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Abstract: Blue-luminescent N-doped carbon quantum dots (NCQDs) exhibiting rarely 

observed excitation independent optical properties are synthesised from citric acid in the 

presence of ammonia via a Continuous Hydrothermal Flow Synthesis (CHFS) approach. CHFS 

is an eco-friendly, rapid synthetic approach (within fractions of a second) facilitating ease of 

scale-up industrialization as well as offering materials with superior properties. The 

synthesised CQDs readily disperse in aqueous solution, have an average particle size of 3.3 ± 

0.7 nm, with highest emission intensity at 441 nm (and a narrow full width at half maximum, 

FWHM ~78 nm) under a 360 nm excitation wavelength. N-doped carbon quantum dots, 

without any further modification, exhibited a high selectivity and sensitivity as a nano-sensor 

for the highly toxic and carcinogenic chromium (VI) ions. The nano-chemo-sensor delivers 

significant advantages including simplicity of manufacturing via a continuous, cleaner 

technology (using targeted biomass precursor), high selectivity, sensitivity and fast response 

leading to potential applications in environmental industry as well photovoltaics, bio-tagging, 

bio-sensing and beyond.  

Keywords: carbon quantum dots, continuous hydrothermal flow synthesis, chromium 

(VI) sensing
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INTRODUCTION

Fluorescent carbon quantum dots (CQD) typically with particle size < 10 nm in diameter, quasi-

spherical, and discrete morphological structure, have attracted increasing scientific and 

industrial interest over the last decade. In possessing either a core of graphite or an amorphous 

carbon framework (hybridised sp2/sp3), with a surface that can be richly coated with functional 

groups (e.g. oxygen moieties), polymers or other derivative species (all dependant on the 

synthetic route and the carbon source), CQDs offer a range of potential properties such as high 

photostability, good biocompatibility, and excellent optical properties, with low potential for 

environmental hazards1,2. As such, CQDs are excellent candidates in a variety of applications 

including bio-imaging & bio-tagging3,4, drug delivery5,6, fluorescent ink7, ion sensors8,9, 

optoelectronics10, photocatalysis11, light-emitting devices12, and solar cells13. 

Currently, there is significant interest in the bottom-up methodologies14–17 which utilise 

biomass resources as targeted precursors (e.g. citric acid, glucose) for conversion into 

nanosized carbon dots1,18 via intra- or inter-dehydration and/or decomposition processes. 

Contrary to the top-down route (derived from cutting larger dimensional pre-made parent 

precursors such as carbon nanotubes or graphite for example)19, the alternative bottom-up 

approaches can offer “one pot” surface functionalisation via selective heteroatom doping (e.g. 

nitrogen)20 to give highly fluorescent materials without further need of a post-synthesis 

treatment (typical for top-down approaches). However, the current bottom-up approaches have 

their own challenges including lengthy manufacturing time, non-uniformity in CQD particle 

size distribution, inconsistent reproducibility and high energy costs. Consequently, applying 

the aforementioned synthetic approaches to an industrial scale within the current parameters 

would be limiting. In this regard, overcoming these challenges in providing a controllable, 

cleaner and rapid synthetic process with potential for industrial scale-up, as well delivering 

high-performance CQD is important. 

    It is in this context, Continuous Hydrothermal Flow Synthesis (CHFS), is highlighted21–27 as 

one of the most promising methods employed for the bottom-up approach offering significant 

synthetic advantages over traditional methods, delivering in a cleaner and rapid mode, high-

quality nanosized materials. The CHFS process involves mixing a feed of supercritical water 

(374°C, 22.1 MPa) with target precursor feed/s in the reaction zone, with reaction times 
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approaching fractions of a second to give the desired product. The resulting treated reaction 

mixture passes through a cooler and the product is collected as an aqueous nanomaterial 

suspension. Compared with traditional hydrothermal methods, the CHFS process consumes 

less energy and time,21,27 delivering quality and reproducibility of a homogenous product, 

whilst offering in real time full control and tunability of the reaction parameters21,26,28–30. The 

unique synthetic properties of CHFS method have previously been applied to the continuous 

hydrothermal flow synthesis of graphene quantum dots (first in this field)29 adding to the 

portfolio of CHFS materials delivered by our group. We have also reported the substantially 

lower environmental impact of CHFS when compared to equivalent batch hydrothermal 

processes used for the synthesis of graphene quantum dots27. The current work adds further to 

the development of continuous flow technology of carbon related quantum dots nanomaterial.    

   One of the unique and interesting features of heteroatom doped CQDs is their selectivity, 

sensitivity and response to ions and molecular compounds in solution that result in changes in 

optical behaviour (fluorescence enhancement or quenching).31 Their response is reported to be 

highly dependent on the structure of the carbon dots, in particular their surface structure31. 

Reported literature examples of luminescent doped CQDs have been successfully tested as 

fluorescent nano-sensors for pH32, ions (Fe(II/III)9, Cr(VI)33, Cu(III)9,31,34 and molecular 

compounds35. Herein, we will explore the sensing properties of the NCQD for chromium (VI) 

detection. Cr(IV) contamination of soil and water is anthropogenic in origin and raises 

significant concern in both developed and developing countries as a hazardous pollutant to the 

environment and human life, due to its high toxicity, carcinogenicity and mutagenic behaviour 

compared to other valence states, such as Cr(0) and Cr(III)36–38. Thus, the 

detection/concentration determination of Cr(VI) in drinking water (rigorously regulated to a 

very low micromolar level) for example, is vital36,39. The current techniques of analysis (atomic 

absorption spectrometry, chromatography) have common challenges including time 

consuming complex pre-treatment procedures and/ or use of costly equipment. Therefore, a 

low cost, highly sensitive and selective sensor for the detection and determination of Cr(VI) is 

needed, particularly in regions that are underdeveloped or lacking fiscal capability or access to 

such facilities.
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Herein, a facile, green, one-step continuous hydrothermal flow synthesis route using 

inexpensive and simple precursors; citric acid as a carbon source and ammonia, for production 

of blue emission N-doped carbon quantum dots that can be utilised as chemisensors for Cr(VI) 

detection. The synthesis of N-doped CQDs (NCQD) via the CHFS system delivers the 

following advantages: (a) from a series of synthetic stages to a single step approach (synthesis 

and simultaneous doping), (b) a significant reduction in reaction times from hours to seconds, 

thereby reducing energy consumption, (c) promoting the use of renewable precursors (citric 

acid) and solvent (water), (d) facilitating tunability and control over reaction parameters (e.g. 

temperature, pressure and flow rate) and hence particle properties, (e) as well as easy industrial 

scalability. Applying CHFS methods to produce carbon-based materials from biomass 

derivatives offers a new direction in achieving large-scale production of homogenous quality 

NCQDs with potentially significant reduced costs and lower environmental impact.

EXPERIMENTAL SECTION

Chemicals: All the materials were purchased from commercial suppliers and used without 

further purification. Deionised water, 15 MΩ obtained from an ELGA Purelab system was used 

in all experiments. Anhydrous citric acid, ammonia (32%) and Cr (VI) (potassium chromate 

and potassium dichromate) were purchased from Fisher Chemicals (UK) and used as received. 

The solutions of metal ions were prepared from their nitrate, acetate or chloride salts. The 

chlorides of Na+, K+, acetate of Fe2+, Zn2+, Cu2+, nitrates of Ce3+, Co2+, Ni2+, Ag+ and sodium: 

F-, Cl-, Br-, I-, NO3
-, SO4

2- and HCO3
- were all purchased from Sigma Aldrich (UK). 

Equipment:

Freeze-drying was performed using a Heto PowderDry PL 3000. 

X-Ray Photoelectron Spectroscopy (XPS): XPS measurements were performed using a Kratos 

Axis Ultra DLD photoelectron spectrometer utilizing monochromatic Alka source operating at 

144 W. Samples were mounted using conductive carbon tape. Survey and narrow scans were 

performed at constant pass energies of 160 and 40 eV, respectively. The base pressure of the 

system was ca. 1x10-9 Torr rising to ca. 4x10-9 Torr under the analysis of these samples. 

High Resolution Transmission Electron Microscopy (HRTEM):  Double-corrected JEOL 

ARM200F, equipped with a cold field emission gun. For the investigation, the acceleration 
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voltage has been set to 80 kV and the emission was set to 10µA. The samples were prepared 

by depositing the aqueous solution of NCQDs onto a holey carbon coated Cu-grid (400 µm).  

The particle size of carbon quantum dots was measured from TEM images using ImageJ 

software.

Fourier-Transform Infrared Spectroscopy (FT-IR): FT-IR spectra were recorded using a 

Nicolet Avatar 370DTGS spectrometer fitted with a Smart Orbit accessory (diamond 4000-200 

cm-1). 

Raman Spectroscopy: The spectrum of the as-synthesised and dried carbon quantum dots was 

measured with a Horiba LabRAM HR Evolution spectrometer with radiation at 514 nm.

Atomic Force Microscopy (AFM) images were obtained via dynamic mode on a hpAFM with 

AFM Controller (NanoMagnetics Instruments, UK) using Nanosensor tapping mode probes. 

The micrographs were then processed with NMI Image Analyser (v1.4, NanoMagnetics 

Instruments), with plane correction and scar removal using the in-built functions.

Steady-State Optical Characterisation. After the sample was purified, it was optically 

characterized using absorption (UV-Vis spectrophotometry) and emission/excitation 

(photoluminescence spectrophotometry) techniques. The sample concentration (1.1 mg/mL) 

was determined by freeze-drying 10 mL of the purified carbon dot sample. 

UV–Vis spectrophotometry: Adsorption measurements were conducted using a Shimadzu UV-

1800, in the range of 200-700 nm in a 10 mm quartz cuvette. 

Photoluminescence spectroscopy (PL): The fluorescence spectra were recorded with Shimadzu 

RF-6000 Spectrofluorophotometer.

Quantum Yield (QY) determination: QY value of carbon quantum dots was calculated by 

measuring the integrated PL intensity in aqueous dispersion of NCQDs in comparation with 

the integrated PL of quinine sulphate in 0.1 M H2SO4 (standard), and was plotted as integrated 

PL vs Absorbance (Figure S1) from which the extracted slopes (the gradient Δ) were obtained. 

Equation (1)𝜃𝑄𝐷𝑠 = 𝜃𝑆 ∙
Δ𝑄𝐷𝑠

Δ𝑆
∙ (𝜂𝑄𝐷𝑠

𝜂𝑆 )2
   

Where: 
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θQDs is the quantum yield of NCQDs; θS is the quantum yield of standard (quinine sulphate 

54%); ΔQDs is the slope of integrated PL of NCQDs; ΔS is the slope of integrated PL intensity 

of the standard; ηQDs is the refractive index of water (1.33); ηS is the refractive index of 0.1 M 

H2SO4 (1.33).

Fluorescence Experiments. Fluorescence sensitivity and selectivity experiments of N-doped 

carbon quantum dots with Cr (VI) were performed as follows: Cr (VI) stock solution (1000 

ppm) was prepared by dissolving potassium chromate (K2CrO4, 100 mg) in NCQD aqueous 

solution (100 mL) in a standard volumetric flask. Further, fresh NCQD solution (1.1 mg/mL) 

was placed into a 10 mL standard volumetric flask, followed by addition of a required volume 

of 1000 ppm Cr (VI) stock solution to achieve concentrations of 500 ppm, 250 ppm, 100 ppm, 

75 ppm, 50 ppm, 20 ppm, 10 ppm, and 5 ppm. Additional dilutions of Cr (VI) in the ppb 

concentration range were prepared from Cr (VI) 100 ppm solution giving the following 

concentrations: 5 ppb, 10 ppb, 20 ppb, 50 ppb, 100 ppb, and 500 ppb (Figure S2). After 3 

minutes incubation and stirring at room temperature, the fluorescence spectra were measured 

for the quantitative analysis of Cr (VI). Each experiment was repeated in triplicate. The 

fluorescence emission spectra for ion-sensing experiments were recorded for excitation at 360 

nm with the band-slits of both excitation and emission set as 5 nm. The sensitivity was fixed 

on high with a response time set at 0.5 s. The emission spectra were recorded from 300 to 650 

nm, and the fluorescence intensity of NCQDs at 441 nm was used for quantitative analysis of 

Cr (VI). For comparison purposes, a range of anions and various metal cations were tested for 

selectivity and sensitivity using 50 ppm as a standard concentration. Furthermore, stability 

analysis of the NCQDs in presence of Cr (VI) (50 ppm) were made by recording the 

fluorescence intensity of the mixture when initially exposed continuously for 5400 seconds (90 

minutes) at 360 nm excitation, and then at intervals of 2 hr, 4 hr, 24 hr and 48 hr (Figure S3).

Synthetic Methodology:

Synthesis of NCQDs: The experimental procedure for NCQDs produced via the CHFS 

approach is depicted in Schematic 1. Optimally for this study, CHFS consisted of three feeds: 

supercritical water feed (F1: flow rate of 20 mL/min) and two feeds of the precursors: citric 

acid (F2: with concentration of 70 mg/mL delivered at 10 mL/min in the mixing zone) and 

ammonia (F3: with concentration of 1 M pumped at 10 mL/min). The supercritical water feed 

was heated at 450 °C (lower temperatures of 250 °C and 350°C have also been explored) and 
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the system pressure was kept constant at 24.8 MPa using a back-pressure regulator (labelled as 

BPR). Feeds F2 and F3 were combined in a “T” junction prior to being delivered into the 

reaction zone (labelled as “Reactor”) where it was mixed with the supercritical water feed (F1). 

The reaction mixture was then passed via the “Cooler” to the BPR and collected for further 

processing (see Schematic 1). The entire reaction mixture was filtered using 0.2 µm alumina 

membrane, and the filtrate was initially separated using 30 kD membrane in a tangential 

filtration unit, followed by 1 kD membrane. The resulting solution was concentrated to 1/5 of 

the initial volume and subjected to further analysis.

Schematic 1:  Synthesis of N-doped carbon quantum dots (NCQDs) using Continuous 

Hydrothermal Flow Synthesis (CHFS) process: (a) illustration of the CHFS synthesis process 

using citric acid as carbon source and ammonia as N-dopant, (b) simplified CHFS design.

(a)

(b)
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RESULTS AND DISCUSSION

Carbon dots are known for their properties, specifically their intense fluorescence in the visible 

range.7,13,20 However, the materials often exhibit optical and structural heterogeneity as well as 

limited relevant synthetic approaches that do not readily facilitate large-scale production. We 

have explored and developed a rapid synthesis approach that delivers in a continuous mode, 

carbon quantum dots (control) and blue luminescent N-doped carbon quantum dots by simply 

using citric acid (carbon source), in the absence and presence of ammonia (N-precursor) 

respectively, both in water under supercritical conditions (24.8 MPa and study reaction 

temperatures of 250 °C, 350 °C and 450 °C). The optimal temperature was 450 °C for the 

NCQDs (see Figure S4) synthesised using Continuous Hydrothermal Flow Synthesis (a single 

step approach as shown in Schematic 1) showing high homogeneity (narrow particle size 

distribution) and excellent optical properties (excitation independent fluorescence). 

The optimal as-produced NCQDs  were characterized using a variety of techniques including 

UV-Vis absorption and emission (PL) spectrophotometry to examine the optical properties, 

FT-IR and Raman spectroscopy to determine electronic properties and functionalities, X-ray 

Photoelectron Spectroscopy (XPS) to determine the composition and surface chemistry, High-

Resolution Transmission Electron Microscopy (HRTEM) analysis and Atomic Force 

Microscopy (AFM) for particle size analysis and structural morphology.  

HRTEM images (Figure 1) of the as-prepared NCQDs exhibit a quasi-spherical morphology 

with an average particle size of 3.3 ± 0.7 nm from a sample population of 190 particles ranging 

between 1.9 nm to 4.7 nm in diameter (inset Figure 1b). Each exhibited the same structural 

arrangement, indicating a consistency in homogeneity for the CHFS synthesized sample. The 

graphitic core arrangement of the carbon atoms (Figure 1c) can be clearly identified with in-

plane lattice spacing of 0.22 nm and is consistent with the reported literature data40. 

The atomic force microscopy (AFM) image (Figure 1d) reveals the tomography of the as-

synthesised NCQDs, distributed in the range from 1.0 to 5.2 nm, with an average value of 2.4 

± 1.0 nm, and is consistent (within experimental error) with data from HRTEM.
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Figure 1: HRTEM images of N-doped carbon quantum dots at different magnification and 

scale: (a) 50 nm, (b) 5 nm with (inset) showing particle size distribution histogram with an 

average particle size of 3.3 ± 0.7 nm, (c) graphitic core lattice fringes, (d) AFM image with 

inset showing particle size distribution histogram. 

X-ray photoelectron spectroscopy (XPS) measurements were performed for the surface 

characterization of NCQDs (Figure 2a) and reveal peaks typical for the presence of carbon (ca. 

285 eV), nitrogen (ca. 399 eV) and oxygen (ca. 531 eV). The fitted C1s spectra (Figure 2b) 

peaks at 284.9 eV, 285.9 eV, and 288.4 eV can be assigned to the carbon atoms in the form of 

C=C bond (sp2), C–N (sp3), C=O (sp2) and O–C=O (sp2), respectively, whilst the fitted N(1s) 

spectrum (Figure 2c) exhibits three peaks at 399.7 eV, 400.8 eV, and 401.6 eV, indicating that 

the nitrogen exists in pyrollic/amino N-H, protonated pyridinic N, and graphitic-N (sp3) forms 

respectively, signifying that the nitrogen atoms were efficiently doped into the structure41. 

Elemental analysis (inset Figure 2a) shows that CHFS synthesised NCQDs contain 35.9 wt% 

oxygen, 10.8 wt% nitrogen and 53.3 wt% of carbon, concluding that NCQDs are nitrogen-

doped and carbon-rich. 

(c)

(a) (b) (c)

(d)
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Figure 2:  XPS survey scans of N-doped carbon quantum dots: (a) survey spectrum showing 

C(1s), N(1s) and O(1s) core levels, (b) – (d) fitted high resolution spectra of C(1s), N(1s) and 

O(1s) regions, respectively.

The Raman spectrum for the NCQDs (Figure 3a) displayed two broad peaks at 1392 

and 1591 cm-1 which correspond to the D and G bands, respectively. The G band is attributed 

to an E2g mode of vibration of sp2 bonded carbon atoms associated with the graphitic core and 

is in good agreement with the HRTEM lattice spacing image described previously for the 

NCQDs (Figure 1c). The smaller D band peak is due to the presence of a medium level of 

oxygen content (35.9 wt%) and the presence of sp3 carbon atoms, the results are complimentary 

with the XPS data (see Figure 2). The relative intensity ratio of the observed bands (ID/IG) gave 

a value of ~ 0.76 for the NCQDs, typical of graphene oxide30. 

(c)

(b)(a)

(d)
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Figure 3: (a) Raman and (b) FTIR spectra of N-doped CQDs.

The FT-IR spectroscopy (Figure 3b) further supports the XPS analysis. A broad absorption 

band (3450-2400 cm-1) can be ascribed to overlapping stretches that encompass those for O–H 

(R-OH, -COOH), amine and protonated amine (N-H+, N-H2
+, N-H3

+) stretches, and C-H 

stretching vibrations (3028 cm-1 and 2835 cm-1). The presence of protonated and deprotonated 

species is plausible with carboxylates and amine groups in close proximity on the NCQDs. 

Other stretches observed include pyridinic C=N at 1652 cm-1, a stretch which could also be 

attributed to an amino-vibration (-NH or -NH2). The amino vibrations could also be assigned 

for stretches at 864 cm-1 and 792 cm-1 as well as carbonyl (COO-) stretches at 1541 cm-1 and 

1394 cm-1, asymmetric vibrations for C-NH-C at 1136 cm-1, and C-O and C-O-C vibrations 

may be assigned to stretches at 1202 cm-1 and 1035 cm-1, respectively41. 

The NCQDs were analysed with UV-Vis and the steady-state PL spectrophotometry. The 

characteristic specific absorption (black curve) and emission bands (red curve) recorded from 

aqueous solutions of NCQDs are shown in Figure 4. Figure 4 (a) shows the strongest 

absorbance and emission band for NCQDs produced via CHFS. The UV-Vis spectrum displays 

two absorption bands that are characteristic of NCQDs, the first at ~250 nm and the second 

peaking at 332 nm (broad absorption band from 300 nm tailing to 480 nm). The former band 

can be ascribed to π-π* transitions for aromatic sp2 domains in the graphitic core and the latter 

to n-π* transitions for C=O in the NCQDs19, 42. The absorption band displayed below 250 nm 

can be attributed to the C=C and the C-C bonds.

(a) (b)
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Figure 4: (a) UV-Vis absorption spectrum (black curve) and photoluminescence (PL) spectrum 

(red curve) of carbon quantum dots at 360 nm excitation wavelength. (b) NCQDs excitation at 

wavelengths 320 – 380 nm gave emission spectra showing excitation independent optical 

behaviour, but excitation from 400 - 420 nm showed excitation dependent behaviour (inset). 

(c) pH influence over the emission intensity and (d) histogram of pH effect on the emission 

spectrum.

Photoluminescence (PL) was observed for both the as-prepared NCQDs and the CQDs 

(control) under UV excitation with wavelengths ranging from 300 – 420 nm. The control 

material, CQDs synthesised from citric acid only, showed negligible photoluminescence (see 

Figure S4). The NCQDs on the other hand displayed an optimum excitation at 360 nm 

corresponding to a blue fluorescence emission at a consistent 441 nm for each excitation 

(Figure 4b), and a red shift lower intensity emission for lower energy excitation at 400 nm and 

420 nm. The as-prepared NCQD material exhibited a rarely observed UV excitation 

independent emission behaviour43,44. We attribute this zero-tunability (320 - 380 nm) behaviour 

(a) (b)

(c) (d)
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to surface state defects of the NCQDs, which is also commonly associated with blue emission, 

a feature that has been reported for rGO, GQDs and CNDs. The red shift character due to the 

observed emission for lower energy excitations may be ascribed to the π-π* transitions (of 

isolated sp2 clusters) within the graphitic carbon cores45. The proportion of surface defects are 

correlated with the degree of surface oxidation with the increasing presence of oxygen atoms 

in the make-up of the surface structure of CQDs which typically leads to further reducing the 

band gap, i.e. a red shift of PL. However, given the excitation independent blue-luminescent 

for the as-prepared NCQDs, the process of nitrogen doping (CHFS) as compared to the control, 

has had a significant impact on the optical properties (Figure S4).

Since pH can play pivotal roles in various environmental and biological systems, the impact of 

pH on the NCQDs performance as a sensor is of significance. The pH-dependent behaviour of 

the NCQDs was explored (Figure 4c and 4d), where mildly acidic and alkali media have had a 

small to negligible impact on fluorescence stability showing the NCQDs to be stable over a 

broad pH range of 5-12. However, the fluorescence intensity of the NCQDs is significantly 

reduced in acidic media to 50% (against control intensity) at pH 4 and reduced further to just 

13% at pH 3 and 3% at pH 1. A small but significant red shift occurs from pH 3 to pH 1. Similar 

observations have been made by Zhu et al.8 (for their excitation dependent N-doped CQDs 

hydrothermally synthesised from citric acid and ethylenediamine) and Dong et al.44 (for the 

N,S-CQDs) but neither adequately rationalise for the red shift. The diminishing intensity is a 

consequence of protonation of the nitrogen and carboxylate groups disrupting the surface 

charge and its associated emissivity, thus allowing emission from the graphitic core to come to 

prominence over that of the surface as reflected by the red shift of the PL. The red-shift feature 

of the luminescence highlighted earlier is excitation dependent. At pH 13 there is also a 

reduction in emission intensity versus control. Furthermore, the NCQD material exhibited 

resistance to photo-bleaching with PL intensity remaining stable over a period of 6 months. 

The quantum yield value of our sample was measured to be 14.91 ± 0.24% (calibrated against 

quinine sulphate in 0.1 M H2SO4 as standard), comparable to many literature reports for 

CQDs20. 

Typically, excitation dependent emission is a common feature of N-doped CQDs, but tend to 

display complex emission spectra that are difficult to decipher in practical applications. Thus, 

single emission NCQDs are highly desirable. Our CHFS synthesised material uniquely exhibits 
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the following: excitation independence with a narrow FWHM (~78 nm, where 100 nm is 

typical for CQDs19) and a remoteness of the fluorescence emission (441 nm) from the UV 

excitation range (320 – 380 nm) - that usefully avoids auto-luminescence. Each of which are 

desirable features for sensor applications and more so when combined. 

These characteristics will ultimately allow this material to be uniquely suitable in a range 

of practical applications, such as chromate anion (Cr (VI)) detection for example; a severe and 

highly toxic environmental pollutant even at trace (low mg L−1) levels. 

Chromium (VI) ion-sensing: 

Given the fluorescent properties of the NCQDs and their stability over a broad pH range (pH 

5-12), investigations with respect to their interactions with and selectivity for, were undertaken 

for a range of environmentally relative anions and cations. These included the metal ions Na+, 

K+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ce3+, Ag+ and the anions: F-, Cl-, Br-, I-, NO3
-, SO4

2-,   

CH3COO-, HCO3
-, and the Cr (VI) anions CrO4

2- and Cr2O7
2- at concentrations of 50 ppm each 

in aqueous solutions.These included the metal ions Na+, K+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ce3+, 

Ag+ and the anions: F-, Cl-, Br-, I-, NO3
-, SO4

2-, CH3COO, HCO3
-, and the Cr (VI) anions, 

CrO4
2- and Cr2O7

2- at concentrations of 50 ppm each in aqueous solution.

Figure 5: Selectivity of the N-doped CQDs based sensor over other ions and anions.
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Sole selectivity for Cr (VI) detection was observed by significant fluorescence quenching of 

the NCQDs upon the addition of either Cr (VI) species (Figure 5), whilst the other ions 

exhibited limited/negligible quenching effect or fluorescence enhancement with minimal 

variation. This selectivity for Cr (VI) (CrO4
2-/Cr2O7

2-) by the NCQDs fluorescent probe was 

further investigated in regard to their sensitivity based on the PL spectra of NCQDs with a 

range of prepared concentrations of CrO4
2-, each performed in triplicate. As shown in Figure 6 

the fluorescence of NCQDs at around 441 nm is quenched after the addition of Cr (VI) with 

the emission intensity shown to be dependent on the concentration of Cr (VI) species. The 

fluorescence peaks of [CQDs-Cr (VI)] system was stable at 441 nm; no peak shifting was 

observed. 

Figure 6: Cr(VI) ions influence on PL spectrum of N-doped CQDs in (a-b) reflecting the 

intensity changes in ppm concentration range with (inset) showing Stem-Volmer plot, log(F0/F) 

versus concentration and (c) photo of the effect of different Cr (VI) ions concentration on 

NCQDs emission under UV light.

The fluorescence intensity of NCQDs decreased linearly with concentration of Cr (VI) (Figure 

6). Stern-Volmer relation plot (inset Figure 6b) showed a good correlation (R2 = 0.998) giving 

a quenching constant KSV value of 0.01113 (obtained from the slope of the line y = 0.01113x 

+ 0.03897). The limit of detection (LOD) is calculated as follows: LOD = 3/KSV, where  is 

the standard error of the intercept. The LOD obtained value was 0.365 ppm and limit of 

(a) (b)

(c)
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quantification, LOQ = 10/KSV was 1.218 ppm. Emission intensities at 441 nm for the pure 

NCQDs and [NCQDs-Cr6+] solutions (Figure S3) have shown negligible variation when the 

samples were continuously excited at 360 nm for 90 minutes. Further interval measurements 

of [NCQDs- Cr6+] solution revealed just an 8.3% diminishment in emission intensity over a 48 

hour period (see Figure S3). This stability of the respective systems reflects the materials 

suitability as a sensor for Cr (VI) detection.

Given that there was no observed red-shift for the Cr (VI) studies with the NCQDs, contrary to 

that to the findings of the NCQDs pH study, and no observed absorption peak shifts for UV–

Vis spectra of the Cr(VI) and NCQDs mixture compared to Cr (VI) and NCQDs controls, 

suggests a mechanism other than that involving Cr(VI)-NCQD surface interactions. The 

selectivity of the CHFS-synthesised NCQD towards Cr (VI) can be attributed to the Inner Filter 

Effect (IFE). The IFE occurs where there exists a spectral overlap between the absorption bands 

of the chromate (CrO4
2-) and the excitation band and/or emission band of the NCQDs as shown 

in Figure 7. 

Figure 7: The Inner Filter Effect of Chromate (CrO4
2-) representing the spectral overlap 

between the chromate normalised UV-Vis absorption band (red line), N-doped CQD’s 

excitation spectrum (emission wavelength em = 441 nm) (blue line), and the emission spectrum 

(excitation wavelength ext = 360 nm) (black line).
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The excitation spectrum for the NCQDs has two overlapping bands at 326 nm and 358 nm with 

its emission band centred at 441 nm (excitation at 360 nm), whereas the chromate (CrO4
2-) has 

one of its absorption bands centred at 372 nm, with significant overlap of the maximum 

excitation band of the NCQDs. These factors generate an absorptive competition between anion 

units and NCQDs particles inside the solution, moreover, not only is the chromate effectively 

absorbing the radiation at 360 nm necessary for NCQDs to generate the transition to the excited 

state, but it can also absorb emitted light from the NCQDs, translating to a quenching of the 

NCQDs fluorescence. The quenching mechanism, IFE, has been previously reported as an 

effective on-off, rapid and enhanced sensitivity approach to chromium (VI) sensing 33,46.

CONCLUSIONS

In conclusion, a continuous hydrothermal flow synthesis route was developed for the synthesis 

of carbon rich, nitrogen-doped carbon quantum dots starting from citric acid and ammonia as 

precursors. The photoluminescence studies for the NCQDs demonstrated excitation 

independent behaviour with the emission peak at 441 nm due to the diversity of functional 

groups surface coverage from N-doping of the CQDs. Furthermore, we provide the proof of 

principle application that in aqueous solutions the materials display a high selectivity and 

sensitivity for Cr(VI), rendering our materials suitable for environmental applications. The 

materials may also be applied in a spectrum of applications including photovoltaics, bio-

tagging, energy storage and beyond.
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This manuscript describes the first report for Continuous Hydrothermal Flow Synthesis 
(CHFS) process for the synthesis of blue-luminescent N-doped carbon quantum dots exhibiting 
rarely observed excitation independent optical properties. Furthermore, we provide the proof 
of principle application that in aqueous solutions the materials display a high selectivity and 
sensitivity for Cr(VI), rendering our materials suitable for environmental applications.
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