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ABSTRACT 

This paper presents investigations into practical dynamic modelling of a twin rotor multi-input mul-

ti-output system (TRMS)[1] using genetic algorithms (GAs). The construction and operation of the 

TRMS in many aspects resembles that of a helicopter, with a significant cross-coupling between 

longitudinal and lateral directional motions. The TRMS permits both 1 and 2 degrees of freedom 

(DOF) motion, it can be considered as a static test rig for an air vehicle. The global search technique 

of GA is used to extract parameters of the model, based on one-step-ahead prediction, characterising 

the TRMS in hovering mode. The effectiveness of the modelling technique is validated and verified 

in terms of tracking, stability and ability of derived model in capturing the dynamics of the system. 

The model is validated thoroughly through a number of time and frequency domain tests and, there-

fore, is deemed to be reliable. 
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I. INTRODUCTION

Rotary wing aerial vehicles, such as helicopters, have distinct advantages over conventional fixed 

wing aircraft on surveillance and inspection tasks, since they can take-off and land vertically in lim-

ited spaces and easily hover in places above a target. A scaled and simplified version of a practical 

helicopter, namely the twin rotor multi-input multi-output system (TRMS)[1], as shown in Figure 1, 

is often used as a laboratory platform for control experiments. Although the dynamics of the TRMS 

are simpler than those of a real helicopter, they retain the most important helicopter features such as 

couplings and strong nonlinearities. Due to size, cost, ease of operation and interfacing facilities 

with a personal computer, the TRMS has attracted many researchers and is being used as an interest-

ing ‘test rig’ for aerodynamic modelling and control problems[2-5]. Several mathematical techniques, 
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such as blade element approach, blade element momentum theory and general flow theory have been 

used to model different types of rotary wing systems.[6-10] Voorsluijs and Muldery[11] presented a 

modelling technique based on  linear parameter varying method for a helicopter. Although the above 

modelling techniques prove to be effective but require clear knowledge of complex dynamic mo-

tions, aerodynamics, cross-coupling effects, structural dimensions of rotor systems and other com-

ponents of the system,  which seem extremely complicated to formulate and realise. Contrary to the 

above methods, black-box and some non-parametric modelling techniques are gaining considerable 

interest among researchers due to their simplicity.[12] These methods avoid aerodynamics/kinematics 

of the system and can derive models based on data collected at several input-output terminals. The 

success of such approaches depends on pre-experimentation techniques and the estimation or predic-

tion technique, commonly known as algorithm.  

Alam and Tokhi[2] presented dynamic modelling techniques for 1-DOF and 2-DOF motions of 

the TRMS using particle swarm optimisation algorithms. Adaptive filters have been used to model 

the TRMS where adaptive algorithms such as, least mean square (LMS), normalised LMS and recur-

sive least square (RLS) were used to update the filter taps.[4-5] Adaptive algorithms such as LMS, 

NLMS, RLS and their variants require relatively fewer computations and are favoured for on-line 

applications despite the risk of getting trapped at local minima[13]. Genetic algorithms (GAs) are 

global stochastic search algorithms based on natural biological evolutions. Since their introduction 

by Holland[14] there has been widespread interest among scientists and engineers in the use of GAs 

in system modelling and controller design[15-16]. Although a large volume of work has been reported 

in recent years, little work has been reported in identifying rotary wing systems using GAs. Assum-

ing only input–output measurements of unknown dynamic systems are available; this paper presents 

a practical modelling technique where GAs are employed to extract parametric model of the TRMS 

in hovering mode, essentially to determine the vibration modes of the system. 

II. EXPERIMENTAL SET-UP

The experimental TRMS and its schematic diagram are shown in Figures 1 and 2 respectively. The 

TRMS rig consists of a beam pivoted on its base in such a way that it can rotate freely both in the 

horizontal and vertical directions producing yaw and pitch movements, respectively. At both ends of 

the beam there are two rotors driven by two DC motors. The main rotor produces a lifting force al-

lowing the beam to rise vertically (Pitch angle/movement), while, the tail rotor is used to make the 
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beam turn left or right (Yaw angle/ movement). The measured signals are: position of the beam, that 

is, two position angles, and angular velocities of the rotors.  

Figure 1: The twin rotor MIMO system. 
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Figure 2: Schematic diagram of TRMS. 

The control inputs are the supply voltages of the DC motors. A change in the voltage value re-

sults in a change in the rotational speed of the propeller, which in turn results in a change in the cor-

responding position of the beam. The system is interfaced with a personal computer through a data 

acquisition board, PCL-812PG[1]. The TRMS can be perceived as an unconventional and complex 

“air vehicle” with a flexible main body.  

III. GENETIC ALGORITHMS

GA as a stochastic optimization algorithm is motivated by the mechanisms of natural selection and 

evolutionary genetics.[14], [17] The basic element processed by a GA is a string formed by concatenat-

ing sub-strings, each of which is a numeric coding of a parameter. Each string represents a point in 

the search space. Selection, crossover and mutation are the main operators of a GA. Selection directs 

the search of GA towards the best individual. In the process, strings with high fitness receive multi-

ple copies in the next generation while strings with low fitness receive fewer copies or even none at 

all. Crossover can cause to exchange the properties of any two chromosomes via random decision in 

the mating pool and provides a mechanism to produce and match the desirable qualities through 

crossover. Although selection and crossover provide most of the power skills, the area of the solu-

tion will be limited. Mutation is a random alternation of a bit in the string and assists in keeping de-

livery in the population.[14], [17] 

3



IV. DYNAMIC MODELLING OF TRMS WITH GA

System modelling is about building mathematical models for describing an observed system. In con-

trol engineering, system modelling is employed to determine a model of the system (plant). The pro-

cess consists of two subtasks; 1) structural identification of the equations in the model M, and 2) pa-

rameter identification of the model’s parameters ̂ . The modelling problem can be formulated as an 

optimisation task where the objective is to find a model and a set of parameters that minimise the 

prediction error between system output  ty , i.e., the measured data, and the model output  ̂ ,ˆ ty  at

each time step t . The basic schematic diagram for modelling is shown in Figure 3. The objective of 

a modelling experiment is to estimate a linear time-invariant (LTI) model of the 1-DOF model of the 

vertical subsystem of TRMS. The process involves several steps which are discussed below. 

Preliminary Experimentation 

The system was excited with a Gaussian random signal (GRS) in order to ensure that all system res-

onance modes are captured. The GRS signal level, ±0.2 volts, was selected so that it does not drive 

the TRMS out of its linear operating range. An input data of 8000 points and the corresponding sys-

tem response thus recorded are shown in Figure 4.  Out of 8000 data points the first 4000 were used 

for modelling and the rest 4000 for validating the model. Good excitation was achieved from 0-10 

Hz that covers all the important rigid body and flexible modes of the system.[2-5] 
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Figure 3: Basic schematic diagram for system iden-
tification 

Figure 4: Gaussian random input signal and 
response of vertical channel of the TRMS in 

time domain 
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Structure formulation 

Different types of model structures such as, auto regressive (AR), autoregressive exogenous (ARX), 

autoregressive moving average (ARMA) and autoregressive moving average with exogenous input 

(ARMAX) are reported in the literature for modelling.[12] Considering the simplicity, performance 

and computation costs, the ARMA structure was chosen. This is expressed as[12]: 

 
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where ia , jb  are denominator and numerator polynomial coefficients, N  and M  are number of co-

efficients in the denominator and numerator polynomials,  y , u , y


, and   are measured output,

input, predicted output and noise respectively. The order of the transfer function depends on N . 

Taking the values of N  and M  as 4 and 3 and neglecting  , equation (1) can be simplified as: 
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In matrix form, the above equation can be written as: 
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Parameter encoding and GA optimisation process 

The GA optimisation process begins with a randomly generated population called chromosome. An 

initial population of dimension 80×8×16 is created where number of individuals and parameters in 

each individual are 80 and 8 respectively. Each parameter is encoded as 16 bit Gray code which is 

logarithmically mapped into real number within a range of [-1, 1]. Each individual represents a solu-

tion where the first four elements are assigned to 30 ,...,bb  and the next four to 41 ,..., aa  as indicated 

in equation (3). The predicted output y


, at any sample instant, is calculated by putting actual input

and output data in equation (3). Subsequent predicted outputs are calculated in a similar way with 

the same parameters while taking consecutive input and output data. The difference between the 

predicted and actual output is recorded as error, )()()( kykyke
 , which in turn is used to form the

objective function (f(x)). Here, sum of squared error is chosen as the objective function. This is giv-

en as:  
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where 4000n . The stability of the derived model is the most basic objective to be satisfied. In 

case of a discrete-time transfer function, the maximum pole magnitude provides a simple and effec-

tive means of assessing the stability. In the modelling problem, stability is set as a constraint in the 

GA optimisation process. To extract a stable model, prior to calculating y


, the transfer function (dis-

crete) is formed taking elements of each individual, then poles are calculated and if any pole falls 

outside the unit circle ( z plane) then  that individual is penalised by adding a big number (penalty 

value) with its objective function, f(x). This penalty value will reduce the probability of the individu-

al being selected as parent for reproduction and on the contrary, favour stable solutions to be select-

ed as parents and subsequently can guide the searching process towards regions of stable-solution. 

After evaluating all individuals in the objective domain, fit individuals are selected based on sto-

chastic universal sampling selection technique to form the mating pool.[18] The number of individu-

als in the mating pool depends on ‘generation gap’, for example, if generation gap is set at 90% and 

the number  of individuals in the population is set as 80, then 80% of the total individuals, i.e., 72 

are selected for mating. Genetic operators such as crossover, mutation and reinsertion are applied to 

form the new population for the next generation.[17] The crossover rate and mutation rate are set as 

0.8 and 0.0062 respectively. Matlab[18] coding and genetic algorithms toolbox[19] have been used to 

implement the modelling technique and the optimisation process. The maximum number of genera-

tions was set to 200. The algorithm achieved the best sum-squared error level of 0.0014429 in the 

200th generation. Figure 5 shows the predicted error between the model output and the actual output 

of the system at the end of maximum generation whereas the algorithm convergence is shown in 

Figure 6. It is evident from the convergence curve that the objective function gradually reduces as 

the algorithm proceeds and the rate of convergence is high at the beginning. 

V. RESULTS: MODEL FORMULATION AND VALIDATION

Eight parameter values: b0,…,b3 and a1,…,a4 are obtained at the end of maximum generation of the 

GA process. Using these values in equation (3), the discrete transfer function for vertical channel at 

a sampling time of 0.1sec thus formed is given as:   
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0142.00113.0005997.00005001.0

)(

)(
234

23






zzzz

zzz

zu

zy (5)

6



Using Matlab[18] functions, this discrete transfer function can be converted into continuous form 

(s-domain) as: 

218995.356.519469.3

1.59557.45249.208927.0
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where u(s) represents the main rotor input (volt) and y(s) represents pitch angle (radians). The de-

rived model was validated with a separate input-output data set and the actual and one-step-ahead 

predicted outputs are shown in Figure 7. Time domain tracking reveals that the predicted output fol-

lows the actual output very well.  

Figure 5: Error between actual and predicted 
output 

Figure 6: Convergence of GA optimisation 
process 

(a) First 500 samples (b) Last 500 samples

Figure 7: Actual output and GA predicted output of vertical channel of the TRMS 

The frequency domain plot (Figure 8) of the predicted and actual outputs indicates that the model 

has successfully captured the system dynamics, especially the main dominant modes at the low fre-

quency region. The main vibration mode, as found from the GA simulated output was at 0.3515 Hz. 

The stability of the model was monitored using its pole-zero diagram. It was observed that all the 
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poles remained inside the unit circle (Figure 9). Although, there were some zeros outside the unit 

circle which indicates the system has non-minimum phase behaviour.  

Figure 8: Power spectral density of the actual 
and predicted outputs 

Figure 9: Pole-zero diagram 

Correlation tests 

If the model is adequate, the residuals, ( )t , should contain no information about the past residuals 

or dynamics of the system. It can be verified by showing that the residuals are uncorrelated with all 

linear and nonlinear combinations of past inputs and outputs. Billings and his co-workers have rec-

ommended a number of auto-correlation and cross-correlation tests expressed as[20-21]: 

       ( ) [ ( ) ( )] ( )  E t t

   u E u t t( ) [ ( ) ( )]   0       

   
u

E u t u t t2
2 2 0( ) [( ( ) ( )) ( )]         

   
u

E u t u t t2 2
2 2 2 0( ) [( ( ) ( )) ( )]       

       ( ) ( ) [ ( ) ( ) ( )]u E t t u t      1 1 0    0  

(7) 

where  u ( )  indicates the cross-correlation function between u t( )  and ( )t , 

 u t t u t( ) ( ) ( )  1 1 ,  ( ) = an impulse function. In practice, normalised correlations are com-

puted. The correlations will never be exactly zero for all lags and the 95% confidence bands defined 

as 196. / N  are used to indicate if the estimated correlations are significant or not, where N is the 

data length.  However, for linear time invariant models, the first two correlation tests of equation (7) 

are applicable[20] which are shown in Figure 10. It is noted that the first two correlation functions are 

within the 95% confidence bands indicating that the model is adequate. 

8



VI. CONCLUSION

This investigation has witnessed the development of dynamic modelling of the TRMS in hovering 

mode. The success of this approach depends on two factors: 1) suitable selection of model structure 

and 2) GA with its global search ability so as to estimate the parameters of the model accurately. 

The model structure specifies the order and form of the differential equation(s) which describe sys-

tem dynamics. GA has been successfully used to derive a model for vertical channel of the TRMS. 

The modelling problem was formulated as a multi-modal minimisation problem with 8-dimensional 

search space. It is evident from the results that the GA can extract stable and satisfactory model for 

vertical channel of the TRMS which is a good approximation of the nonlinear sub-system in the vi-

cinity of the operating point, mainly, to capture the dominant modes of the corresponding channel. 

Both time and frequency domain analyses were utilised to investigate and establish confidence in the 

obtained model. All results have clearly revealed that the effectiveness of the modelling approach 

and the GA optimisation in characterising dynamic systems. 

(a) Auto-correlation of residuals (b) Cross-correlation of input and residuals

Figure 10: Correlation tests 
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