical loca-
tions or at different times” (Bozak 2011: 97). This principle 
of Soviet montage recalls the importance of the relational 
space opened when ensembles of images are taken together, 
interweaved in technical operations, and made explicit by 
Harun Farocki through his practice on the soft-montage 
(Farocki 2009; Pantenburg 2017). Hence, the synthetic 
nature of images and landscapes revolves not merely around 
current versions of machine vision and the creative use of 
datasets in different AI techniques, but the longer legacy of 

3  On the question of calibration both as a technical and artis-
tic notion, see Geocinema’s work Framing Territories (2019) that 
focuses on remote sensing and science infrastructures of the Digital 
Belt and Road, and Hito Steyerl’s How Not to Be Seen: A Fucking 
Didactic Educational.MOV File (2013).
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how techniques of ground truths afford a synthetic creation 
of truths that rise “to us in the image,” to return to Nancy’s 
phrasing. Indeed, Nancy’s (2005) take on the ground being 
doubled and framed in the images becomes an essential 
guideline—although we must add a further note that it is 
not only a doubling but a radical synthetic multiplication of 
grounds that takes place in images as they are mobilized in 
massive quantities of datasets.

6 � Conclusion

In this article, we addressed a set of imaging practices 
related to the production of geographical knowledge, and 
we have focused on an analysis of the techniques as they 
relate to a broader domain of the image. The aim has been to 
address the shift that contemporary AI culture operational-
izes from the surfaces of the world—such as landscapes and 
territories—to environments of images. This relation is more 
than representational, and it has, over a longer period, been 
conditioned by a range of media techniques, and this relates 
to a shift we have tracked through ground truthing, where the 
concept of ground truth has been shown to leave the surface 
of the earth, to be read through the operations and decod-
ing—and synthetic combining—of image surfaces.

Furthermore, and focusing on the relevance of aerial pho-
tography and photomosaics, we have shown how the notion 
of ground truth, despite not being mentioned in literature 
before the 1950s, has an epistemic history as a figure of 
knowledge which can be traced back to those photographic 
techniques linked to the first aerial surveys. We have con-
textualized these with what Carlo Ginzburg exposed as an 
evidential paradigm (2013), which can also be described 
using Adrian Mackenzie’s words while quoting Hannah 
Arendt in relation to artificial intelligence: “The crux of the 
problem rests on the ‘treatment’ or operations that ‘reduce 
terrestrial sensibilities and movements’ to symbols” (Mac-
kenzie 2017: 53). Following approaches that discuss the role 
of images in the contexts of machine learning (Mackenzie 
and Munster 2019), we have emphasized the importance of 
the invisual and non-representational domain of relations 
between images as elements of the data ensembles involved.

In this regard, ground truth has been shown as the set of 
techniques where these symbols are related to each other 
as a media operation that, in addition to grounding, current 
geographical systems are also able to give rise to what we 
have addressed as fake or synthetic geographies. Existing 
critical work in geography has articulated similar claims, 
such as John Pickles who, writing on GIS and “Benjamin’s 
law of assembling images” affirmed: “In this sense, as well 
as legitimizing claims to verisimilitude, digital mapping 
signals the end of mapping as evidence for anything, or at 
least the emergence of a representational economy whose 

illusions—Baudrillard tells us—will be so powerful that it 
won’t be possible to tell what is real and what is not” (Pickles 
2004: 159). However, ground truth is an operation that goes 
beyond geography and has in AI techniques and machine 
vision its main domain of application, as also demonstrated 
in relation to artistic practices that address such ideas of 
the ground as a speculative, calculated, hypothesized entity. 
Thus, broadly speaking, the discussion also concerns con-
temporary AI-based image cultures in widespread terms, 
when it comes to technologies and the institutions of the 
verification of data—of ground truths.
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Abstract
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1 � Some enlightenment 
regarding the project to mechanise 
reason

The Nooscope is a cartography of the limits of artificial 
intelligence, intended as a provocation to both computer 
science and the humanities. Any map is a partial perspec-
tive, a way to provoke debate. Similarly, this map is a mani-
festo—of AI dissidents. Its main purpose is to challenge the 
mystifications of artificial intelligence. First, as a technical 
definition of intelligence and, second, as a political form that 
would be autonomous from society and the human.1 In the 
expression ‘artificial intelligence’, the adjective ‘artificial’ 
carries the myth of the technology’s autonomy; it hints to 
caricatural ‘alien minds’ that self-reproduce in silico but, 
actually, mystifies two processes of proper alienation; the 
growing geopolitical autonomy of hi-tech companies and 
the invisibilization of workers’ autonomy worldwide. The 
modern project to mechanise human reason has clearly 
mutated, in the twenty first century, into a corporate regime 
of knowledge extractivism and epistemic colonialism.2 This 
is unsurprising, since machine learning algorithms are the 
most powerful algorithms for information compression.

The purpose of the Nooscope map is to secularize AI 
from the ideological status of ‘intelligent machine’ to one of 
knowledge instruments. Rather than evoking legends of alien 
cognition, it is more reasonable to consider machine learn-
ing as an instrument of knowledge magnification that helps 
to perceive features, patterns, and correlations through vast 
spaces of data beyond human reach. In the history of science 
and technology, this is no news; it has already been pursued 
by optical instruments throughout the histories of astronomy 
and medicine.3 In the tradition of science, machine learning 
is just a Nooscope, an instrument to see and navigate the 
space of knowledge (from the Greek skopein ‘to examine, 
look’ and noos ‘knowledge’).

Borrowing the idea from Gottfried Wilhelm Leibniz, the 
Nooscope diagram applies the analogy of optical media to 
the structure of all machine learning apparatuses. Discuss-
ing the power of his calculus ratiocinator and ‘characteristic 
numbers’ (the idea to design a numerical universal language 
to codify and solve all the problems of human reasoning), 
Leibniz made an analogy with instruments of visual mag-
nification such as the microscope and telescope. He wrote: 
‘Once the characteristic numbers are established for most 
concepts, mankind will then possess a new instrument which 
will enhance the capabilities of the mind to a far greater 
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2  For the colonial extensions of the operations of logistics, algo-
rithms and finance see: Mezzadra and Neilson (2019). On the epis-
temic colonialism of AI see: Pasquinelli (2019b).
3  Digital humanities term a similar technique distant reading, which 
has gradually involved data analytics and machine learning in literary 
and art history. See: Moretti (2013).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-020-01097-6&domain=pdf


1264	 AI & SOCIETY (2021) 36:1263–1280

1 3

extent than optical instruments strengthen the eyes, and 
will supersede the microscope and telescope to the same 
extent that reason is superior to eyesight’ (Leibniz 1677, 
p. 23). Although the purpose of this text is not to reiterate 
the opposition between quantitative and qualitative cultures, 
Leibniz’s credo need not be followed. Controversies cannot 
be conclusively computed. Machine learning is not the ulti-
mate form of intelligence.

Instruments of measurement and perception always come 
with inbuilt aberrations. In the same way that the lenses of 
microscopes and telescopes are never perfectly curvilinear 
and smooth, the logical lenses of machine learning embody 
faults and biases. To understand machine learning and reg-
ister its impact on society is to study the degree by which 
social data are diffracted and distorted by these lenses. This 
is generally known as the debate on bias in AI, but the politi-
cal implications of the logical form of machine learning are 
deeper. Machine learning is not bringing a new dark age but 
one of diffracted rationality, in which, as it will be shown, 
an episteme of causation is replaced by one of automated 
correlations. More in general, AI is a new regime of truth, 
scientific proof, social normativity and rationality, which 
often does take the shape of a statistical hallucination. This 
diagram manifesto is another way to say that AI, the king of 
computation (patriarchal fantasy of mechanised knowledge, 
‘master algorithm’ and alpha machine) is naked. Here, we 
are peeping into its black box.

On the invention of metaphors as instrument of knowl-
edge magnification.

Emanuele Tesauro, Il canocchiale aristotelico [The Aris-
totelian Telescope], frontispiece of the 1670 edition, Turin.

2 � The assembly line of machine learning: 
data, algorithm, model

The history of AI is a history of experiments, machine fail-
ures, academic controversies, epic rivalries around military 
funding, popularly known as ‘winters of AI.’4 Although 
corporate AI today describes its power with the language 
of ‘black magic’ and ‘superhuman cognition’, current tech-
niques are still at the experimental stage (Campolo and 
Crawford 2020). AI is now at the same stage as when the 
steam engine was invented, before the laws of thermodynam-
ics necessary to explain and control its inner workings, had 
been discovered. Similarly, today, there are efficient neural 
networks for image recognition, but there is no theory of 
learning to explain why they work so well and how they 
fail so badly. Like any invention, the paradigm of machine 
learning consolidated slowly, in this case through the last 
half-century. A master algorithm has not appeared overnight. 
Rather, there has been a gradual construction of a method 

4  For a concise history of AI see: Cardon et al. (2018b).



1265AI & SOCIETY (2021) 36:1263–1280	

1 3

of computation that still has to find a common language. 
Manuals of machine learning for students, for instance, do 
not yet share a common terminology. How to sketch, then, 
a critical grammar of machine learning that may be concise 
and accessible, without playing into the paranoid game of 
defining General Intelligence?

As an instrument of knowledge, machine learning is com-
posed of an object to be observed (training dataset), an instru-
ment of observation (learning algorithm) and a final repre-
sentation (statistical model). The assemblage of these three 
elements is proposed here as a spurious and baroque diagram 
of machine learning, extravagantly termed Nooscope.5 Stay-
ing with the analogy of optical media, the information flow 
of machine learning is like a light beam that is projected by 
the training data, compressed by the algorithm and diffracted 
towards the world by the lens of the statistical model.

The Nooscope diagram aims to illustrate two sides of 
machine learning at the same time: how it works and how 
it fails—enumerating its main components, as well as the 
broad spectrum of errors, limitations, approximations, biases, 
faults, fallacies and vulnerabilities that are native to its para-
digm.6 This double operation stresses that AI is not a mon-
olithic paradigm of rationality but a spurious architecture 
made of adapting techniques and tricks. Besides, the limits 
of AI are not simply technical but are imbricated with human 
bias. In the Nooscope diagram, the essential components of 
machine learning are represented at the centre, human biases 
and interventions on the left, and technical biases and lim-
itations on the right. Optical lenses symbolize biases and 
approximations representing the compression and distortion 
of the information flow. The total bias of machine learning 
is represented by the central lens of the statistical model 
through which the perception of the world is diffracted.

The limitations of AI are generally perceived today thanks 
to the discourse on bias—the amplification of gender, race, 
ability, and class discrimination by algorithms. In machine 
learning, it is necessary to distinguish between historical 
bias, dataset bias, and algorithm bias, all of which occur at 
different stages of the information flow.7 Historical bias (or 
world bias) is already apparent in society before technologi-
cal intervention. Nonetheless, the naturalisation of such bias, 
that is the silent integration of inequality into an apparently 
neutral technology is by itself harmful (Eubanks 2018).8 

Paraphrasing Michelle Alexander, Ruha Benjamin has called 
it the New Jim Code: ‘the employment of new technologies 
that reflect and reproduce existing inequalities but that are 
promoted and perceived as more objective or progressive 
than the discriminatory systems of a previous era’ (Ben-
jamin 2019, p. 5). Dataset bias is introduced through the 
preparation of training data by human operators. The most 
delicate part of the process is data labelling, in which old 
and conservative taxonomies can cause a distorted view of 
the world, misrepresenting social diversities and exacerbat-
ing social hierarchies (see below the case of ImageNet).

Algorithmic bias (also known as machine bias, statistical 
bias or model bias, to which the Nooscope diagram gives par-
ticular attention) is the further amplification of historical bias 
and dataset bias by machine learning algorithms. The problem 
of bias has mostly originated from the fact that machine learn-
ing algorithms are among the most efficient for information 
compression, which engenders issues of information resolu-
tion, diffraction and loss.9 Since ancient times, algorithms have 
been procedures of an economic nature, designed to achieve 
a result in the shortest number of steps consuming the least 
amount of resources: space, time, energy and labour (Pas-
quinelli (forthcoming) The eye of the master. Verso, London). 
The arms race of AI companies is, still today, concerned with 
finding the simplest and fastest algorithms with which to capi-
talise data. If information compression produces the maximum 
rate of profit in corporate AI, from the societal point of view, 
it produces discrimination and the loss of cultural diversity.

While the social consequences of AI are popularly under-
stood under the issue of bias, the common understanding of 
technical limitations is known as the black box problem. The 
black box effect is an actual issue of deep neural networks 
(which filter information so much that their chain of reason-
ing cannot be reversed) but has become a generic pretext 
for the opinion that AI systems are not just inscrutable and 
opaque, but even ‘alien’ and out of control.10 The black box 
effect is part of the nature of any experimental machine at 
the early stage of development (it has already been noticed 
that the functioning of the steam engine remained a mys-
tery for some time, even after having been successfully 
tested). The actual problem is the black box rhetoric, which 
is closely tied to conspiracy theory sentiments in which AI 
is an occult power that cannot be studied, known, or politi-
cally controlled.

5  The use of the visual analogy is also intended to record the fad-
ing distinction between image and logic, representation and infer-
ence, in the technical composition of AI. The statistical models of 
machine learning are operative representations (in the sense of Harun 
Farocki’s operative images).
6  For a systematic study of the logical limitations of machine learn-
ing see: Malik (2002).
7  For a more detailed list of AI biases see: Guttag and Suresh (2019) 
and Galstyan et al. (2019).

8  See also: Crawford (2017).
9  Computer scientists argue that AI belongs to a subfield of signal 
processing, that is data compression.
10  Projects such as Explainable Artificial Intelligence, Interpretable 
Deep Learning and Heatmapping among others have demonstrated 
that breaking into the ‘black box’ of machine learning is possible. 
Nevertheless, the full interpretability and explicability of machine 
learning statistical models remains a myth. See: Lipton (2016).
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3 � The training dataset: the social origins 
of machine intelligence

Mass digitalisation, which expanded with the Internet in 
the 1990s and escalated with datacentres in the 2000s, has 
made available vast resources of data that, for the first time 
in history, are free and unregulated. A regime of knowledge 
extractivism (then known as Big Data) gradually employed 
efficient algorithms to extract ‘intelligence’ from these open 
sources of data, mainly for the purpose of predicting con-
sumer behaviours and selling ads. The knowledge economy 
morphed into a novel form of capitalism, called cognitive 
capitalism and then surveillance capitalism, by different 
authors (Corsani et al. 2004; Zuboff 2019). It was the Inter-
net information overflow, vast datacentres, faster micropro-
cessors and algorithms for data compression that laid the 
groundwork for the rise of AI monopolies in the twenty first 
century.

What kind of cultural and technical object is the dataset 
that constitutes the source of AI? The quality of training 
data is the most important factor affecting the so-called 
‘intelligence’ that machine learning algorithms extract. 
There is an important perspective to take into account, to 
understand AI as a Nooscope. Data are the first source of 
value and intelligence. Algorithms are second; they are the 
machines that compute such value and intelligence into a 
model. However, training data are never raw, independent 
and unbiased (they are already themselves ‘algorithmic’) 
(Gitelman 2013). The carving, formatting and editing of 
training datasets are a laborious and delicate undertaking, 
which is probably more significant for the final results than 
the technical parameters that control the learning algorithm. 
The act of selecting one data source rather than another is 
the profound mark of human intervention into the domain 
of the ‘artificial’ minds.

The training dataset is a cultural construct, not just a tech-
nical one. It usually comprises input data that are associated 
with ideal output data, such as pictures with their descrip-
tions, also called labels or metadata.11 The canonical exam-
ple would be a museum collection and its archive, in which 
artworks are organised by metadata such as author, year, 
medium, etc. The semiotic process of assigning a name or 
a category to a picture is never impartial; this action leaves 
another deep human imprint on the final result of machine 
cognition. A training dataset for machine learning is usu-
ally composed through the following steps: (1) production: 
labour or phenomena that produce information; (2) capture: 
encoding of information into a data format by an instrument; 
(3) formatting: organisation of data into a dataset; (4) label-
ling: in supervised learning, the classification of data into 
categories (metadata).

Machine intelligence is trained on vast datasets that are 
accumulated in ways neither technically neutral nor socially 
impartial. Raw data do not exist, as it is dependent on human 
labour, personal data, and social behaviours that accrue over 
long periods, through extended networks and controver-
sial taxonomies.12 The main training datasets for machine 
learning (NMIST, ImageNet, Labelled Faces in the Wild, 
etc.) originated in corporations, universities, and military 
agencies of the Global North. But taking a more careful 
look, one discovers a profound division of labour that inner-
vates into the Global South via crowdsourcing platforms 
that are used to edit and validate data.13 The parable of the 
ImageNet dataset exemplifies the troubles of many AI data-
sets. ImageNet is a training dataset for Deep Learning that 
has become the de facto benchmark for image recognition 
algorithms: indeed, the Deep Learning revolution started in 
2012 when Alex Krizhevsky, Ilya Sutskever and Geoffrey 
Hinton won the annual ImageNet challenge with the convo-
lutional neural network AlexNet.14 ImageNet was initiated 
by computer scientist Fei-Fei Li back in 2006.15 Fei-Fei Li 
had three intuitions to build a reliable dataset for image rec-
ognition. First, to download millions of free images from 
web services such as Flickr and Google. Second, to adopt 
the computational taxonomy WordNet for image labels.16 

11  In supervised learning. Also self-supervised learning maintains 
forms of human intervention.
12  On taxonomy as a form of knowledge and power see: Foucault 
(2005).
13  Such as Amazon Mechanical Turk, cynically termed ‘artificial 
artificial intelligence’ by Jeff Bezos. See: Pontin (2007).
14  Although the convolutional architecture dates back to Yann 
LeCun’s work in the late 1980s, Deep Learning starts with this paper: 
Krizhevsky et al. (2017).
15  For an accessible (yet not very critical) account of the ImageNet 
development see: Mitchell (2019).
16  WordNet is ‘a lexical database of semantic relations between 
words’ which was initiated by George Armitage at Princeton Univer-
sity in 1985. It provides a strict tree-like structure of definitions.
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Third, to outsource the work of labelling millions of images 
via the crowdsourcing platform Amazon Mechanical Turk. 
At the end of the day (and of the assembly line), anonymous 
workers from all over the planet were paid few cents per task 
to label hundreds of pictures per minute according to the 
WordNet taxonomy: their labour resulted in the engineer-
ing of a controversial cultural construct. AI scholars Kate 
Crawford and artist Trevor Paglen have investigated and 
disclosed the sedimentation of racist and sexist categories 
in ImageNet taxonomy: see the legitimation of the category 
‘failure, loser, nonstarter, unsuccessful person’ for a hundred 
arbitrary pictures of people (Crawford and Paglen 2019).

The voracious data extractivism of AI has caused an 
unforeseeable backlash on digital culture: in the early 2000s, 
Lawrence Lessig could not predict that the large repository of 
online images credited by Creative Commons licenses would 
a decade later become an unregulated resource for face rec-
ognition surveillance technologies. In similar ways, personal 
data are continually incorporated without transparency into 
privatised datasets for machine learning. In 2019 artist and AI 
researcher, Adam Harvey for the first time disclosed the non-
consensual use of personal photos in training datasets for face 
recognition. Harvey’s disclosure caused Stanford University, 
Duke University and Microsoft to withdraw their datasets 
amidst a major privacy infringement scandal (Harvey 2019; 
Murgia 2019). Online training datasets trigger issues of data 
sovereignty and civil rights that traditional institutions are 
slow to counteract (see the European General Data Protection 
Regulation).17 If 2012 was the year in which the Deep Learn-
ing revolution began, 2019 was the year in which its sources 
were discovered to be vulnerable and corrupted.

17  The GDPR data privacy regulation that was passed by the Euro-
pean Parliament in May 2018 is, however, an improvement compared 
to the regulation that is missing in the United States.

Combinatorial patterns and Kufic scripts, Topkapi scroll, 
ca. 1500, Iran.

4 � The history of AI as the automation 
of perception

The need to demystify AI (at least from the technical point 
of view) is understood in the corporate world too. Head of 
Facebook AI and godfather of convolutional neural net-
works Yann LeCun reiterates that current AI systems are 
not sophisticated versions of cognition, but rather, of percep-
tion. Similarly, the Nooscope diagram exposes the skeleton 
of the AI black box and shows that AI is not a thinking 
automaton but an algorithm that performs pattern recogni-
tion. The notion of pattern recognition contains issues that 
must be elaborated upon. What is a pattern, by the way? 
Is a pattern uniquely a visual entity? What does it mean to 
read social behaviours as patterns? Is pattern recognition 
an exhaustive definition of intelligence? Most likely not. To 
clarify these issues, it would be good to undertake a brief 
archaeology of AI.

The archetype machine for pattern recognition is Frank 
Rosenblatt’s Perceptron. Invented in 1957 at Cornell Aer-
onautical Laboratory in Buffalo, New York, its name is a 
shorthand for ‘Perceiving and Recognizing Automaton’ 
(Rosenblatt 1957). Given a visual matrix of 20 × 20 photo-
receptors, the Perceptron can learn how to recognise simple 
letters. A visual pattern is recorded as an impression on a 
network of artificial neurons that are firing up in concert 
with the repetition of similar images and activating one 
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single output neuron. The output neuron fires 1 = true, if a 
given image is recognised, or 0 = false, if a given image is 
not recognised.

The automation of perception, as a visual montage of 
pixels along a computational assembly line, was originally 
implicit McCulloch and Pitt’s concept of artificial neural 
networks (McCulloch and Pitts 1947). Once the algorithm 
for visual pattern recognition survived the ‘winter of AI’ 
and proved efficient in the late 2000s, it was applied also to 
non-visual datasets, properly inaugurating the age of Deep 
Learning (the application of pattern recognition techniques 
to all kinds of data, not just visual). Today, in the case of 
self-driving cars, the patterns that need to be recognised are 
objects in road scenarios. In the case of automatic transla-
tion, the patterns that need to be recognised are the most 
common sequences of words across bilingual texts. Regard-
less of their complexity, from the numerical perspective of 
machine learning, notions such as image, movement, form, 
style, and ethical decision can all be described as statistical 
distributions of pattern. In this sense, pattern recognition has 
truly become a new cultural technique that is used in various 
fields. For explanatory purposes, the Nooscope is described 
as a machine that operates on three modalities: training, 
classification, and prediction. In more intuitive terms, these 
modalities can be called: pattern extraction, pattern recogni-
tion, and pattern generation.

Rosenblatt’s Perceptron was the first algorithm that paved 
the way to machine learning in the contemporary sense. At 
a time when ‘computer science’ had not yet been adopted 
as definition, the field was called ‘computational geometry’ 
and specifically ‘connectionism’ by Rosenblatt himself. The 
business of these neural networks, however, was to calcu-
late a statistical inference. What a neural network computes 
is not an exact pattern but the statistical distribution of a 
pattern. Just scraping the surface of the anthropomorphic 
marketing of AI, one finds another technical and cultural 
object that needs examination: the statistical model. What 
is the statistical model in machine learning? How is it cal-
culated? What is the relationship between a statistical model 
and human cognition? These are crucial issues to clarify. In 
terms of the work of demystification that needs to be done 
(also to evaporate some naïve questions), it would be good 
to reformulate the trite question ‘Can a machine think?’ into 
the theoretically sounder questions ‘Can a statistical model 
think?’, ‘Can a statistical model develop consciousness?’, 
et cetera.

5 � The learning algorithm: compressing 
the world into a statistical model

The algorithms of AI are often evoked as alchemic formu-
las, capable of distilling ‘alien’ forms of intelligence. But 
what do the algorithms of machine learning really do? Few 
people, including the followers of artificial general intel-
ligence (AGI), bother to ask this question. Algorithm is the 
name of a process, whereby a machine performs a calcula-
tion. The product of such machine processes is a statistical 
model (more accurately termed an ‘algorithmic statistical 
model’). In the developer community, the term ‘algorithm’ 
is increasingly replaced with ‘model.’ This terminologi-
cal confusion arises from the fact that the statistical model 
does not exist separately from the algorithm: somehow, the 
statistical model exists inside the algorithm under the form 
of distributed memory across its parameters. For the same 
reason, it is essentially impossible to visualise an algorith-
mic statistical model, as is done with simple mathematical 
functions. Still, the challenge is worthwhile.

In machine learning, there are many algorithm architec-
tures: simple Perceptron, deep neural network, Support Vec-
tor Machine, Bayesian network, Markov chain, autoencoder, 
Boltzmann machine, etc. Each of these architectures has a 
different history (often rooted in military agencies and cor-
porations of the Global North). Artificial neural networks 
started as simple computing structures that evolved into 
complex ones which are now controlled by a few hyperpa-
rameters that express millions of parameters.18 For instance, 
convolutional neural networks are described by a limited set 
of hyperparameters (number of layers, number of neurons 
per layer, type of connection, behaviour of neurons, etc.) 
that project a complex topology of thousands of artificial 
neurons with millions of parameters in total. The algorithm 
starts as a blank slate and, during the process called train-
ing, or ‘learning from data’, adjusts its parameters until it 
reaches a good representation of the input data. In image 
recognition, as already seen, the computation of millions 
of parameters has to resolve into a simple binary output: 
1 = true, a given image is recognised; or 0 = false, a given 
image is not recognised.19

18  The parameters of a model that are learnt from data are called 
‘parameters’, while parameters that are not learnt from data and are 
fixed manually are called ‘hyperparameters’ (these determine number 
and properties of the parameters.).
19  This value can be also a percentage value between 1 and 0.
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Source: https​://www.asimo​vinst​itute​.org/neura​l-netwo​rk-zoo

20  https​://keras​.io/appli​catio​ns (documentation for individual mod-
els.)

Attempting an accessible explanation of the relation-
ship between algorithm and model, let us have a look at 
the complex Inception v3 algorithm, a deep convolutional 
neural network for image recognition designed at Google 
and trained on the ImageNet dataset. Inception v3 is said 
to have a 78% accuracy in identifying the label of a pic-
ture, but the performance of ‘machine intelligence’ in this 
case can be measured also by the proportion between the 
size of training data and the trained algorithm (or model). 
ImageNet contains 14 million images with associated labels 

that occupy approximately 150 gigabytes of memory. On the 
other hand, Inception v3, which is meant to represent the 
information contained in ImageNet, is only 92 megabytes. 
The ratio of compression between training data and model 
partially describes also the rate of information diffraction. 
A table from the Keras documentation compares these val-
ues (numbers of parameters, layer depth, file dimension and 
accuracy) for the main models of image recognition.20 This 

https://www.asimovinstitute.org/neural-network-zoo
https://keras.io/applications
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is a brutalist but effective way to show the relation between 
model and data, to show how the ‘intelligence’ of algorithms 
is measured and assessed in the developer community.

21  See the Community Earth System Model (CESM) that has been 
developed by the National Center for Atmospheric Research in 
Bolder, Colorado, since 1996. The Community Earth System Model 
is a fully coupled numerical simulation of the Earth system consist-
ing of atmospheric, ocean, ice, land surface, carbon cycle, and other 
components. CESM includes a climate model providing state-of-the-
art simulations of the Earth’s past, present, and future.’ https​://www.
cesm.ucar.edu

Statistical models have always influenced culture and 
politics. They did not just emerge with machine learning: 
machine learning is just a new way to automate the tech-
nique of statistical modelling. When Greta Thunberg warns 
‘Listen to science.’ what she really means, being a good 
student of mathematics, is ‘Listen to the statistical mod-
els of climate science.’ No statistical models, no climate 
science: no climate science, no climate activism. Climate 
science is indeed a good example to start with, in order to 
understand statistical models. Global warming has been 
calculated by first collecting a vast dataset of temperatures 
from Earth’s surface each day of the year, and second, by 
applying a mathematical model that plots the curve of tem-
perature variations in the past and projects the same pattern 
into the future (Edwards 2010). Climate models are histori-
cal artefacts that are tested and debated within the scientific 

community, and today, also beyond.21 Machine learning 
models, on the contrary, are opaque and inaccessible to 
community debate. Given the degree of myth-making and 
social bias around its mathematical constructs, AI has indeed 

inaugurated the age of statistical science fiction. Nooscope 
is the projector of this large statistical cinema.

6 � All models are wrong, but some are useful

‘All models are wrong, but some are useful’—the canoni-
cal dictum of the British statistician George Box has long 
encapsulated the logical limitations of statistics and machine 
learning (Box 1979). This maxim, however, is often used 
to legitimise the bias of corporate and state AI. Computer 
scientists argue that human cognition reflects the capacity 
to abstract and approximate patterns. Therefore, what’s the 

https://www.cesm.ucar.edu
https://www.cesm.ucar.edu
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problem with machines being approximate, and doing the 
same? Within this argument, it is rhetorically repeated that 
‘the map is not the territory’. This sounds reasonable. But 
what should be contested is that AI is a heavily compressed 
and distorted map of the territory and that this map, like 
many forms of automation, is not open to community negoti-
ation. AI is a map of the territory without community access 
and community consent.22

How does machine learning plot a statistical map of the 
world? Let’s face the specific case of image recognition (the 
basic form of the labour of perception, which has been codified 
and automated as pattern recognition)23 (Beller 2012). Given 
an image to be classified, the algorithm detects the edges of an 
object as the statistical distribution of dark pixels surrounded 
by light ones (a typical visual pattern). The algorithm does not 
know what an image is, does not perceive an image as human 
cognition does, it only computes pixels, numerical values of 
brightness and proximity. The algorithm is programmed to 
record only the dark edge of a profile (that is to fit that desired 
pattern) and not all the pixels across the image (that would 
result in overfitting and repeating the whole visual field). A 
statistical model is said to be trained successfully when it can 
elegantly fit only the important patterns of the training data 
and apply those patterns also to new data ‘in the wild’. If a 
model learns the training data too well, it recognises only exact 
matches of the original patterns and will overlook those with 
close similarities, ‘in the wild’. In this case, the model is over-
fitting, because it has meticulously learnt everything (including 
noise) and is not able to distinguish a pattern from its back-
ground. On the other hand, the model is underfitting when it is 
not able to detect meaningful patterns from the training data. 
The notions of data overfitting, fitting and underfitting can be 
visualised on a Cartesian plane.

22  Post-colonial and post-structuralist schools of anthropology and 
ethnology have stressed that there is never territory per se, but always 
an act of territorialisation.
23  Pattern recognition is one among many other economies of atten-
tion. ‘To look is to labor’, as Jonathan Beller reminds us.

The challenge of guarding the accuracy of machine learn-
ing lays in calibrating the equilibrium between data underfit-
ting and overfitting, which is difficult to do because of differ-
ent machine biases. Machine learning is a term that, as much 
as ‘AI’, anthropomorphizes a piece of technology: machine 
learning learns nothing in the proper sense of the word, as 
a human does; machine learning simply maps a statistical 
distribution of numerical values and draws a mathematical 
function that hopefully approximates human comprehension. 
That being said, machine learning can, for this reason, cast 
new light on the ways in which humans comprehend.

The statistical model of machine learning algorithms is 
also an approximation in the sense that it guesses the miss-
ing parts of the data graph: either through interpolation, 
which is the prediction of an output y within the known 
interval of the input x in the training dataset, or through 
extrapolation, which is the prediction of output y beyond 
the limits of x, often with high risks of inaccuracy. This 
is what ‘intelligence’ means today within machine intelli-
gence: to extrapolate a non-linear function beyond known 
data boundaries. As Dan McQuillian aptly puts it: ‘There 
is no intelligence in artificial intelligence, nor does it learn, 
even though its technical name is machine learning, it is 
simply mathematical minimization’ (McQuillan 2018a; b).

It is important to recall that the ‘intelligence’ of machine 
learning is not driven by exact formulas of mathematical 
analysis, but by algorithms of brute force approximation. 
The shape of the correlation function between input x and 
output y is calculated algorithmically, step by step, through 
tiresome mechanical processes of gradual adjustment (like 
gradient descent, for instance) that are equivalent to the dif-
ferential calculus of Leibniz and Newton. Neural networks 
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are said to be among the most efficient algorithms, because 
these differential methods can approximate the shape of any 
function given enough layers of neurons and abundant com-
puting resources.24 Brute-force gradual approximation of a 
function is the core feature of today’s AI, and only from this 
perspective can one understand its potentialities and limita-
tions—particularly, its escalating carbon footprint (the train-
ing of deep neural networks requires exorbitant amounts of 
energy because of gradient descent and similar training algo-
rithms that operate on the basis of continuous infinitesimal 
adjustments) (Ganesh et al. 2019).

Multidimensional vector space.

7 � World to vector

The notions of data fitting, overfitting, underfitting, inter-
polation and extrapolation can be easily visualised in two 
dimensions, but statistical models usually operate along 
multidimensional spaces of data. Before being analysed, 
data are encoded into a multi-dimensional vector space that 
is far from intuitive. What is a vector space and why is it 
multi-dimensional? Cardon, Cointet and Mazière describe 
the vectorialisation of data in this way:

A neural network requires the inputs of the calculator 
to take on the form of a vector. Therefore, the world 
must be coded in advance in the form of a purely digi-
tal vectorial representation. While certain objects such 
as images are naturally broken down into vectors, other 
objects need to be ‘embedded’ within a vectorial space 
before it is possible to calculate or classify them with 
neural networks. This is the case of text, which is the 
prototypical example. To input a word into a neural 
network, the Word2vec technique ‘embeds’ it into a 
vectorial space that measures its distance from the 
other words in the corpus. Words thus inherit a posi-

tion within a space with several hundreds of dimen-
sions. The advantage of such a representation resides 
in the numerous operations offered by such a transfor-
mation. Two terms whose inferred positions are near 
one another in this space are equally similar semanti-
cally; these representations are said to be distributed: 
the vector of the concept ‘apartment’ [− 0.2, 0.3, − 4.2, 
5.1…] will be similar to that of ‘house’ [− 0.2, 0.3, 
− 4.0, 5.1…].[…] While natural language processing 
was pioneering for ‘embedding’ words in a vectorial 
space, today we are witnessing a generalization of the 
embedding process which is progressively extending 
to all applications fields: networks are becoming sim-
ple points in a vectorial space with graph2vec, texts 
with paragraph2vec, films with movie2vec, meanings 
of words with sens2vec, molecular structures with 
mol2vec, etc. According to Yann LeCun, the goal of 
the designers of connectionist machines is to put the 
world in a vector (world2vec) (Cardon et al. 2018a).

Multi-dimensional vector space is another reason why 
the logic of machine learning is difficult to grasp. Vector 
space is another new cultural technique, worth becoming 
familiar with. The field of Digital Humanities, in particular, 
has been covering the technique of vectorialisation through 
which our collective knowledge is invisibly rendered and 
processed. William Gibson’s original definition of cyber-
space prophesized, most likely, the coming of a vector space 
rather than virtual reality: ‘A graphic representation of data 
abstracted from the banks of every computer in the human 
system. Unthinkable complexity. Lines of light ranged in the 
nonspace of the mind, clusters and constellations of data. 
Like city lights, receding’ (Gibson 1984, p. 69).

24  As proven by the Universal Approximation Theorem.
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Vector space of seven words in three contexts.25

It must be stressed, however, that machine learning still 
resembles more craftsmanship than exact mathematics. AI is 
still a history of hacks and tricks rather than mystical intui-
tions. For example, one trick of information compression is 
dimensionality reduction, which is used to avoid the Curse of 
Dimensionality, that is the exponential growth of the variety of 
features in the vector space. The dimensions of the categories 
that show low variance in the vector space (i.e. whose values 
fluctuate only a little) are aggregated to reduce calculation costs. 
Dimensionality reduction can be used to cluster word meanings 
(such as in the model word2vec) but can also lead to category 
reduction, which can have an impact on the representation of 
social diversity. Dimensionality reduction can shrink taxono-
mies and introduce bias, further normalising world diversity 
and obliterating unique identities (Samadi et al. 2018).

originary application of neural networks: with Deep Learn-
ing, this technique is found ubiquitously in face recognition 
classifiers that are deployed by police forces and smartphone 
manufacturers alike.

Machine learning prediction is used to project future 
trends and behaviours according to past ones, that is to com-
plete a piece of information knowing only a portion of it. 
In the prediction modality, a small sample of input data (a 
primer) is used to predict the missing part of the information 
following once again the statistical distribution of the model 
(this could be the part of a numerical graph oriented toward 
the future or the missing part of an image or audio file). Inci-
dentally, other modalities of machine learning exist: the sta-
tistical distribution of a model can be dynamically visualised 
through a technique called latent space exploration and, in 
some recent design applications, also pattern exploration.26

26  See the idea of assisted and generative creation in: Pieters and 
Winiger (2016).25  Source: https​://corpl​ing.hypot​heses​.org/495.

8 � The society of classification and prediction 
bots

Most of the contemporary applications of machine learning 
can be described according to the two modalities of clas-
sification and prediction, which outline the contours of a 
new society of control and statistical governance. Classi-
fication is known as pattern recognition, while prediction 
can be defined also as pattern generation. A new pattern is 
recognised or generated by interrogating the inner core of 
the statistical model.

Machine learning classification is usually employed to 
recognise a sign, an object, or a human face, and to assign 
a corresponding category (label) according to taxonomy 
or cultural convention. An input file (e.g. a headshot cap-
tured by a surveillance camera) is run through the model to 
determine whether it falls within its statistical distribution 
or not. If so, it is assigned the corresponding output label. 
Since the times of the Perceptron, classification has been the 

Machine learning classification and prediction are becom-
ing ubiquitous techniques that constitute new forms of sur-
veillance and governance. Some apparatuses, such as self-
driving vehicles and industrial robots, can be an integration 
of both modalities. A self-driving vehicle is trained to rec-
ognise different objects on the road (people, cars, obstacles, 
signs) and predict future actions based on decisions that a 
human driver has taken in similar circumstances. Even if 
recognising an obstacle on a road seems to be a neutral ges-
ture (it’s not), identifying a human being according to cat-
egories of gender, race and class (and in the recent COVID-
19 pandemic as sick or immune), as state institutions are 
increasingly doing, is the gesture of a new disciplinary 
regime. The hubris of automated classification has caused 
the revival of reactionary Lombrosian techniques that were 
thought to have been consigned to history, techniques such 
as automatic gender recognition (AGR), ‘a subfield of facial 
recognition that aims to algorithmically identify the gender 
of individuals from photographs or videos’ (Keyes 2018).

https://corpling.hypotheses.org/495
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Recently, the generative modality of machine learning has 
had a cultural impact: its use in the production of visual arte-
facts has been received by mass media as the idea that arti-
ficial intelligence is ‘creative’ and can autonomously make 
art. An artwork that is said to be created by AI always hides 
a human operator, who has applied the generative modal-
ity of a neural network trained on a specific dataset. In this 
modality, the neural network is run backwards (moving from 
the smaller output layer toward the larger input layer) to gen-
erate new patterns after being trained at classifying them, a 
process that usually moves from the larger input layer to the 
smaller output layer. The generative modality, however, has 
some useful applications; it can be used as a sort of reality 
check to reveal what the model has learnt, i.e. to show how 
the model ‘sees the world.’ It can be applied to the model 
of a self-driving car, for instance, to check how the road 
scenario is projected.

A famous way to illustrate how a statistical model ‘sees 
the world’ is Google DeepDream. DeepDream is a convolu-
tional neural network based on Inception (which is trained on 
the ImageNet dataset mentioned above) that was programmed 
by Alexander Mordvintsev to project hallucinatory patterns. 
Mordvintsev had the idea to ‘turn the network upside down’, 
that is to turn a classifier into a generator, using some random 
noise or generic landscape images as input (Mordvintsev 

The two main modalities of classification and genera-
tion can be assembled in further architectures such as in the 
Generative Adversarial Networks. In the GAN architecture, 
a neural network with the role of discriminator (a traditional 
classifier) has to recognise an image produced by a neural 
network with the role of generator, in a reinforcement loop 
that trains the two statistical models simultaneously. For 
some converging properties of their respective statistical 
models, GANs have proved very good at generating highly 
realistic pictures. This ability has prompted their abuse in the 
fabrication of ‘deep fakes’.27 Concerning regimes of truth, a 
similar controversial application is the use of GANs to gen-
erate synthetic data in cancer research, in which neural net-
works trained on unbalanced datasets of cancer tissues have 
started to hallucinate cancer where there was none (Cohen 
et al. 2018). In this case ‘instead of discovering things, we are 
inventing things’, Fabian Offert notices, ‘the space of discov-
ery is identical to the space of knowledge that the GAN has 
already had.[…] While we think that we are seeing through 
GAN—looking at something with the help of a GAN—we 
are actually seeing into a GAN. GAN vision is not augmented 
reality, it is virtual reality. GANs do blur discovery and inven-
tion’ (Offert 2020). The GAN simulation of brain cancer is a 
tragic example of AI-driven scientific hallucination.

27  Deep fakes are synthetic media like videos in which a person’s 
face is replaced with someone else’s facial features, often for the pur-
pose to forge fake news.

et al. 2015). He discovered that ‘neural networks that were 
trained to discriminate between different kinds of images 
have quite a bit of the information needed to generate images 
too.’ In DeepDream first experiments, bird feathers and dog 
eyes started to emerge everywhere as dog breeds and bird 
species are vastly overrepresented in ImageNet. It was also 
discovered that the category ‘dumbbell’ was learnt with a 
surreal human arm always attached to it. Proof that many 
other categories of ImageNet are misrepresented.
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Joseph Paul Cohen, Margaux Luck and Sina Honari. 
‘Distribution Matching Losses Can Hallucinate Features in 
Medical Image Translation’, 2018. Courtesy of the authors.

9 � Faults of a statistical instrument: 
the undetection of the new

The normative power of AI in the twenty first century has to 
be scrutinised in these epistemic terms: what does it mean 
to frame collective knowledge as patterns, and what does 
it mean to draw vector spaces and statistical distributions 
of social behaviours? According to Foucault, in early mod-
ern France, statistical power was already used to measure 
social norms, discriminating between normal and abnor-
mal behaviour (Foucault 2004, p. 26). AI easily extends 
the ‘power of normalisation’ of modern institutions, among 
others bureaucracy, medicine and statistics (originally, the 
numerical knowledge possessed by the state about its popu-
lation) that passes now into the hands of AI corporations. 
The institutional norm has become a computational one: the 
classification of the subject, of bodies and behaviours, seems 
no longer to be an affair for public registers, but instead 
for algorithms and datacentres.28 ‘Data-centric rationality’, 
Paula Duarte has concluded, ‘should be understood as an 
expression of the coloniality of power’ (Ricaurte 2019).

A gap, a friction, a conflict, however, always persists 
between AI statistical models and the human subject that 
is supposed to be measured and controlled. This logi-
cal gap between AI statistical models and society is usu-
ally debated as bias. It has been extensively demonstrated 
how face recognition misrepresents social minorities and 
how black neighbourhoods, for instance, are bypassed by 
AI-driven logistics and delivery service (Ingold and Soper 
2016). If gender, race and class discriminations are ampli-
fied by AI algorithms, this is also part of a larger problem 
of discrimination and normalisation at the logical core of 
machine learning. The logical and political limitation of AI 
is the technology’s difficulty in the recognition and predic-
tion of a new event. How is machine learning dealing with 
a truly unique anomaly, an uncommon social behaviour, an 

innovative act of disruption? The two modalities of machine 
learning display a limitation that is not simply bias.

A logical limit of machine learning classification, or 
pattern recognition, is the inability to recognise a unique 
anomaly that appears for the first time, such as a new meta-
phor in poetry, a new joke in everyday conversation, or an 
unusual obstacle (a pedestrian? a plastic bag?) on the road 
scenario. The undetection of the new (something that has 
never ‘been seen’ by a model and therefore never classi-
fied before in a known category) is a particularly hazardous 
problem for self-driving cars and one that has already caused 
fatalities. Machine learning prediction, or pattern genera-
tion, show similar faults in the guessing of future trends 
and behaviours. As a technique of information compression, 
machine learning automates the dictatorship of the past, of 
past taxonomies and behavioural patterns, over the present. 
This problem can be termed the regeneration of the old—the 
application of a homogenous space–time view that restrains 
the possibility of a new historical event.

Interestingly, in machine learning, the logical definition 
of a security issue also describes the logical limit of its crea-
tive potential. The problems characteristic of the prediction 
of the new are logically related to those that characterise the 
generation of the new, because the way a machine learn-
ing algorithm predicts a trend on a time chart is identical 
to the way it generates a new artwork from learnt patterns. 
The hackneyed question ‘Can AI be creative?’ should be 
reformulated in technical terms: is machine learning able to 
create works that are not imitations of the past? Is machine 
learning able to extrapolate beyond the stylistic boundaries 
of its training data? The ‘creativity’ of machine learning 
is limited to the detection of styles from the training data 
and then random improvisation within these styles. In other 
words, machine learning can explore and improvise only 
within the logical boundaries that are set by the training 
data. For all these issues, and its degree of information com-
pression, it would be more accurate to term machine learn-
ing art as statistical art.

28  On computational norms see: Pasquinelli (2017).
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correlation is enough for Google to run its ads business, 
therefore, it must also be good enough to automatically 
discover scientific paradigms. Even Judea Pearl, a pioneer 
of Bayesian networks, believes that machine learning is 
obsessed with ‘curve fitting’, recording correlations without 
providing explanations (Mackenzie and Judea 2018). Such 
a logical fallacy has already become a political one, if one 
considers that police forces worldwide have adopted predic-
tive policing algorithms.30 According to Dan McQuillan, 
when machine learning is applied to society in this way, it 
turns into a biopolitical apparatus of preemption, that pro-
duces subjectivities which can subsequently be criminal-
ized (McQuillan 2018a; b). Ultimately, machine learning 
obsessed with ‘curve fitting’ imposes a statistical culture 
and replaces the traditional episteme of causation (and polit-
ical accountability) with one of correlations blindly driven 
by the automation of decision making.

Lewis Fry Richardson, Weather Prediction by Numerical 
Process, Cambridge University Press, 1922.

Another unspoken bug of machine learning is that the sta-
tistical correlation between two phenomena is often adopted 
to explain causation from one to the other. In statistics, it is 
commonly understood that correlation does not imply cau-
sation, meaning that a statistical coincidence alone is not 
sufficient to demonstrate causation. A tragic example can be 
found in the work of statistician Frederick Hoffman, who in 
1896 published a 330-page report for insurance companies 
to demonstrate a racial correlation between being a black 
American and having short life expectancy (O’Neil 2016). 
Superficially mining data, machine learning can construct 
any arbitrary correlation that is then perceived as real. In 
2008, this logical fallacy was proudly embraced by Wired 
director Chris Anderson who declared the ‘end of theory’, 
because ‘the data deluge makes the scientific method obso-
lete’ (Anderson 2008).29 According to Anderson, himself no 
expert on scientific method and logical inference, statistical 

30  Experiments by the New York Police Department since the late 
1980s. See: Pasquinelli, Arcana Mathematica Imperii.29  For a critique see: Mazzocchi (2015).
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10 � Adversarial intelligence vs. artificial 
intelligence

So far, the statistical diffractions and hallucinations of 
machine learning have been followed step by step through 
the multiple lenses of the Nooscope. At this point, the orien-
tation of the instrument has to be reversed: scientific theories 
as much as computational devices are inclined to consolidate 
an abstract perspective—the scientific ‘view from nowhere’, 
that is often just the point of view of power. The obsessive 
study of AI can suck the scholar into an abyss of computa-
tion and the illusion that the technical form illuminates the 
social one. As Paola Ricaurte remarks: ‘Data extractivism 
assumes that everything is a data source’ (Ricaurte 2019). 
How to emancipate ourselves from a data-centric view of 
the world? It is time to realise that it is not the statistical 
model that constructs the subject, but rather the subject that 
structures the statistical model. Internalist and externalist 
studies of AI have to blur: subjectivities make the mathemat-
ics of control from within, not from without. To second what 
Guattari once said of machines in general, machine intel-
ligence too is constituted of ‘hyper-developed and hyper-
concentrated forms of certain aspects of human subjectivity’ 
(Guattari 2013, p. 2).

Rather than studying only how technology works, critical 
inquiry studies also how it breaks, how subjects rebel against 
its normative control and workers sabotage its gears. In this 
sense, a way to sound the limits of AI is to look at hacking 
practices. Hacking is an important method of knowledge 
production, a crucial epistemic probe into the obscurity 
of AI.31 Deep learning systems for face recognition have 
triggered, for instance, forms of counter-surveillance activ-
ism. Through techniques of face obfuscation, humans have 
decided to become unintelligible to artificial intelligence: 
that is to become, themselves, black boxes. The traditional 
techniques of obfuscation against surveillance immediately 
acquire a mathematical dimension in the age of machine 
learning. For example, AI artist and researcher Adam Har-
vey has invented a camouflage textile called HyperFace that 
fools computer vision algorithms to see multiple human 
faces where there is none (Harvey 2016). Harvey’s work 
provokes the question: what constitutes a face for a human 
eye, on the one hand, and a computer vision algorithm, on 
the other? The neural glitches of HyperFace exploit such a 
cognitive gap and reveal what a human face looks like to a 
machine. This gap between human and machine perception 
helps to introduce the growing field of adversarial attacks.

Adam Harvey, HyperFace pattern, 2016.
Adversarial attacks exploit blind spots and weak regions 

in the statistical model of a neural network, usually to fool a 
classifier and make it perceive something that is not there. In 
object recognition, an adversarial example can be a doctored 
image of a turtle, which looks innocuous to a human eye but 
gets misclassified by a neural network as a rifle (Athalye 
et al. 2017). Adversarial examples can be realised as 3D 
objects and even stickers for road signs that can misguide 
self-driving cars (which may read a speed limit of 120 km/h 
where it is actually 50 km/h) (Morgulis et al. 2019). Adver-
sarial examples are designed knowing what a machine has 
never seen before. This effect is achieved also by reverse-
engineering the statistical model or by polluting the training 
dataset. In this latter sense, the technique of data poisoning 
targets the training dataset and introduces doctored data. In 
doing so, it alters the accuracy of the statistical model and 
creates a backdoor that can be eventually exploited by an 
adversarial attack.32

Adversarial attack seems to point to a mathematical 
vulnerability that is common to all machine learning mod-
els: ‘An intriguing aspect of adversarial examples is that 
an example generated for one model is often misclassified 
by other models, even when they have different architec-
tures or were trained on disjoint training sets’ (Goodfellow 
et al. 2014). Adversarial attacks remind us of the discrep-
ancy between human and machine perception and that the 

32  Data poisoning can also be employed to protect privacy by enter-
ing anonymised or random information into the dataset.

31  The relationship between AI and hacking is not as antagonistic as 
it may appear: it often resolves in a loop of mutual learning, evalua-
tion and reinforcement.



1278	 AI & SOCIETY (2021) 36:1263–1280

1 3

logical limit of machine learning is also a political one. The 
logical and ontological boundary of machine learning is the 
unruly subject or anomalous event that escapes classification 
and control. The subject of algorithmic control fires back. 
Adversarial attacks are a way to sabotage the assembly line 
of machine learning by inventing a virtual obstacle that can 
set the control apparatus out of joint. An adversarial example 
is the sabot in the age of AI.

11 � Labour in the age of AI

The natures of the ‘input’ and ‘output’ of machine learn-
ing have to be clarified. AI troubles are not only about 
information bias but also labour. AI is not just a control 
apparatus, but also a productive one. As just mentioned, an 
invisible workforce is involved in each step of its assembly 
line (dataset composition, algorithm supervision, model 
evaluation, etc.). Pipelines of endless tasks innervate from 
the Global North into the Global South; crowdsourced 
platforms of workers from Venezuela, Brazil and Italy, for 
instance, are crucial to teach German self-driving cars ‘how 
to see’ (Schmidt 2019). Against the idea of alien intelli-
gence at work, it must be stressed that in the whole com-
puting process of AI the human worker has never left the 
loop, or put more accurately, has never left the assembly 
line. Mary Gray and Siddharth Suri coined the term ‘ghost 
work’ for the invisible labour that makes AI appear artifi-
cially autonomous.

Beyond some basic decisions, today’s artificial intel-
ligence can’t function without humans in the loop. 
Whether it’s delivering a relevant newsfeed or carry-
ing out a complicated texted-in pizza order, when the 
artificial intelligence (AI) trips up or can’t finish the 
job, thousands of businesses call on people to quietly 
complete the project. This new digital assembly line 
aggregates the collective input of distributed workers, 
ships pieces of projects rather than products, and oper-
ates across a host of economic sectors at all times of 
the day and night.

Automation is a myth, because machines, including AI, 
constantly call for human help, some authors have suggested 
replacing ‘automation’ with the more accurate term hetero-
mation (Ekbia and Nardi 2017). Heteromation means that 
the familiar narrative of AI as perpetuum mobile is possible 
only thanks to a reserve army of workers.

Yet, there is a more profound way in which labour con-
stitutes AI. The information source of machine learning 
(whatever its name: input data, training data or just data) 
is always a representation of human skills, activities and 
behaviours, social production at large. All training datasets 
are, implicitly, a diagram of the division of human labour 

that AI has to analyse and automate. Datasets for image rec-
ognition, for instance, record the visual labour that drivers, 
guards, and supervisors usually perform during their tasks. 
Even scientific datasets rely on scientific labour, experiment 
planning, laboratory organisation, and analytical observa-
tion. The information flow of AI has to be understood as 
an apparatus designed to extract ‘analytical intelligence’ 
from the most diverse forms of labour and to transfer such 
intelligence into a machine (obviously including, within the 
definition of labour, extended forms of social, cultural and 
scientific production).33 In short, the origin of machine intel-
ligence is the division of labour and its main purpose is the 
automation of labour.

Historians of computation have already stressed the early 
steps of machine intelligence in the nineteenth century pro-
ject of mechanizing the division of mental labour, specifi-
cally the task of hand calculation (Schaffer 1994; Daston 
1994; Jones 2016). The enterprise of computation has since 
then been a combination of surveillance and disciplining of 
labour, of optimal calculation of surplus-value, and planning 
of collective behaviours (Pasquinelli 2019a). Computation 
was established by and still enforces a regime of visibility 
and intelligibility, not just of logical reasoning. The geneal-
ogy of AI as an apparatus of power is confirmed today by 
its widespread employment in technologies of identification 
and prediction, yet the core anomaly which always remains 
to be computed is the disorganisation of labour.

As a technology of automation, AI will have a tremen-
dous impact on the job market. If Deep Learning has a 1% 
error rate in image recognition, for example, it means that 
roughly 99% of routine work based on visual tasks (e.g. air-
port security) can be potentially replaced (legal restrictions 
and trade union opposition permitting). The impact of AI 
on labour is well described (from the perspective of work-
ers, finally) within a paper from the European Trade Union 
Institute, which highlights ‘seven essential dimensions that 
future regulation should address to protect workers: (1) safe-
guarding worker privacy and data protection; (2) addressing 
surveillance, tracking and monitoring; (3) making the pur-
pose of AI algorithms transparent; (4) ensuring the exercise 
of the ‘right to explanation’ regarding decisions made by 
algorithms or machine learning models; (5) preserving the 
security and safety of workers in human–machine interac-
tions; (6) boosting workers’ autonomy in human–machine 
interactions; (7) enabling workers to become AI literate’ 
(Ponce 2020).

Ultimately, the Nooscope manifests in response to the 
need for a novel Machinery Question in the age of AI. The 
Machinery Question was a debate that sparked in England 
during the industrial revolution, when the response to the 

33  For the idea of analytical intelligence see: Daston (2018).
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employment of machines and workers’ unemployment was 
a social campaign for more education about machines, that 
took the form of the Mechanics’ Institute Movement (Berg 
1980).34 Today, an Intelligent Machinery Question is needed 
to develop more collective intelligence about machine 
intelligence, more public education instead of ‘learning 
machines’ and their regime of knowledge extractivism, 
which crosses once again old colonial routes (if one looks 
at the network map of crowdsourcing). Also in the Global 
North, the colonial relationship between corporate AI and 
the production of knowledge as a common good has to be 
brought to the forefront. The Nooscope’s purpose is to break 
into the hidden room of the corporate Mechanical Turk, and 
to illuminate the invisible labour of knowledge that makes 
machine intelligence appear ideologically alive.
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Abstract
Can machine vision step beyond the ocularcentric metaphysics of the Western gaze and the reproduction of racial capital? 
Paul Virilio argued that machine vision requires no perceptual response or recognition of the world. The computer’s series 
of coded impulses mediate the real autonomously from physical and energetic analogies. This article calls “negative optics” 
this inhuman mode of machine vision that withdraws from the ocularcentric rules of transparency. Not only negative optics 
offers an internal critique of ocular metaphysics, but it also defies the equation of value between 0 and 1 s that sustains the 
universal law of capital. The equation of value needs the nullification of the racialized and gendered body to meet the func-
tion of surrogate machines feeding the neo-liberal human subject. Here, however, the negative optics of machine vision 
withdraws matter from the equation insofar as the AI mismatches of concepts and objects requires the formation of socio-
technical assemblages amongst surrogates of all kinds. The intricacies of this surrogacy are discussed in connection to artist 
Elisa Giardina’s video installation entitled, The Cleaning of Emotional Data (2019). This video presents the background to 
address a surrogate human–machine alliance that steps beyond the human–machine equation of value. By starting from the 
negativity of the image, the racialized and gendered conditions of techno-social labor under artificial intelligence capital-
ism show that the equation of value maintains the condition of the zero of blackness, which like matter without form, has 
no value (On matter beyond the equation of value 2017). Drawing on François Laruelle, the article continues to elaborate 
the possibilities of a material image without form in terms of what Laruelle calls, the “fractal algorithm of the photo”. The 
article concludes that the negative optics of machine vision stands for the alien origination of knowledge, values, materiali-
ties that overturn the equation of value through the fractal infinities of 0 s.

Keywords  Negative optics · The equation of value · Generative adversarial networks · Surrogacy · Auto-imagining · Matter 
without form · Blackness · Non-photography

Already in the late 1980s, Paul Virilio argued that the techni-
cal image in computational and cybernetic machines could 
no longer be understood according to the framework of ocu-
larcentric metaphysics and the epistemological rules of the 
relation between vision, knowledge and power. If Virilio 
suggested that the vision machine no longer coincides with 
how humans see, it is because he already foresaw the over-
turning of the Western gaze of the Platonic model of shed-
ding light on the darkness of matter. With the automation 
of knowledge, the world view of technological universalism 
extends the Western gaze beyond what can be enlightened. 
In a computer, the optically active electrons of machines cor-
respond to a series of coded impulses that mediate the real 

beyond physical or energetic analogy. As Virilio claimed, 
with the “automation of perception” (1994) image feedback 
is no longer assured by the interaction with the world, inso-
far machine vision does not shed light on dark matter. As a 
non-dialectical medium, machine vision requires no relation 
with or response from the world to exist and to function as 
a data processor. In other words, with the automation of 
knowledge, we have a programmed perception that is no 
longer based on observation and reflection of the object 
observed. With machine vision, it becomes evident that the 
feedback function of algorithms incorporates the world in 
terms of input data through which the world is predicted 
and acted upon in anticipation of its happenings. Following 
Virilio, one can suggest that a negative optics as opposed to 
an enlightened visibility comes to redefine vision in terms 
of a mediatic function that does not rely on light. *	 Luciana Parisi 
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Virilio understands this negative opticality in terms of 
the computer being blind or un-affected by light. “Blind-
ness is thus very much at the heart of the coming ‘vision 
machine’” (1994, p 72). The latter coincides not with a pic-
ture frame, but with a statistical calculation and a pixilation 
of the world in terms of binary language, or spatial discre-
tization for which sets of coded impulses become increas-
ingly intensive and correspond to infinitely small durations 
(1994, p 72). According to Virilio, the computational func-
tion of media breaks away from ocularcentric metaphysics 
because the “absolute-speed machine” (1994, p 72) breaks 
from the extensive geometric optics defined by observables 
and non-observables, enlightened and dark objects. It is this 
speed that defines the intensive time of a “vision machine” 
that does not look at the world but instead generates an ava-
lanche of inputs at the same point, and between points as if 
it were produced by a “short concentration spans by means 
of surprise” (1994, p 72). In other words, inputs are statisti-
cally generated along with a series of short spans, intensive 
durations that are as it were disentangled from each other 
and yet they appear united by the speed of algorithmic func-
tions that allows machines not to see. However, what Virilio 
calls blindness of machine vision is not to be understood in 
terms of machines seeing the world in terms of a transparent 
or neutral I that programs the world. Instead, one can argue 
that blindness here coincides with a techno-political theori-
zation of machine vision that starts from machines’ negative 
optics as involving an anti-ocularcentric practice that breaks 
from the self-positing of the metaphysics of representation. 
If the gaze and its mediatic extensions remain a tool for 
un-veiling the other to impart, extend, consolidate the self-
determination of the transcendental eye/I, negative optics 
instead stays with the unsubstantial, unformed, unvalued 
dimensions of matter, a practice of subtracting light from 
the surface of the image in which the self-determining gaze 
continues to mirror himself.

As this article will attempt to explain, what Virilio calls 
the blindness of the “vision machine” has demarcated a 
series of internal ruptures in the optical regime of represen-
tation and, this article argues, in the universal model tech-
nology. On the one hand, these fragmentations have been 
understood in terms of an extension of the universal model 
of technology whereby statistical prediction aims to reduce 
the world to one truth thus replacing the ocular model of 
truth with statistical functions. On the other, the negative 
optics of computation processing can be taken to work as 
an instance of how the inhuman mode of vision challenge 
the dialectic of visibility and transparency and thus offers an 
internal critique of ocular metaphysics and its entanglement 
with colonial and racial capitalism (Lowe 2015).1

This article suggests that the architecture of racial capital-
ism also contains within its articulations a fundamental split 
between the human and the machine based on the equation 
of value that functions to re-introduce the transcendental 
matching of concepts and objects on machinic perception. In 
other words, the ocularcentric equation of value at the core 
of racial capitalism imparts a universal model of technol-
ogy at once merging and opposing humans and machines, 
whereby racialized humans are used to train machines to 
correct their negative optics. In other words, not only ocular-
centrism becomes technologically extended in the performa-
tive operation of mediatic surveillance, but racialized capi-
tal also grants that this is reproduced by racialized humans 
training blind machines. This automated practice of extrac-
tion of value requires that humans train machines to cor-
rect their learning patterns and follow the optical order that 
matches transcendental concepts with objects. It has been 
argued that these highly underpaid jobs contracted through 
online platforms such as Amazon Mechanical Turk2 are a 
new form of racialized surrogacy whereby humans are asked 
to teach machines how to read images by following the order 
of pan-opticality of the self-determining subject. Accord-
ing to Neda Atanasoski and Kalindi Vora, the technoliberal 
articulation of today’s racial capitalism works to conceal the 
uneven racial and gendered relations of power articulated 
with and through machines. At the core of technological 
innovation therefore lies a surrogate relation of technology 
towards the “human sphere of life, labour and society” that 
enables, in turn, the constant re-constitution of the liberal 
subject (Atanasosky and Vora 2019, p 10). What they call 
“the racial unfreedom of the surrogate” can contribute to 
explain how the ocularcentric order by mirroring into the 
world, finds its own self-determining humanity, or as the 

1  According to Lisa Lowe, the concept of “racial capitalism” devel-
oped by Cedric Robinson, implies that capitalism expands not 
through rendering all labor, resources, and markets across the world 

2  Amazon’s Mechanical Turk, as well as CrowdFlower, Clickworker, 
Toluna, and others, are largely unregulated websites that allow busi-
nesses and individuals to post short tasks that are also called Human 
Intelligent Tasks assignments and pay workers—in cash or, some-
times, gift cards—to complete them. In particular, Amazon set up the 
website Mechanical Turk in 2005 for humans to perform tasks that 
are hard for computers. Amazon executive Jeff Bezos has called this 
kind of human task, “artificial artificial intelligence.” This means that 
when a task is easier for a human than a computer, the computer calls 
a human. It is this double artificiality with which underpaid humans 
are identified that will be interesting to explore in this new condi-
tion of extraction of value. Amongst the most common tasks are the 
recording of information appearing in an image and the transcrip-
tion of audio and video files. See https​://www.pewre​searc​h.org/inter​
net/2016/07/11/what-is-mecha​nical​-turk/ (last accessed June 20th, 
2020).

identical, but by precisely seizing upon colonial divisions, identify-
ing particular regions for production and others for neglect, certain 
populations for exploitation and still others for disposal (Lowe 2015, 
p 149).

Footnote 1 (continued)

https://www.pewresearch.org/internet/2016/07/11/what-is-mechanical-turk/
https://www.pewresearch.org/internet/2016/07/11/what-is-mechanical-turk/
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authors say, by drawing on Hortense Spillers, a project for 
“feeling human” that sustains the epistemological ground of 
racial engineering.3

It is my argument that as much as the negative optics of 
machine vision entails the filtering out of adversarial pat-
terns, namely the machinic mismatch between concepts and 
objects, the equation of value also shows how surrogate 
humans are entangled with surrogate machines in the forma-
tion of socio-technical assemblages under neo-liberal racial 
capitalism. An instance of the automated infrastructure of 
racial capital that exposes the equation of value between 
surrogate humans and machines can be found in artist Elisa 
Giardina’s video installation entitled, "The Cleaning of 
Emotional Data" (2019). As it may become clearer later, 
the cleaning of data coincides with a capital re-introduction 
of the ocular metaphysics within computational processing 
where Amazon Mechanical Turk (MTurk) have the task of 
automating perception according to the model of knowl-
edge founded on verification (or proof of recognition) and 
the equation of value of human–machine. What Amazon 
Mechanical Turk allows is to turn the speed or the inten-
sive time of computation into the extensive time of optical 
perception.

From this standpoint, one could ask, how can the blind 
vision of computation processing offer an internal critique 
of the colonial capital and its ocular metaphysics? How can 
the human–machine alliance go beyond the human–machine 
equation of value starting from where working with Ama-
zon Mechanical Turk can become a locus of theorization 
of a machine epistemology, which takes cultural, affective, 
aesthetic labor to counter-actuate the universality of technol-
ogy—and its colonial dialectic of the visible and the invis-
ible, the optical and non-optical, the one and zero? To what 
extent can the negativity of blindness contribute to expose 
the internal crisis of ocularcentric capital, and what forms 
of epistemological capacities can rather originate from the 
negativity of the image entangled with the racialized condi-
tions of techno-social labor?

This article will point out that debates about the aes-
thetic possibilities of machine vision based on the oppo-
sition between optical human perception and non-optical 
automated perception seem to reinforce, instead of radically 
challenging, the model of metaphysical decision correlating 

knowledge and ocularcentrism at the core of Western phi-
losophy. The aesthetico-political critique of machine vision 
today has been focusing on the shift from the representa-
tional to the operational image, defining the technical image 
in terms of a programmed action—a cybernetic model of 
steering conduct. As discussed in this article, the prolifera-
tion of operational images also corresponds to the forma-
tion of an aesthetic reconfiguration of control that explains 
the correlation of vision and knowledge directly in terms 
of behavioral conduct. The operational image, therefore, 
together with Virilio’s notion of the vision machine or blind 
vision point to the cybernetic nature of the mediatic, tech-
nical image as the steering of conducts towards pre-pro-
gramming responses. Similarly, the non-ocular functions of 
machine vision resonate with the arguments that machines 
produce invisible images that are only readable by machines, 
but not by humans. This article will particularly dwell with 
this double level of argumentation, which, on the one hand, 
tells us that the negative optics of machine vision mainly 
leaves humans out of the loop—disconnected from the very 
matrix of communication upon which we rely, and on the 
other, points to how the blindness of machines rather relies 
on a racialized equation of value at the core of techno-cap-
italism, for which blackness like matter (Ferreira da Silva 
2017) has no value and constitutes the surrogate humanity 
merged with the zero value of machines, whose invisible 
images are set to be re-programmed by the ocularcentric 
knowledge.

From this standpoint, this article argues that one other 
possible elaboration of negative optics that can challenge 
the human–machine equation of value (while re-affirming 
the universal agency of the Man) and rethink the alliance 
between the racialized zero value of surrogate humans and 
machines, is to borrow from François Laruelle’s “non-phi-
losophy” (2010) which concerns the question of dark optics 
and immanent vision. In particular, Laruelle’s claim about 
the fractal algorithm of the photo will be explored to discuss 
the configuration of a negative optics in automated vision 
in recent efforts to clean negative randomness in Generative 
Adversarial Networks. The article suggests that the negative 
materiality of the computational image does not only show 
that knowledge can be divorced from ocularcentrism, but 
also that the invisible image of machines is part of alien 
epistemologies that overturn the equation of value with the 
infinities of 0 s.

This article proposes that the material processing of ran-
domness in computation is part of the expansion of her-
etic epistemologies that start from dark optics and address 
what Denise Ferreira Da Silva calls blackness, namely mat-
ter without form, or “matter beyond the equation of value” 
(2017). The materiality of the computational compressing of 
infinities, however, coincides not with the physical structure 
of the machine, but with its abstract mode of operation—the 

3  The authors draw on black feminist, Hortense Spillers, to discuss 
the surrogate human effect at a constitutive part of the grammar of 
colonialism and technoliberalism. I take these critical reflections 
about how the racialized other as much as the machine have surrogate 
status in colonial technocapitalism as central to the arguments about 
the racialized socio-technical assemblage at play within contempo-
rary images of AI and automation. See Hortense Spillers, “Mama’s 
Baby, Papa’s Maybe: An American Grammar Book.” Diacritics 17 
(1987),p 67.
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algorithmic learning to learn from the negativity of random-
ness—entailing both the elaboration of indeterminacy and 
the incompleteness of systems. Matter without form coin-
cides not with invisible images without meaning, but with 
a real that can only be cloned as auto-impressions of dark 
optics, stemming from within the infinite discretization of 
opacities, the fractal singularizations of blackness in artifi-
cial visions.

From this standpoint, this article suggests that the aes-
thetico-political engagement with machine vision must be 
divorced from ocular epistemologies and the critique of 
vision. To argue that matter without form entails the nega-
tivity of algebra is to propose that matter like infinities break 
with the equation of value, and thus refuses the metaphysical 
equivalence of knowledge and vision that sustains the surro-
gate subjection of humans and machines. The blind vision of 
computational processing rather speaks of the challenge of 
reinventing epistemology from the standpoint of dark optics 
of the human–machine condition of surrogacy in the opera-
tional extension of ocular capital.

1 � Machine don’t see and we know it

“The production of sightless vision is itself merely the repro-
duction of an intense blindness that will become the latest 
and last form of industrialisation: the industrialisation of the 
non-gaze.” (Virilio 1994, p 73).

If one follows Virilio’s reflections on the blindness of 
machine vision, it is possible to suggest that this non-gaze 
is the result of the formation of new epistemological orders 
moving from the extensive time of analogical machines to 
the intensive time of the computer. According to Virilio, 
this new order incorporates the transformation of the formal 
logic of traditional representation into the dialectic logic of 
cinema and photography into the paradoxical logic of the 
digital image. In particular, for Virilio, as much as the exten-
sive time of analog media enabled a continuity of experience 
between the past and the present, the paradoxical logic that 
accompanies the computer rather brings a remote object 
in the here and now. Here perception turns into action at 
a distance, a vision running at the speed of light. Interest-
ingly, Virilio insists that the paradoxical logic of the com-
puter allows for the future never to occur but rather disap-
pear in the statistical programming of acting at a distance. 
This remote action is also central to the classical cybernetic 
account of remote control on the one hand, and the predic-
tion of the future, on the other. As Virilio states: “[w]hen 
a missile threatening in ‘real time’ is picked up on a radar 
or video, the present as mediatised by the display console 
already contains the future of the missile’s impending arrival 
at its target” (1994, p 66).

Blindness, therefore, results from the speed of light 
whose increasingly intensive intervals bring forward an alien 
perception of the object as if the latter was coming from the 
future. Instead of the reciprocal presupposition between light 
and dark—or the dialectical presupposition of lightness vs 
darkness that characterized the passive optics of extensive 
media, such as photography—for Virilio, computer vision 
deploys an intensification of light, namely depending on the 
velocity of photons and their constant pixelation. As much 
as photons are abstracted in the statistical image, the rapid 
calculation of pixels dissimulates the future in the ultra-short 
time of an on-line “compunication” (computer communi-
cation) (1994, p 68). In this new “high-tech mix,” a para-
doxical logic sees the fusion of the object with its equivalent 
image. As Virilio reminds us, these processes of real-time 
deception will win out over the weapons systems of clas-
sic deterrence (1994, p 68). Blindness, therefore, defines 
the speed of the synthetic image, where speed prevails over 
time and space, matter and form. Here the gaze of reason 
becomes a statistical thought or a statistical optics, which 
according to Virilio, “generates a series of ‘visual illusions’, 
or ‘rational illusions’, which affect our understanding as well 
as reasoning” (1994, p 75).

Virilio warns us against the coming statistical intoxica-
tion of the technical image, claiming that society is “sinking 
into the darkness of a voluntary blindness” (1994, p 76) that 
will forever occlude the horizons of self-determining knowl-
edge. This statistical image does not only rely on the speed 
of numerical calculation, but also on the speed of cognitive 
perception. It shows us that the medium is not a tool but 
more importantly a machine language, where the speed of 
algebraic relations has taken over the linearity of input–out-
put communication.

As the speed of computational processing has shifted 
from digital pixilation to the neural network architecture of 
machine learning, the blindness of the technical image is 
now being understood as a black box that carries out func-
tions that are impossible to observe. According to artist 
Trevor Paglen, this new quality of the technical image can 
be seen in Harun Farocki’s use of computer visions in Eye/
Machine III, where, as Paglen notices, he was “trying to 
learn how to see like a machine” (2014). In particular, these 
machines seem not to be representing things in the world and 
thus neglect the ocularcentric correlation between eyes and 
objects. Instead of observing the world, computer vision, 
Paglen claims, does things in the world.

However, one could ask, what does it mean that computer 
images cannot be seen and yet they do things in the world, 
what does this “doing” amount to? On the one hand, one 
could suggest that computer images are operational because 
they point to a certain activity of the automated image itself 
in as much as it communicates with other images before 
communicating to us. This is how machine to machine 



1285AI & SOCIETY (2021) 36:1281–1293	

1 3

communication constitute the global infrastructure of sur-
veillance and governance. On the other hand, in addition to 
the automated function of communication, the operational 
image is also said to activate the cognitive-perceptual appa-
ratus of the real, which precisely pre-program conducts, or 
predicts behavior. In other words, the operational image fits 
with the cybernetic imperative of self-regulatory feedback 
which ensures that machine-to-machine communication can 
condition all orders of reality.

In a more recent reflection about operationality of the 
technical image, Paglen insists that machine to machine 
communication has made sure that images are now invis-
ible. In the short article “Invisible Images (Your Pictures are 
looking at You)” (2016), Paglen suggests that this invisibil-
ity coincides with how the proliferation of automated vision, 
as for instance in the case of reverse image search engines. 
According to Paglen, “[i]mages have begun to intervene in 
everyday life, their functions changing from representation 
and mediation, to activations, operations, and enforcement. 
Invisible images are actively watching us, poking and prod-
ding, guiding our movements, inflicting pain and inducing 
pleasure. But all of this is hard to see” (2016).

Invisible images are at the core of new forms of iden-
tification systems, from Automatic Licence Plate Readers 
(ALPR), Optical Character Recognition (OCR), to Deep 
Face Algorithm, Facebook’s DeepMask and Google’s Ten-
sorFlow whose algorithmic patterns recognize “people, 
places, objects, locations, emotions, gestures, faces, genders, 
economic statuses, relationships, and much more” (Paglan 
2016). In particular, “deep learning” networks are built 
out of dozens or even hundreds of internal software layers 
that exchange information. This is at the core of recursive 
feedback, where the neural network layers of the software 
pick apart a given image into component shapes, gradients, 
luminosities, and corners. Those individual components are 
convolved into synthetic shapes, which are compared with 
the images fed into the CNN (convolutional neural network), 
and which the network has been trained to recognize. The 
invisible image is then activated by software “neurons” as 
the network finds common patterns with other images. For 
Paglen, this automated synthesis of images means that power 
has itself become invisible and yet institutes an intensively 
crafted mode of control, policing and market. For instance, 
he conjectures that the new relation between power and 
invisibility implies how the specific use of metadata signa-
ture of every single person, based on race, class, the places 
they live, the products they consume, their habits, interests, 
“likes,” friends, leads to a reification of those categories at 
another level. Filtering out mis-matches of individualized 
metadata profiles become part of an automated function, 
whose task is to collect municipal fees, adjust insurance 
rates, conduct targeted advertising, prioritize police sur-
veillance, and so on (Paglan 2016). From this standpoint, 

metadata signature appears to support diversity, but only 
because these differentiations can become subsumed to 
marketing and predictive policing. The invisible image, 
therefore, exposes the ineffective practice of the critique of 
representation insofar as, according to Paglen, machines are 
not concerned with how humans see. While there is no pos-
sibility to either subverting the invisible regime of pattern 
recognition or fix it with more representations, for Paglen 
the invisible image demarcates the beginning of a stealthy 
mode of power that we are yet to address (2016).

However, one may argue that Farocki’s reflections on 
computer vision invite a reflection on how to train the human 
to see like a machine, and that a fundamental trick of ocular-
centrism is precisely to oppose the visible to the invisible, 
to re-inject the truth of representation back into the deep 
learning of automated networks. To put it in another way, 
it is evident that if machines don’t comply with the ocula-
centric correlation between vision and knowledge, left to 
their own devices of searching for images by images, they 
will be unable to filter out dirty data and or match patterns 
of an image that does not exist with a given set of objects/
concepts. In CNNs for instance, an image search that does 
not match with the image found implies an increase in ran-
domness or noise or what Hito Steyerl calls, “dirty data” 
(2015) that make the signal fuzzy and must be filtered out 
from communication.

In particular, Steyerl discusses what Google calls “incep-
tionism,” by referring to the automated creation of patterns 
from noise in “deep dreaming,” where image recognition 
algorithms are not distinguished from but rather looped on 
randomness or noise. Steyerl argues that here signal and 
noise are already predetermined by pre-existing categories 
and probabilities that reproduce aesthetic and social relations 
through the immediate correlation of data and hypotheti-
cal inference. In particular, automation comes to coincide 
with a regime of artificial interpellation that asks users to 
recognize themselves by constantly registering eye move-
ment, behaviors and preferences and thus by re-imparting 
the information-encoding organizational principle of seg-
regation and discrimination on users. As the influx of data 
comes into the system of prediction it matches correlations 
across patterns and drawing branches of decision-making 
between unrelated information, signals and noise: namely 
deriving meaning from “apophenia.”4

From social scores to credit scores, from academic scores 
to threat scores, as well as commercial and military pattern-
of-life observations, Steyerl sees apophenia as an upgraded 

4  “Apophenia” (/æpoʊˈfiːniə/) is the tendency to mistakenly perceive 
connections and meaning between unrelated things. The term (Ger-
man: Apophänie) was coined by psychiatrist Klaus Conrad in his 
1958 publication on the beginning stages of schizophrenia.
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version of Walter Benjamin’s “optical unconscious,” which 
reformats social hierarchies by ranking, classifying and 
filtering noise following a matrix of radicalized discrimi-
nations. The invisible image, therefore, manifests itself in 
the form of a brutal form of decisionism, which, according 
to Steyerl defines “a practice of data divination,” namely 
the search for given determinations as if emerging from an 
unknown divine order of knowledge (2015).

However, one could ask, isn’t this divine decisionism sim-
ply an extension of the colonial epistemology which relies 
on the surrogacy of human and machine as fundamental to 
racial capital? One could argue that capital practices of the 
equation of value entail not simply the prediction of value 
through the meta-programming of data or in other words, 
an automation of value derived from functions that success-
fully carry out tasks. Instead, divine decisionism relies less 
on given functions that conform to the ocularcentric dia-
lectic, and more on the split between surrogate humans and 
machines in the praxis of the equation of value, where the 
filtering out of noise foregrounds the practice of extraction. 
The optical matching between blind images, transcenden-
tal concepts and empirical objects is not given but is rather 
constantly re-introduced in computer vision by capital’s 
exceptional decisionism. The latter can only dissimulate the 
ingression of the real in the vision machine, and rather con-
tinues to make efforts to pre-program results to preclude the 
computational process of compression to run with the nega-
tivity of the function—the increasing noise or randomness 
that cannot be automatically translated into signal or pattern.

But how does this strategy of dissimulation work? Per-
haps one way to refer to how the human–machine equation 
of value occurs is to look, for instance, into the machine-
human infrastructure sustaining Image Search Engines. The 
surrogate workers contracted at Amazon Mechanical Turk 
are, according to Atanasoski and Vora, “humans that per-
form the work of technologies that are claimed to replace the 
need for human workers” (2019, p 90). As the authors report, 
Amazon Mechanical Turk is a large-scale crowdsourc-
ing software platform where human labor is contracted to 
become a service job to the machine. The racialized and gen-
dered pool of global temporary workers for high data tasks 
therefore operates in lieu of an appropriate algorithm that 
can carry out the function. These become surrogate workers 
contracted to perform “artificial artificial intelligence,” that 
is a series of tasks that provides a given compensation in a 
given amount of time. For instance, “transcribe up to 35 s of 
media to text” is a precarious job that will pay between two 
to ten cents for the task. In short, human service enables the 
blind vision of machines to be matched to pre-existing cat-
egories that are performed by the Turkers so that machines 
can then perform the task themselves. In particular, filtering 
out randomness in generative adversarial pattern recognition 
allows for the vision machine to re-enter the ocular system of 

exchange for which in the general equation of value entails 
how humans serve machines to serve humans. This autopoi-
etic intelligence allow the equation of value between human 
and machine to double the extraction of value: the extracted 
labor of humans as service in making objects codable for 
machines only serves capital to extract more value from the 
human–machine equation of value. As much as the human 
Turkers become an agent of verification, dis-ambiguation, 
and de-volution, so too machines become agents of oppres-
sion that perpetuate the ocular epistemology of representa-
tion through the automated matching of images, concepts 
and objects.

Elisa Giardina’s video installation "The Cleaning of Emo-
tional Data" (2019) shows us how this Global South socio-
technical infrastructure that feeds the “artificial artificial 
intelligence” of surrogate humans has become internal to 
the dis-organic reproduction of global capital. In this instal-
lation, the blind image of computational media coincides 
with a recombinatory repository of data that the machine 
itself cannot see, and for which it needs humans to conform 
to a taxonomy of categories matching quantities of data. 
Giardina focuses on the Global South infrastructure of Turk-
ers who get the service job of “cleaning” data by training 
machines to match images with emotions. These workers 
label, categorize, annotate and validate large amounts of 
data, enabling AI to recognize or order emotional patterns. 
Giardina herself worked remotely for several North Ameri-
can “human-in-the-loop” companies who provide “clean” 
datasets to train AI algorithms to detect emotions. Her own 
performance involves a taxonomization of emotions, the 
annotation of facial expressions and the recording of her 
own image to animate three-dimensional figures. While per-
forming this work, some of the videos in which she recorded 
her emotional expressions were rejected by the companies 
she was servicing, because her facial expressions did not 
fully match the standardized list of affective categories that 
was given to her. However, as Giardina points out, it was not 
impossible to know whether this rejection originated from 
algorithmic protocols or, for example, from the consensus of 
fellow workers who supervize the service as they might have 
interpreted her facial expressions differently due to cultural 
contexts. "The Cleaning of Emotional Data", however, docu-
ments how the carrying out of facial expression does not eas-
ily fit a universal schema and instead the history of emotions 
questions the universal epistemology, where philosophical 
and psychological theories determine the meaning of facial 
expression and its mapping.

Giardina’s installation makes the point that AI systems, 
which supposedly recognize and simulate human affects, 
base their algorithms on understandings of emotions that 
are universal, authentic and transparent. The cleaning of data 
from facial expressions that do not fit the universal schema 
of emotions is a human service job carried out by underpaid 
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workers that sustain what Atanasoski and Vora call the “sur-
rogate effect” of the coming phase of artificial intelligence. 
In particular, these “technologies that erase human workers 
are designed to perform the surrogate effect for consum-
ers, who consume the reassurance of their own humanity 
along with the service offered” (2019, p 91). Tech compa-
nies and governmental agencies use these human-verified 
data to develop software that identifies consumers’ moods or 
that recognizes facial expressions of potentially threatening 
people. However, the matching between facial expressions 
and the categorization of emotions entails the filtering out 
of noise or noisy emotions that persists as an internal ten-
sion within the universal model of visual representation, the 
ocular matching of concepts, objects and image.

The correlation between knowledge and vision is reintro-
duced in the negative optics of machines that fail to recog-
nize emotions—that is in the negative algebra that assigns 
a zero to a mismatched pattern—and becomes for Giardina 
a critical space to expose the internal paradox of capital 
extraction and of the critique of visuality today. In particu-
lar, Giardina’s work offers a response to the contemporary 
critique of the invisible image, according to which machine 
vision excludes the human from its systems of operations. 
Instead, her research points out that it is not that humans are 
excluded from the loop of the machine to machine commu-
nication, but instead that this new phase of planetary artifi-
cial intelligence and/or full automation fundamentally relies 
on a global re-organisation of racial and gender capital in 
terms of surrogate humanity. In addition, one can argue that 
within this re-organization there is also an intensification 
of the equation of value that includes the circuit of extrac-
tion where humans have to teach machines how to learn 
the ocularcentric matching of concepts, objects and images. 
Exploring the mono-logical economies of extraction across 
the Global South populations, Giardina’s work shows how 
the racialized and gendered precarious labor operates as 
the infrastructural components of artificial intelligent sys-
tems. As much as the infrastructural web of data cleaners, 
algorithms trainers, proof verifiers have become enfolded 
in the blind operations of databases through which machine 
learning algorithms, and image search engines, are taught to 
recognize patterns, the colonial epistemology of knowledge 
and vision continues to impart the equation of value between 
surrogate humans and machines.

What is here excluded instead, as Giardina’s investiga-
tions show, is not the human, but what has always been less 
than human, non-human, and in-human coinciding with the 
precarious labor and the machine-like service of outsourced 
subsumed subjectivities absorbed in the operational image 
of machines. As much as the colonial capitalization of the 
human–machine alliance accelerates the global (and out-
sourced) modes of enslavement under the universal equa-
tion of value reified in the automated system of the decision 

today, so too humans are used to correct machine vision and 
to re-impart the visual categories of knowledge back into 
the system of acceleration of value. A spiraling extraction 
of the human–machine alliance under the universal model 
of technology is at play here.

Giardina’s perspective about the intrinsic presence of 
human labor in the blind machine of techno-capital, how-
ever, is not simply a proposition aiming to correct the cri-
tique of the operational image by claiming that instead 
humans are included in the feedback loop of machine-to-
machine communication. Importantly, one can suggest that 
her intervention brings to attention the limits of visual cri-
tique in the context of intelligent computation that relies on 
the ontological ground of knowledge and vision. In other 
words, by insisting upon the underlying universal equation 
of value extraction that connects (or, places in a dialecti-
cal mirroring relationship) blind images with outsourced, 
surrogate human labor, Giardina’s work pushes the critique 
of automated vision towards a radical engagement with the 
material conditions of exploitation or intensified extraction 
of value in human–machine labor today. Can these combi-
natoric modes of abstraction exceed the equation of value in 
the universal extension of capital?

It is interesting how Giardina joins together the abstract 
lines of facial micro-expressions detected by the algorithms 
with untranslatable emotional vernacular from both Sicil-
ian dialect and American English. In her collaboration with 
Michael Graham of Savant Studios, she weaves together 
computational and human language in a large-scale tex-
tile pieces, called Amiss Motifs, mapping unrecognizable 
emotional patterns with distorted, uneven, broken pat-
terns to expose the overlapping of racialized surrogacy 
with the blindness of machines. In contrast to the critique 
of the invisible image that reifies a full automation that 
excludes the human, Giardina’s reflection on the surrogacy 
of the human–machine labor as the infrastructure of intel-
ligent techno-capitalism instead points to how the negative 
optics—namely the cultural, affective and the aesthetic 
labor of the human–machine—breaks from the universality 
of technology and the dialectic between the visible and the 
invisible.

In the next section, negative optics will be further dis-
cussed in the context of the epistemological capacities of 
automation of refusing the transcendental authority of repre-
sentation. This will be explored by engaging with Laruelle’s 
argument for dark optics and immanent vision. In particular, 
the next section focuses on machine vision and discusses 
current attempts to reduce negative randomness in Gen-
erative Adversarial Networks. The attempt at correlating 
negative optics with negative randomness is to suggest that 
machine vision can be theorized away from the ocularcentric 
dyad of visible and invisible image. The residual negativity 
in computational randomness opens learning algorithms to 
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the indeterminacy of knowledge and allows a non-optical 
theorization of vision in computational systems. The last 
session or coda will discuss negative optics in relation to 
the negative dimension of blackness in the equation of value 
under racial techno-capital as a starting point for proposing 
an immanent epistemology.

2 � Auto‑impressions

In current research developments in machine vision, it is 
possible to contextualize negative optics in the field of 
dynamic geometry, such as mereo-topology (or the study 
of parts and the relation between parts and wholes), and 
artificial neural networks that are programmed to learn from 
patterns. Cognitive psychologist and computer scientist 
working at Google Brain, Geoff Hinton, claimed that the 
logic of neural networks on which machine vision is based 
is limited to conform to pre-established parameters (2017). 
In particular, Hinton addresses the need to re-design the pro-
cedural process by which algorithms can learn from each 
other in the neural network through what he calls “capsule 
network”—a form of AI that enables machines to understand 
the world with images without relying on existing param-
eters of vision.

In his 2017 research papers, Hinton argued that capsule 
networks have not only led software learning to recognize 
handwritten digits, but they have also halved the error rate 
in pattern recognition of toys and cars. Since image recog-
nition software is used generally, and thus not contextually, 
to recognize objects, the predictive patterning cannot learn 
to recognize the same object in different scenarios. This is 
why the surrogate human needs to verify and thus teach the 
machine that what it is seeing is actually the same object. 
Instead of relying on this external verification, according to 
Hilton, capsule neurons—small groups of crude virtual neu-
rons—will track only parts of an object, for instance the cat’s 
ear and nose, as these are differently positioned in space.

This smaller scale of algorithmic receptivity, according to 
Hinton, will enable a neural network to figure out the differ-
ence between scenarios by extracting more information from 
the mereo-topological relations between smaller parts of 
data. As the capsule network is made of smaller patterns set 
to recognize parts and break the continuity of an image into 
smaller units, Hinton designed a dynamic routing between 
capsules that trains these kinds of network. Capsule algo-
rithms convert pixels fragments into vectors of recognized 
patterns and then apply a transformation matrix to these 
fragments to predict the parameters of larger fragments. In 
particular, the transformation matrix learns to encode the 
intrinsic spatial relation between a part and a whole, which 
results in the formation of an invariant viewpoint, a perspec-
tive or direction in recognition that aims to generate a novel 

vision. According to Hinton, “capsule use neural activities 
that vary as a view point varies rather than eliminating vari-
ations” (2017, p 9).

Instead of normalizing viewpoints according to methods 
such as the spatial transformer networks, or the automated 
filtering out of randomness, capsule networks simultane-
ously engage multiple transformations of different objects or 
object parts. This series of correlated activities are described 
in terms of “routing-by-agreement” (Hinton 2017, 2–3, p 
6). As opposed to the optical filtering out of noise, this 
technique aims not to eliminate redundant neurons, but to 
use all non-averaged information to obtain a non-totalizing 
knowledge about the position of an entity in a region. The 
inclusion of micro-variations in machine vision run on top of 
CNNs, which instead are aimed at solving the disambigua-
tion (or mismatch between concept, object and image) by 
playing out on the automated (or self-correcting patterns) 
of both reducing and increasing negative randomness in the 
neural network.

It seems important to repeat here that CNNs are an 
instance of deep learning networks for machine vision. Con-
volution already applies a kernel to overlapping regions that 
shift around the image by eventually establishing a fully con-
nected network through a one to one relationship of neurons 
across distinct layers. However, this multiple level of con-
nection across layers also seems to incapacitate the system 
from learning new data. In other words, the optical matching 
on negative randomness seems to block the possibility of 
machine vision. When convolution leads to the overfitting 
of information as a one to one connection, the kernel risks to 
re-learn redundant data (that is the same data will be held in 
two places in the database). Convolution, therefore, delim-
its machine vision by saturating data memory and increas-
ing computational costs for instance, but more importantly 
because its overfitting capacities lockdown algorithms into a 
pattern of connection between the same parts, without being 
able to learn from what cannot be known in advance.

From this standpoint, since at each location in the image 
there is one instance of the type of entity that the capsule 
represents, the capsule model—as opposed to the convolu-
tional matching of concepts and images—affords a form of 
distributed representation. This is inspired to the percep-
tual phenomena of crowding, where neighbor parts shed 
the direct perception of an object in movement. CapsNet 
architecture, therefore, grants not an algorithmic matching 
with existing data, but shows that algorithmic patterns can 
become predictive vectors of futurity (that is they look for 
what cannot be already seen) and not simply an automated 
vision of patterns recognition. Instead of eliminating vari-
ations to reach an average capacity for general recognition, 
predictive vectors follow the negative algebraic relation 
between layers, involving randomness and micro-temporal 
variations in the algorithmic process of compression. These 



1289AI & SOCIETY (2021) 36:1281–1293	

1 3

vectors of variation have become central to how machine 
learn beyond set parameters, and how negative random-
ness has become a source for machine vision entailing no 
transcendental recognition between concepts, objects and 
images. In other words, computational vision establishes a 
potential or hypothetical relation between non-correlated 
patterns that may correspond to images that did not yet exist. 
From this standpoint, predictive vectors are not simply the 
technical explanation for apophenia—namely how the invis-
ible image makes decisional patterns—but are more than 
a set of probabilities based on what is already been recog-
nized in the system: the negative algebra of what cannot be 
recognized pushes the system to construct counter-factual 
dimensions of images that do not correspond to the ocular 
equation of value between objects and concepts.

It is as if the discretization of the network in increasingly 
smaller vectors of variations flips the architecture of match-
ing inside out by exposing indeterminate dimensions to its 
organizational infrastructure. Instead of a self-reproduction 
of the master pattern across the layers of the network, the 
intensified discretization of networked parts also increases 
the volume of randomness within and amongst them. Com-
putational vision can thus be defined in terms of the indeter-
minate series of variations that each time become cloned in 
each and any algorithmic patterns. Here algorithms do not 
simply register raw data to execute instructions but become 
sheer receptors or cloning of an indeterminate series of 
the real. One could argue that this negative optics of algo-
rithms—that is unable to be a mirror of the world because 
it does not see the world but only a series of variable parts 
that entail a process of auto-impression of matter, whereby 
machine vision—becomes a medium for heretic inferences, 
for the elaboration of a heretic logic without ocular-logos. 
In other words, a dynamic bootstrapping between algo-
rithmic patterns and vectorial randomness suggests that 
machine vision is embedded in a series of temporal varia-
tions that become finite inferential hypothesis through the 
auto-generation of material images. As machines become 
auto-impressions of an infinite real they also generate and 
envision new patterns: the dynamic movement between 
increasingly large and increasingly small scales of predictive 
vectors turns machine vision into a heretic auto-impression 
of computational matter.

This process of auto-impression of matter without ocular-
logos is opposite to what Laruelle calls “algorithmic trans-
parency” which rather takes the technical image (especially 
understood in photography or photographic philosophy) as 
that which measures the correlation between premises and 
results in terms of effects (or the efficient causality of enu-
meration of given ends), and thus presupposes homogeneous 
matching between the transcendental order of concepts and 
objects (Laruelle 2013). Borrowing from Laruelle, one can 
argue that the ocularcentricism of philosophy coincides with 

the decisional power imparted on the real by the transcen-
dental mirroring of knowledge and vision (Laruelle 2013 By 
challenging the optics of philosophical decision, Laruelle’s 
non-standard philosophy or non-philosophy makes the argu-
ment for an abstract theory of photography, “absolutely non-
worldly and non-perceptual” (date: 8). In particular, Lau-
relle asks: “to what extent is photography not an activity, 
for example, of a kind with Artificial Intelligence (AI)—an 
attempt at the technological simulation not of the World, 
in its objective reality, in its-philosophico-cultural reality, 
but of science and of the reality that science can describe, 
naively in the last instance?” (2013, p 10).

What Laruelle is insisting upon is to refuse the universal 
paradigm of perception grounding from the standpoint of 
being-in-the-world. Instead, his non-philosophy takes pho-
tography as a technique as a form of knowledge that intro-
duces science in the condition of existence of perception and 
of the world (2013, p 11). Laruelle’s non-philosophy takes 
the critique of the ocurlacentric vision to another point, fur-
ther delving into how negative optics refuses transcendental 
decisionism and at once lays out the possibility of elabo-
rating a non-optical dimension of knowing, a non-ocular-
logos of knowledge. For Laruelle, the condition of knowing 
depends not on the point of view of philosophy, but it is 
rather to be found in what he calls “the stance” of, borrow-
ing from Deleuze and Guattari, “a body without organs” 
(1989). Instead of a self-determining reflection of the world, 
vision becomes un-objectivating, implying not a position, 
a decision, but an auto-impression that is first of all a real 
“undivided experience, lived as non-positional self-vision 
force” (2013, p 13).

If, according to Laruelle, photographical decision cor-
responds to the law of sufficient reason that reflects the real 
according to a circular self-expression of truth, non-photog-
raphy (as a non-philosophy) therefore coincides with what 
he calls “fractal algorithms,” because they have a degree 
zero of self-reflection. Following this argument, one can 
suggest that the algorithm is not a medium programmed to 
reveal the world or even less to self-regulate the human per-
ception of the world. In other words, it is not a prosthetic 
tool that ensures constant adaptive feedback. Instead, the 
fractal algorithm is increasingly partial and in this fashion 
clones its own real image, namely of cloned image without 
original or copy, in terms of a spatial surface that extends (or 
infinitely fractalizes) forever without uncovering any pris-
tine form behind it. Laruelle explains that what appears in 
the photo as an object drawn from the transcendence of the 
world must be distinguished from the “photographic appari-
tion” (2013, p 18). By radicalizing the Husserlian distinction 
between the photographed phenomenon, corresponding to 
what photography can manifest and thus to the manner in 
which it manifests the world, and the photographed object, 
namely the representation of the world, Laruelle argues that 
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the non-photographic vision (or negative-optics) is a parallel 
process to the world, and as such it is not in the world (2013, 
p 25). This is not the field of transcendental knowledge but 
defends real immanence in vision, or what Laruelle calls 
“vision-force” that is immediately given or the “in-itself” 
of the image.

Thinking with Laruelle’s non-photographic argument 
for vision, it is possible to push further the heretic account 
of machine vision and thus refusing turning machines into 
the onto-epistemological mirror of transcendental vision. 
One could argue that as much as negative optics neither 
represents the world nor remains an invisible unreflexive 
automatism of the world, it crowds the parallel space of 
photographic apparition. This is not a representation but 
an auto-impression of an image’s own aesthetics that starts 
from the negative fractality of algorithmic micro vectors that 
give the effect of what Laruelle calls “generalized fractal-
ity” (2013, p 78). Instead of serving as an instrument for 
shedding light onto the world, the camera-machine clones 
(equate without equivalence) the underworld of dark optics 
as fractal patterns of an indelible generic intelligence that 
turns on its own head the ontic limits imparted on science 
by philosophical decision.

As Alexander Galloway puts it: “[i]nstead of mere ontic 
darkness, generic being achieves an ontological darkness, 
and hence beckons toward the kind of crypto-ontology of 
pure blackness evident in Laruelle” (2014, p 77). If one were 
to continue along this line of argument, it is possible to sug-
gest that a crypto-ontology is what can define the negative 
optics that is foreclosed to a transcendental being. On the 
other hand, however, negative optics is precisely the algo-
rithmic randomness that demarcates ontological darkness 
in the machine in terms of an auto-impression of machine 
visions that signal the apparition of the image itself. These 
are infinite reflections without mirror, “unique each time but 
capable of an infinite power ceaselessly to secrete multiple 
identities” (Laruelle, 2010, p 82). This multiplicity of dark-
ness, one needs to emphasise, coincides not with substantial 
forms, but with non-consistent phenomena that entail a cer-
tain, non-optical automatism in exposing, in Laruelle terms, 
the “hyperphenomenology of the real” (2010 , p 95). In par-
ticular, as Laruelle specifies: “There is a ‘phenomenological’ 
automatism or blinding that culminates in the photographic 
eviction of the logos – of philosophy itself – in favour of a 
pure irreflexive manifestation of the phenomenon-without-
logos” (2010, p 95).

The scope here is not simply to unmask the supremacy of 
self-determining philosophy in the name of absolute irreflex-
ivity but to rather start from this un-mirroring image as the 
stance of negative or dark optics. Here the automated image 
become the medium of auto-impressions as the multiplicity 
of darkness pulls through the phenomenon-without logos in 
machine vision. The automated image exposes the fractal 

consciousness of a machine knowledge that turns the ontic 
limit of epistemology into singularities or non-axiomatic 
automatisms. This is the artificial image that stays with and 
pushes further the negativity of the human, the non-human, 
the less-than-human, occupying the stance of a “[s]tranger 
in flesh and blood” (2010, p 103). Laruelle’s arguments for 
non-philosophy radically defies the façade of pretentiousness 
of Western metaphysics for which the real can be surgically 
cleaned from blackness, which remains locked in the form 
of the Other that must follow the image of Man, once it has 
been emptied out and turned into a soulless machine. For 
non-photography instead only the other has to be replaced 
with a “logic of auto-impression” or phenomenological 
automatism where the medium becomes a negative machine 
of a black universe (Galloway 2014, p 191).

From this standpoint, if we are to follow Laruelle’s propo-
sition for non-axiomatic photography, the theorization of 
computational vision may have to start with algorithmic 
fractality, namely the possibility of a computational auto-
impression of the real, exposing the alliance amongst less-
than-humans in a field of immanent vision. The Laruellian 
“Vision-in-One” is a stance that does not predetermine but 
rather becomes determined by the real in the real’s “last 
instance.” As much as this determination is a clone of the 
real, but not the real itself, one can argue that machine vision 
entails a non-relationality with the world, whose negative 
auto-impressions are infinite singularizations of blackness 
beyond the optical value of representation.

That non-photography insists on the cloning of the black 
universe however is not another way to propose a critique of 
automation. Instead, this is above all a practice of refusing, 
hacking, alienating the transcendental decision for which 
machines as blind can only learn to represent what is already 
given to them by the ontic limit of knowledge. Similarly, 
non-philosophy is not simply an invitation for imagining 
alternative ways to reinstate philosophy and expanding its 
ontological ground of transcendental decision. Instead this is 
a heretic project that necessitates trans-collective elaboration 
of fictional automations that start with the auto-impression 
of blackness as proliferating each and anytime outside the 
onto-epistemological cosmogonies of the self and the other. 
For instance, one can start asking why techno-capital deci-
sionism is still taken as the onto-epistemological law that 
locks the critique of computation into the perpetual mirror-
ing of vision and knowledge, humans and machines. The 
fractality of the algorithms can rather contribute to engage 
randomness in process imaging as machine singularizations 
of the real. In other words, machine vision can become a 
medium for the auto-impression of darkness in the last 
instance: namely as machines learn to learn from negative 
optics.

The negative materiality of the computational image 
does not only show that knowledge can be divorced from 
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transcendental ocularcentrism, but also that the invisible 
image of machines is part of alien epistemologies that defy 
the equation of value with the infinities of 0 s. The fractal-
ity of algorithms is part of the expansion of heretic epis-
temologies where alliances between the configurations of 
the in-human demonstrate how the equation of value can be 
not only challenged, but turned inside out from the stance 
of infinities—the auto-impression of blackness. In the fol-
lowing coda, this argument for the algorithmic fractality of 
infinities that accounts for the invisible images of machines 
outside ocularcentric critique requires further collective 
elaborations of how negative optics can become part of a 
revolutionary practice of machine thinking (that indeed 
overturns the critique of ocularcentrism within technocapi-
talism). This coda, in particular, turns to the elaboration of 
negative infinities in Ferreira da Silva’s articulation of black-
ness as indeterminate matter at the limit of modern thought, 
whereby matter without form is above all “matter beyond the 
equation of value” (2017).

3 � Coda on images without value

Drawing on quantum mechanics, for which indeterminate 
results in determining the perception of reality point to the 
necessity of moving beyond the ontic limits of science, Fer-
reira da Silva discusses this indeterminacy or the Thing 
as the referent of blackness, another mode of existing at 
the limit of modern thought. As she puts it: “deployed as 
method, blackness fractures the glassy walls of universality 
understood as formal determination (2017, p 11). She pro-
poses an experiment in articulating the “equation of value” 
as a self-determining formalism based upon and through 
the violence against the thing/blackness. Ferreira da Silva 
proposes to carry out this algebraic experiment not simply to 
unveil the formal determination of the matter at the core of 
the equation of value, but one could argue, to rather address 
the “auto-impression” of blackness minus the form, or mat-
ter without the universality of value. To do so, Ferreira da 
Silva proposes an ethical re-articulation of blackness that 
does not follow the over-determinant image of Man whose 
program overfits – that is overrepresents—all modes of 
being human nor, on the other hand, aims to make a claim 
for an absolute outside that separates the Modern/European/
white human from the non-modern/non-European/black 
non-human (2017, 04/11).

Ferreira da Silva argues that this ethical experimentation 
starting from matter beyond the equation of value deserves 
further investigation about how determinacy, together with 
separability and sequentiality have sustained modern thought 
and the construction of an ethical matrix in which the indif-
ference with which racist violence is met, is itself rather 
become constitutive of a (common and public) moral stance 

(2017, p. 04/11). She traces how this matrix is entailed in 
the modern elaboration of causal efficiency and its operative 
grounding of equivalence mathematically bounding together 
ethical, economic and juridical formations (2017, p. 04/11). 
The modern Kantian world becomes a way to bring together 
formal and efficient causality in the self-determination of 
the limits of scientific knowledge—precisely concerning 
what can already be accessed by the senses (the empirical 
experience of which science provides the tools for extending 
universal measure). As value becomes universal and moves 
across scales, the object (thing/matter) is unified by its for-
mal qualities which in turn are the effects of judgements (and 
thus transcendental concepts) derived from the measurement 
and classification of objects (that is by the ontic limits of 
science). Here the difference is granted by the decisional 
position or transcendental operator that already knows the 
object. Ferreira da Silva explains that within this transcen-
dental field of value, blackness as a category of racial differ-
ence “occludes the total violence necessary for this expro-
priation [namely the colonial expropriation], a violence that 
was authorized by modern juridical forms – namely, colonial 
domination (conquest, displacement, and settlement) and 
property (enslavement) (2017, p 08/11). However, Ferreira 
da Silva’s invocation of the Thing in quantum mechanics, as 
much as it claims for an autonomy of matter beyond form or 
universal equivalence of value, also offers a way to unset-
tle the universal matrix of ethics. The Thing challenges the 
ontic limit of knowledge imposed on and through science 
by transcendental philosophy, which saw the extension 
of the formal into efficient cause driving modern colonial 
epistemology.

In particular, Ferreira da Silva’s ethical experiment offers 
us a proof of the “equation of value” for which blackness 
as nothing—that is zero value or infinity—has the creative 
capacity to unsettle and hack Modern Western onto-episte-
mology of vision and knowledge. According to Ferreira da 
Silva, zero is to be taken not as a contradiction, as estab-
lished by the dialectic of presence and absence, but itself as 
a signal of the autonomy (or in Laruelle’s term unilaterality 
of) negation and of the negative. Instead of being invisible, 
blackness, as matter without form, brings forward the nul-
lification of the ocularcentric field of vision. But how to 
demonstrate that such a nullification is not simply another 
manifestation of the contradiction that rather confirms the 
norms of the transcendental? This is a question that must 
accompany the theorization of the negative optics of com-
putational vision because it must bear the challenge against 
the ontic limits of knowledge that continue to be inscribed 
within the performance of science of information, whereby 
the potentiality of machine epistemology is constantly re-
subsumed by transcendental decisionism and representa-
tional metaphysics. For Ferreira da Silva, it is a question 
of re-articulating the mathematical mapping of the matrix 
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of ethics in terms of a radical engagement with zero as a 
value in itself, rather than self-positing a critique that reveals 
contradictions in the transcendental equation of value. In as 
much as the result of Ferreira da Silva’s experiment with 
the equation of value points to the real dimension of the 
undeterminable (namely value without form, namely neither 
life nor not-life), it also has zero value because it exists itself 
without form. In equating blackness with zero or infinity, 
Ferreira da Silva proposes a radical praxis as a refusal of 
dialectics founded on the decisional principle of philosophy, 
whose complains against (and rectification of) the invisibil-
ity of the automated image, are there only to re-produce its 
ocular-logos of recognition (2017). From this standpoint, it 
is possible to conclude that the dissolution of determinacy 
and its transcendental decisionism requires not a skeptic cri-
tique against computational vision but above all a creative 
elaboration of the non-ontic science of vision machine that 
rather enables the possibility of overturning dialectics and 
its critique. The argument for negative optics, therefore, does 
not only concern the human–machine relationship but more 
importantly how this latter, under technocapitalism, can 
rather be turned inside out to defy the onto-epistemological 
violence of ocular vision through and with the negation/neg-
ativity of infinities, with blackness as matter without form, 
auto-impressions of the real without the given, auto-imag-
ing minus the self-positing subject. From this standpoint, a 
praxis of refusal stays with the trouble of dark optics, plung-
ing within multi-layering opacities, fractalizing blackness in 
artificial visions.

From this standpoint and against the universal model of 
technology (the techno-logical universalism of ontic knowl-
edge), it seems crucial to continue to elaborate how machine 
vision is equivalent not only to the perceptual gaze but also 
to the operational image that has sustained, since modernity, 
the colonial operative epistemology and its matrix of ethics. 
Ferreira da Silva’s reversed equation of value is a praxis of 
refusal that does not only reveal the violence of self-deter-
mination but also invites us to stay with the negativity of 
algebraic relations for which nothing is a signal of infinity 
running against the metaphysical equivalence of knowledge 
and vision and the capital equation of humans and machines. 
If we were to invert the equation of value in computational 
processing one may need to start from the indeterminacy 
of compression, the negative algorithm of what cannot be 
known in advance, the negative randomness that condemns 
the computation to remain incomplete. Since negative optics 
implies no image-form, so too no universal formalism can 
grant the outcome of the algorithmic compression of ran-
domness. It is, therefore, possible to argue that negative 
optics is an index of immanence—namely no transcenden-
tal value can explain the auto-impression of images in the 
algorithmic discretization of increasingly smaller patterns 
of recognition. Here the networked relation between image, 

concept and object is turned upside down as much as the 
auto-impression of images exceeds the operative correction 
of images that capital imparts on the human–machine alli-
ance. Instead of the ocular representation of the world, the 
increasing discretization of the network increases the volume 
of randomness as much as the ANN affords the ingression 
of indeterminate variations within algorithmic compression. 
In other words, the machine vision also coincides with what 
cannot be explained, programmed, represented beforehand 
by concepts programmed in the machine. This is why algo-
rithmic operations are not simply prescribed perceptions 
but are auto-impressions of the human–machine condition 
each and any time multiplying the field of auto-apparition 
of blackness without form in the last instance.

To conclude, it is central to this argument that as much as 
the negative optics of computational processing speaks of 
the challenge of reinventing epistemology outside the knowl-
edge-vision correlation, it also requires us to unsettle the 
colonial roots of modern epistemology for a space of thought 
for asymmetric auto-impressions of the human–machine 
alliance. This is a collective and transversal effort in think-
ing with machines that starts from acknowledging the inhu-
man condition, the negativity of value, zero value in the 
human–machine alliance. This is also to say that if the mod-
ern universality of technology continues to become reified in 
machine visions, so too the argument for practices (all forms 
of practices) starting from the zero value of auto-impression 
must continue to unpack the heretic versioning of negativity 
in the technopolitical reconstruction of epistemologies.
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Abstract
This first half of the paper outlines the formation of racial surveillance capitalism across the longue durée of settler colonial-
ism, with special attention to the formation of artificial vision. This artificial vision is deployed in the erased territory, creat-
ing a white space in which to see from platforms, ranging from the ship, to the train and today’s drones. The second section 
examines the Eurodac digital fingerprint database created by the European Union to monitor and control asylum seekers and 
refugees as an “artificial life system,” to use a phrase coined by its administrators. In this automated form, artificial vision 
is distributed rather than centralized.
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“This is how to place you in the space in which to see.”

Layli Long Soldier, Whereas

In discussing “relations between the conqueror and the 
colonized” in his Ways of Seeing, John Berger made a line 
drawing depicting in barest outline two figures. The one on 
the right was captioned “omnipotent” and the one to the 
left “less than human.” Berger noted: “the way each sees 
the other confirms his own view of himself” (1972: 96). 
Two pairs of diagonals go from eyes to feet and eyes to the 
top of the facing figure’s head, perhaps evoking Hegel or 
Lacan. There’s much left unsaid here. Did the conquered 
actually think of themselves as less than human? Or were 
they confirmed in seeing that the conqueror saw them that 
way? “Seeing comes before words,” as Berger had famously 
begun his book. Before seeing comes “the space in which 
to see,” to borrow a phrase from Oglala Lakota poet Layli 
Long Soldier (2017: 8). The way of “seeing” that arises 
in the space in which to see erases so as to produce white 
space, which can then be claimed for absolute ownership. 
This seeing-in-space is the sensing of how to place people 
in relations of hierarchy to extract value. The formation of 
white space in which to see, by people and machines, is my 
subject here. This white space is the product of colonial-
ity, a space formed by the erasure of existing human and 

other-than-human relations. Coloniality is the time–space 
since 1492 when “America [the hemisphere] was constituted 
as the first space/time of a new model of power” (Quijano 
2000: 533). In the space of erasure, artificial vision and arti-
ficial surveillance are enabled. Deployed first from infra-
structure platforms like ships or trains, these processes are 
now being distributed into a network of machines that form 
artificial life systems. Together, the combination of erasure, 
extraction and surveillance has enabled racial surveillance 
capitalism to survive in that white space from the overseer 
on the plantation to neocolonial domination by unmanned 
aerial vehicle (UAV). What’s different today is that this arti-
ficial vision is now being automated and distributed, creating 
spaces of disappearance.

The operations of white space precede what is conven-
tionally thought of as “seeing,” a look directed by a person 
at an object or other person that necessarily takes place in 
space. Whiteness is the apex, the place of organizing, and 
the vanishing point to and from which “seeing” is directed 
under racial surveillance capitalism. White space is rendered 
by the systemic erasure of colonized terrain and existing 
social relations in that space. The erased ground made space 
perceptible to the “conquering” gaze identified by Berger. 
This process involved a multiplicity of senses from touch to 
vision and sound because (colonial) ground is layered and 
folded, as Stuart Hall has defined it: “it is the site irretriev-
ably marked in relation to the question of ‘origin’ by an 
unpassable distance” (2017: 168). The resulting white space 
is at once static, responsive to input, and cultivates transfor-
mation. This static is the presence of the state, meant to be 

 *	 Nicholas Mirzoeff 
	 nm45@nyu.edu

1	 Department of Media, Culture and Communication, New 
York University, New York, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-020-01095-8&domain=pdf


1296	 AI & SOCIETY (2021) 36:1295–1305

1 3

permanent and unchanging; the statue as a symbolic figure 
for the state; and the electric noise generated by surveillance 
apparatus. White space is always a surveillance arena and 
so it responds, if and when it detects something or someone 
within what Jacqueline Rose has called the “field of vision” 
(1986). Elsewhere, I have called this regime “oversight,” 
meaning the work done by the overseer on the plantation 
to ensure maximum production and minimum resistance 
and projected forward into the still-continuing “planta-
tion futures” of the Atlantic world (Mirzoeff 2011: 48–76; 
McKittrick 2013: 1–12). If there is always a “weave of dif-
ferences” (Derrida 1984: 13) in human identification, the 
frame on which that weave is produced is, under the exist-
ing regime of coloniality, whiteness-as-white-supremacy, 
whether that frame is a picture frame, a mainframe, or a 
container for network packets. These frames are not identi-
cal or self-identical but contain and produce whiteness as 
“a changing same,” to borrow Paul Gilroy’s formula (1993: 
72–110). In whiteness’s own imaginary, to be seen in white 
space is to be subject to violence without redress.

White space sustains whiteness as the “changing same” 
of what Caribbean philosopher Sylvia Wynter has called 
“monohumanism.” For Wynter, monohumanism acts “as if 
it were the being of being human” (2015: 199 n.22). It is a 
system of violent domination, enacted by means of visual-
ized distinction leading to separation, whether or “races” 
or of the free and enslaved, and the consequent production 
of vulnerability to harm. As a way of seeing, monohuman-
ism uses a monocular vision of the world as a grid, shap-
ing, in turn, the square of plantation agriculture, the layout 
of imperial cities, and now the patterns of electronic sur-
veillance. The combination of monocular vision with the 
enforcement of monohumanism forms what I call “racial 
surveillance capitalism.” As a concept, it connects Cedric 
Robinson’s racial capitalism, with the recent upsurge in 
awareness of surveillance as constitutive of capitalism, by 
way of Simone Browne’s concept of “the racialized disci-
plinary society” (Robinson 2000: 200–30; Browne 2015: 9; 
Zuboff 2019). Far from being a “rogue mutation of capital-
ism” (Zuboff 2019: ix), racial surveillance capitalism has 
been active since the surveillance-dominated grid cities of 
sixteenth-century Spanish Mexico organized on the princi-
ple of “concentration” (Nemser 2009: esp. 25–64); to the 
slavery-era plantation with its overseer; the factory with its 
foreman; the “new Jim Crow” of mass incarceration; the 
“carceral reservation world” (Estes 2019: 115) invented by 
settler colonialism for the indigenous; and today’s CCTV-
controlled megacities on quarantine lockdown. Assertions 
that “surveillance capitalism is young” (Zuboff 2020) fail to 
account for its long role in generating and sustaining racial 
surveillance capitalism on stolen land in the plantation and 
the factory. Sustaining racialized hierarchy is and was code-
pendent with the extraction of value by means of persistent 

surveillance of those excluded from monohumanism. State-
gathered racialized “intelligence” is now being formulated 
into facial recognition, unmanned aerial vehicles (UAV) or 
drones, and border identification technologies, all still seek-
ing an automated version of the perfect surveillance desired 
by the plantation overseer.

1 � Erasure

In the Americas, racial surveillance capitalism began with 
the “clearing” of ground, mentally and physically, and by 
displacing or disposing of the Indigenous. This clearance 
continues with the assertion that Indigenous peoples are 
“extinct,” or that their claims to land are void. When the 
Indigenous within the borders claimed by the United States 
combined to protest the extension of the Dakota Access 
Pipeline into land designated as Lakota by the 1851 and 
1868 Fort Laramie Treaties, they were met with violence, 
from state police with sticks, to tear gas, and presidential 
Executive Order. LaDonna Bravebull Allard was quite clear 
as to what was happening: “Erasing our footprint from the 
world erases us as a people. These sites must be protected, or 
our world will end; it is that simple” (TallBear 2019, in Estes 
and Dhillon 2019: 17). By replacing the Lakota world with a 
pipeline, that world was erased, at least in part. That erasure 
continues: for example, Tohono O’onham burial grounds 
were demolished in 2020 to make way for the US border 
wall with Mexico (Ruiz 2020). The 2020 Land Defenders 
on Wet’suwet’en land within the borders claimed by Canada 
met a similar response. As Freda Hudson, spokesperson for 
the Unist’ot’en (one of the clans of the Wet’suwet’en nation) 
put it, the issue revolved around competing definitions: “for 
us, our critical infrastructure is the clean drinking water 
and the very water that the salmon spawn in … to them, 
they massively clear cut land, which the animals depend 
on” (Spice 2019: 215). When settler colonialism directly 
confronts its others, the issue is stark: erasure or survival.

Layli Long Soldier’s poem “Three” (within the section 
He Sapa, known to settlers as the Black Hills, treaty-pro-
tected land sacred to the Lakota Sioux) visualizes this space 
of encounter and confrontation: “This how you see me the 
space in which to place me/The space in me you see is this 
space/To see this space see how you place me in you/This 
is how to place you in the space in which to see.” Seeing is 
spaced and placed, you and me, unevenly. Here, I, the non-
indigenous white settler, am the “you” of her poem. If one 
begins at the top, it begins with the settler placing the Indig-
enous in any space whatever. The sentence is evenly and 
standardly spaced. The next two lines have spaces between 
phrases. Later in the collection, she terms this unreadable 
space a “white hole,” which results in letterpress when two 
or more spaces are used, whether by accident or design 
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(Long Soldier 2017: 71). Those “holes make the space 
open,” allowing you, me and them to enter, as and when. 
Across these spaces, a form of relation occurs. By the last 
sentence, evenly spaced, the settler may, with due process, 
become able to access the space in which to see. The poem 
as a whole produces a square blank space in the middle of 
the page, formed by these unequal ways of seeing. Across 
her section “Whereas,” Long Soldier has many names for 
“it,” that unreadable but perceivable and knowable space 
that rhymes without sound. It is “Indian emptiness” that she 
notes the Oxford English Dictionary now says must be ren-
dered as “American Indian emptiness” (Long Soldier 2017: 
62). The colonizer still controls the sentence.

Indeed, Whereas, the title of her book, follows from the 
2009 Congressional Resolution of Apology to Native Amer-
icans, which was placed entirely in the “whereas” clauses of 
the 2010 Defense Appropriations Act, providing over $500 
billion for the military (Public Law 2009). That is to say, 
the Act articulates, in the sense offered by Stuart Hall, the 
foundational erasure of Indigenous peoples in the Ameri-
cas with present-day neo-colonial ventures in Afghanistan, 
Iraq and elsewhere. This articulation of what settler colo-
nialism does amplifies Long Soldier’s statement that the 
Apology “falls short of legal grounds” (2017: 70). Yet, like 
Fanon in Wretched of the Earth, Long Soldier dreams of 
running, a dream of embodied and decolonized freedom. In 
her poem, on waking she “teeter[s]” to the mirror, saying 
“You’re old enough now to look at yourself full-on.” (2017: 
70; her emphasis). Long Soldier comes into her own view, 
deferring and making different the experience of colonized 
ground. For Long Soldier, the result is “defiance,” not the 
deconstructive différance (2017: 75).1 It is not a “gaze,” 
because that is what the settler does and automates in the 
surveillance system. It is a full-on look, one that expresses 
majority, in the sense of legal subjectivity and of maturity. 
Being able to look at yourself full-on counts. Thinking about 
the colonizing state, Kahnawà:ke Mohawk scholar Audra 
Simpson has identified in the sovereign a “death drive to 
eliminate, contain, hide and in other ways ‘disappear’ what 
fundamentally challenges i[t]s legitimacy” (Simpson 2016: 
n.p.). This visualized structure of domination by conceal-
ment and disappearance is a powerful formation of racial-
ized surveillance. It is both deployed against individuals and 
has a collective set of outcomes. For Simpson, “the state is 
a man,” and a “heteropatriarchal” man at that, for, as Susan 
Deer has argued, rape “can be employed as a metaphor for 
the entire concept of colonialism” (2015: xvii; in Estes 
2019: 81). The death drive of disappearance renders what 

Simpson calls “Indigenous political orders” unappearable 
within white space.

The sovereign monocular stare of erasure, disappearance 
and death is an active, artificial and engaged form that seeks 
to conceal itself from those it observes. The state and its 
surrogates project2 themselves onto the erased white space 
of plantation futures, to use the term coined by Kathleen 
McKittrick, meaning “a conceptualization of time–space 
that tracks the plantation toward the prison and the impov-
erished and destroyed city sectors.” To these sectors should 
be added the so-called “reservation” for the Indigenous as 
and the detention center for migrants and refugees. In the 
plantation imaginary, the overseer was capable of envisag-
ing everything that took place in and around the plantation, 
keeping humans, animals, biomass and even landscape under 
transformative surveillance. McKittrick shifts the register of 
the plantation as past time to one in which “the plantation 
uncovers a logic that emerges in the present and folds over to 
repeat itself anew” (2013: 2, 4). In this case, that logic is the 
means by which plantation oversight continues to structure 
the automated systems of racial surveillance capitalism.

White space subsequently metamorphoses a person into 
a commodity. It transubstantiates life into value or renders 
life into data. White space is always moving image space, 
where there is not simply motion, but alteration. This logic 
rendered life into the property, the process of enslavement by 
which a body becomes an object according to colonial law, 
but so too does whiteness become property. From that vio-
lence results a chain of metamorphoses, as Walter Johnson 
has put it, from “lashes into labor into bales into dollars into 
pounds sterling” (2013: 244). In formal economic language, 
the later stages of this process are usually considered as an 
exchange, but while dollars can be exchanged for cotton and 
other things, lashes and their resulting pain cannot (or should 
not) be exchanged at all. But Johnson notes that “violence 
is the metric of production,” to which I would add in this 
context, “of white space.” Under digital systems of surveil-
lance and detection, life is rendered into data, creating a 
“hostile environment” to appropriate former British prime 
minister David Cameron’s nasty tag. A person within the 
hostile environment is subject to physical violence, ranging 
from arrest and detention to deportation, but is pressured 
constantly by the awareness of being considered a suspect. 
The digital form of the “wages of whiteness” identified by 
W. E. B. Du Bois in 1935 is not access to the water foun-
tain but to the nation-state as a whole, a hostile white space 
designed to exclude.

1  The term différance is a neologism coined by Jacques Derrida to 
express the contradiction that the French verb différer means both to 
defer and to differ.

2  For the concept of projection in colonial contexts, see Casid, 
Scenes of Projection (2015: 89–124).
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2 � Artificial surveillance: Leviathan

While white space is co-eval with coloniality, by the time of 
the great acceleration of sugar production in the seventeenth 
century that fueled the rise of modern racial capitalism, it 
became subject to artificial surveillance. This surveillance 
was the combination of an artificial way of seeing and the 
compound formation of the state as an artificial machine. 
The first figure of this “artificial intelligence” that formed 
the plantation futures in which racial capitalism continues 
to operate was the Leviathan, the imaginary means of visu-
alizing the state. For Thomas Hobbes, the Leviathan was 
an “artificial man”: “the sovereignty is an artificial soul, as 
giving life and motion to the whole body” (1651: 7).3 For 
Hobbes, the sovereign is also sovereignty, a far from the 
neutral term, as Hardt and Negri have shown: “the concept 
of sovereignty emerges from the colonial mentality and is 
conceived explicitly in relation to the natives of ‘America,’ 
who are considered populations that remain in the state of 
nature” (Hardt and Negri 2017: 26). Hobbes’ sovereign rep-
resentation expressed the racialized hierarchical imaginary 
of monohumanism derived from the plantation colony. In 
Leviathan, all (white) persons were imagined to voluntarily 
give up their freedom in exchange for the protection of the 
state. Hobbes declared “[a] Multitude of men, are made One 
Person, when they are by one man, or one Person, Repre-
sented” (in Skinner 2018: 284). The Leviathan “represents” 
the “multitude” as being contained in one artificial man.

This artificial state deployed an artificial vision, visu-
alized in the period by Abraham Bosse, first professor of 
perspective at the nascent Academy of Painting in Paris, 
the artist who would later draw Leviathan. Bosse was quite 
literally a bourgeois revolutionary—a Huguenot, he lived in 
Paris and participated in the Fronde (1648–53), the uprising 
against the young Louis XIV—who understood perspective 
to be the dominant form of representation. Bosse depicted 
vision as a pyramid formed by four pieces of string ending 
in the eye (singular) of white soldiers carrying swords. The 
object being looked at wills its own surveillance, according 
to Bosse, because it emitted rays that entered the eye to be 
seen. In a similar fashion, Hobbes began Leviathan with 
a discussion of seeing, in which he distinguished between 
the object and the way it was seen that resulted from “pres-
sure,” which is to say, “the motion of external things upon 
our eyes.” In Bosse’s drawing, the soldiers don’t have visible 
eyes. The observed cannot look back at the sovereign stare 
because it is eyeless, such as Samson. This visualizing of 
vision is, to borrow philosopher of vision Susanna Berger’s 
term, itself entirely “artificial” (2017: 184). It has nothing 

to do, then or now, with seeing as a physical process and 
everything to do with controlling appearance in the field of 
vision. The square formed within the highly abstracted space 
depicted by Bosse is visibly white space. Whatever was there 
before—people, cultures, other-than-human life—has been 
erased.

Bosse’s diagram renders in miniature the triangulation of 
land as colonizing and visualizing technology. Land titles 
known as “plats” in the period depicted terrain as a line 
drawing as seen from above. In practice, measurements 
were made by enslaved labor using a unit called a “chain,” 
invented by the English priest Edmund Gunter in 1620. The 
chain varied in length (in British imperial measures it was 
66 feet) and was measured with a metal chain, the material 
embodiment of white space. The chain remains the length of 
a cricket pitch and it was the basis of the famous Ordnance 
Survey maps of Great Britain. This detail of measurement 
epitomizes the formation of white space: an entirely artifi-
cial measure nonetheless amply expresses the realities of 
coloniality from conquest to enslavement. Bosse’s diagram 
appeared in Ways of Seeing as an illustration of perspective, 
a system Berger described as enabling “appearances [to] 
travel in [to the body]. The conventions called those appear-
ances reality” (1972: 17). The colonial reality being formed 
by the artificial white machine at the intersection of the arti-
ficial state apparatus and artificial seeing was white space. 
Erased rather than empty, it erased life to extract value.

The artificial state and artificial vision came together in 
the famous engraving made by Bosse to depict Leviathan as 
a sea monster from the Book of Job, emerging from its ele-
ment as a single figure containing all its subjects. As Horst 
Bredekamp reminds us, Hobbes imagined the Leviathan as 
a “mortal god,” a figure equivalent to Hercules and other 
creatures of legend (Bredekamp 2007: 33). Hobbes saw the 
formation of such “compound creatures” as he called them, 
as a special instance of the power of colonial imagination, 
or what he called “Fancy.” Fancy was not simply an artistic 
or creative attribute: “whatsoever distinguisheth the civility 
of Europe, from the Barbarity of the American savages, is 
the workmanship of Fancy.” Fancy created images, mean-
ing “any representation of one thing by another” (in Tralau 
2007: 65–9). Leviathan is, then, the image of sovereign colo-
nial authority in and as the power to represent. With that in 
mind, it becomes clear that Leviathan is, in fact, emerging 
out of the sea, with his legs as yet underwater. Bosse drew 
the sea, complete with a ship, at the extreme right—often 
cut out of reproductions—together with a typical colonial 
fort. The fort is the prototype of Fortress Europe, the anti-
migrant regime of the present-day European Union. Levia-
than is in and out of the water, partly immersed: it was and 
is both a sea creature and a technology—a ship. The ship 
must always be above and below water. Below the waterline 
were those to be enslaved, invisible and insensible to those 

3  Prepared for the McMaster University Archive of the History of 
Economic Thought, by Rod Hay; see Berger 2017: 188).
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above, but nonetheless an active and indispensable part of 
the Leviathan.

3 � Platforms: ships, trains, and drones

3.1 � The slavers’ Pigeon‑hole

Leviathan as the colonial state may be represented, to use 
Hobbes’ term, as a slave ship: divided, compartmentalized, 
Manichean. The Manichean formation of whiteness departs, 
in the sense of sets sail, from this division. There are those 
in the hold, the means by which Africans were transformed 
into “slaves” via the monstrous agency of the Middle Pas-
sage (Sharpe 2017: 27; Moten and Harney 2013: 93). Where 
did the white person in authority come to “see” slavery? If 
the Africans were consigned to the “hold” (a deck below the 
main deck), then it would be the “deck,” from which slaver 
officers and crew ordinarily sustained the operations of slave 
trading. Managing a ship was always a question of interac-
tive sensory labor. Visual observation from the crow’s nests 
in the masts was relayed to the deck. The visual perception 
of sea conditions and nearby land had to be supplemented 
with logged observation of wind and currents. When close 
to land, a ship would be “sounding,” meaning the meas-
urement of depth by throwing a weighted rope overboard 
from the bow. Using a variety of visual markers to indicate 
different measurements, the crew would then call out the 
depth in fathoms (five and a half feet for merchant ships, six 
feet for warships). The deck offered a multidimensional and 
multisensory field of vision. It was nonetheless highly vul-
nerable. Africans managed to wreck ships during the Middle 
Passage and the vagaries of weather, wind and currents did 
for many more.

No case of such disorientation has received more atten-
tion than that of the Zong (Walvin 2011). This infamous 
history concerns the slave ship of that name, which, getting 
lost on the Middle Passage in 1781 overshot its destination in 
Jamaica, and contrived to jettison no less than 132 Africans. 
Whether this casting overboard was done to “save” water for 
the remaining crew and captives, or simply to make a claim 
for insurance, was the subject of repeated court cases in the 
period and continues to resonate across historical and crea-
tive accounts. Such jettison—a term meaning precisely the 
throwing overboard of goods to preserve the vessel—was 
not uncommon, even of so-called human property. The Zong 
is remembered because the formerly-enslaved writer and 
abolitionist Olaudah Equiano took up the case and pushed 
it to white abolitionist Granville Sharp. Many believe that 
it also inspired J.M.W. Turner’s painting Slavers Throwing 
Overboard the Dead and Dying, Typhon Coming On (1840). 
This devastating painting was made just after Britain had 
finally abolished slavery, whether as a final indictment, or 

as a provocation to consider that abolition had not yet fully 
taken place. As Christina Sharpe has pointed out, “[t]hat 
Turner’s slave ship lacks a proper name allows it to stand 
in for every slave ship” (2017: 36). It might have been the 
Zong. Or it could have been the Leão, a Portuguese ship that 
took onboard 855 Africans in 1836 and was known to have 
thrown some 30 people infected with smallpox overboard, 
while a further 253 died of measles. The Leão indicates 
that Middle Passage conditions were arguably at their worst 
toward the end of the slave trade, as captains packed their 
ships with their now illegal human property (Graden 2014: 
62–63; Voyage ID 1586 on slavevoyages.org).

Turner does not make the guilty jettisoners visible, unlike 
a widely-reproduced abolitionist print from 1833 showing 
the crew throwing Africans off the deck. Placed “high” in 
the picture, its single jib shredded by the wind, the slav-
ers have only the quarter-deck (a raised platform behind the 
main mast from where the captain directed the ship), invis-
ible as it rides the waves, as their place from which to see. 
The slavers are framed against the purples and oranges of 
the setting sun, the Manichean condition of slaving. Turner’s 
suggestion is clear: the slaver is a component of the slave 
ship (often known as a slaver), in the same way that for 
Hobbes sovereignty could not be distinguished from the 
sovereign. The slaver was a platform to sustain a specific 
artificial way of seeing in racial surveillance capitalism, the 
view from the deck. It created powers over life in ways that 
could not previously have been imagined. If the main deck 
was the overall place from which to see, its specific vantage 
point was the quarterdeck. I think here of M. NourbeSe Phil-
ip’s astonishing poetry collection Zong! (Philip 2008). Like 
Long Soldier, Philip makes extensive use of the white space 
of the page and creates white holes by use of extra spaces to 
visualize not just the action of jettison but its affects. These 
white holes were also known as pigeonholes, a term that 
could equally refer to a small hole for looking through, a 
hole in a ship through which rigging would pass, or the holes 
in which a person’s hands were restrained during the flog-
ging. The entire Atlantic world is there in this expression. It 
could equally be appropriated and reversed, as when Harriet 
Jacobs created what she called a “loophole of retreat” to see 
out of the attic where she evaded enslavement.

3.2 � The platform of skulls

The deck was a multisensory platform for the visualiza-
tion of white space in the era of colonization and Atlantic 
slavery. The internal colonization of the United States was 
enabled from the platform provided by the train, involving 
the mass slaughter of human and other-than-human life. 
Today’s platforms contain traces of the decks and platforms 
that preceded them, like layers in a Photoshop image, always 
produced, of course, against a background of white space. 
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Kul Wicasa from the Lower Brule Sioux Tribe scholar 
Nick Estes estimates that even as “buffalo-hunting [Indian] 
nations on the Northern Plains from 1780 to 1877 experi-
enced a 40% population decline,” between 10 and 15 mil-
lion buffalo were exterminated in the last two decades of 
that time (Estes 2019: 86, 110). To supplement the work of 
the US Army in both these genocides, the newly completed 
Transcontinental Railroad was used as a platform from 
which to kill. An article from Harpers Weekly of the period 
describes how: “The train is ‘slowed’ to a rate of speed about 
equal to that of the herd; the passengers get out fire-arms 
which are provided for the defense of the train against the 
Indians, and open from the windows and platforms of the 
cars, a fire that resembles a brisk skirmish” (King 2017). The 
train has long been understood as a paradigm for industrial 
modernity, with the corollary that the first “moving image” 
was the view as seen from the train (Schivelbusch1987; 
Mirzoeff 2016: 125–41). These trains put themselves in 
synch with buffalo life in order to kill them, using weapons 
first supplied to kill Indigenous peoples. Far from being an 
amusement or attraction, as early cinema studies have often 
had it, the moving image was first a scene of genocide of 
human and other-than-human life.

A vivid example of the intersection of the attraction with 
the elimination of the buffalo can be seen in a now-widely 
circulated photograph of a massive arrangement of buffalo 
skulls. The photograph was taken at a glueworks in Rou-
geville, Michigan, by an unknown photographer, probably 
in the mid-1870s (Anon n.d.).4 The skulls were collected to 
be rendered into fertilizer so that the death of Indigenous 
animal life could enable settler agriculture. Two men stand 
at the top and bottom of the structure, allowing us to esti-
mate that the pile is some twenty-five feet high. The pho-
tograph is a depiction of the settler-colonial conquest and 
racial hierarchy in material form. It’s also a stunt, making 
the viewer ask how the man on top can stand on such a pile. 
Looking closely, the grotesque memento mori appears to be 
below ground level, filling in a trench, possibly a railroad 
cutting by which the skulls had been delivered. The feet of 
the man at the top cannot be seen, concealed by a skull he is 
carrying. Perhaps he is standing on the top of the cutting. Or 
he is standing on a stack of metal cages, like the one in the 
foreground in which the skulls must have been transported. 
The factory went to extravagant lengths to create the illusion 
of a freestanding mountain of skulls, making Indigenous 
death into an attraction and a spectacle. Estes showed this 
photograph in a lecture to illustrate his thesis, following 

Simpson, that there is a “settler culture of death.” In film-
maker Arthur Jafa’s installation of the photograph in his 
2019 Prague exhibit entitled “A Series of Utterly Improbable 
Yet Extraordinary Renditions,” there was no explicit com-
mentary. The title clearly referenced the term used by the 
Bush administration to take suspects to remote “black sites,” 
where they were subject to illegal torture. Enlarged to life 
size, the photograph wrapped around a corner of the Galerie 
Ruldofinum, built during the Austro-Hungarian empire, and 
was placed next to Jafa’s artwork Black Flag. In staging this 
literally intersectional oppression, Jafa wanted us to know 
both that “Love is the message” and that “the message is 
death.” For Jafa, his film of that title addresses what it means 
“to be alive and not to be alive at the same time.” Such is 
the message from these skulls, the materialization of white 
space from the platform of the train.

3.3 � Kill box

In the past fifty years, the moving-image platform for the 
surveillance of white space has become automated. The 
unmanned aerial vehicle (UAV), or drone, has made such 
surveillance persistent and pervasive, from the US-Mexico 
border to post-9/11 low-intensity counterinsurgency war-
fare. It operates as “lawfare” blending law and warfare into 
a single word, now a term of art in the military (Hajjar 
2017: 59–88). Its continuity with earlier forms of racial-
ized surveillance produces what Keith Feldman has called 
“racialization from above” (Feldman 2011: 325–41). Over 
this period, UAV “lawfare” has created an abstract space of 
death, formally known as a “kill box.” It was first developed 
by the Israeli Defense Force as a means of monitoring the 
Palestinians under occupation in the 1970 and 80s,5 which 
has every more clearly become a means of erasure and disap-
pearance. The visualization of the kill box made by the IDF 
is strikingly reminiscent of Bosse’s white space in which to 
see. Both diagrams show a viewing point—whether the eye 
or the drone—and a pyramid of lines forming an abstract 
white square. The “kill box” is what it sounds like: an arbi-
trary square area drawn from the drone as if it were a single 
point, in which the drone operator is given permission to 
kill those who become visible. It is a plantation future of 
the overseer’s visual footprint over his “plat,” a line draw-
ing of an estate as if from an aerial viewpoint produced by 
(inaccurate) surveying to distinguish one colonized piece 
of land from another. Everything in that plat was to be 
seen by the overseer. The triangulation of land as visual-
izing technology folds into the present in automated form. 
The “kill box” is now part of US military doctrine since 

4  The National Museum of the American Indian dates the photograph 
to the mid-1870s, although the text on reverse reads: “C.D. 1892 
Glueworks, office foot of 1st St., works at Rougeville, Mich.” Burton 
Historical Collection, Detroit Public Library.

5  For this history, see Chamayou (2015: 27–28). For the first kill box 
theory, see Lee (2019).
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the post-9/11 ventures into neo-colonialism. Accordingly, 
it has its own Field Manual and, like the plantation, has 
evolved its own bureaucracy, requiring a form to be filled 
out for each requested kill box. The Field Manual defines a 
kill box as “a three-dimensional area used to facilitate the 
integration of joint fires…. When established, the primary 
purpose of a kill box is to allow lethal attack against surface 
targets without further coordination with the establishing 
commander” ([US] Army, Marine Corps, Navy, Air Force 
2009: 1). It has a ceiling to prevent friendly fire accidents 
and is sufficiently high-resolution to have “no fire areas” 
within it. These boxes are not imaginary: people die as a 
result of them and in them. These systems are boundlessly 
expensive. The eighty-six weapons systems examined by the 
Government Accountability Office in 2012 were estimated 
to cost $1.6 trillion over their lifetime. The three major UAV 
systems were projected to cost over $30 billion (Defense 
Acquisitions 2013: 101). They are funded for good reason 
because, as media scholar Lisa Parks puts it, the formation 
of the drone view of the world has “the potential to materi-
ally alter or affect the phenomena of the air, spectrum, and/
or ground” (Parks 2017: 135). Or, in the terms I’m using 
here, white machines transform the land into white spaces 
in which to see is to kill.

4 � Artificial life systems

Racial surveillance capitalism’s artificial forms are mani-
fest throughout biometric and algorithmically-automated 
systems. The intersection of long-standing technologies of 
monohumanism with digitized forms of artificial intelligence 
is producing new forms of artificial life. Simone Browne 
calls for a “critical biometric consciousness” to respond to 
the blanket application of biometry by states (2015: 116). 
Browne sets facial recognition and biometry in the long con-
text of the “technology of tracking blackness that sought 
to make certain bodies legible as property” (2015: 128). 
Indeed, as Joseph Pugliese has put it, “biometric technolo-
gies are infrastructurally calibrated to whiteness” (2007: 
107). IT equipment, like servers in the data centers that 
produce cloud computing, is actually known to designers 
as “white space.” Technicians design these centers in pure 
white supposedly to make any dirt more visible but also in 
accord with what A.R.E. Taylor calls the “technoaesthetics” 
of cleanliness and purity (2017: 49). These aesthetics are 
also, consciously or not, those of eugenic white supremacy. 
The result is what has been described as the “diversity dis-
aster that now reaches across the entire AI sector” (West 
et al. 2019). As Ruha Benjamin has put it, “discriminatory 
design” has produced nothing less than the “New Jim Code” 
(2019: 3). It is an intended outcome, not an accident, and 
it is not proving simple to eradicate (See Joh 2016: 15–42; 

Marx 2016; Hao 2019). Based as it is on “epidermalization” 
(the assertion of absolute difference based on relative dif-
ferences in skin color), AI’s racial surveillance deploys an 
all-too-familiar racialized way of seeing operating at plan-
etary scale. It is the plantation future we are now living in. 
All such operations take place in and via the new imagined 
white space of technology known as the cloud. In reality, a 
very material arrangement of servers and cables, the cloud 
is both an engine of high-return low-employment capitalism 
and one of the prime drivers of carbon emissions. On the 
one hand, Amazon Web Services—one of the largest cloud 
operations—have become the greatest source of profit for 
the company (Condon 2018). On the other, if taken together, 
data centers formed the fifth highest source of carbon emis-
sions as early as 2012, according to Greenpeace (Hu 2015: 
79). It takes a million times the amount of energy to store a 
document in the cloud than it would on a hard-drive (Adam-
son 2017).

Amidst the fake cleanliness of the cloud, the refugee has 
(re)appeared as the key figure of a database-driven recon-
figuration of the carceral nation state to prevent migration 
and asylum. While the US is obsessed with its archaic wall, 
key to this process in Europe is the Eurodac fingerprint data-
base, created by the European Union to enforce its Dublin 
Regulation, which stipulates that all must seek asylum in the 
country in which their fingerprints were first taken. Eurodac 
is the distributed form of racial surveillance capitalism. It 
“sees” the migrant and registers them not as people but as 
a biometric data set. Eurodac’s administrative body—Euro-
pean Agency for the operational management of large-scale 
IT systems in the area of freedom, security and justice—
considers it to be “a living system” (2013: 4). This suggests 
Eurodac is not just an AI, it is an artificial life form. In 2017, 
its four year budget was set at €29.8 billion, equivalent in 
cost to the UAV programs of the US military.6 Its software 
was designed by Cogent, later acquired by Gemalto, who 
were acquired in turn by Thales for €4.8 billion to become 
part of a €19 billion global security company.

Digitized fingerprints are now the prime mover of the 
refugee system in Fortress Europe, the direct descendant 
of Leviathan. The fingerprinting machine has become the 
border, since asylum seekers are required to apply for asy-
lum wherever they have been fingerprinted. Since 2003, 
Eurodac has recorded the fingerprints of asylum seekers to 
enable “fingerprint comparison evidence” as an automatic 
identification system for administering claims.7 Since 2015, 

6  See https​://www.europ​arl.europ​a.eu/legis​lativ​e-train​/theme​-towar​
ds-a-new-polic​y-on-migra​tion/file-jd-recas​t-eurod​ac-regul​ation​.
7  “By comparing fingerprints, Member States can determine whether 
an asylum applicant or a foreign national, who is suspected to be ille-
gally present within a Member State, has previously claimed asylum 
in another Member State or whether an asylum applicant entered the 
Union territory unlawfully.” Framework Contract for Maintenance in 

https://www.europarl.europa.eu/legislative-train/theme-towards-a-new-policy-on-migration/file-jd-recast-eurodac-regulation
https://www.europarl.europa.eu/legislative-train/theme-towards-a-new-policy-on-migration/file-jd-recast-eurodac-regulation
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it also allows law enforcement to do cross-checking against 
criminal and “terrorist” databases, a consistent pattern in the 
EU. Every major immigration and asylum database that was 
set up with a firewall to law enforcement routinely grants 
them access within a short period of time (Hayes 2017: 185 
n. 21). With a capacity to hold 7 million records,8 Eurodac 
already stored 4 million records by 2016, which it keeps for 
a decade.9 In that year, 1.6 million fingerprints were taken 
but the system only generated “hits” in 16% of cases, which 
suggests its function is more to deter than detect.10 While 
some studies of the supposed “gold standard” of European 
data protection and asylum regulation criticize the “thought-
lessness” (Bugge 2019: 91–100, 94) or ambiguity of these 
practices, these are intentional failures, designed to produce 
exclusion rather than consistent and equal treatment. As 
Benjamin Muller has put it, the results have been “pre-emp-
tory logics, a negligent attitude towards ‘false positives,’ and 
an overall proliferation of borders” (2010: 9). More precisely 
still, it is a racialized border.

In the nineteenth century, Francis Galton, the founder of 
eugenics, adopted the fingerprinting system of identifica-
tion from colonial India, where it was used because officials 
could not tell people apart. Gemalto, the software company 
that administers the EU fingerprint system, acknowledges 
this genealogy on its website and even quotes Galton on the 
alleged accuracy of the fingerprint.11 For despite the CSI 
imaginary in which forensics are always already completely 
accurate, fingerprinting is no more than “probabilistic,” as 
Browne puts it, noting cases of false identification by fin-
gerprints. Galton also coined the term “biometry” in 1901, 
as a militarized state apparatus, capable of “converting a 
mob [of statistics] into an orderly array, which like a regi-
ment thenceforth becomes a tactical unit” (Galton 1901): 
7–10).12 This conversion would allow for the perception 

of “incipient changes in evolution, which are too small to 
be otherwise apparent.” It was precisely such alleged vari-
ations in evolution that eugenics was intended to eliminate. 
Immense caution should be used before reviving such toxic 
lines of thought, yet the regulatory regime is vague and eas-
ily evaded by state actors (Browne 2015: 111).13

If Eurodac is alive, it is a privatized zombie designed by 
Kafka. An asylum seeker incarcerated in Denmark described 
it accordingly: “you are in a room trying to get out, and it’s 
like a labyrinth to get out of there, with lots of different cor-
ridors to take and you don’t know which one” (Freedom of 
Movements Research Collective 2018: 17). Following what 
turned out to be the high point of migration to Europe in 
2015, Eurodac was enhanced so as “to take fingerprints and 
an additional biometric identifier, namely a facial image. 
Far from making the system more reliable, researchers have 
shown that existing AI consistently interprets Black faces as 
“angry” or “contemptuous” from a study using the publicity 
photographs of US basketball players (Rhue 2018). The new 
Eurodac regulations also lowered the age of taking finger-
prints from 14 to 6 years old.14 Are 6-year-olds terrorists? 
Perhaps, says Eurodac, because they may have acted “irregu-
larly” in crossing internal EU frontiers or overstaying visas. 
As a result, legal experts are now debating whether school 
photographs are private information or “public” for state use 
(Kindt 2018: 523–538, 534). A German stock photo avail-
able to illustrate media reporting on the system clearly shows 
the Eurodac imaginary. A hand clad in a medical glove to 
protect against infection presses another, visibly brown hand 
onto the scanner. The connotations are that brown people are 
a viral source of contamination and cannot be distinguished 
except by machines. Artificial vision is no longer analogous 
to human vision: its purported digital capacity to distinguish 
people exceeds (white) human capabilities.

The E.U., in fact, bans the use of biometric data for 
identification via its 2016 General Data Protection Regu-
lation (GDPR).15 The European Court of Human Rights 
has ruled that the retention of biometric data is an intru-
sion on the right to privacy, with exemptions, such as when 
“explicit consent” has been given. Does setting foot in a 
public space monitored by CCTV constitute such consent? 
Perhaps a court might agree. Very few individuals would, I 
suspect. If the court does not agree with the blanket provi-
sion, authorities can claim “substantial public interest” to 

12  For a case study of Galtonism and racialized state power, see 
Breckenridge (2014).

13  See section “Branding Biometrics” (Browne 2015: 109–18) for 
full exploration of this issue.
14  https​://ec.europ​a.eu/home-affai​rs/what-we-do/polic​ies/asylu​m/
ident​ifica​tion-of-appli​cants​_en.
15  Regulation of the European Parliament on the Protection of Natu-
ral Persons with Regard to the Processing of Personal Data and on 
the Free Movement of such Data, and Repealing Directive 95/46/EC, 
2016/679/EU, 27 April 2016.

Footnote 7 (continued)
Working Order (MWO) for the EURODAC system LISA/2016/RP02 
(Restricted Procedure—Article 104 (1) (b) Financial Regulation, 
Article 127 (2) paragraph 2 Rules of Application). Available at https​
://www.eulis​a.europ​a.eu/Procu​remen​t/Tende​rs/LISA2​016RP​02%20
EUR​ODAC%20MWO​/Annex​%20I%20Eur​odac%20MWO​-Execu​
tive%20Sum​mary.pdf.
8  Using Dell machines, https​://www.europ​arl.europ​a.eu/doceo​/docum​
ent/E-8-2018-00159​5-ASW_EN.html?redir​ect.
9  Annual report on the 2016 activities of the Eurodac central system, 
including its technical functioning and security pursuant to Article 
40(1) of Regulation (EU) No 603/2013 (European Agency for the 
operational management of large-scale IT systems in the area of free-
dom, security and justice (eu-LISA), 2017), 4. Available at https​://
eulis​a.europ​a.eu.
10  https​://www.gemal​to.com/govt/custo​mer-cases​/eurod​ac.
11  https​://www.gemal​to.com/govt/custo​mer-cases​/eurod​ac.

https://ec.europa.eu/home-affairs/what-we-do/policies/asylum/identification-of-applicants_en
https://ec.europa.eu/home-affairs/what-we-do/policies/asylum/identification-of-applicants_en
https://www.eulisa.europa.eu/Procurement/Tenders/LISA2016RP02%20EURODAC%20MWO/Annex%20I%20Eurodac%20MWO-Executive%20Summary.pdf
https://www.eulisa.europa.eu/Procurement/Tenders/LISA2016RP02%20EURODAC%20MWO/Annex%20I%20Eurodac%20MWO-Executive%20Summary.pdf
https://www.eulisa.europa.eu/Procurement/Tenders/LISA2016RP02%20EURODAC%20MWO/Annex%20I%20Eurodac%20MWO-Executive%20Summary.pdf
https://www.eulisa.europa.eu/Procurement/Tenders/LISA2016RP02%20EURODAC%20MWO/Annex%20I%20Eurodac%20MWO-Executive%20Summary.pdf
https://www.europarl.europa.eu/doceo/document/E-8-2018-001595-ASW_EN.html?redirect
https://www.europarl.europa.eu/doceo/document/E-8-2018-001595-ASW_EN.html?redirect
https://eulisa.europa.eu
https://eulisa.europa.eu
https://www.gemalto.com/govt/customer-cases/eurodac
https://www.gemalto.com/govt/customer-cases/eurodac
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justify using biometric data. The merest whiff of “security” 
is almost always taken as such justification that is not for-
mally defined. Many of these protocols can be bypassed 
because the EU has decided that fingerprints and facial 
images (or any such indicator) are not biometric data until 
they undergo “specific technical processing” (Kindt 2018: 
530). Digital photography and the taking of fingerprints by 
digital scanning are somehow exempt from being defined 
as technical processing, despite being processes that require 
specific technology and must be carried out in a “highly 
controlled and cooperative manner” (Labati et al 2015: 1). 
As anyone who has applied for a visa knows, facial photog-
raphy for ID purposes has a set of requirements—full face, 
no glasses, use of plain white background—that produce an 
image which most people say does not look like them. The 
photograph renders the person as the state wishes to see 
them. In short, the European Union creates the appearance 
of biometric data protection, while allowing for its wholesale 
use under the pretense that it is “unprocessed.” The most 
recent forms of facial recognition, like Clearview AI, use 
immense pools of “scraped” social media photographs and 
other generic snapshots to identify people, giving security 
services an additional means to bypass the question of “pro-
cessing” (Hill 2020).

Eurodac’s policing of white space is producing a blank 
white non-space, the space of disappearance. In Denmark, 
to take a key zone of Nordic whiteness, the strategy is to 
disappear the refugee from society. Asylum seekers cannot 
work, cannot claim benefits and cannot accept cash dona-
tions. They are currently detained in camps run by the prison 
service, even though under the 1951 Geneva Convention, 
claiming asylum is a human right. In 2019, I was able to visit 
Sjaelsmark thanks to the invitation of an Eritrean refugee 
I’ll call “Lily”—the camps are not open to outside visitors. 
Like many others, Lily was denied leave to remain in Den-
mark because her fingerprints were first taken in Greece. 
The Sjaelsmark departure or expulsion centre for refugees 
denied asylum (technically “non-deportable rejected asylum 
seekers,” according to EU law) where Lily was detained is 
accessed through a formidable gate, which is locked every 
night at 10 pm, even to residents. Individuals and families 
live in former military barracks (in April 2020 families will 
be moved out of the centre) (The Local 2019). The residents 
call it a “camp,” and it is newly surrounded by 10-foot-high 
security fences. Although residents can leave whenever they 
want, the effect is one of imprisonment. The camp is 25 km 
from Copenhagen, a journey that takes two hours by public 
transport.

If the Danish settler colony once wanted to extract labor 
from its colonial subjects in the Caribbean, Africa, and Asia, 
all it wants now from their descendants is that they go away. 
To that end, Sjælsmark residents cannot cook, have furniture 
(other than a bed, one table, and hard chair), or decorate their 

rooms. No carpets or rugs are allowed. There is no televi-
sion, radio or Internet service. Residents live in cold, spare, 
whitewashed rooms with very high ceilings: erased white 
space. The Social Democratic victory in the 2019 elections 
has led to a reduction in these cruelties. Families will no 
longer be housed at Sjaelsmark as of April 2020 and detain-
ees will be allowed to cook and eat in their rooms. There is 
still no broader solution for the political limbo where these 
asylum seekers mostly find themselves. They have lost what 
Hannah Arendt called the “right to have rights,” and are still 
being disappeared. It is clear that many others, formally citi-
zens, are entering the space of disappearance, permanently 
or temporarily, and losing the right to have rights, whether a 
person subject to London police using facial recognition on 
anyone in certain areas; a person present in areas where the 
Coronavirus has infected others; people kettled or otherwise 
restrained by police when protesting and so on.

In this review of the production of white space across the 
hitherto-existing span of Atlantic world coloniality, several 
trends can be detected. There is a consistent production of 
artificial vision to create and sustain erased space that can 
be colonized. The introduction of automated machine vision 
and machine learning has absorbed the long history of colo-
niality as its “intelligence” and continues to reproduce it. 
However, in this automated form, visuality is distributed, 
rather than centralized. Artificial vision was constructed 
around a single point from which to see, whether that of the 
overseer or the colonial state. It then developed platforms 
from which this vision might be deployed, from the deck of 
the ship to the platform of the train. Artificial vision relied 
on infrastructures tied to specific places, whether the Atlan-
tic sea routes driven by oceanic currents or the material form 
of the railway track. With the UAV and distributed machine-
learning, the state can now deploy its artificial vision wher-
ever it wants, whenever it wants. CCTV is the domestic 
application of this apparatus that has already become ubiq-
uitous in places like China and the UK. The function of 
this machine vision has circulated over time. To adapt the 
aphorisms of Lorenzo Veracini, the colonial state first told 
the Indigenous “you, go away.” It alternated that command 
with “you, work for me,” a directive also used for forced 
migrants (Veracini 2011: 1–12). The latter was extended to 
once-colonized subjects invited back to the metropole in the 
labor shortages following the Second World War. With the 
creation of globally distributed labor forces, racial surveil-
lance capitalism now says “go away” to all those surplus 
to its requirements. Accordingly, it now seeks to disappear 
them, rather than keep them under close watch. Whether 
they live or die is a matter of indifference to the state and 
grounds for visual activism for the rest of us.
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Abstract
Historically, the dynamic between philosophy of artificial intelligence and its practical application has been essential for 
the development of both, and thus the encounter between theory of AI and architectural/urban theory should be a site of 
considerable productivity. However, in many ways, it is not. This is due to two primary factors, one arising from each side 
of this encounter. First, legacies of overly-anthropomorphic models of AI permeate design discourses, where issues of how 
well AI can be constrained to social issues of philosophy of mind exclude more foundational and cross-cultural questions 
about artificial intelligence as material process in the physical world that could inform new philosophical insights. Concur-
rently, the mobilization of investment in “Smart Cities” discourses dominates the space of application of AI at urban scale 
in ways that prematurely fixes solutions in the skeuomorphic image of architectural and urban conventions. To break this 
impasse, we held a series of think-tanks, workshops, and design charettes that brought together leading figures in philosophy 
of artificial intelligence, urban design, and commercial AI platforms. The goal was to re-think from first principles how 
alternative philosophical models of AI as a distributed, discontinuous, landscape-scale technology in a direct encounter with 
the applications in contexts of ecological sensing, automation’s impact on urban form, and issues of algorithmic governance. 
The design brief for this research establishes a generative framework for conceiving how embedded machine sensing and 
intelligence is already changing urban form (but unrecognized) and could change it in the future (based on more appropri-
ate design projections). The framework focuses on issues of urban zoning and architectural programming, data modeling 
and governance, platform cognition and design, and how these inform shifts in dynamics of public and private institutions.

Keywords  AI · Urbanism · Design · Governance · Program · Platform cognition

1  Introduction

Instead of conceiving of artificial intelligence as a kind of 
disembodied mind, we would be better served by consider-
ing it as something more like a quality of landscapes: it is 
physically embedded, sensory, decentralized, distributed, 
and heterogeneous, such that its “intelligence” is, like the 
clustering of neurons, an emergent effect of complex and 
non-linear interactions. The social philosophy of AI is noth-
ing if not ready with new metaphors, and I have argued for 
a “synthetic garden” metaphor with respect to a general 
conception of AI in the field, but here I wish to use it to 
make more concrete propositions for how AI will, or should, 

transform some foundational questions of urban design. AI 
should be conceived on landscape scale, and urban land-
scapes can be reconciled in relation to AI, but how so?

The most prevalent and popular models are those asso-
ciated with the catch-all “Smart City,” a stale shorthand 
which has come to include the sensible and the silly. As 
a model of AI urbanism, however, it is crippled both by a 
lack of imagination as to what is possible beyond the simple 
automation of prosaic functions, and by a deep misrecogni-
tion of the already existing intelligence of urban systems. 
Its conceit, to introduce intelligence to systems that have 
none so that they can do what they have always done but 
slighter more efficiently, is wrongheaded on both priorities. 
Corollary to these are various “AI City” projects that prom-
ise a radical new way of architecture but which are, clearly 
to anyone who looks carefully, only the most conventional 
design banalities slathered with an “AI” marketing trope. 
By contrast, the approach we took to AI Urbanism at The 

 *	 Benjamin Bratton 
	 bbratton@ucsd.edu

1	 University of California, La Jolla, San Diego, CA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-020-01121-9&domain=pdf


1308	 AI & SOCIETY (2021) 36:1307–1312

1 3

New Normal think-tank at Strelka Institute in Moscow prior-
itizes the social and technical intelligence of existing urban 
systems and asks how, and indeed if, artificial intelligence 
can add to them, and if so, on what terms? The interdiscipli-
nary researchers were drawn from 17 countries and for this 
research module were joined by Blaise Aguera Y Arcas, of 
Google Cerebra AI research group, Kenric McDowell of 
Google Artist and Machine Intelligence, and Ben Cerveny of 
Foundation for Public Code and more. They were joined by 
Philosophers, Reza Negarestani, Peter Wolfendale, Patricia 
Reed, and others. The work was supported only the Institute 
which received no outside funding for this work.

What follows is not the design that emerged from these 
sessions, but rather an explication of the design brief that 
we used to develop that work. This will likely have greater 
value for work by (1) architects and urban designers as they 
consider the long-term impact of artificial intelligence on 
city’s form, function and governance, and (2) software 
applications and systems designers as they model and build 
AI-inclusive programs for socially and culturally complex 
urban environments. As both seek to define the role of arti-
ficial intelligences in the City layer of The Stack, the brief 
provides one possible framework that emphasizes issues of 
governance, architectural program, data structures, and plat-
form cognition.

The research was divided into four thematic areas. Pro-
gram to Program focuses on the conflicts and/or complemen-
tarity between software and architectural programming and 
looks at changes in the planned organization of urban space 
as an adaptation to pervasive automation. AI Governance 
looks at how artificial intelligence becomes both a means 
with which urban systems are governed, and equally impor-
tantly, a socio-technical process which itself demands to be 
governed. Data: Direct and Derivative asks design research-
ers to consider the dynamics of how data can, in effect, pro-
duce the territory that it models, and how problematics of 
data transparency and opacity can determine the social rela-
tions between different, even competitive, platforms. Finally, 
Platform Cognition, considers how artificial intelligence at 
platform scale is both produced and constrained in accord-
ance with how it is able to sense the world, produce data 
about its surroundings, and construct active models of the 
world according to this artificial temporality. Together these 
represent four areas of direct and speculative research for 
(1) conceiving a general model of artificial intelligence as 
an urban-landscape-scale phenomenon rather than a disem-
bodied “mind in a box,” and (2) to do so by the projective 
modeling of different relevant urban scenarios for the design 
of form, program, system and social governance.

1.1 � AI urbanism introduction

AI is a technology that has developed in relation to thought 
experiments about AI (Turing’s Test, Searle’s Chinese 
Room, etc.), which have informed the actual technolo-
gies, which have informed further thought experiments. 
This double-helix between the real and the virtual forms 
of AI should continue apace. Encounters should be staged 
between advanced work in the philosophy of artificial 
intelligence and the cutting-edge applications of the tech-
nology at platform-scale to discern, where the translation 
between formal and practical models of AI breaks down. 
It’s there that further thought experiments may be most 
inspired, and this encounter was the goal of this research 
brief.

AI is an urban-scale phenomenon that is dependent 
on myriad sensor arrays to know the world in which it is 
co-situated. Instead of considering AI in a petri dish, as 
some disembodied artificial mind, synthetic sensing and 
intelligence should be understood as a distributed function 
of the material world: a polyphonic orchestra of automa-
tion amalgamated from this uneven topography, capable 
of unexpected creativity and cruelty. With comprehensive 
automation, modern urban programs that have been drawn 
by the cycles of residence, work, and entertainment of 
earlier eras are open to re-imagination.

Our technical interest lies in the anonymization and 
depersonalization of data, federated learning, decentrali-
zation, and granular distribution of AI, instead of an infra-
structure for surveillance of individuated humans, cloud 
centralization, and coordination of monopoly models. 
Radical drops in price and energy usage at the tail end of 
Moore’s Law allows for inexpensive machine-learning-
capable chips to be embedded and distributed widely, for 
data to be federated more than extracted and models to be 
both effective and more anonymous. Taken as a new poten-
tial property of everyday objects, site-specific AI is closely 
tied to how it senses what does and does not become part 
of different machine-readable worlds.

The implications of understanding AI at urban scale also 
point in the direction of their geopolitical implications. Arti-
ficial models of the world both ingest and output informa-
tion, and as the output of one is the input of another, each 
may make the world more or less fragile, and each may be 
either weaponized or contribute to economies that make 
weaponization too expensive. They may make governance 
of design impossible or, instead, make it finally possible. 
Regardless, AI’s impact on cities will be profound, but 
perhaps not as profound as the impact cities will have on 
AI. What follows are four design research briefs, each with 
a series of questions meant to guide an exploration of the 
potentials and implications of AI at urban scale.
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1.2 � Program to program

Since at least the 1980s, a fundamental shift in the means 
of spatial organization has taken place. The functions that 
society used to ask of architecture—such as to coordinate 
the flows of large groups of people—it now asks software 
to accomplish. This may leave architecture without a clear 
assignment. Its assignment may become more “autonomous” 
from function, synthesized into the abstract geometry and 
parametric convolution of increasingly thin but complicated 
skins and surfaces. Or, architecture’s autonomy may be dis-
solved into space machines of maximum reconfigurability, 
such as the so-called supermodern aesthetic of warehouses, 
data centers, and industrial architecture. At both extremes of 
the discipline’s reaction, architecture shifts its range of func-
tion, as its previous ones are absorbed by software platforms. 
The change in architecture caused by software is not simply 
because there is now software in architecture, and so making 
it computational, but because a previous architectural pro-
gram is now coordinated by those software-based programs.

1.3 � Zoning and program

How has/will the intensification of automation at urban and 
regional scale shift the necessary zoning logics and stand-
ards? Conventional categories of residential, industrial, light 
industrial, retail, etc. may no longer be relevant, or their 
adjacencies may need resorting. What are key examples of 
novel zoning and programming developments driven pri-
marily by the needs of software infrastructure or platforms? 
What patterns and aspects of these will drive further shifts? 
How and why? Key patterns in this new urban zoning may 
already exist and yet not have proper names. What should 
they be?

1.4 � AI constructivism

The Constructivist era in Russian architecture was known 
for its programmatic innovation. It attempted to anticipate 
the needs of a new socialist society and to provide for them 
in advance—and in doing so, to accelerate the formation 
of that society. These included shared kitchens, courtyards, 
and social areas, massive mini-city sized apartment blocks, 
living quarters for different family structures, extensive 
social facilities near (or even in) factories and other places 
of work, and so on. This was not only a political and social 
meta-program for architecture; it was also a propositional 
response to the spatial requirements of industrial technol-
ogy at national scale. Hypothesizing that AI/automation may 
have an equally profound effect and may open up new ways 
of living and being together “inside,” what might a revitali-
zation of the Constructivist ethos for this era entail? Does it 
mean radical virtualization toward space-as-service? Must 

that be based on monopoly economics? And if not, what are 
alternative urban models?

1.5 � Isolate vs. gradient texture

The relation between human-centric and machine-centric 
spaces must be considered in terms of gradients of exclusion 
and inclusion, from a strict prophylactic division to a cybor-
gian intermingling of people and machines. The question of 
programmatic transformation in this is not simply a resort-
ing of existing blocks. A model, diagram, and categorical 
framework are needed to describe the structure, distribution, 
dynamics, and programmability of this “exclusion gradient.” 
What are the logical and practical structures of that gradient?

1.6 � AI governance

The Modern bureaucratic nation-state was and still is an 
information sensing, storing, and processing institution. 
Modern citizenship is a legal status, as well as a set of per-
sistent records linked to a credentialed individual: economic 
exchanges, cartography, real estate records, taxes, and per-
haps most importantly, debts. Its ability to govern and to 
cohere a consensus of legitimacy depends on the proficiency 
and regularity of the management of debt. Debt, and the 
prospective return on debt, in turn depends on the consen-
sual tabulation of value in some real or intangible currency. 
That currency serves as a repository for standardized units of 
value to be circulated within an economy, and more impor-
tantly, in a society whose ontology conceives what is and is 
not valuable as such. In this regard, accounting reigns as the 
supreme writing.

The Modern state held a local monopoly on the creden-
tialization of currency, on the tokenization of value, and thus 
on the (formal) social ontology of value. In some ways this 
has proved more important than the corollary monopoly on 
violence (they are related of course). Some would argue that 
an advanced market is itself a form of artificial intelligence, 
one built of human–machine amalgamations. Even if so, new 
media allow for new categories through which governance 
may address its polity and oikos, including new geographies. 
But they may also simply give algorithmic fortification to 
vestigial institutional forms. In principle, we hope that emer-
gent ontologies give way to preferred modes of social self-
organization, but how so?

1.7 � Who trains the trainers?

Any urban AI system that is built is only as good as its train-
ing data. At the start, any neural network is raw links and 
nerves, and any training set is a stream of noisy protuber-
ances which bend that network into shape. Training the lay-
ers to recognize regular signals is as much like training a 
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stone to become a spear tip as it is like training a dog to sit. 
But in practice, training sets are built from available oppor-
tunities and resources. These are sometimes robust and 
broadly representative of what the set means to model, and 
sometimes they are bizarre artifacts of legacy bias, repeat-
ing and reinforcing the same all-too-human prejudices over 
and over again. When can increasing the scope and depth 
of training data help to correct the model, and when does it 
dilute the pattern?

1.8 � Institutional form

What are the constitutive anatomies of AI governance? Will 
its emergence as an information infrastructure show how the 
modern political order was the effect of a modern bureau-
cratic informational apparatus? AI can and does contribute 
to the governance of both discrete and diffuse polities with 
different scales, locations, and legal forms. The intensifica-
tion of its formal and de facto governing effects traces these 
differences and works against them. Whereas states identify 
and coordinate the lives of citizens, macroeconomic futures, 
and military gambits, cities mediate the encounters of inhab-
itants, the platform infrastructures of everyday life, and the 
logistics of circulation. AI can organize each of these, of 
course, but how may it also shift the effective roles of state 
vs. city?

1.9 � AI as geopolitical gambit

In 2018, Xi Jinping released China’s plan as part of a larger 
China 2020 initiative that benchmarked the country’s pro-
gress in AI to match the USA’s by 2020 and surpass it by 
2030. At around the same time, Putin remarked to a group 
of students that whoever controls AI will control the world, 
and suggested that the technology should be a shared, open 
resource. Macron authored an EU AI plan that focused on 
social responsibility, citizen-first data models, and support-
ing regional research. The USA followed suit with a more 
vague white paper, reiterating the importance of AI to its 
industries and ambitions, etc. Each of these is a genre of 
hemisphere-scale speculative strategy. Can they all come 
true at once, or do they map a more zero-sum game?

1.10 � Algorithmic governance

Politics and technology are interwoven as a means to remake 
the world by design. Not only does technology express a 
political arrangement, but any polity emerges only within 
a technical milieu. In an age of planetary-scale computa-
tion, the dynamics of algorithmic governance shift the 
perspectives on political geography, sovereignty, citizen-
ship, regimes of rights, and how leverage is embedded in 
computational technologies. Some governing institutions 

seem to liquify only to congeal in new ways, while others 
are grotesquely amplified. Models that categorically divide 
centralization vs. decentralization or public vs. private are of 
limited help in conceiving the systems we need. What other 
heuristics are most plausible to develop a formal or practical 
typology of algorithmic governance?

1.11 � Platform sovereignty

AI can be used to refortify and re-amplify earlier forms of 
constructed formal citizenship, and it can, just as it does 
for the transnational flows of data and objects, facilitate 
very different cuts of territory and sovereignty. Platforms 
generate different forms of sovereignty based on generic 
access and centripetal/centrifugal value distribution. These 
may include formal state sovereignties (most obviously in 
China) and informal platform sovereignties (most obviously 
in the USA). Can we anticipate the evolution of divisional 
Galapagos effects or a global convergence of these models?

1.12 � Data: direct and derivative

AI works both with and on data, but the boundary between 
information sensing and information processing is as fuzzy 
for AI as it is for humans. Data is a sort of sovereign sub-
stance that multipolar hemispherical stacks defend the right 
to generate and use as the basis of governing models and 
simulations. Data is generated by sensing and modeling sys-
tems, and so the referent of the data—the person, place, or 
action—is likewise both constructed by the act of modeling 
and revealed by its correlations. All of this unfolds unevenly 
and opportunistically, and so a dissensual politics of data is 
inevitable. The agency of something within these constitu-
tive systems can be constructed directly by its data shadow, 
or indirectly by the integration of multiple traces. Data is not 
only a means to represent social and economic realities, but 
also to construct and compose them. In what ways are our 
models of modeling wrong?

1.13 � Transparency, opacity, control

Opacity and transparency have become an ethics in and of 
themselves, irrespective of how their principles are applied. 
The transparent society suggests that formal and informal 
social contracts, especially between rulers and ruled, will be 
more consensual and stable when more decisions and inter-
actions are visible to others. The ethics of opacity suggest, 
conversely, that privacy allows not only the fortification of 
individuation but also the development of robust “trustless” 
platforms that enable the positive effects of decentraliza-
tion. For some, both extremes can co-exist, albeit sometimes 
somewhat schizophrenically (i.e., Assange). Popular repre-
sentations of these conditions are inadequate to understand 
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their complexities. What are the attractors and dangers of 
societies in which “everybody knows,” vs. those in which 
“nobody knows”? How would we know the difference? What 
urban models represent them?

1.14 � Resolution of territories

A cursory dérive over the depopulated planet of Google 
Earth demonstrates that not all territories are represented in 
the same way. There are high-resolution territories modeled 
with highly granular details, both visual and statistical, and 
there are low-resolution territories, for which available data 
is much blockier. The implications of this are not so straight-
forward. High-resolution territories may enjoy greater ser-
vices and support in some ways, but also more intensive 
supervision. Other territories may be low-resolution in one 
respect, but high-resolution in another (such as personal 
health data vs. crime data). The spectrum of resolution rep-
resents an underlying difference between these territories, 
and is even generative of those differences. How may urban 
systems evolve to promote or suppress various modes of 
resolution? How would these intersect with existing pro-
grammatic conventions?

1.15 � Identity and derivative metrics

The indirect construction of a data referent through com-
posite formulation, metadata, and corollary traces (such as 
a phone number) is, in some ways, a more important meth-
odology than simple, direct observation in the panoptic 
sense. In this, it becomes clear how the functional identity 
of a referent is constructed through the process of modeling 
in ways that need not correspond to how that referent self-
identifies. There is, then, especially for people, an essential 
disconnect between inherent and expressive identity. The 
profile is formulated in relation to the correlation of indirect 
fragments of information that are linked into an individuated 
identity. Expressive identity can be experienced through the 
mediated traces of a fragmented inherent identity. Is this 
toxic or inevitable?

1.16 � Platform urbanism

Public and private platforms operate according to their abil-
ity to rationalize and assume value from the data that they 
mediate. They may not directly tax users or charge for trans-
actions, but they assume and enforce economic valuation by 
how they generate a “surplus” of value from both the direct 
and derivative data that they model. Some of that surplus is 
realized by end-users who benefit from platform systems and 
effects, but most is absorbed by the platform itself. For some 
forms of platform capitalism, this concentration is severe, 
but for others less so. This dynamic oscillates between 

public and private versions, and positions are rearranging 
quickly. Platform systems might appear to resolve toward 
one sort of outcome, but may also form the structural basis 
of a very different kind of political economy exchange (i.e., 
“People’s Republic of Walmart”). What urban forms, how-
ever, strange, may enable those trajectories and economies?

1.17 � Platform cognition

Any single sensed event or action is, like the firing of one 
neuron, just a blip. It is only by the accumulation and inte-
gration of massive quantities of instances that something 
like patterns and then intelligence can emerge. Because no 
two platforms are structured to sense the world in the same 
way, no two platforms will achieve synthetic cognition in the 
same way. Some are trained on object flows for which end-
users are mostly just input and output variables, but for oth-
ers the artificial formulation of end-user self-expression is 
both means and ends. Yet, platform architectures constructed 
on behalf of particular immediate strategies will also evolve 
to allow for unforeseen possibilities and demands. They 
will adapt to the capacities of competing platforms, and this 
co-evolution represents the external forces that frame the 
internal dynamics of any system. That is, among the things 
that platforms sense and calculate are not only other plat-
forms, but perhaps more importantly, they sense and model 
themselves.

1.18 � Simulation and prospection

The absorption, organization, and modeling of data serve 
to populate complex simulations of a governed world. Such 
simulations are not merely representations of underlying 
processes, but serve as read/write media through which 
steering decisions about how to intervene in those processes 
are manifested. As platforms comprehend the world in rela-
tion to the categorical schema that orient their perception 
and logics, their ability to model and predict events in the 
world around them is at least partially tautological. Given 
that cognition could, in principle, be based on quite alien 
categories, what alternative taxonomic possibilities and 
urban platforms might they engender?

1.19 � Addressability and dimensionality

Any platform sensory apparatus senses and responds to spe-
cific input events and not others, and is thus bound by a 
strategic or tactical ontology. That ontology in turn depends 
on means to identify, nominate, and address events as dis-
crete individuated entities that can be re-identified, re-nom-
inated, and re-addressed as needed. In other words, platform 
cognition depends on a dimensional array of addressable 
instances, any of which may have quite different relations to 
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real world people, places, and things. The intrinsic abstrac-
tions of any addressing ontology are inseparable from the 
particular intelligence of that platform. What are some via-
ble alternative addressing systems, and how do they arrange 
the urban landscape in their image?

1.20 � Temporality and threshold

A data set always has some direct or indirect temporal scope. 
It can be an instantaneous snapshot of many things hap-
pening in the blink of an eye, or one thing happening over 
centuries, or various combinations of few and many, slow 
and fast. In this sense, platform cognition is not only delim-
ited by the anatomic and strategic distribution of its sensing 
media, but also by the temporal thresholds of its durational 
models. What causal patterns might be rendered by forms of 
machine intelligence that work on data sampled from inhu-
manly vast or minuscule timescales that would be otherwise 
incomprehensible?

1.21 � Camouflage and display

In any complex ecology, biological or not, multiple par-
ticipant species, dependent on their unique sensory media, 
interrelate with one another according to competitive and 
symbiotic dynamics. In this, not only do more powerful ways 
to sense the world evolve, but also ways to prevent others 
from seeing and deducing. This is the arms race of percep-
tion and camouflage, one of the primary forces that give 
form to perpetual media and the surfaces they try to see and 
interpret. The strategy of camouflage is made by both preda-
tor and prey, but so are elaborate forms of display that solicit 
and encourage the contact and pollination between species 
and within a species. This is as true of bees and flowers as 
it is of WeChat-enabled cities and ambient distributions of 
QR codes. How does platform-scale AI mimic or deviate 
from natural evolution in relation to these optical dynamics?

2 � Conclusion

“Artificial intelligence” is not one thing, but many. It is many 
different technologies, and it is many different metaphors. 
As any culture would define “the artificial” differently, and 

“intelligence” differently, so too, the term “artificial intel-
ligence” will host multiple connotations. Our approach seeks 
to glue a radically materialist view of AI seen as emergent 
property of matter arranged in such a way as to produce 
intelligent effects with a macroeconomic and geopolitical 
view that sees that arrangement as a kind of world-making 
and world-governance. The valence of governance here is 
not by default negative. There is a sincere presumption that 
AI has an important role to play in how societies sense, 
model, simulate and act back upon themselves. The pan-
demic, for example, has done much to push the importance 
of that to the foreground. The implications of this approach 
may make other approaches less relevant, for example those 
that see AI exclusively in terms of philosophy of mind or 
exclusively as an infrastructure captured by capital. At the 
same time, however, the landscape model of AI (“synthetic 
garden”) has implications for those approaches and how the 
define their research programs, many of which profoundly 
overlap with our own. Finally, the conclusion of our inves-
tigation is that to understand AI as a property that can be 
designed into objects of different scales, from molecular to 
urban scale, focuses AI critique and AI design toward fun-
damental social questions of what kind of planetarity can 
and must be composed.
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The Editor-in-Chief has removed Fig. 1 due to copyright 
and consent concerns, along with the related references, and 
Fig. 2a has been updated. A sentence in Sect. 3 “Anatomy 
of a training set” explaining the authors’ understanding of 
the intended purpose of the JAFFE dataset (Lyons and Aka-
matsu 1998) has also been removed.

Additionally, the Authors would like to provide the fol-
lowing clarifications:

•	 Figure 2 gives examples of images from the ImageNet 
database, which was first introduced in the cited article 
(Deng et al. 2009)

•	 On page 6, the following sentence incorrectly refer-
ences a figure: “A photo shopped picture shows a smil-
ing Barack Obama wearing a Nazi uniform, his arm 
raised and holding a Nazi flag. It is labelled “Bolshevik 
(Fig. 2).”” The citation to Fig. 2 should have been placed 
in the following paragraph when referencing the labelled 
image of Sigourney Weaver

•	 The images in Fig.  3 were reproduced from the 
“Aligned&Cropped Faces” dataset of UTKFace (UTK-
Face-Aicip 2019)

•	 The full caption for Fig. 4 is: “Fig. 4 image from IBM’s 
Diversity in Faces paper, image credit M. Merler et al. 
(Merler et al. 2019).
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