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Since the mid-2000s, perturbation-based balance training has been gaining

interest as an e�cient and e�ective way to prevent falls in older adults. It

has been suggested that this task-specific training approach may present

a paradigm shift in fall prevention. In this review, we discuss key concepts

and common issues and questions regarding perturbation-based balance

training. In doing so, we aim to provide a comprehensive synthesis of the

current evidence on the mechanisms, feasibility and e�cacy of perturbation-

based balance training for researchers and practitioners. We address this in

two sections: “Principles and Mechanisms” and “Implementation in Practice.”

In the first section, definitions, task-specificity, adaptation and retention

mechanisms and the dose-response relationship are discussed. In the second

section, issues related to safety, anxiety, evidence in clinical populations (e.g.,

Parkinson’s disease, stroke), technology and training devices are discussed.

Perturbation-based balance training is a promising approach to fall prevention.

However, several fundamental and applied aspects of the approach need to be

further investigated before it can be widely implemented in clinical practice.
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Introduction

Large mechanical destabilizing disturbances during walking

(such as slips and trips) lead to most falls among community-

dwelling older adults (1–8). Interventions to reduce falls

among older adults and clinical populations with balance

impairment have received much attention in the literature, with

multiple Cochrane reviews on the topic (9–14). Physical exercise

is the most evidence-based approach for preventing falls,

with challenging balance exercise among the most successful

approaches (13, 15, 16). This aligns with the notion of task-

specificity in exercise-based fall prevention (17–24), and the

development of perturbation-based balance training (PBT).

Interest in the use of large mechanical perturbations as

a method of preventing falls has steadily increased since the

mid-2000s. In this period: Pai and Bhatt (18) presented a

framework for using repeated slip perturbations to reduce slip-

related falls; Grabiner et al. (19) presented evidence and theory

on how the task-specific training of limiting trunk motion

during slips and trips might reduce fall risk; Oddsson et al.

(17) presented a balance training programme with a focus on

training specificity, incorporating perturbations; and Mansfield

et al. (25) published the first protocol for an RCT of PBT in

older adults. Two subsequent large trials showed promising

effects of PBT interventions on daily life fall incidence in older

adults (26, 27) and another highlighted the clinical feasibility

of this approach (28). Subsequent reviews and meta-analyses

have further supported these encouraging results (29–33). More

recently, a large, pragmatic RCT conducted in a clinical setting

(34) and a smaller experimental trial (35) also reported positive

fall-related outcomes. In contrast, a recent trial conducted in

individuals with chronic stroke reported inconclusive results

(36). Further RCTs of PBT are currently underway (37–41).

Despite the accumulating research on PBT, there ismuch still

to be learned. Even so, practitioners are open to implementing

PBT (42, 43) and desire more knowledge on the topic (43). In

this review, we discuss some of the key concepts and common

issues and questions around PBT. In doing so, we aim to

provide a comprehensive synthesis of the current evidence

on the mechanisms, feasibility, and efficacy of perturbation-

based balance training for researchers and practitioners. We

address this in two sections: “Principles and Mechanisms” and

“Implementation in Practice.”

Principles and mechanisms

What is PBT?

Various names for the same, or similar, training concepts

to PBT can be found in the literature. These include reactive

balance training, perturbation training, reactive step training

and fall-resisting skills training, and there is not yet clear

consensus on the best terminology. Here, we define PBT as

balance training that uses repeated, externally applied mechanical

perturbations to trigger rapid reactions to regain postural stability

in a safe and controlled environment. The goal of PBT is to

specifically target and improve the ability to recover stability

in destabilizing situations like those that lead to falls in daily

life. To meet this definition of PBT, the training should meet

two key criteria (Figure 1): (1) the training should use external

perturbations that induce a sudden motor response and, (2)

these perturbations should be of sufficient magnitude to induce a

loss of stability that would lead to a fall without a sufficientmotor

response (or use of the safety harness). Biomechanically, a loss

of stability occurs when the position and motion characteristics

of the center of mass exceed certain spatial and temporal

limits relative to the base of support, whereby a fall becomes

imminent without further action (44, 45). For this article and

from a functional standpoint, we use the term balance as an

umbrella term for all mechanisms and skills contributing to

the maintenance of stability, with the term stability referring

to the outcome or state (e.g., mechanically stable/unstable,

fall/no fall).

What is task-specificity in the context of
PBT?

Our criteria for defining training as PBT, described in

What is PBT?, specify that the training should use external

perturbations that induce a sudden response and that are of

sufficient magnitude to induce a loss of stability. In other words,

if the perturbations used do not, (a) require a sudden response

to compensate for the disturbance or, (b) lead to a loss of

stability, we contend they are not sufficiently similar to the

common causes of falls in daily life and are therefore, not

task specific. For example, “internal perturbations” or instability

induced by narrowing one’s base of support or standing on

an unstable wobbly surface are not considered PBT. A second

consideration is that the method of perturbation delivery should

be similar to common perturbations experienced in daily life.

In this regard, pop-up obstacles on a walkway [like those used

by Pavol et al. (46), Pavol et al. (47), Pijnappels et al. (48),

Pijnappels et al. (49), Pijnappels et al. (50), Okubo et al. (51),

Okubo et al. (52)] more closely simulate real life trips than

a treadmill belt acceleration or deceleration [like those used

by Sessoms et al. (53), Owings et al. (54), Grabiner et al.

(55), McCrum et al. (56), for example], with cable-trip systems

[e.g., as in Senden et al. (57), McCrum et al. (58) or Epro

et al. (59)] lying in-between. While some studies suggest that

the kinematics of the recovery actions triggered by treadmill-

delivered perturbations are similar to more ecologically valid

perturbations (53, 54), another study that directly compared

treadmill belt accelerations with obstacle-induced trips while

walking reported significant differences in trunk and stepping
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FIGURE 1

The two key criteria for perturbation-based balance training.

kinematics and their adaptations (60). As discussed in sections

How does PBT lead to the retention and generalization of fall-

resisting skills? and What technology is required for PBT?,

the degree of similarity between the training and real-life trips

and slips may have implications for the generalizability of PBT

training approaches.

A third aspect of task specificity relates to whether

perturbations are applied during standing, walking or other

common movements (i.e., sit-to-stand transitions). As most

falls in community-dwelling older adults occur during walking

(1–6, 8, 61), this may be the most relevant task for PBT

training for this group. However, frail older people, such as

those living in residential care facilities, often experience falls

during transitions (62–65), thus may benefit from standing

and sit-to-stand perturbation training. Finally, due to the task-

specific nature of PBT, training benefits may be restricted to

improvements in dynamic and perturbed balance tasks with

little or no transfer to less dynamic / static balance tasks (66–

68). Some examples of various task-specific elements to consider

are shown in Figure 2.

How does PBT di�er from other
task-specific approaches to fall
prevention?

Task-specific walking or balance training, even in the

narrowed context of fall prevention, may take many forms.

In addition to PBT these include: volitional step training with

responses to various stepping targets, cues and constraints [for a

review see: Okubo et al. (32)]; gait adaptability training using

virtual or real obstacles [for example tasks see Geerse et al.

(69) or Timmermans et al. (70)]; adapted forms of agility

training [e.g., Donath et al. (71) and Lichtenstein et al. (72)];

and training with ongoing disturbances, simulating situations

like uneven ground (73–75). Our criteria for PBT described

above, however, distinguish PBT from these complementary

approaches, in that regardless of how the perturbation is

delivered (trip, slip, push, pull, to the trunk, to the foot,

etc.), the participant must quickly identify and respond to a

‘sudden’ perturbation. In contrast, in the other approaches,

changes in the environment can be perceived prior to contact

or the response is to a cue separate from a loss of stability.

During PBT, the “cue” is destabilization, detected by the sensory

systems, which triggers rapid stability-recovery responses. PBT

facilitates sensorimotor adaptations in these stability-recovery

responses through trial-and-error practice. Coupled with the

criteria that PBT triggers a sudden response is the requirement

that the perturbation causes a loss of stability. This element is

conceptually similar to the definition of “challenging balance

training” in previous reviews [e.g., balance training including

two or three of the following criteria: movement of the center

of mass; narrowing of the base of support; minimizing upper

limb support (76)]. However, during PBT, usually conducted

with a safety harness, participants’ stability can and should

be further challenged so that destabilization always occurs.

This is also distinct from volitional step training and gait

adaptability training, where appropriate stepping behavior to

avoid stability loss is trained. Practically, in PBT, this sudden

response following a loss of stability during standing or walking

usually manifests as reactive stepping or reaching (when an

appropriate support is available), as described by Maki and

McIlroy (77) as a change-in-support strategy. If participants
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FIGURE 2

Examples of various task-specific elements to consider in PBT.

cannot retain their stability following a perturbation, they are

caught by a safety harness or therapist. Such events form part

of the sensorimotor skill learning, although whether complete

recovery failure is necessary for successful intervention is

currently unclear. There are also practical considerations that

may affect how perturbation intensities leading to these failures

are administered. These issues are addressed in sections What

is the dose-response relationship for PBT?, How can anxiety

be alleviated during PBT? and What is the evidence for PBT

in clinical populations. Finally, while muscle strength training

can’t be considered a task-specific fall prevention intervention,

strength training targeting functionally relevant muscle groups

and actions could potentially be used in conjunction with PBT.

One RCT (35) reported that PBT combined with hip muscle

strengthening may further improve stepping performance and

reduce daily life falls compared to PBT alone or strength training

alone. This may suggest possible synergistic benefits of using

PBT and targeted strengthening approaches. However, another

study found no synergistic effects of PBT and training of plantar

flexor muscles stability following trip perturbations (59), thus

further investigation into such combined approaches is required.

What are the mechanisms for PBT
improving fall-resisting skills?

Early research demonstrated that a single session of

repeated-perturbations (such as slip- or trip-like perturbations)

results in acquisition of fall-resisting skills through implicit

learning (without instruction) (78–81) across age-groups (young

and old) (78) and tasks (standing, sit-to-stand transitions and

walking) (82). In such single training sessions, the reduction

of “in-task” falls can occur rapidly, i.e., in three–five trials

(83). These improvements in recovery are associated with rapid

improvements in both the feedforward/proactive control of

stability (anterior shift of the center of mas) (83, 84) and the

provision of proper limb support against collapse (78, 85–87),

reflected in the form of improved recovery stepping responses,

both during stance and walking perturbations. Depending on

the perturbation type, the control of stability and limb support is

achieved via changes in kinematic parameters such as recovery

step length, trunk angle and velocity resulting from changes in

neuromuscular output (88–90).

Motor adaptations, like those induced by PBT, may be

predictive or reactive in nature (91–94). Predictive adaptation

to a perturbation utilizes prior experience and knowledge of the

upcoming perturbation in a feedforward manner to proactively

adjust locomotor control and output (e.g., modifications of the

base of support and/or center of mass position). Predictive

adaptation can reduce the impact of a perturbation, reducing

the magnitude of the required balance recovery response (95).

Reactive adaptation, conversely, is a change in the motor

responses to an unexpected perturbation. Reactive adaptation

can manifest as: earlier detection of the perturbation or stability

loss and faster stability recovery initiation (96, 97); optimization

ofmotor programmes for stability recovery including facilitation

and suppression of functionally relevant and irrelevant reflexes

and reactions, respectively (98–100); and altered coordination

in skeletal (especially weight bearing) muscles for rapid motor

actions (18, 88, 94, 101–103). As discussed in section How

does PBT differ from other task-specific approaches to fall

prevention?, only PBT aims to improve the reactive stability

Frontiers in Sports andActive Living 04 frontiersin.org

https://doi.org/10.3389/fspor.2022.1015394
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org


McCrum et al. 10.3389/fspor.2022.1015394

recovery responses to destabilizing perturbations, as opposed to

other task-specific approaches (e.g., gait adaptability training)

that target predictive adaptations only. However, predictive

adaptation, to some extent, is likely inherent in most PBT

programmes (92). As such, PBT programmes should consider,

and possibly monitor and account for, the role and influence

of predictive adaptation, since it might reduce the impact

of the administered perturbations and reduce generalization

effects (31, 104, 105). Indeed, it has been demonstrated

that perturbation impact might be significantly reduced if

participants are aware they might encounter an unspecified

hazard that may perturb their balance (105–107). Okubo

et al. (108) also found that predictive adaptations are less

readily observed when perturbation type, location and timing

are unpredictable. However, other studies have shown that

awareness of upcoming perturbations (109) or even observation

training (watching videos of the perturbation task) (110)

can lead to predictive adaptations but their effects were not

comparable with those from actual physical experience of

the perturbations.

How does PBT lead to the retention and
generalization of fall-resisting skills?

Promising results from early studies using overground slip

perturbation training revealed that the skills acquired during

a single repeated-slip training session can be retained for

up to a year by developing protocols incorporating random

practice [contextual interference (111–113)] and overlearning

[continued task practice after reaching a success criterion (114–

116)] via high intensity training (24 repeated slips) among

healthy (young and older) adults (86, 117). Several other studies

have subsequently shown good retention after exposure to

repeated perturbations in healthy young adults (84, 86, 118,

119), older adults (59, 119), people with stroke (120–123) and

Parkinson’s disease (124–126). In terms of training dose, studies

have included single sessions (117–119, 124, 127) and multiple

sessions (59, 122, 123, 128) and retention intervals from as short

as 30min to up to 1.5 years post intervention.

A vital function of the central nervous system is its ability to

apply motor adaptations obtained in one situation to a different

situation. The central nervous system can generalize response

adaptations to similar perturbations to an untrained limb (56,

129–131); untrained tasks [e.g., gait-slip to sit-to-stand slip (82)];

untrained contexts [e.g., moveable platform to vinyl floor (132–

135)]; and to different perturbation types [slips to trips (136) and

waist pull perturbations to treadmill slips (137), though minor

interference has also been reported (81, 136)]. Generalization

between contexts (treadmill to overground slips) may also be

retained over longer periods (138). Based on evidence from

locomotor training studies it is postulated that when an acquired

internal representation is more general (i.e., not specific to

certain effectors, environments or tasks) more motor transfer

will ensue (139–143). This postulation seems applicable for PBT

as well for fall prevention.

In summary, most reports indicate a positive transfer

of adaptations between different conditions of the same

perturbation, i.e., from treadmill gait-slips to a ‘novel’

overground slip, or from training gait-slips on a moveable

platform to an untrained slip on an oily surface (97, 133,

135, 144–146). However, several recent investigations have

shown that improved balance skills resulting from repeated

exposure to trip-like perturbations does not transfer to the

recovery response to a similar large mechanical perturbation

in the anterior direction (60, 119, 147). Critical components

in neuromotor control (e.g., module composition and time-

coordinated recruitment of motor modules) due to different

neuromechanical task constraints (e.g., muscle activity patterns

and body dynamics) may discriminate between perturbation

types, possibly explaining the discrepancy between findings for

generalization of adaptations from repeated gait perturbation

exposure. Thus, although generalization is possible within the

human stability control system, it may require a certain degree

of similarity, if not consistency, between tasks which may

be determined by factors other than shared limb mechanics.

A recent study investigated potential factors limiting inter-

task generalization within the stability control system (147).

Differences were detected in the synergistic spatiotemporal

organization of muscle activations indicating a diverging

modular response to different perturbations, seemingly covered

by the same main balance skill (i.e., rapid stepping). Hence, it

may be argued that the transfer of adaptations in stability control

between different balance tasks may be influenced by differences

in muscle synergies in the perturbation recovery responses.

Thus, while generalization of adaptation is in principle possible

within the human stability control system, it seems limited

if neuromotor factors discriminate perturbation responses in

different motor tasks e.g., discrepancies in the spatiotemporal

organization of the motor system between balance tasks (147).

What is the dose-response relationship
for PBT?

For a training protocol to be clinically accepted and

implemented, the training dose-response relationship in

addition to the training effect needs to be established (21, 148).

A training dose can be varied by altering the intensity of the

perturbation (making it more challenging), the amount of

practice per session (increasing the number of perturbations) or

the number of training sessions provided (148, 149).

For overground slip perturbations, earlier studies showed

that a high practice dose (in terms of intensity) provided in
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a single session led to significant retention over the longer-

term (4-6 months) (117, 128). Increasing the session frequency

in terms of providing a booster dose did not lead to greater

retention in younger adults (86, 150) but did so in older adults

(128). However, increasing intensity, frequency and duration of

such protocols could also have disadvantages such as activity-

induced fatigue and reduced participation, particularly in certain

clinical populations with significant health issues and balance

impairments (151, 152). Another alternative for those unable

to tolerate a high dose within a single session is to provide

more sessions with fewer training trials or min per session (152).

For example, studies have shown that a single slip exposure

administered in separate, frequent sessions can induce lasting

effects within the same environment (i.e., laboratory) (80, 150).

No studies have examined dose effects for overground trip

perturbations (148).

Several studies involving young adults, older adults and

people with stroke have used different practice durations per

session and number of sessions in their studies using treadmill

belt perturbations. The number of trials per session have ranged

from 11 to 80 and number of sessions have ranged from 1 to 24

(144, 145, 149, 153, 154). Retention periods have ranged from

30min (144, 153, 155) to 6 months (138, 154).

There is a clear need for further dose-response studies

(in particular, for the more clinically applicable treadmill-

based protocols) to examine retention and generalization of

the adaptations made, as the optimal dose for within-session

or within-training programme adaptation may not necessarily

be the same as the optimal dose for long term retention and

generalization. Further, most studies have used only a single type

of perturbation direction which may result in the limited real-

life generalization observed. More studies are needed to examine

the effect of bidirectional or multidirectional perturbation

training on longer-term retention and generalization. Lastly,

the type of perturbation training that yields maximum efficacy

also remains unknown. These gaps are important to fill to

provide recommendations to clinicians and develop clinical

practice guidelines.

Implementation in practice

What are the primary safety issues in
PBT?

PBT requires additional safety measures compared to

conventional balance training. In this regard, safety harnesses

are often used when administering large external perturbations.

The benefit of a safety harness is that the participant can move

in an almost unrestricted manner, and the therapist can focus

on training delivery, with the assurance that any unsuccessful

balance recovery will be safely arrested by the harness. Many

different options are available, ranging from a fixed harness

which can be attached to the ceiling in the middle of the

exercise room or above a treadmill, or ceiling rail system

harnesses which enable the wearer to move freely through a

room. A portable/movable support frame is another option

if appropriately certified for supporting a participant’s body

weight and does not interfere with reactive stepping responses.

Harnesses also need to be well-fitted and comfortable to prevent

harness-induced bruising and soreness after training.

Few adverse events from PBT training have been reported in

the literature. Most studies report no or relatively minor adverse

events such as soreness at the contact points between the body

and the harness or muscle soreness (156–160). In 12 RCTs (20,

36, 52, 97, 122, 159, 161–165) summarized by Mansfield et al.

(166), pain and delayed onset muscle soreness were the most

commonly reported adverse events (16.4% of participants), with

no severe adverse events reported in these trials. One other study

reported 6 mild to moderate adverse events related to lateral

waist-pull perturbations, including knee pain and groin injury,

although the authors stated that this perturbation approach was

generally well tolerated by the participants (35). Muscle soreness

during or after training cannot be entirely prevented but may be

decreased by adjusting training intensity for each individual. If

an individual experiences a fall into the safety harness, follow-

up assistance is often required to help them regain their stability

and composure.

When working with less intensive external perturbations,

such as therapist-applied perturbations, training is possible

without additional safety equipment. However, it is crucial that

both the therapist and patient know their limits and having a

second therapist present to provide stability support is advised.

Transfer belts can also assist the therapist apply perturbations as

well as support their patients as required.

How can anxiety be alleviated during
PBT?

Anxiety and fear about upcoming perturbations and/or

falling is a practical challenge in PBT (167). In their overview

of 12 RCTs of PBT, Mansfield et al. (166) noted that about

5% of the included participants reported PBT-related fear or

anxiety (some of which withdrew for this reason) and a more

recent meta-analysis confirms that anxiety and fear occur

more frequently in PBT than in control interventions (33).

Anxiety during training is higher in older adults compared to

younger adults and increases with greater uncertainty about

the upcoming perturbations (51). In one study, older adults

reported higher anxiety during PBT on a treadmill compared

to PBT on an overground walkway (60). The authors suggest

that this higher anxiety may have been due to unfamiliarity

with treadmill walking and the elevated surface of the treadmill.

Anxiety is higher in those with poor reactive balance, but

heightened anxiety can also impair reactive balance control via

delayed, more rigid and/or (poorly adapted) startle responses
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(168–170), and thus should be minimized for a better training

outcome. Monitoring of anxiety levels using a custom 5-

point scale and adjustments of training intensity (e.g., 5–10%

reduction in gait speed) have been effective in easing anxiety

during reactive balance training using overground trips and

slips (52). Interviews with participants who underwent PBT

using an instrumented treadmill system (171) revealed that

while some participants experienced anxiety during training,

most described feeling a “good kind of nervousness” during

training, rather than anxiety. Participants that reported being

initially anxious often found that their anxiety diminished

or resolved after the first training session when they had

experienced PBT and were confident they could recover from

the perturbations, a finding also reported by Jagroop et al.

(167). The presence of safety equipment (especially a safety

harness), and ensuring participants are heard and informed

during the training sessions have been identified as important

factors that mitigate anxiety (171). In cases where sufficiently

large destabilizing perturbations increase anxiety and possibly

prompt withdrawal, it may be prudent to administer training

intensities that are less threatening until anxiety is reduced. This

may reduce the effectiveness of the initial training period and

may not qualify as PBT as per our definition but may retain

patients in training and allow them to becomemore comfortable

with the training regime and take part in higher intensity PBT in

subsequent trials. Uncertainty about the timing, location, type

or direction of perturbations (in situations in which these are

modifiable options) can also be gradually increased congruent

with the comfort and performance levels of participants.

What is the evidence for PBT in clinical
populations?

To date, PBT has been studied primarily in healthy

community-dwelling older adults. However, there is also

emerging evidence for the effectiveness of PBT in ‘high risk’

older adults (for example assisted living residents, or older adults

with a history of falls or balance problems), and people with

Parkinson’s disease, stroke and multiple sclerosis (121–123, 156,

158, 159, 172–176). PBT trials have also been conducted in

people with chronic obstructive pulmonary disorder (152) and

incomplete spinal cord injury (165), but due to limited findings

will not be discussed in detail in this article. Previous reviews

(29, 30) showed significant fall reductions in community-

dwelling older adults, frail/high-risk older adults and people

with Parkinson’s disease and stroke following PBT. PBT has also

been found to improve perturbation recovery measures (156,

159, 160, 177) and some studies have reported improvements in

clinical balance tests such as the Berg Balance Scale in people

with Parkinson’s disease (173, 174, 178). However, while there

appears to be interest in the potential for PBT to improve a

broad range of gait and balance measures in clinical populations

[see reviews of Hulzinga et al. (179), Coelho et al. (180)],

as outlined in section What is task-specificity in the context

of PBT? and How does PBT differ from other task-specific

approaches to fall prevention?, the effects do not necessarily

generalize to less-reactive balance and gait measures. To our

knowledge, no current studies in clinical populations have

reported non-responders in terms of adaptation of the stability

recovery response to PBT. However, on an individual level,

those who cannot tolerate being exposed to perturbations (due

to, for example, anxiety or pain) may not be able to benefit

from PBT immediately, and perhaps initially require more basic

balance training.

There are some important factors to consider before

applying PBT in less able populations. First, decreasing training

intensity to an acceptable level for the participant maymean that

the total training volume is increased to compensate. Second,

frailer people may require a walking aid in daily life. To our

knowledge, no studies have focused on the feasibility of using

walking aids during PBT, but we hypothesize that the use of a

full-body harness with partial bodyweight support may enable

PBT for these people. Future studies may focus on this gap

in knowledge.

What technology is required for PBT?

Several mechanical perturbation systems can evoke the

balance disturbances required for PBT and trigger error-driven

motor learning in the control of postural balance. As there is

a growing body of evidence suggesting both the efficacy and

efficiency of PBT for improving fall resisting skills, there is

also a need to further develop devices which are capable of

mimicking disturbances experienced during daily-life mobility

in clinical settings.

An ideal system for training reactive balance recovery should

be capable of applying unpredictable mechanical perturbations

of different magnitudes and directions and/or types at pre-

specified timepoints that elicit a loss of balance and thus mimic

near-fall situations in a safe, controllable environment (31, 181,

182). This system should also be able to measure the participant’s

stability and stability recovery to facilitate assessment and

personalized training.

Several perturbation systems have been used to disturb

stability during walking, including floor obstacles in both

overground (46, 51, 113, 183–186) and treadmill setups (181,

187), unexpected surface compliance changes [overground;

(188)], overground slips or surface translations (133, 189,

190), cable or rope trips both in overground (191, 192)

and treadmill setups (57, 88, 193–196), as well treadmill-

based belt speed changes (53, 55, 61, 118, 197–199), platform

translations or tilts (200) and waist/torso pushes and pulls

(137, 201–204). Several commercially available systems are
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also available (e.g., BalanceTutor, ActiveStep, C-Mill React).

It is important to highlight that no system is without its

limitations. For example, overground setups suffer from the

limitation of limited walkway length and that the location of the

perturbations may not be entirely unpredictable (31), though

this limitation can be, at least partly, addressed by including

multiple possible perturbation locations [see, for example,

(108)]. The obvious advantage of the treadmill in comparison to

such overground setups is that predicting when a perturbation

will be applied is more difficult, as there is no location-based

reference point (31), which ensures that predictive adjustments

in in anticipation of perturbations are reduced [though not

necessarily completely absent (123, 155)]. However, walking

on a treadmill can provide additional challenges in some

populations at increased fall risk, due to lack of familiarity

and the requirement to maintain a specific speed [walking

speed can be instantaneously adjusted in an overground setup

but maintaining it provides an additional challenge during

perturbed treadmill walking (205)]. Another inherent limitation

in some setups is that the perturbations themselves may not

strictly mimic common causes of falls like slips and trips (60)

despite the subsequent recovery mechanics being suggested to

be similar (53, 54) (see also Figure 2 in section What is task-

specificity in the context of PBT?). A recent study reported that

adaptations observed with repeated treadmill belt accelerations

did not transfer to obstacle-induced trips while walking (60).

However, it is not currently known if and how this affects

transfer to daily life situations. Another factor that should be

considered is the ease with which PBT dose can be altered.

The number of perturbations and training sessions can be

easily manipulated but not all systems can provide a wide

range of perturbation magnitudes which is critical to ensure

that participants are safely and sufficiently destabilized, even

late in their training. This is of particular relevance for the

conceptualization of fall prevention interventions in clinical

settings because the hypothesis of a non-linear dose-response

relationship (148) implies that adaptation may not be directly

related to the applied practice dose and that a dose threshold

exists beyond which any additional stimuli may not induce

further changes.

In summary, based on current evidence, we believe that

the primary factors for a successful PBT system are that it can;

(a) administer perturbations that are difficult for participants

to predict (in time of onset but perhaps also in body location,

mode or magnitude of application); (b) suddenly destabilize

participants with these perturbations; and (c) easily adjust the

magnitude of perturbations.

Despite the potential advantage of using such systems to

destabilize participants and create near fall situations, the costs

associated with the equipment, as well as the expertise required

to operate PBT systems may hinder their application in clinical

settings. Thus, there is a need to develop alternative, feasible PBT

programmes that do not require these devices. Therapist-applied

perturbations, as described above, are the natural alternative and

can be easily applied if appropriate safety measures are followed.

However, managing the training and perturbation dosage may

be problematic due to the perturbations being more predictable

and the intensity of therapist-applied perturbations being less

precise. Such limitations, however, do not discount the potential

effectiveness of this approach when they constitute the only

feasible option in at least the short term. For a useful resource

on the therapist-applied perturbation approach, we refer readers

to Mansfield et al. (166).

Is PBT appropriate in at-home, group or
semi-supervised settings?

The application of PBT in home or group settings has been

little investigated to date. Clearly, it is not safe to apply large

external perturbations, with the possibility of an unsuccessful

balance recovery in the absence of a safety harness. Smaller

perturbations however, such as therapist-applied perturbations,

may be applied in home and group settings. For example,

Oddsson et al. (17) successfully applied perturbations in a group

setting through training in couples with partner or therapist-

applied perturbations.

As discussed above, it is crucial the participant feels safe

during training, and everyone involved know their limits.

Portable safety equipment, such as a transfer belts, can assist

the therapist apply the perturbations as well as support patients

during training. However, if an appropriate training stimulus

cannot be reached this way, transferring the training to a

one-on-one basis, or using more specific equipment should

be considered. Future studies are necessary to elucidate the

feasibility of PBT in a group or semi-supervised setting.

Recommendations

Taking the previous sections into account, several

recommendations for both research and clinical application of

perturbation-based balance training can be made.

Research

Studies are required to:

• Determine optimal training doses and the potential effects

of repeated training or booster sessions.

• Identify the relative contribution of different aspects

of training dose (e.g., perturbation impact, perturbation

training intensity (displacement, velocity, acceleration

settings), perturbation number, training session number) to

the training effects.
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• Compare the effects of different laboratory-based PBT

methods with respect to stability outcomes and daily life

fall prevention.

• Further elucidate and compare the criteria by which

adaptations gained by training one type of perturbation

transfer to other similar perturbations (e.g., between legs,

a movable plate to a slippery floor; see How does PBT

lead to the retention and generalization of fall-resisting

skills? above).

Clinical application

There is a need to:

• Develop effective, affordable and clinically feasible methods

for applying perturbations.

• Conduct feasibility studies to explore opportunities and

barriers for implementation.

• Determine strategies to alleviate anxiety in participants

undertaking PBT to ensure clinical feasibility.

• Identify which clinical populations with balance

impairment benefit from PBT

• Elucidate PBT dose-response relationships in

these populations.

Finally, it is worth highlighting that there have been

only a few randomized controlled trials with sample sizes

large enough to have statistical power to evaluate the role

of PBT in reducing daily life falls. Lurie et al. (34) with

their multicenter pragmatic (non-standardized protocol based

on therapist judgement) trial is the largest. This 12-month

trial included 187 participants (of 253 allocated) who received

PBT and 190 (of 253 allocated) participants who received

standard balance training. Once some of the issues relating

to training and practice mentioned above have been further

elucidated, we recommend large, definitive trials following

CONSORT guidelines are conducted. In the meantime, we

recommend that studies on PBT collect and report prospective

falls data as secondary outcomes to assist future meta-analyses.

Template forms for collecting falls information following

recommendations by Lamb et al. (206) and Lord et al. (207)

can be downloaded at http://doi.org/10.17605/OSF.IO/HMJEF

(208).

Conclusions

Perturbation-based balance training is a promising

approach to fall prevention. This task-specific training of

balance using repeated exposure to sudden perturbations

may present a paradigm shifting approach that may improve

effectiveness and efficiency of a fall prevention exercise

intervention. However, several fundamental and applied

aspects of the approach need to be further investigated

before this approach can be widely implemented in

clinical practice.
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