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Large rotating machinery, such as centrifugal gas compressors and pumps, are widely applied as crucial components in the petrochemical industries. To enable in-time and effective maintenance of these machines, the concept of a health indicator is arousing great interest.
A suitable health indicator indicates the overall health of the machinery and it is closely related to maintenance strategies and decision-making. It can be obtained either from near misses and incident data, or from real-time measured data. However, the existing health indicators have some limitations. On the one hand, the near misses and incident data may have been obtained from similar systems, reflecting population characteristics but not fully accounting for the individual features of the target system. On the other hand, the existing health indicators that use condition monitoring data, mainly focused on detecting incipient faults, and usually do not include financial cost factors when calculating the indicators. Therefore, there is the requirement to develop a single system "Health Indicator", that can show the health condition of a system in real-time, as well as the likely financial loss incurred when a fault is detected in the system, to assist operators on maintenance decision making. This project has developed such an integrated health indicator for rotating machinery. 
The integrated health indicator described in this thesis is extracted from a novel condition-based risk assessment strategy, which can be regarded as an integration of risk-based maintenance with improved conventional condition-based maintenance, with financial factors taken into account. The value of the health indicator is that it directly illustrates the risk to the system (or equipment), including likely financial loss, which makes it easier for operators to select the optimal time for maintenance or set alarm thresholds given the specific conditions in their companies or plants.
This thesis provides a guide to set up an integrated maintenance model for large rotating machinery. It provides a useful reference for researchers working on condition-based fault detection and dynamic risk-based maintenance.
Keywords:	
Health indicator, risk assessment, condition-based maintenance, cost-effective, fault detection, compressor, pump. 
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[bookmark: _Toc403570352][bookmark: _Toc452300186][bookmark: _Toc465934441][bookmark: _Toc81553242]
Introduction
                   										 

Large rotating machines, such as compressors and pumps, are widely used in chemical and petrochemical processes, aviation, transportation, and other fields of engineering. These machines usually operate under harsh conditions, such as high loads, pressure, or/and temperature. An undetected failure of a single component may lead to a catastrophic collapse of the entire system, resulting in economic losses, reduced productivity and reliability, and even injury and death of personnel. Therefore, it is necessary to detect a fault at an incipient stage, to find a proper way to assess the health condition of the system in order to determine the optimum maintenance schedule so that operators can not only prevent an early fault deteriorating to system failure, but also to fully utilise the remaining life of the machine, minimise maintenance cost and financial loss, and maximise profits.
This chapter describes the research motivations and objectives, drawing on the importance of maintenance problems experienced by the sponsor (Shell Global Solutions). The chapter presents the aim and objectives of the research also ends by briefly outlining the contents of the individual chapters comprising the thesis.


[bookmark: _Toc452300187][bookmark: _Toc465934442][bookmark: _Toc529370766][bookmark: _Toc531629328][bookmark: _Toc81553243]Importance of maintenance
In today's industries, machines are ever more sophisticated, and the manufacturing processes highly automated, dramatically improving productivity as well as product quality, whilst reducing the human resources needed. However, one of the main the disadvantage of sophisticated machines is that an accidental failure of a single component may damage not only the machine of which it is part, but may also affect related equipment, or even lead to a system failure. In some critical industrial applications, system failures can result in severe consequences, including explosions, personal injury, and release of toxic substances.
For example, in the chemical field, two of the worst ever chemical plant accidents, namely Union Carbide's Bhopal accident and Occidental Petroleum's Piper Alpha accident (see Figure 1.1), both of which occurred in the 1980s, caused US$470 million and more than US$2 billion financial loss, respectively [1]. The Bhopal disaster in India was caused by the poor condition of the valves, lines, and methyl isocyanate related safety systems, leading to toxic gas leakage. The Occidental Petroleum's Piper Alpha accident was caused by condensate leakage from a pump's pressure safety valve. In June of 2000, gas leakage from pipelines resulted in an explosion at the Kuwait Petrochemical's Mina Al-Ahmedi refinery, with a financial loss of around US$100 million [1].
[image: ]
[bookmark: _Ref68101416][bookmark: _Toc81553324]Figure 1.1 The smoke reached hundreds of feet above Piper Alpha [2]
Regarding rail transportation, on 19th Oct 2007, wheel-bearings failure caused a derailment (see Figure 1.2) in Huntly, New Zealand [3]. The owners of the train (Toll New Zealand) and those responsible for track maintenance (Ontrack) indicated the direct costs for the derailment could be about US$115,000. However, the New Zealand transport accident commission claimed that these costs were far too conservative, since it did not include loss of revenue from train cancellations during the period of line closures, nor economic impact of the closure of the adjoining State Highway One. In the eight-year period between 2002 and 2010 in New Zealand, wheel-bearing failures caused 7% to 8% (27 in total) of all mainline derailments in New Zealand [3].
[image: ]
[bookmark: _Ref7630695][bookmark: _Toc81553325]Figure 1.2 Huntly derailment site [3]
In 2015, a 100 m tall wind turbine, worth more than US$2.76 million, buckled and collapsed on a mountainside in Northern Ireland (see Figure 1.3) [4]. The turbine was one of eight at the site. Each of them with a nominal power-generating capacity of 2.5 megawatts. However, due to the collapse of the one wind turbine, the remaining seven were shut down for safety investigations.
[image: https://secure.i.telegraph.co.uk/multimedia/archive/03153/turbine-1_3153748c.jpg]
[bookmark: _Ref7629647][bookmark: _Toc81553326]Figure 1.3 A wind turbine which collapsed at Screggagh wind farm [4]
Another example, a Boeing 767-323ER flying from Chicago to Miami in 2016, suffered an uncontained engine failure in one of its engines during take-off, resulting in a large fire, which destroyed the outer right wing (see Figure 1.4). The accident caused 21 minor injuries [5]. 
[image: https://cdn.aviation-safety.net/photos/accidents/20161028-2-C-6.jpg]
[bookmark: _Ref7631560][bookmark: _Toc81553327]Figure 1.4 Boeing 767-323ER suffered an uncontained engine failure in 2016 [6]
More recently, a Boeing 737-700 flying from New York to Dallas in 2018, suffered an uncontained engine failure during its initial climb away from the airport, resulting in a puncture to the left side of the fuselage, a loss of cabin pressure and damage to the wing and empennage (see Figure 1.5). The accident resulted in one passenger death, eight injuries, and substantial damage to the aircraft [7]. 
[image: https://cdn.aviation-safety.net/photos/accidents/20180417-0-C-1.jpg]
[bookmark: _Ref7631588][bookmark: _Toc81553328]Figure 1.5 Boeing 737-700 suffered an uncontained engine failure in 2018 [8]
Although catastrophes and disasters such as those mentioned above may be infrequent, minor accidents are quite common and occur on a day-to-day basis. These can also result in occupational injury, illness, and cost billions of dollars every year [9]. Which confirms the necessity of early fault detection and in-time maintenance in manufacturing operations, sustaining the reliability and availability of production equipment, and further improving product quality and productivity. 
The frequency and duration of maintenance operations should be such as to minimise production losses caused by machine downtime. It has been reported that the cost of maintenance contributes to a large part of the total operating and production cost in capital-intensive industries. For example, maintenance cost as a percentage of total value-added could be between 20-50% for mining, 15-25% for primary metals and 3-15% for process and manufacturing industries [10]. In practice, when a machine is classified as out-of-date due to the failure rate or safety considerations, it is replaced [11]. In many cases, that meant all its components are replaced even though they still have a potential service life. It is estimated that such machine replacement costs $1 trillion a year, despite the fact that they potentially had service life remaining [12].
Consequently, from corrective maintenance, time-based maintenance to CBM, manufacturers are continuously trying to find more sophisticated maintenance strategies to enhance plant performance, maximise the safety of the plant whilst minimising the operational costs and extending the life of industrial machines.
[bookmark: _Toc529370771][bookmark: _Toc531629333][bookmark: _Ref7428579][bookmark: _Toc81553244]Research motivation and objectives
[bookmark: _Hlk505377807][bookmark: OLE_LINK188]The sponsor of this project (Shell Global Solutions) is one of the world's largest petrochemical companies, has a vast fleet of rotating equipment operating in their refineries located worldwide. The condition monitoring systems that are applied in their refineries, routinely collect long-term continuous operating data by various sensors mounted on crucial equipment. 
The current fault diagnostic system detects a fault by checking the value of the measurements against their given thresholds. When a measurement exceeds a threshold, an alarm is generated, depending to the alarm the operators make a judgement on the fault type and schedule inspection and maintenance time. In addition to that, time-based maintenance strategies are also widely applied in each plant.
However, the fault diagnostic systems employed in the refineries lack an integrated indicator for each piece of equipment to assess its risk and health status. Instead, from the dataset made available to us, it was found that each measurement has four thresholds, which are 'HIHI' (measurements are extremely higher than normal), 'HI' (higher than normal value), 'LO' (lower than normal value) and 'LOLO' (extremely lower than normal value). Because it lacks an integrated indicator for each item of equipment, it is possible for the online CBM system to sound a large number of alarms at one time, making it confusing for the operators to decide the best time to conduct maintenance and what to prioritise. In addition, the installed condition monitoring and maintenance system does not take cost factors into consideration. Thus, the aim of this project is to develop a single system-wide health indicator to assess the health condition of the equipment that considers both the dynamic risk to the system and financial factors. 
The specific objectives of this work are:
[bookmark: _Hlk80278331]Objective one: Develop an effective fault detection model, which can detect anomalies at its incipient stage in the system via condition monitoring data captured from industrial gas compressors and pumps.
Objective two: Develop a probability of fault (POF) model based on the selected fault detection model (Objective one) to describe the degradation of the system.
Objective three: Develop a financial loss model to describe the consequences of faults in the system. Financial data collected from the operational sector is used in the proposed model.
Objective four: Develop an integrated system health indicator for rotating machinery considering the POF model (Objective two) and the financial model (Objective three). The indicator is able to alert the operators on any detected fault and suggest a proper maintenance time to minimize the operational and maintenance costs.


[bookmark: _Toc79956179][bookmark: _Toc80053168][bookmark: _Toc80147344][bookmark: _Toc80304886][bookmark: _Toc80396016][bookmark: _Toc81542227][bookmark: _Toc79956180][bookmark: _Toc80053169][bookmark: _Toc80147345][bookmark: _Toc80304887][bookmark: _Toc80396017][bookmark: _Toc81542228][bookmark: _Toc79956181][bookmark: _Toc80053170][bookmark: _Toc80147346][bookmark: _Toc80304888][bookmark: _Toc80396018][bookmark: _Toc81542229][bookmark: _Toc79956182][bookmark: _Toc80053171][bookmark: _Toc80147347][bookmark: _Toc80304889][bookmark: _Toc80396019][bookmark: _Toc81542230][bookmark: _Toc79956183][bookmark: _Toc80053172][bookmark: _Toc80147348][bookmark: _Toc80304890][bookmark: _Toc80396020][bookmark: _Toc81542231][bookmark: _Toc79956184][bookmark: _Toc80053173][bookmark: _Toc80147349][bookmark: _Toc80304891][bookmark: _Toc80396021][bookmark: _Toc81542232][bookmark: _Toc529370772][bookmark: _Toc531629334][bookmark: _Toc81553245]Thesis Outline
[image: ]
[bookmark: _Ref529369748][bookmark: _Toc531538331][bookmark: _Toc81553329]Figure 1.6 Thesis structure
The main structure of the thesis is outlined in Figure 1.6. In Chapter 2, the state-of-the-art maintenance techniques and fault detection methods for rotating machines are reviewed, and the health indicator(s) for each maintenance strategy are described and compared. The theory of condition-based risk assessment is introduced as a cost-effective maintenance strategy.
Chapter 3 presents a brief introduction of the pump and multi-stage compressor that the data was obtained. The raw industrial pump and compressor data has missing values, outliers, and downtimes. These can produce inaccuracies in the machine learning models and so data has been pre-processed to obtain clean data. 
In Chapter 4, several data-driven fault detection methods are compared (PCA, NARX, and SAE) that are effective for analysis of multi-variable condition-monitoring data. Fault isolation is achieved by calculating reconstruction-based contribution and presented on a 2D contribution map. Variables with larger contributions are responsible for the fault. Fault isolation can help to determine the root cause of the fault and provide decision support for operators to carry out timely adjustments and perform maintenance if necessary.
In Chapter 5, an integrated health indicator is proposed to improve the conventional condition-based maintenance strategy for rotating machinery, by considering the probability of occurrence of a fault, and relative consequences using loss function and financial factors. The health indicator is obtained by four steps: fault detection (detailed in Chapter 4), probability of failure calculation, the consequence of failure calculation and dynamic risk calculation. The system health indicator should identify the fault at an incipient stage and show the degradation of the system, dynamically updating the process risk after each sampling instant. The proposed health indicator is tested using industrial data via two case studies.
Finally, Chapter 6 summarises the research work and the major contributions. In addition, recommends possible directions for future work.




                             
                   										 
[bookmark: _Toc81553246]
Literature Review
                   										 

Maintenance is essential to sustain the availability and reliability of equipment in order to ensure on-time delivery, productivity, product quality, and a safe working environment. The limitations of traditional maintenance strategies necessitated the research for effective and adequate maintenance strategies capable of coping with the increasing complexity and sophistication of modern industrial systems. In this chapter, the evolution of maintenance strategies practised over the years in petrochemical process control, and the health indicators used for each maintenance strategy are reviewed. On this basis, an intelligent cost-saving maintenance strategy, namely condition-based risk assessment, is introduced, with its key processes (probability of fault, condition-based fault detection, and calculation of the likely consequence of a fault) described in detail. This chapter provides a theoretical underpinning for subsequent chapters.


[bookmark: _Toc81553247]Introduction
The goal of maintenance is to minimise or avoid the negative effects caused by a machine's inevitable degradation over its service life and keep it as near normal working condition as possible. Lack of maintenance is a key reason leading to economic losses or catastrophes [9]. Therefore, an appropriate maintenance plan is essential for companies to minimise their expenses and maximise profit [13].
[bookmark: _Hlk80052205]There are many maintenance strategies being applied in the petrochemical sectors, including breakdown maintenance, planned preventive maintenance (PPM), risk-based maintenance (RBM), condition-based maintenance (CBM) and other intelligence-based maintenance methods. A combination of RBM and CBM is one of the most promising areas, which is called dynamic condition-based risk assessment. It provides maintenance solutions based on real-time health monitoring of assets.
This chapter focuses on providing a literature review of methodologies applied in these processes, highlighting the ones selected for this research project. 
[bookmark: _Toc79956188][bookmark: _Toc80053177][bookmark: _Toc80147353][bookmark: _Toc80304895][bookmark: _Toc80396025][bookmark: _Toc81542236][bookmark: _Toc79956189][bookmark: _Toc80053178][bookmark: _Toc80147354][bookmark: _Toc80304896][bookmark: _Toc80396026][bookmark: _Toc81542237][bookmark: _Ref7794424][bookmark: _Ref8554049][bookmark: _Toc81553248]Evolution of industrial maintenance strategies and their health indicators
Several types of maintenance strategies are commonly applied in the petrochemical sectors, including breakdown maintenance, PPM, RBM and CBM. This section provides a brief introduction of some common maintenance strategies and the health indicators that apply in each maintenance strategy.
[bookmark: _Toc81553249]Breakdown maintenance 
Breakdown maintenance is also known as run-to-failure maintenance, in which maintenance actions are conducted only when the machine or equipment is out of service [14]. It can only be applied when the failure of the machine doesn't result in critical damage, or when the cost of replacement is cheaper than that of maintenance. In this strategy, no attention is paid to the machine's efficiency and maintenance, and therefore, no health indicator is required. 
[bookmark: _Toc81553250]Planned preventive maintenance
PPM is also known as periodic maintenance, in which maintenance times or intervals are scheduled based on failure time analysis [15]. PPM assumes that the failure behaviour can be predicted by the bathtub curve (see Figure 2.1), which comprises three phases: the burn-in, useful life, and the wear-out phase. As can be seen in Figure 2.1, the failure rate decreases in the burn-in phase, stays more or less constant in the useful life phase, and increases in the wear-out stage. 


[bookmark: _Ref58964599][bookmark: _Toc81553330]Figure 2.1 The bathtub curve [15]
The burn-in period can cause "dead-on-arrival" products, and consequently, undermine customer confidence in the product. Hence, it is unacceptable for both customers and manufacturers. The failure rate at this stage are high, due to design errors, manufacturing defects, assembly mistakes, installation problems and commissioning errors [11]. In practice, manufacturers usually perform various of tests before sending the product to the customers and hence early-stage defective products have effectively been found in the factory.
The typical planned preventive maintenance process
The typical process of PPM is shown in Figure 2.2. As shown in the figure, the first step of PPM is failure data analysis/modelling using distribution models. The purpose of this step is to calculate the failure characteristics of the equipment using a statistical method based on near misses and incident data. Then, the failure rate can be obtained according to the selected distribution model. Maintenance is scheduled when the equipment is in the wear-out stage. 


[bookmark: _Ref59655320][bookmark: _Toc81553331]Figure 2.2 Process of PPM [15]
Health indicator of planned preventive maintenance
[bookmark: _Hlk80133859]The health indicator is closely related to the maintenance decision-making process. The maintenance decision made by PPM is based on the calculated operation cost [15]. According to Ahmad and Kamaruddin [15], operation cost is mainly composed of the failure cost and preventive maintenance cost. The calculation methods of the operation cost are different for different maintenance strategies, which can either be repairable or non-repairable. Barlow and Hunter [16] proposed general mathematical models to calculate the operation cost for both repairable and non-repairable equipment. 
[bookmark: _Toc81553251]Risk-based inspection/maintenance
The main aim of risk-based inspection/maintenance (RBI/RBM) is to reduce the overall risk  which could result in unexpected consequences or even catastrophe [17]. In recent years, RBI/RBM is becoming an increasingly popular asset management tool and is gaining acceptance by safety regulators in varied industry sectors, from petrochemical to the transport sector, because of its safety and commercial benefits. It can improve the overall safety of critical plant by optimally focussing inspection or maintenance activities on components identified as 'high risk'.
The Welding Institute (TWI) and Royal & Sun Alliance Engineering [18] analysed the RBI/RBM framework for plants with pressure systems and storage tanks. There have been other studies [19]–[23] showing how benefits can be gained by focussing a limited maintenance budget on high-risk components or justifying the budget required to operate within identified tolerable risk. For example, guided by RBI, one major chemical company with over 350 items of plant and equipment implemented a more targeted inspection regime that also extended the outage frequency from 3 to 5 years. This resulted in a significant saving of 10 million Euro on their shutdown costs over a 15 year period [23].
Despite the advantage of cost-saving, the implementation of RBM requires an interdisciplinary and highly skilled team to work on the process. Should any member not have the necessary skills, experience and knowledge then a blinkered approach might result when assessing the risks, resulting in problems being missed, eventually leading to integrity failures, downtimes, and economic losses.
The typical process of risk-based maintenance
The typical process of RBM is shown in Figure 2.3 (a) [17]. As can be seen, RBM consists of six main processes, which are hazard analysis, likelihood and consequence assessment, risk estimation and acceptance, and inspection or maintenance planning [17]. The main processes are described in the following paragraphs.

 
[bookmark: _Ref8032759][bookmark: _Toc81553332]Figure 2.3 A general process of a risk-based maintenance and risk profiles (a) Schematic of a general risk-based maintenance approach [17], (b) an example of a risk matrix, (c) an example of a risk profile that changes with time
· Hazard analysis: This process is to identify the event or failure scenario, which develops based on the operational characteristics of the system, physical conditions, and safety arrangements [17]. 
· Likelihood assessment: The purpose of the likelihood assessment is to quantify the occurrence of adverse events [17]. In this step, the event/failure frequency or probability within a specified time period is calculated. The detailed information necessary to calculate the likelihood for large pressurised machines in the petrochemical industries can be found in [24].
· Consequence assessment: This process is to quantify the potential consequences of possible event/failure scenarios. Consequences include loss of production, assets, environment, health and safety. The detailed information needed to calculate the consequence of failure for large pressurised machines in the petrochemical industries can be found in [24].
· Risk estimation: The system's risk is calculated based on the results of the consequence and likelihood assessment [24]. 
· Risk acceptance: This process compares the calculated risk with its acceptance criteria [17]. If the risk of any unit/component exceeds the acceptance criteria, inspection and maintenance are required to reduce the risk. 
· Inspection/Maintenance planning: Inspection or maintenance planning is scheduled to reduce the risk, guided by a risk profile of the target component/system.  Figure 2.3 (b) is a typical risk matrix, which can be qualitative and quantitative;  and Figure 2.3 (c) shows a quantitative dynamic risk profile.
Health indicator of risk-based maintenance
Based on the RBI/RBM processes, the inspection and maintenance activities of the system are determined by risk. Therefore, the risk is used as a health indicator in the RBI/RBM strategy. Broadly, there are two types of models in RBI/RBM strategies: qualitative and quantitative models. In a qualitative model, the likelihood and/or consequence assessment is described by terms such as very unlikely, unlikely, possible, probable, or highly probable. On the other hand, a quantitative model carries out the likelihood and consequence assessment quantitatively, with the likelihood of the event/failure calculated on the basis of reliability analysis and relies on historical data, and the consequence of the event/failure is estimated based on the severity of the failure scenario or financial loss. A typical description of risk is given in Equation (2‑1).
	
	[bookmark: _Ref60170125](2‑1)


where  is the likelihood of the unwanted event, and  is the associated consequences. In quantitative models, the likelihood is replaced by the probability of an unwanted event.
[bookmark: _Toc81553252]Condition-based maintenance
In recent years, many petrochemical plants have utilised advanced monitoring methods to enhance their knowledge and understanding of their equipment's performance and impact on process behaviour to provide a practical and structured approach for a satisfactory maintenance strategy. CBM is becoming increasingly popular, with continuous surveys of the working conditions of a machine in real-time to determine the presence of faulty components and suggest required maintenance, rather than conducting maintenance based on a predetermined schedule [25]. This maintenance strategy has quickly become an attractive alternative to traditional approaches (i.e., PPM described in Section 2.2.2).
The typical process of condition-based maintenance
A CBM program typically includes three key steps, as shown in Figure 2.4: data acquisition, data processing, and maintenance decision-making [11]. Each process is described below.


[bookmark: _Ref8146439][bookmark: _Toc81553333]Figure 2.4 Main processes in a CBM program [11]
In general, the data acquisition step collects data related to the heath of the system. In CBM, various data types can be used, which can be acquired by, for example, vibration monitoring, performance monitoring, acoustic emission monitoring, oil analysis, and shock pulses. With the rapid development of computer and advanced sensor technologies, data acquisition equipment and related technologies have become more powerful and less expensive, making data acquisition more affordable and feasible [14].
Data processing is a process of collecting and storing data from targeted physical assets [14]. It analyses the obtained data to better diagnose faults and assess the system’s health. Some state-of-the-art diagnosis algorithms that are applied in the petrochemical sector are reviewed in Section 2.3.1.
The purpose of a maintenance decision-making process is to provide effective maintenance strategies. Decisions can be made based on the assessment of current conditions or forecasted future conditions [26]. For the current-condition-evaluation-based maintenance method, the device will be maintained when the current state level of the equipment reaches or exceeds the predefined limit(s). For the future-condition-prediction-based maintenance method, the maintenance is scheduled based on future forecast results. 
According to the abovementioned CBM processes, the maintenance time and detailed action are determined based on the health condition of each item of equipment. Therefore, CBM allows maintenance activities to be planned as needed, making it an attractive alternative to traditional strategies (i.e., PPM).
Health indicator of condition-based maintenance
The health indicator should reflect the health status and degradation process of the equipment. In CBM, the health indicator can be one or several key variables that are most sensitive to system health [27]; or it can be a calculated as a system-wide feature. Section 2.2.4.2.1 lists some of the key variables/features (condition indicators) used in the fault detection of rotating machinery. Section 2.2.4.2.2 to Section 2.2.4.2.5 review four commonly used system features in CBM.
Condition indicators
A condition indicator in CBM changes in a predictable way as the system degrades or operates in different operational modes. An appropriate condition indicator is useful for distinguishing normal from faulty operation or for predicting system performance. The condition indicators for the fault detection of rotating machinery are summarised in Table 2.1. It is worth noting that a condition indicator can indicate more than one fault type. Therefore, in CBM, fault detection and identification usually require many condition indicators at one time.
[bookmark: _Ref507879676][bookmark: _Toc81553466]Table 2.1 Condition indicators for the fault detection of rotating machinery in the petrochemical field
	Fault type
	Condition indicators

	Misalignment
	Bearing temperature [34];
Shaft speed [35];
Shaft orbit [35];
Horizontal, vertical and high harmonic component found in the axial [35].

	Rubbing and loose fitting
	Shaft speed [35];
Shaft orbit [35];
Features in time-frequency analysis [34].

	Rolling bearing faults
	Bearing temperature [36]; 
Lubricating oil temperature [36];
In the time domain: high amplitude, high kurtosis, high skewness, high crest factor, high root mean square value, high mean value [37]–[40]; 
Bearing characteristic frequency in the frequency domain, which includes the bearing pass frequency of the outer race, bearing pass frequency of the inner race, ball spin frequency, and fundamental train frequency [41].

	Shaft crack
	Static bending moment [42]; 
Shaft speed [43]; 
Shaft temperature [44]; 
The harmonics of the original frequency (1X, 2X, 3X etc.) [44]–[46];
Torsional vibrations [47], [48];
High kurtosis, high magnitude of the spectral components [49].

	Stall
	Transient pressure [30]; 
Discharge temperature [50];
Suction and discharge temperature deviation [50]; 
Discharge pressure [51];
Suction and discharge pressure deviation [52]; 
Pressure ratio [53]; 
Flow [54]; 
Exceed stall line in compressor map [55];
Shaft speed [56];
Oscillations at low-frequency range[57], [58] (but the frequency range is higher than surge);
Exceed vibration amplitude in a variety of spectral analysis [56], [59];
[bookmark: OLE_LINK27]Unsteady shaft orbit [60];

	Surge
	Discharge temperature [61]; 
Suction and discharge temperature deviation [61];
Discharge pressure [52];
Suction and discharge pressure deviation [62]; 
Pressure ratio [61]; 
Transient pressure [63]; 
Mass flow rate [52]; 
Polytropic efficiency [62];
Power [28]; 
Bearing temperature [64]; 
Cooling system pressure [28];
Cooling system temperature [28]; 
Shaft speed [65];
Exceed surge line in compressor map[66].
Frequency spectrum and power spectrum [67]; 
Extensive vibration in the piping system, casing and bearing [68];
Unsteady shaft orbit [60].

	Fouling
	Discharge temperature [69];
Suction and discharge temperature deviation [29];
Discharge pressure [70];
Suction and discharge pressure deviation [29];
Pressure ratio [71]; 
Flow [70], [71];
Polytropic efficiency [71]; 
Bearing temperature [72]; 
Intercooler pressure [28];
Shaft speed [69]. 
Intermittent vibration or irregular vibration with high amplitude[73], [74]; 
Radial vibration amplitude increased gradually [72]; 



Hotelling 
Hotelling  is one of the most widely used statistical indicators for condition monitoring data [75]–[80]. The equations [81] of the Hotelling  are described as follows:
Assume that a system was equipped with  sensors that are indexed from 1 to . If  is a measurement of sensor , under normal operation, the  and  are the mean and the standard deviation value of , respectively. The standardized value () of  can be written as:
	
	(2‑2)


All sensor measurements mentioned henceforth are equal to their standardized values. Let  be the correlation matrix where:
	
	(2‑3)


When the plant is under operation, a multivariate measurement is described by the  vector , with  representing a measurement from sensor . In the centralized configuration, a single  test will use sample  to check if the system is suffering a fault. The sample  is detected by the  test as having been generated when the process is in faulty operation if:
	
	(2‑4)


where  is the level of significance and  is the inverse of the  cumulative distribution function with  degrees of freedom for a probability value of  [81]. 
 metric
The  metric (also called squared prediction error, SPE) is another widely used indicator for condition monitoring data [75]–[80]. It can be given by Equation (2‑5):
	
	[bookmark: _Toc467684060][bookmark: _Ref47019566](2‑5)


where  are the reconstructed values of .  is the total number of variables.  can be considered as the squared Euclidean distance in the reduced dimensional space [77]. References [75]–[80] provide various propositions about the control limits of this metric. A threshold of the  metric in [76], [80] was written as:
	
	[bookmark: _Toc467684061][bookmark: _Ref60217494](2‑6)


where  denotes the signiﬁcance level.  and  are the mean and variance, respectively, of the Chi-square distribution of the  metric at any time interval. 
Mahalanobis distance 
The Mahalanobis distance (MD) was proposed by Indian statistician Mahalanobis to represent the covariance distance of the data [82]. Unlike the Euclidean distance, the MD is a unitless distance measurement, and it takes into account the correlations among variables. The MD provides a univariate distance value for multivariate data, and therefore, was applied in anomaly detection models. MD can be calculated by Equation (2‑7).
	
	[bookmark: _Ref60217559](2‑7)


where  is the -th features in a machine learning model. is the reconstructed values of .  denotes the residual between the reconstructed value and the original value.  and  are the sample mean and covariance of the reference samples, respectively.
Remaining useful life
Another way to calculate the health indicator for CBM is to estimate the remaining useful life (RUL) of the equipment or system. The RUL measures how much longer the machine can operate safely and perform its function, and it has been defined as Equation (2‑8) [14].
	
	[bookmark: _Ref60221139](2‑8)


A sketch of a degradation process and RUL is shown in Figure 2.5. As can be seen in the figure that, the RUL is shown as the time length between the current time point and the moment when the predicted fault feature reaches a threshold. 
[image: ]
[bookmark: _Ref532141152][bookmark: _Toc81553334]Figure 2.5 A sketch of a degradation process and RUL
[bookmark: _Toc81553253]Comments
Based on a review of some popular maintenance strategies, a summary of their relative advantages and disadvantages is given in Table 2.2.
[bookmark: _Ref531282073][bookmark: _Toc81553467]Table 2.2 Comparison of maintenance strategies
	Strategy
	Advantage
	Disadvantage

	Breakdown maintenance
	· Easy to conduct 
· Low maintenance cost
	· May result in plant-related damage
· Can be used only if the machinery failure will not result in critical damage

	Planned preventive maintenance
	· Easy to conduct 
· A good supplementary to other types of maintenance (i.e., RBM and CBM)
	· Difficult to calculate the optimum maintenance intervals
· Failures with the maintenance intervals may cause unplanned shutdowns
· Over maintenance is cost consuming 

	Risk-based inspection/
maintenance
	· Maintenance activities focused on critical components in a system
· Reduction of the risk of equipment/plant
· Manage each inspection based on the inspection results
· Often results in significant cost savings by avoiding unplanned shutdowns
	· Conventional RBI only uses statistical data, and maintenance actions are unable to be scheduled on an as-needed basis
· Taking a wrong starting point, reducing its effectiveness

	Condition-based maintenance
	· Maintenance actions are arranged on an as-needed basis 
· Able to exploit the maximum operating time of a machine/equipment
· Often results in significant cost savings by avoiding unplanned shutdowns and reducing the number of unnecessary maintenance visits
	· Requires experts for data analysis, fault detection and isolation, and maintenance planning


The limitations of traditional and current maintenance strategies make it necessary to seek practical and cost-saving maintenance strategies to deal with the increasingly complex problems of modern industrial systems [3], [20]. The intelligent and integrated maintenance strategies, which apply the state-of-the-art diagnosis algorithms, or utilise the advantages of different strategies, to achieve higher efficiency and lower life cycle cost, can be a solution for the problems mentioned above. Figure 2.6 shows the efficiency of different maintenance strategies, and Figure 2.7 estimates the average life cycle cost for these strategies.
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[bookmark: _Ref7794103][bookmark: _Toc81553335]Figure 2.6 Maintenance strategies and their corresponding efficiencies [83]
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[bookmark: _Ref7947653][bookmark: _Toc81553336]Figure 2.7 Management strategies and their life cycle costs [84]
[bookmark: _Toc81553254]Development of a condition-based risk assessment maintenance strategy 
Maintenance is intended to minimise or avoid unplanned shutdowns due to the inevitable degradation of a machine during its working life, and to keep the machine close to its normal working condition. An appropriate maintenance strategy is essential for a company to minimise maintenance costs and maximise profits [13].
Among the commonly used maintenance strategies in Section 2.2, the RBM and CBM have attracted increasing attention, because both of them can not only improve safety, but also reduce operating costs [85]. Apart from these merits, both strategies have their own limits. The traditional RBM uses near miss and incident data, so that the risk assessment results cannot be updated during the life of a process [86]. As maintenance is determined according to the risk assessment results, the RBM is unable to conduct a maintenance action on an as-needed basis, and therefore, may still have the problem of unplanned shutdowns and over-maintenance. Although the CBM monitors the working conditions of the equipment in real-time, current studies mainly focus on developing advanced models to detect incipient faults, without considering the financial cost or risk factors when calculating the optimum time for maintenance. To overcome this problem, a dynamic condition-based risk assessment method, which combines the positive sides of CBM and RBM, has been developed, enabling the capture of the system risk profile over time. The idea behind the development of this cost-saving maintenance strategy can be seen in Figure 2.8.


[bookmark: _Ref60259631][bookmark: _Toc81553337]Figure 2.8 The idea behind developing an intelligent cost-saving maintenance strategy
The condition-based risk assessment has three main components, which are condition-based fault detection, the calculation of the probability of fault/failure, and associated consequences. These three components are reviewed in the following sections, and the health indicator for condition-based risk assessment is described.
[bookmark: _Toc81553255]Condition-based fault detection 
A minor undetected fault in the equipment may cause performance degradation or failure, thereby seriously affecting the plant's safety and productivity. With industrial systems getting more sophisticated, downtime cost has become more expensive, and the root causes of failures have become more important to locate. Therefore, to enhance plant safety and productivity, and reduce operation costs, accurate and incipient fault detection is essential. 
Quite a few diagnostic methods have been proposed and reported in the literature. According to [87], fault detection and diagnosis methods can be broadly divided into two categories: model-based methods and data-driven methods, and both methods can be qualitative and quantitative [87]. The fault detection and diagnosis methods are briefly described in Figure 2.9. 
This section focuses on the review of quantitative data-driven methods.


[bookmark: _Ref45116119][bookmark: _Toc81553338]Figure 2.9 Fault detection and diagnosis methods [87]
Model-based fault detection methods
According to [88], [89], a model-based fault detection system is composed of a residual generator and a residual evaluator (Figure 2.10). The residual generator calculates the residual between the estimated output of a predefined model with the actual measured values of the system. The residual evaluator determines the health state of the equipment by assessing the received residuals from the residual generator.
As can be seen in Figure 2.9, in a qualitative model, the relationships are expressed by qualitative terms, using if-then rules and inference engines to draw conclusions [90]. In a quantitative model, the estimated output and its relation with the input are expressed by mathematical functions [90]. Reviews of model-based methods can be found in Venkatasubramanian [9], Frank [90], and Isermann [89].


[bookmark: _Ref45133850][bookmark: _Toc81553339]Figure 2.10 Model-based fault detection strategy [89]
In model-based methods, the fault detection results are determined by the calculated residual between actual measured values and the output values obtained from the model. Obviously, the model should be accurate in order to get satisfactory results [90]. However, developing a precise failure model for large-scale industrial facilities can be challenging due to their complexity.
Data-driven fault detection methods
Instead of focusing on developing accurate analytical models of the system, data-driven models are generated based on prior knowledge and a large volume of historical data.. This type of method can also be quantitative and qualitative. The fault detection results are determined by the calculated distance/residual between the actual measurements and the estimated output obtained from the data-driven model. The effectiveness of the data-driven methods is highly depended on the quality and quantity of input data.
As shown in Figure 2.9, the qualitative methods include expert systems, fuzzy logic, frequency and time-frequency analysis, etc. Quantitative methods include principal component analysis (PCA)/partial least squares (PLS) and statistical classifiers, neural networks and statistically derived models. The following sections mainly focus on the review of quantitative data-driven methods.
Principal component analysis (PCA)
In many studies [91], [92], principal component analysis (PCA) has proven to be an effective unsupervised dimensionality reduction and feature extraction method, which linearly transforms high-dimensional data into low-dimensional. PCA has been widely applied in process control [93], fault detection and system risk assessment [94], network traffic anomaly detection [91], network intrusion detection [92], etc.
[bookmark: OLE_LINK18][bookmark: OLE_LINK19]Kernel PCA is a variant of PCA, which is a nonlinear PCA approach using the kernel method [95]. The idea is to firstly map the original input () into a high-dimensional feature space  via a nonlinear function (kernel function) and then conduct the linear PCA to the data in that high-dimensional feature space [96]. 
Motivated by the successful applications of the PCA method in process control, fault detection and system risk assessment fields, this thesis applied the PCA method in fault detection processes. Further details can be found in Chapter 4.
Neural networks
Artificial neural networks (ANNs) have been developed in the form of parallel distributed network models inspired by the biological learning process of the human brain. Among different types of ANNs, the multilayer perceptron (MLP) neural network is one of the most widely used [97]. 
MLP comprises an input layer, a hidden layer(s) with computation nodes, and an output layer. The structure of an MLP neural network is shown in Figure 2.11. The connections between simple processing units enable complex processing of data. The number of hidden layers and the number of nodes in each hidden layer can influence the capability and effectiveness of the network. An insufficient number of hidden layers and neurons may speed-up the calculations, but lower performance. Too many hidden layers and hidden nodes may lead to over-fitting and a long computation time. A variety of methods can be applied to select the number of hidden layers and the nodes, i.e., heuristic and systematic methods [98]. 
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[bookmark: _Ref47218915][bookmark: _Toc81553340]Figure 2.11 A typical structure of the MLP neural network
An autoencoder is an unsupervised neural network, with its number of outputs equalling the number of inputs. It comprises an encoder and a decoder. The encoder extracts features and reduces the dimensions of original inputs, similarly to the PCA, but it can provide both linear and nonlinear transformations [99]. The decoder reconstructs the inputs. The autoencoder is more flexible than existing linear monitoring methods [99]. However, like many neural networks, it can suffer from the problem of overfitting [100]. Thus, a couple of variants have been developed, e.g. the multi-level-denoising autoencoder [99], and sparse autoencoder (SAE) [101]. Of these, the SAE is an effective anomaly detection method, which solves the overfitting problem by adding a sparsity constraint on the hidden units [101], [102]. The SAE has been successfully applied for anomaly detection in turbomachinery [103], industrial pumps [82] and compressors [104].
A nonlinear auto-regressive network with exogenous inputs (NARX) [105], [106] has feedback architecture that comes from the output neurons. The structure of the NARX neural network includes an input layer, a hidden layer(s) and an output layer. The number of nodes in the input layer determined by the number of inputs; the number of nodes in the output layer determined by the number of outputs. The training method of the NARX neural network is similar to that of the MLP. The features of NARX include: 1) NARX adds delay and feedback mechanisms, so it can enhance the memory and learning process  of historical data [107]. 2) NARX is suitable for time series forecasting and has been used to solve nonlinear forecasting problems in various fields [107]–[109].
Statistical classifiers 
Cluster analysis is a popular multivariate method used in statistical analysis that divides signals into different fault types or categories based on the similarity of the signals' characteristics, whilst minimising the within-group variance and maximising the between-group variance [14]. Popular cluster techniques include the nearest neighbour algorithm [110], K means clustering [111], fuzzy C means clustering [112], support vector machine (SVM) [113] and cluster methods based on Gaussian mixture models [114]. Advantages of cluster techniques are that they can deal with both one-class and multi-class classification tasks and can quickly achieve automatic classification.
One-class classification (OCC) tries to identify objects of a specific class among all the objects. The training set contains only the objects of that class, and OCC determines a decision boundary that covers all the training samples [115]. Hence, during the test/execution phase, new objects that were not similar to the training samples can be detected. These objects, which are outside the boundaries, are called outliers or anomalies, and are assumed to come from different classes.
In contrast, the multi-class classification (MCC) is based on the idea of combining multiple classifiers into a composite recognition system [115]. The MCC calculates decision boundaries for each class and, therefore, can classify different data categories at one time. In MCC, training data requires nearly equally large volumes of data for each group in order to avoid errors caused by biased sampling [116].
During the operation of modern industrial machines, the monitoring system collects a large amount of data. However, most of the data belongs to normal working conditions, and fault data is usually rare and sometimes not available. There is a requirement for a fault detection (anomaly defection) model to fully use a large amount of health data to effectively detect faults. Therefore, the OCC is more common in the field of fault detection than multi-category clustering methods. 
Comments on multivariate fault detection methods
Both model-based and data-driven methods have their advantages and disadvantages. According to comprehensive reviews carried out by Venkatasubramanian [9] and Zhang [87], if all the inputs and outputs of the system, as well as the dynamic relationships between them, were clearly understood, the model-based fault detection method has the advantage of being able to cope with unexpected faults. However, due to the increasing complexity and nonlinearity of complex systems, getting such modelling information is becoming more difficult and may not be possible, which reduces the accuracy and effectiveness of the model-based method. On the other hand, due to lower requirements for prior knowledge, the data-driven fault detection method is easier to implement. The quantitative data-driven method uses data from the condition monitoring system, making it especially suitable for modern industrial facilities with complete instrumentation.
The latest research on quantitative methods based on data mainly focuses on fault detection of bearings, gearboxes and turbines [105], [106], [117], [118]. A limited number of papers can be found on fault detection models for pumps and compressors. For example, Sakthivel et al. [119] used a decision tree method on vibration signals to detect five types of faults in pumps, including bearings fault, impeller fault, a combination of both, seal defects, and pump cavitation. Tse et al. [118] conducted wavelet analysis on vibration signals and found that wavelet analysis can make it easier for machine operators to detect some types of bearing faults, which cannot be achieved by the fast Fourier transform with envelope analysis. Zouari et al. [120] developed a real-time fault detection tool for centrifugal pumps using a neural and fuzzy technology system based on vibration measurement. The tool was able to detect several failure modes, including partial flow, loosening of front/rear pump attachments, misalignment, cavitation, and air injection into the air intake.
However, challenges in detecting faults in compressors and pumps remain. For example, most of the references mentioned above mainly focused on vibration-based techniques, mostly detecting faults on specific components, lacking an inherent system-wide perspective. Currently, there is a general trend to construct a system-wide health monitoring system using multivariate operating data.
The applications of PCA and ANN (especially NARX and SAE) for successful fault detection using simulated data, data obtained from laboratory test rigs or data captured from real industrial processes [93], [105], [106] is noted, and in Chapter 4 of this thesis, we will explore the capacity of PCA, NARX, and SAE to detect faults and identify faulty components in industrial compressors and pumps, and to develop a system-wide feature.
[bookmark: _Toc81553256]Calculation of probability of fault in risk assessment
In conventional RBM, the  is the probability of an unwanted event. In the condition-based risk assessment strategy, the  is defined as the probability of a fault. 
There have been a few attempts at condition-based risk assessment strategy. Bao et al. [121] applied a control chart method in risk calculation where the  ranged from 0 to 1, and was estimated based on the deviation of a selected signal from its threshold. The selected signal should be sensitive to the changing of health conditions of the machine; however, as machinery becomes increasingly sophisticated, the fault types are becoming more diverse, and sometimes, one signal may not provide enough information for early fault detection. Therefore, the  calculated by this method is not so useful in condition-based risk assessment.
Zadakbar et al.[122] extended the univariate risk assessment method to a multivariate model. The  was calculated based on the residuals generated from the Kalman filter. As can be seen in Figure 2.9, the Kalman filter is a model-based fault detection method; hence, the accuracy and effectiveness of the method depend on the availability as well as the accuracy of the model. 
Zadakbar et al. [94] proposed a multivariate methodology to assess the process risk, with  calculated by a data-driven fault detection method - PCA. In this paper, the principal component, which was most sensitive to the fault, was selected to calculate the . Other condition based risk assessment methods that used data-driven fault detection methods, include: Yu et al. [123], who developed a self-organising map based methodology; Wang et al. [27], where the  is calculated based on the estimated RUL using an exponential distribution function.
In the abovementioned methods,  are mainly estimated based on the residual of features or deviations of a selected measurement. A typical  calculation process can be expressed by Equation (2‑9) to (2‑11) [94],
	
	[bookmark: _Ref41858170](2‑9)


where  is the residual of features or deviations of a selected measurement;  is the mean value, and  is the standard deviation of the input .  is a cumulative distribution function.
Figure 2.12 [94] shows an example of  calculated by using PCA and condition monitoring data. In the figure,  was set to 0; the  and  was used as the lower and upper thresholds for normal operation [94], and the values of  and  were set to 0.5. The further the data from the thresholds, the more likely a fault has occurred in the system.


[bookmark: _Ref43305503][bookmark: _Toc81553341]Figure 2.12 Change in probability of fault (φ) with the deviation of score from the mean [94]
When the input approaches the upper threshold (), the probability of the fault is calculated by . On the other hand, if the scores approach the lower threshold (), the probability of the fault is calculated by . When input fits a normal distribution, the  can be expressed by Equations (2‑10) and (2‑11).
	For , 
	[bookmark: _Ref43645084](2‑10)

	For , 
	[bookmark: _Ref41858185](2‑11)


where , and  is the number of principal components; , and  is the number of samples.
[bookmark: _Toc81553257]Calculation of consequence in risk assessment
Consequence is another key parameter in risk assessment, and there are two main ways of establishing this model. One way is to calculate a severity score for the fault, and another way is to calculate financial consequences.
Severity score
In reference [94], [121], [122], [124], the 'consequence' in the risk model was replaced by a fault severity score, which was designed for the applied fault detection method, i.e., control chart technique, PCA.
For example, in reference [94], the designed severity is composed of two terms: an exponential term and a pre-exponential term. The exponential term gives the magnitude of fault based on the exceedance of the threshold. The pre-exponential term gives a relative measure of the hazard potential of each principal component. The severity scores for the PCA method can be calculated by Equations (2‑12) and (2‑13).
	For , 
	[bookmark: _Ref41943482](2‑12)

	For , 
	[bookmark: _Ref43370046](2‑13)


where  is the severity score of a selected principal component. ,  is the number of original process signals.  and  are the lower and upper thresholds for normal operation of the selected principal component.  ,  is the number of principal components, ,  is the number of samples.  is an intensity coefficient of individual variables, and  is the absolute loading of each principal component. Equations (2‑12) and (2‑13) convert severity of the original process signals to severity scores for a selected principal component.
Financial consequences
The consequence of the fault can also be expressed in terms of financial costs, using Equation (2‑14) [125]–[127].
	
	[bookmark: _Ref61872045](2‑14)


where  is the estimated maximum loss based on the worst conditions,  is a loss function, and  is the current value of the variable.
For the calculation of , reference [127] suggested considering five categories: quality, production, asset, human health, and environment loss. The loss categories are displayed in Figure 2.13.
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[bookmark: _Ref61876306][bookmark: _Toc81553342]Figure 2.13 Loss categories can be considered for the calculation of the estimated maximum loss  [127]
The loss function describes the economic consequences of deviations from normal values [125]. Common types of loss function are listed in Table 2.3, and their parameters are described in Table 2.4.
[bookmark: _Ref61900195][bookmark: _Toc81553468]Table 2.3 Common types of loss functions [125]
	Loss functions
	Equations

	Squared error loss function
	

	Absolute error loss function
	

	Weighted loss function
	

	Zero-one loss function
	

	Quadratic loss function
	

	Quartic loss function
	

	Inverted normal loss function
	

	Modified asymmetric inverted normal loss function (type 1)
	

	Modified asymmetric inverted normal loss function (type 2)
	

	Inverted Beta loss function
	

	Inverted Gamma loss function
	


[bookmark: _Ref61902645][bookmark: _Toc81553469]Table 2.4 Parameters for the loss functions [125]
	Parameters
	Descriptions

	
	weights for multiple target values

	
	proportionality constant

	
	estimated maximum loss in the quadratic loss function

	
	target value of the variable

	
	 order loss coefficient in the quartic loss function

	
	shape parameter in the inverted Beta loss function

	
	shape parameter in the inverted normal loss function


For the loss functions listed in Table 2.3, the first four, namely the square, absolute, weighted and zero-one loss functions, are simple ways to quantify losses associated with deviations from predetermined target values. The quadratic and quartic loss function are typical methods used in quality management; however, these two are not able to truly represent rapid changes of deviations from the normal value in, for example, strong nonlinear chemical processes [125]. The inverted normal loss function and its variants are much more adaptable, as the normal distribution is the most widely used pattern for describing random variables. 
According to Hashemi et al. [128], the modified inverted normal loss function and the inverted Beta loss function were more adaptable and better able to depict system safety losses associated with process variations. In Khan et al. [125], the inverted Beta loss function was applied to units requiring both the upper and lower boundaries of an operating variable; the inverted normal loss function was used for units requiring only the upper boundary of an operating variable; multivariate inverted loss function was employed for units requiring multivariate monitoring.
[bookmark: _Toc81553258][bookmark: _Toc529370786][bookmark: _Toc2681931]Dynamic indicator for condition-based risk assessment
A conventional risk indicator (see Section 2.2.3.2) quantifies the risk associated with a particular process activity using near miss and incident data. In contrast, the dynamic condition-based risk assessment method uses condition monitoring data and is capable of capturing the time-dependent behaviour of the system risk profile. The health indicator for condition-based risk assessment can be given by
	
	(2‑15)


where  is the probability of a fault, and  is the associated consequences, which can be presented either by severity score or by financial costs.
[bookmark: _Toc81553259]Comments
Irrespective of the good performance of the models referred to above, some challenges remain in the maintenance of machines in real industrial applications. 
1. On the one hand, the existing dynamic risk-based maintenance research ([122]-[128]) focuses on lowering the overall risk to the system, without placing much attention on the early detection of a fault. In the models, the fault/failure probabilities are heavily related to fault detection processes. Therefore, there is a need to improve the probability model with the application of advanced fault detection methods. Meanwhile, it is suggested that the loss function be integrated into the risk model, as it can help estimate economic risk and assist in effective operational decision-making. 
2. On the other hand, fault detection research (i.e., [120], [129], [130], [103]) mainly focused on the development of advanced models to detect incipient faults, without considering the financial factors to calculate optimum time for maintenance. Most of the models were tested on simulated or experiment data only, lacking the evaluation using real industrial data. 
To address the challenges mentioned above, a system-wide health indicator using a dynamic risk profile is proposed in this thesis, which takes into account both the financial loss and the fault probability based on condition monitoring data. Details can be found in the following chapters. The main benefits of the proposed method include early detection of faults, fault analysis, suggesting maintenance time, safety improvement and minimum interruption of operation.
[bookmark: _Toc81553260]Summary
This chapter reviews different industrial maintenance strategies that have been applied in the process control field. The advantages and disadvantages of these strategies are summarised. The health indicators for each strategy have been described. Following that, the major limitations of the currently applied maintenance strategies were summarised, which indicated that an intelligent cost-saving maintenance strategy is required. In Section 2.3, cost-saving condition-based risk assessment was described in detail, with the literature reviews carried out on its main components: condition-based fault detection, calculation of the probability of a fault, associated consequences, and risk (health indicator) calculation. The challenges in the condition-based risk assessment field are summarised and will be addressed in the following chapters.



                             
                   										 
[bookmark: _Ref532134538][bookmark: _Ref536514928][bookmark: _Toc2681932][bookmark: _Toc81553261]
Data Description and Pre-processing
                   										 

In practice, the data acquired from an industrial machine can be noisy, including missing and erroneous measurement values, and even downtimes. Such data cannot be fed directly into the fault detection model, whose performance strongly depends on the quality of the historical data. Therefore, data pre-processing is required to remove such noisy data points and increase the performance of the fault detection model. This chapter introduces the historical data set obtained from an industrial pump and a compressor system, describes the types of noisy data existing in the raw data, explains the corresponding pre-processing methods, and performs some preliminary analysis of the data after pre-processing.



[bookmark: _Toc81553262]Introduction of the centrifugal gas compressor and pump
Onshore and offshore development projects in the petrochemical industries are predominantly capital-intensive, with the likelihood of severe financial and environmental consequences if a catastrophic failure occurs. Therefore, an effective maintenance management approach is essential to the continuation of production in a safe and reliable manner at minimum overall cost.
Petroleum refineries and gas processing plants are large and complex operations with many systems and subsystems working simultaneously. Within and in-between each system/subsystem are separators, heat exchangers (condensers, boilers, and re-boilers), valves, scrubbers, accumulators, piping systems, and rotating mechanical systems (induction motors, compressors, pumps, etc.). According to [131], major equipment failures in a petrochemical plant are related mainly to pumps, compressors and piping. Therefore, the maintenance of pumps and compressors are of paramount importance for engineers and managers, as these influence the safety and productivity of the entire plant operations.
As described in Section 1.2, the data applied in this thesis are mainly condition-based process data. These data are obtained from a centrifugal gas compressor and a high-pressure injection pump by a multivariate condition monitoring system, of a type which is widely used by industrial organizations and companies in both the public and private sectors to monitor and maintain their assets. 
The following two sections (Sections 3.1.1 and 3.1.2) briefly introduce the structures of a typical centrifugal compressor and a high-pressure injection pump, which are used in the petrochemical industries. 
[bookmark: _Ref18565042][bookmark: _Toc81553263]Structure of a typical centrifugal compressor
The centrifugal compressor has the advantage of smooth operation, large tolerance-to-process fluctuations, and higher reliability than other types of compressors, and are widely applied in automated applications, such as turbochargers, chemical plants, and gas turbines. 
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[bookmark: _Ref531427149][bookmark: _Toc531538345][bookmark: _Toc81553343]Figure 3.1 STC-SH single-shaft centrifugal compressor [132]
The structure of a typical multi-stage centrifugal compressor is illustrated in Figure 3.1. This type of machine is composed of rotors and stationary parts. The impellers are mounted on a rotating drive shaft. The bearings hold the rotor in place and reduce friction between moving parts. The stationary parts include an outer casing, which provides a basis for rotors; an inlet and a discharge nozzle; diaphragms installed at each stage; and seals which help to prevent leakage. 
[bookmark: _Ref18565051][bookmark: _Toc81553264]Structure of a typical high-pressure injection pump
High-pressure injection pumps are widely used in the petrochemical industries for oil transport, lift and injection. Centrifugal pumps are one of the most common pump types. They typically operate under high rotating speed, high pressure, and high loads. 
[image: ]
[bookmark: _Ref7425793][bookmark: _Toc81553344]Figure 3.2 A typical centrifugal pump [133]
A typical pump, see Figure 3.2, is also composed of rotors and stationary parts as is a centrifugal compressor. The rotors mainly include impellers, bearings, and the drive shaft. The stationary parts are seals, suction and discharge nozzle, and other structural components. The pump's impeller rotates within the housing and reduces pressure at the inlet generating a force to move the fluid. This rotational motion of the impeller then imparts sufficient energy to the fluid to drive it out the discharge [134]. The major difference between a pump and a compressor is that generally the pump is used to move (incompressible) liquids, while the compressor is typically used to compress a gas. 
[bookmark: _Toc81553265][bookmark: _Toc2681933][bookmark: _Ref3135272][bookmark: _Hlk32660232]Pump data 
[bookmark: _Toc81553266]Overview of the pump data before pre-processing
The pump data set used in this thesis was, as stated above, obtained from a multivariate condition monitoring system, which is widely used in industry to monitor and maintain capital assets. It included 15 continual measurements (data measured every hour), which are listed in Table 3.1, and include shaft speed, discharge pressure, discharge temperature, and bearing temperature, etc. 
[bookmark: _Ref531519541][bookmark: _Toc81553470]Table 3.1 Measured variables for pump
	ID
	Variable Name
	ID
	Variable Name
	ID
	Variable Name

	1
	Shaft speed
	2
	Suction pressure
	3
	Discharge pressure

	4
	Discharge temperature
	5
	Actual Flow
	6
	Radial Vibration Overall X

	7
	Radial Vibration Overall Y
	8
	Radial Bearing Temperature 1
	9
	Radial Vibration Overall X1

	10
	Radial Vibration Overall Y1
	11
	Radial Bearing Temperature 2
	12
	Thrust Position Axial Probe1

	13
	Thrust Position Axial Probe 2
	14
	Active Thrust Bearing Temperature 1
	15
	Inactive Thrust Bearing Temperature 1


This multivariate process data was recorded from 18th Sep 2012 to 8th Sep 2017. Some of the measurements before data pre-processing are shown in Figure 3.3 to Figure 3.5.


[bookmark: _Ref15747742][bookmark: _Toc81553345]Figure 3.3 Shaft speed of a pump before pre-processing, (a) raw data, (b) histogram of the raw data.


[bookmark: _Ref15747752][bookmark: _Toc81553346]Figure 3.4 Discharge pressure of a pump before pre-processing, (a) raw data, (b) histogram of the raw data.


[bookmark: _Ref62550926][bookmark: _Toc81553347]Figure 3.5 Discharge temperature of a pump before pre-processing, (a) raw data, (b) histogram of the raw data.
It can be seen from Figure 3.3 to Figure 3.5 that, the available datasets were discontinuous because of outliers and downtimes. In addition, it is clear that the discharge temperature sensor had a failure from Sep 2015 to Apr 2016, with discharge temperature stayed at 40 Centigrade, much higher than normal and with no change at all. 
[bookmark: _Hlk80163932] [image: ]
[bookmark: _Ref80156512][bookmark: _Ref15748821][bookmark: _Toc81553348]Figure 3.6 Correlation between actual flow and shaft speed before data pre-processing
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[bookmark: _Ref80156519][bookmark: _Toc81553349]Figure 3.7 Correlation between overall vibration X1 and Y1 of bearing 1 before data pre-processing
The presence of outliers in the original data set can lead to inflated error rates and substantial distortions of parameter and statistic estimates when using either parametric or nonparametric tests [135]. As an example, the correlation between actual flow and shaft speed and the correlation between some of the bearing measurements before data pre-processing were calculated using Matlab software, shown in Figure 3.6 and Figure 3.7, respectively. As can be seen in the figure, the correlation values were calculated as 'NaN' (shown as errors in the title), due to missing values in the original dataset. 
[bookmark: _Hlk32663316]Missing data 
In the pump data set, from 18th Sep 2012 to 8th Sep 2017, missing data existed in all measurements, and were recorded as 'Bad Input', 'Configure', 'I/O Timeout', 'No Data', and 'Scan Off' in the dataset. A general overview of missing values in each measurement is presented in Figure 3.8. As can be seen, sometimes all the variables were missing, which might be caused by a measurement system problem; sometimes, only a few variables were missing, which might be caused by communication problem with one sensor or sensor problems.
[bookmark: _Hlk80157683][image: ]
[bookmark: _Ref531286213][bookmark: _Toc81553350][bookmark: _Toc531538332][bookmark: _Hlk80157223]Figure 3.8 Missing data in each measurement of the pump (a) missing data in each measurement (b) number of missing data 
The strategy for processing these data in the thesis is to remove the record that contains missing data. This simple strategy worked well for both data sets as the data sets applied in this thesis covered a sufficient length of the monitoring period and hence provided adequate training data to let us build the fault detection model.
Outliers
Outliers can also cause various problems in statistical analyses. It is an observation that lies an abnormal distance from other values. Outliers can be caused by measurement error, a mixture of environmental noises, or it may indicate an incipient fault in a piece of equipment. The pattern of outliers in the shaft speed dataset can be seen in Figure 3.9 (a). This type of outlier was common and existed though out the pump and compressor data sets.


[bookmark: _Ref529106187][bookmark: _Toc531538337][bookmark: _Toc81553351]Figure 3.9 Patterns of outliers and downtime data in original pump dataset (a) pattern of outliers in shaft speed during Feb 2015 (b) pattern of downtimes in the measured flow of the pump during Dec 2015
In addition, there were many sets of downtime data, which can have a negative impact on the training process of machine learning techniques. In the provided datasets, the downtimes were due to many reasons, i.e., measurements exceeded their thresholds, time-based maintenance, unplanned shutdowns, and equipment testing. An example of downtime and machine startup/shutdown data pattern is shown in Figure 3.9 (b).
By observation of Figure 3.8, Figure 3.9 (a) and (b), the available dataset was mixed with missing data, outliers and downtime data, which resulted in discontinuous and inconsistent signals which can lead to inaccuracies in the machine learning models. Hence, data pre-processing is required to remove or replace bad or useless data. In the following sections, pre-processing rules to deal with missing data, outliers, and downtime data are introduced. 
Data pre-processing strategy to obtain healthy training data
The extracted raw data from the condition monitoring system cannot be used directly, as it often contains erroneous data or missing data due to communication system failure, sensors faults, maintenance and repair actions, etc. In order to obtain clean (error-free) data for further analysis and modelling, the following rules were utilized for data pre-processing: 
1. [bookmark: _Hlk47390291][bookmark: _Hlk47390307]Filter out all downtime data (shaft speed = 0 ) as shown in Figure 3.9 (b).
2. [bookmark: _Hlk47390322]Filter out all data vectors where one or more parameters have a value higher or lower than a predefined threshold. 
The aim of this step is to delete the start-up and shut-down data (see Figure 3.9 (b)), and some errors in the recorded data.
In this thesis, the threshold values were decided based on the manufacturer specifications. Taking the pump data as an example; the upper and lower thresholds for the input measurements can be found in Table 3.2.
3. [bookmark: _Hlk47390348]Delete all data vectors, where one of the input or output parameters' values are continuously missing for more than a particular time period. The number of hours is required from the end-user. 
In this thesis, the strategy is to remove the record that contains missing data. This simple strategy worked well for the pump data set, as the period of monitoring covered a sufficient length of time.
[bookmark: _Ref18648446][bookmark: _Toc81553471]Table 3.2 Upper and lower thresholds of input parameters for a pump
	
	Shaft speed
()
	Suction pressure
()
	Discharge pressure
()
	Discharge temperature
()
	Actual flow
()

	Upper threshold
	110
	9
	250
	40
	1500

	Lower threshold
	90
	13
	130
	15
	800



[bookmark: _Toc81553267]Overview of the pump data after pre-processing
The measurements processed after pre-processing using rules described in Section 3.2.1.3 are shown in Figure 3.10 and Figure 3.11. When comparing these two figures with Figure 3.3 and Figure 3.4, it can be observed that the outliers, sensor faults and downtime data were removed. 


[bookmark: _Ref15666649][bookmark: _Toc81553352]Figure 3.10 Shaft speed of a pump, (a) pre-processed raw data, (b) histogram of the pre-processed raw data.


[bookmark: _Ref62567181][bookmark: _Toc81553353]Figure 3.11 Discharge pressure of a pump, (a) pre-processed raw data, (b) histogram of the pre-processed raw data.
As a comparison of Figure 3.6, the correlation between actual flow and shaft speed and the correlation between overall vibration X1 and Y1 of bearing 1 is shown in Figure 3.12 (a) and (b), respectively. The correlation results appeared on the top of Figure 3.6 and Figure 3.12 are Pearson correlation coefficients. The Pearson correlation coefficient of two variables is a measure of their linear dependence [136]. In addition, the correlation plot of all measurements in the pump from 10th Mar 2013 to 21st Jun 2013 is demonstrated in Table 3.3. As can be seen in the table that correlation between many measurements (i.e. the discharge pressure and shaft speed (0.81), shaft speed and flow (0.83)) showed linear relationships, while some of the measurements (i.e. flow and thrust bearing's position (0.66 or 0.67), discharge temperature and bearing temperature (-0.15), discharge temperature and suction pressure (0.35)) showed low correlation, which indicated that some of the variables had weak relationships or non-linear relationships.
[bookmark: _Hlk80164393][image: ]
[bookmark: _Ref62573161][bookmark: _Toc81553354]Figure 3.12 Correlation between actual flow and shaft speed after data pre-processing
[image: ]
[bookmark: _Toc81553355]Figure 3.13 Correlation between overall vibration X1 and Y1 of bearing 1 after data pre-processing

[bookmark: _Ref69809801][bookmark: _Toc81553472][bookmark: _Hlk21292374]Table 3.3 Correlation results of all measurements on pump from 10th Mar 2013 to 21st Jun 2013
[image: ]
[bookmark: _Toc81553268]Working conditions
The working condition of the pump is linked to its mechanical action and method of control. To meet the requirements of end-users, several ways are used to control the pump. The most common ones are throttling control, rotational speed control, and sequence circuit [137]. The flow, pressure and speed can be used to distinguish the pump's working conditions. There were two working conditions for the pump from 2012 to 2018 (see Table 3.4).
[bookmark: _Ref16185893][bookmark: _Toc81553473]Table 3.4 Working conditions for the pump from 2012 to 2018
	Working condition A
	Speed: 90-105 rpm
Discharge pressure: 226-230 bar
Flow: 850-1250 km3/d

	Working condition B
	Speed: 95-105 rpm
Discharge pressure: 203-220 bar
Flow: 1250-1400 km3/d


[bookmark: _Toc80396048][bookmark: _Toc81542259][bookmark: _Toc81553269]Representative faults
From 2012 to 2018, the pump experienced three faults according to logbook, sensor fault, bearing fault, and a misalignment fault. These types of faults are described in the following sections.
Sensor fault
In the petrochemical industries, essential systems are usually equipped with sensors to monitor their health condition. The sensor readings are the inputs of the condition monitoring and decision-making system, so that they can influence the fault detection results, remaining useful life prediction and maintenance decisions. Unfortunately, sensors are susceptible to hardware and software faults, incorrect hardware design, improper calibration, or low battery levels [138]. Sharma et al. [138] divided sensor detection methods into four classes, which are rule-based, estimation-based, time-series-analysis-based, and learning-based methods. Each method has its advantages and disadvantages. For example, the rule-based methods can be highly accurate, but their accuracy depends critically on the choice of parameters. Estimation-based methods are accurate, but cannot classify faults. Learning-based methods can be cumbersome to train, but can accurately detect and classify faults. Time-series-analysis-based methods are more effective for detecting short-duration faults than long-duration ones, but they incur more false positives than the other methods. An example of a sensor fault in the pump data set can be found in Figure 3.14. The detection of sensor faults is out of the scope of this thesis.


[bookmark: _Ref32696313][bookmark: _Toc81553356]Figure 3.14 Sensor fault in discharge temperature in the pump data set, (a) historical data, (b) histogram.
[bookmark: _Hlk32703150]Misalignment fault
[bookmark: OLE_LINK42]The shaft is the central part of a pump. It connects all the component parts together, it drives the pump and rotates at high speed. Hence, monitoring its condition is of great importance. The faults that might occur in a shaft include rotor unbalance, wear, crack, misalignment and bending, which might result from corrosion, alternating stress, overload, and poor working conditions. Among these, misalignment is one of the most common faults. Misalignment can be detected using vibration signals of the shaft or bearings [139], bearing temperature signals [140], root mean square (RMS) and energy in the acoustic emission signals [141] etc. In the pump data set, the misalignment was reflected as an increase in bearing temperature.
The bearing temperatures after data pre-processing in the pump is as shown in Figure 3.15. It was detected as a misalignment in the pump system, with increase in temperature of four bearings (including two radial bearing and two thrust bearings). The pump was maintained and was back to normal on 7th Jul 2013. 
[image: ]
[bookmark: _Ref17873072][bookmark: _Toc81553357]Figure 3.15 The increase in the pump bearings' temperature due to misalignment
Misalignment and a radial bearing failure
The raw measurements of bearing temperature and vibration are shown in Figure 3.16. It can be seen in Figure 3.16 (a) that the temperature of the four bearings (two radial bearings and two thrust bearings) increased because of misalignment in the pump. At 14:00 on 19th Jul 2016, the pump was shut down, and maintenance was carried out to correct the misalignment. However, during the maintenance the engineers did not discover that bearing 2 had a fault. After the pump was reinstated on 7:00 20th Jul 2016, the vibration of bearing 2 increased immediately (see Figure 3.16 (b)). This fault was not corrected until bearing 2's vibration hit its threshold on 23rd Aug 2016.
[image: ]
[bookmark: _Ref17873255][bookmark: _Toc81553358]Figure 3.16 The pump's measurements from 12th Jul to 23rd Aug 2016. (a) The increase in the pump bearings' temperature due to misalignment. (b) The increase in the pump bearings' vibration amplitude due to a bearing fault.
[bookmark: _Toc81553270]Compressor data 
[bookmark: _Toc81553271]Overview of the compressor data before and after pre-processing
The compressor data used in this thesis was obtained from a multivariate condition monitoring system. The given compressor dataset provided by our sponsor includes 29 sets of continuous measurements from a multi-stage centrifugal compressor. This compressor had three stages driven by a large gas turbine. The measurements for the compressor are listed in Table 3.5.

[bookmark: _Ref18648355][bookmark: _Toc81553474]Table 3.5 Measured variables for a compressor
	ID
	Variable Name
	ID
	Variable Name
	ID
	Variable Name

	1
	Stage 1 Suction Pressure
	2
	Stage 1 Discharge Pressure
	3
	Stage 1 Suction Temperature

	4
	Stage 1 Discharge Temperature
	5
	Stage 2 Suction Pressure
	6
	Stage 2 Discharge Pressure

	7
	Stage 2 Suction Temperature
	8
	Stage 2 Discharge Temperature
	9
	Stage 3 Suction Pressure

	10
	Stage 3 Discharge Pressure
	11
	Stage 3 Suction Temperature
	12
	Stage 3 Discharge Temperature

	13
	Stage 1 Standard flow
	14
	Stage 2 Standard flow
	15
	Stage 3 Standard flow

	16
	Stage 1-2 DE Radial Vibration Overall X
	17
	Stage 1-2 DE Radial Vibration Overall Y
	18
	Stage 1-2 NDE Radial Vibration Overall X

	19
	Stage 1-2 NDE Radial Vibration Overall Y
	20
	Stage 1-2 Thrust Position Axial Probe 1
	21
	Stage 1-2 Thrust Position Axial Probe 2

	22
	Stage 3 DE Radial Vibration Overall X
	23
	Stage 3 DE Radial Vibration Overall Y
	24
	Stage 3 NDE Radial Vibration Overall X

	25
	Stage 3 NDE Radial Vibration Overall Y
	26
	Stage 3 Thrust Position Axial Probe 1
	27
	Stage 3 Thrust Position Axial Probe 2

	28
	Speed 1
	29
	Speed 2
	
	


[image: ]
[bookmark: _Ref32742328][bookmark: _Toc81553359]Figure 3.17 Outliers in the compressor data set before data pre-processing, (a) raw data of discharge pressure of stage 1, (b) histogram of discharge pressure, (c) raw data of discharge temperature of stage 1, (d) histogram of discharge temperature.
This dataset of the three-stage compressor began on 1st Jan 2014 and continued to 1st Dec 2014, sampling once every hour. Some of the measurements before data pre-processing are shown in Figure 3.17.  It can be seen from Figure 3.17 that there were many outliers in the compressor dataset, which were caused by various factors, such as changing operation, machine test, maintenance, measurement equipment fault/failure. 
The number of missing data is presented in Figure 3.18 (b). As can be seen, for the year 2014, most of the missing data was for the suction and discharge temperature of compressor stage 3.


[bookmark: _Ref32769238][bookmark: _Toc81553360]Figure 3.18 Missing data in each measurement of the compressor (a) missing data in each measurement (b) number of missing data
The following rules were utilized for compressor data pre-processing: 
1. Filter out all downtime data (shaft speed = 0 ).
2. Filter out all data vectors where one or more parameters had a value higher or lower than a predefined threshold. The threshold values were decided based on manufacturer’s specifications. Some of the upper and lower thresholds for the input measurements can be found in Table 3.6.
3. Filter out all missing data in the compressor data set.
[bookmark: _Ref62639238][bookmark: _Toc81553475]Table 3.6 Some of the upper and lower thresholds of the compressor
	
	Shaft speed
(RPM)
	Stage 1 suction pressure
(Bar)
	Stage 1 discharge pressure
(Bar)
	Stage 1 Discharge temperature
(°C)
	Stage 1 Discharge temperature
(°C)

	Upper threshold
	
	25
	55
	65
	150

	Lower threshold
	
	10
	25
	30
	60





[bookmark: _Ref32772185][bookmark: _Toc81553361]Figure 3.19 Compressor data (a) pre-processed raw data of discharge pressure of stage 1, (b) histogram of discharge pressure, (c) pre-processed raw data of discharge temperature of stage 1, (d) histogram of discharge temperature.
Some of the measurements after pre-processing are shown in Figure 3.19. When compared with Figure 3.17, it can be observed that the outliers and downtime data were removed. 
[bookmark: _Toc81553272]Working condition
The compressor described in this thesis was controlled using a variable-speed drive (VSD).  This type of compressor is also called the 'VSD compressor'. The VSD compressor is designed to maintain the discharge pressure within a very accurate range by controlling the shaft speed, which in turn saves energy compared to a fixed speed compressor [142]. Therefore, the working condition of the compressor can be determined by the shaft speed and discharge pressure. There was only one working condition for the compressor in the year 2014, with speed: 80 - 95 , and stage 3 discharge pressure: 125 - 150 .
[bookmark: _Toc81553273]Representative Faults
[bookmark: _Hlk32706931][bookmark: OLE_LINK92][bookmark: OLE_LINK93]From 1st Jan 2014 to 1st Dec 2014, three faults occurred in the three-stage compressor system: A flow measurement sensor fault, a temperature measurement sensor fault, and a radial bearing fault. The details of these faults are described in the following sections.
Measurement sensor fault
[bookmark: OLE_LINK82][bookmark: OLE_LINK83]Comparing the discharge pressure in Figure 3.20 (a) with the flow measurement in Figure 3.20 (b), it can be seen that from 17th Jul 2014 to 14th Oct 2014, the flow value of the three stages was 0, but the discharge pressure parameters were normal. This indicates that there was a flow measuring sensor fault during that period. 


[bookmark: _Ref62659698][bookmark: _Toc81553362]Figure 3.20 Flow measurement equipment fault, (a) the discharge pressure of the compressor; and (b) flow measurement of the compressor system.
Comparing the suction and discharge temperatures in Figure 3.21 (b) with the suction pressure and discharge pressure in Figure 3.21 (a) and Figure 3.20 (a), it can be seen that from 14th Jul 2014 to 14th Oct 2014, suction and discharge temperatures were missing while the suction and discharge pressure parameters were normal. This was recognized as a temperature measuring sensor fault. The detection of measuring equipment faults is out of the scope of this thesis.


[bookmark: _Ref62660203][bookmark: _Toc81553363]Figure 3.21 Temperature measurement equipment  fault, (a) suction pressure of the compressor system; and (b) suction and discharge temperature of the compressor system
Bearing faults
Apart from the flow and temperature measuring sensor faults, the compressor system experienced a radial bearing fault with its vibrations showing abnormal trends. The bearings measurements of the compressor are shown in Figure 3.22. It can be seen from Figure 3.22 (a) that the overall vibration X and Y of the DE radial bearing at stage 3 were increased from around 22nd Sep 2014. It also indicated that the stage 3 DE radial bearing had a fault. Influenced by this bearing fault, the stage 3 NDE radial bearing showed abnormal values in its overall vibration Y from 12th Oct (see Figure 3.22 (b)). Even worse, from 16th Oct, the overall vibration X and Y of DE radial bearing at stage 1-2 started to increase. The compressor was in a hazardous condition as three bearings performed abnormally. The compressor was finally maintained on 23rd Oct 2014.
[image: ]
[bookmark: _Ref502914629][bookmark: _Ref501578838][bookmark: _Toc81553364]Figure 3.22 Bearings faults in a compressor shown in bearings measurements, (a) Overall vibration X and Y of the DE radial bearings at stage 1-2 and stage 3 of the compressor, (b) Overall vibration Y of the NDE radial bearings at stage 3 of the compressor.
[bookmark: _Toc2681941][bookmark: _Toc81553274]Summary
[bookmark: _Hlk47389385][bookmark: _Hlk47389455]This chapter has provided a brief introduction of the pump and multi-stage compressor from which the experimental data were obtained. The overviews of data before and after pre-processing are presented. Missing values, outliers, and downtime data in the raw industrial pump and compressor data, which can lead to inaccuracies in the machine learning models have been described, examples in the data presented and filtered out. The rules utilized for data pre-processing are described, and relatively clean data obtained after pre-processing. In addition, the working conditions and fault types that occurred and were described and mapped in the given data sets.



                             
                   										 
[bookmark: _Toc81553275]
Fault Detection in Petrochemical plant and Machinery using Multivariate Data
                   										 

Compressors and pumps are important machines in petrochemical processes, and condition monitoring of these crucial components is essential for early failure detection, reducing production line downtime, and improving plant safety, efficiency, and reliability. Fault detection (anomaly detection) using multivariate process data has been widely applied by industry as a supplementary to vibration-based methods. In this chapter, three data-driven methods (NARX, PCA, and SAE) are applied and compared for early fault detection using same process data from a pump and a compressor. The receiver operating characteristics (ROC) curve and the resulting area under the ROC curve (AUC) are employed to evaluate the performance of the data-driven fault detection models.

[bookmark: _Ref32955976][bookmark: _Toc81553276]
Theoretical background
In this thesis, fault detection methodologies are developed based on assessment of the reconstruction error. The theory of three data-driven methods (PCA, NARX, and SAE), which have proved effective for multivariate data anomaly detection, are described in this section. The Mahalanobis distance (MD) is applied to measure the reconstruction error between the reconstructed data and input data. The receiver operating characteristics (ROC) curve and the resulting area under the ROC curve (AUC), are used as performance metrics to evaluate the performance of the fault detection models.
[bookmark: _Toc81553277]Data standardisation
After applying data pre-processing methods descripted in Chapter 3, a data standardisation process is applied to the condition monitoring data to scale the data sets to an equal range. Assume  (for each variable ) is the historical data set, which contains  variables.  (for each variable ) is the standardised data set and can be obtained from  using Equation (4‑1).
	
	[bookmark: _Ref63087156](4‑1)


where  represents each variable.  denotes the mean, and  is the standard deviation of the training data, . Both values are applied to training data as well as the condition monitoring data. In this chapter, the input data to the three fault detection models are standardised data. 
[bookmark: _Ref17061224][bookmark: _Toc81553278][bookmark: _Ref17058041]Nonlinear autoregressive neural network
The nonlinear autoregressive network with exogenous inputs (NARX) is a nonlinear and supervised data-driven model. It features a feedback architecture that is connected to the architecture of the feed-forward networks and so can deal with time-series problems. Therefore, it can deal with time-series problems. The structure of the NARX neural network is presented in Figure 4.1.


[bookmark: _Ref12542134][bookmark: _Toc81553365][bookmark: OLE_LINK1]Figure 4.1 Structure of NARX neural network
In Figure 4.1,  denotes time-series multi-variate input variables after standardisation.  is the corresponding output.  and  are, respectively, the weight vectors and bias in the hidden layer;  and  respectively represent the weight vectors and bias in the output layer. The NARX model can be given by Equation (4‑2):
	
	[bookmark: _Ref32952035][bookmark: _Ref63070904](4‑2)


where  is a time delay parameter.  is a nonlinear function, which predicts the behaviour of the machine at time  using inputs  and multiple outputs at time (.
The model is trained by minimising the cost function, c(w), in Equation (4‑3).
	
	[bookmark: _Ref21246058](4‑3)


where  is the total number of sample points.  is the response for the training samples, and  is the nonlinear function of the NARX ANN model.  represents input predictors in the time-series, and  is the weight vector.
The Levenberg–Marquardt back-propagation method is applied to train the NARX model, due to its good efficiency and high precision [105]. According to this method, the weight vector is updated using Equation (4‑4):
	
	[bookmark: _Ref21249700](4‑4)


where  is the cost function.  is an identity matrix.  is related to optimisation methods, with its initial value set to 1. [105] 
[bookmark: _Toc81553279]Principle component analysis
[bookmark: OLE_LINK15][bookmark: OLE_LINK14]Principal component analysis (PCA) is a popular unsupervised machine learning method for dimensionality reduction and feature extraction [91], [92]. It conducts linear transformations to find the directions of the maximum variances in the original data and projects these onto a new subspace with fewer dimensions than the original [143]. The algorithm can be expressed via Equation (4‑5). 
	
	[bookmark: _Ref32951724][bookmark: _Ref63070954](4‑5)


where  represents the principal vector matrix, is the score matrix of the principal components , and  denotes the residual error.
[bookmark: OLE_LINK8]When implementing the PCA model, the number of selected principal components is linked via their contributions (variances) to the model. The principal components  to  are in descending order according to their contributions. The first principal component  makes the greatest contribution to representing the input data and corresponds to the projection having the largest variance. The second component  is orthogonal to  and again maximises the variance of the data points projected on it. The last component  makes the least contribution. The contribution of the th principal component to the model can be found using Equation (4‑6).
	
	[bookmark: _Ref32951810][bookmark: _Ref63070991](4‑6)


where is the variance of  principal component, and  is the total of the variances.
The principal vectors matrix  and score matrix  can also be written as in Equation (4‑7) and (4‑8):
	
	[bookmark: _Ref32951893][bookmark: _Ref63071007](4‑7)

	
	[bookmark: _Ref32951953][bookmark: _Ref63071016](4‑8)


[bookmark: OLE_LINK17]where  represents the number of principal components, which enables  to adequately explain the variability of input data .
[bookmark: _Toc81553280]Sparse autoencoder
The sparse autoencoder (SAE) is an unsupervised feed-forward neural network. A representative structure of an SAE can be seen in Figure 4.2. The SAE network comprises an encoder and a decoder. The encoder connects the input layer to the hidden layer, extracting features from the input data, while the decoder connects the hidden layer to the output layer, reconstructing the input data.
[image: ]
[bookmark: _Ref52399271][bookmark: _Toc81553366]Figure 4.2 Sparse autoencoder structure.
The functioning of the SAE can be expressed by Equation (4‑9):
	
	[bookmark: _Ref52399350][bookmark: _Ref63071600](4‑9)


where  is the input vector, .  represents the output vector, with the number of outputs equal to the number of inputs.  is a nonlinear function of the SAE, which reconstructs output vector  according to the input vector , using weight vectors  and bias .
The SAE is trained by minimising the cost function  in Equation (4‑10) [101]. In this thesis, the L-BFGS algorithm and back-propagation [101], [144] were employed to train the network to minimise the cost function.
	
	[bookmark: _Ref52399359][bookmark: _Ref63071610](4‑10)


The first part of Equation (4‑10) is a mean squared error term, which is used for minimising the error between the input data  and the output data .  represents the  training input variable,  is the total of the input variables. The decoder function of the  training variable is given by , where  is the activation of the hidden layer, , where  are weights,  are bias units, and  is the logistic sigmoid function.
The second part of the cost function is the regularisation term, which is used to avoid over-fitting. In this regularisation term,  is a weight decay factor,  represents the number of layers (including the input and output layers) in the network.  denotes the number of units in layer , excluding the bias unit.  is the weight vector between the  unit in layer  and the  unit in layer .
The last part of the Equation is called the sparsity regularisation term, which imposes a sparsity constraint on the hidden units.  is the weight of this term.  is the number of neurons in the hidden layer.  measures how different two distributions are, and this term is given by the Kullback–Leibler divergence function in Equation (4‑11):
	
	[bookmark: _Ref52399412][bookmark: _Ref63071643](4‑11)


where  is the sparsity parameter which is usually small and close to zero,  is the number of hidden units in the SAE,  is the average activation of hidden unit  given by .  represents the activation of hidden unit  in the SAE.
[bookmark: _Toc81553281]Residual evaluation and threshold calculation
After the fault detection models are trained using data obtained under healthy condition, the models can then be applied to condition monitoring data. The multivariate residuals  between the input variables  and the reconstructed outputs  can be calculated as:
	
	(4‑12)


In our methodology, a fault can be detected using a system feature that integrates multivariate residuals. The Euclidean distance or the Mahalanobis distance (MD) are commonly used for such purpose. Compared to Euclidean distance, the MD can account for correlations among variables, which the Euclidean distance does not. Here the variables correlate with each other (see Chapter 3), so the use of the MD in this thesis is the more robust approach [145], [146]. In the past, the MD has been applied successfully to wind turbine anomaly detection [105], [106], [145], and can be calculated using Equation (4‑13).
	
	[bookmark: _Ref63293653](4‑13)


where  is the system feature represented by MD.  is the robust measure of central tendency (the median) and  is the inverse covariance matrix [146]. 
The fault detection threshold  of system feature  is calculated using the probability density function (PDF) of  at a given confidence level . This process can be described by Equation (4‑14):
	
	[bookmark: _Ref48489010](4‑14)


where  is the PDF function of . In this chapter, the kernel density estimation (KDE) method is adopted for distribution fitting. The KDE method is a well-established approach in statistical distribution fitting and has been successfully applied to the field of process monitoring and fault detection [145]. According to the KDE method,  can be written as:
	
	(4‑15)


where  is the total number of .  is the kernel function, and  is the bandwidth.
[bookmark: _Toc81553282]Fault analysis using  statistic
In this thesis, a reconstruction-based  statistic contribution map is employed to identify the abnormal variables indicating the presence of a fault. The conventional one-dimensional  statistic contribution plot can be expressed by Equation (4‑16) [147], and it is widely used in process control for condition monitoring data [77]–[79].
	
	[bookmark: _Ref63332144](4‑16)


where  is the reconstructed value of  using the SAE model. The higher the  value, the greater the contribution to detecting the fault.
The conventional one-dimensional contribution plot can only examine the contributions at a given time step. To obtain multiple observations for the entire times series of the data containing the fault, a two-dimensional contribution map [148] is required. It is obtained by stacking the one-dimensional contribution plots over time into a single figure.
[bookmark: _Toc81553283][bookmark: _Ref17961532]Performance metrics
A good fault detection model should yield a high fault detection rate (FDR) and a low false alarm rate (FAR). FDR is defined as the percentage of detected fault samples over the total number of fault samples, and FAR is regarded as the percentage of the number of healthy samples detected as faulty over the total number of healthy samples [149]. 
Two metrics that integrate the FDR and FAR values are utilised in this thesis to assess the performance of the fault detection model. These two metrics are the ROC curve and the AUC value [145]. An illustration of the ROC curve and the corresponding AUC value is presented in Figure 4.3. As can be seen, ROC curve is obtained by plotting the FDR on the Y-axis against FAR on the X-axis. When calculating the ROC curve, the parameter  in Equation (4‑14) changes and the values of FDR and FAR can vary between 0 and 1. 
In Figure 4.3, points indicated at the top left corner have better fault detection performance than others, because these points have a relatively high FDR values and low FAR values. The ROC curve and the AUC value allow a relative trade-off between FDR and FAR. A desirable fault detector would yield a high FDR and a low FAR on the ROC curve and, accordingly, a high AUC value.


[bookmark: _Ref64655264][bookmark: _Toc81553367]Figure 4.3 Fault Detection Rate as a function of False Alarm Rate showing Receiver Operating Characteristic curve and Area Under the ROC curve
[bookmark: _Toc81553284]NARX based anomaly detection model
[bookmark: _Toc81553285]Implementation of NARX based fault detection model
The NARX fault detection model is presented in Figure 4.4. The fault detection is based on the assessment of the errors between the estimated output and the actual monitored data. As shown in the figure, the NARX model has an offline training phase and an online monitoring phase. In the offline phase, the input data is the data after pre-processing and standardisation. The data analyst should define the input and output variables because the NARX is a supervised machine learning method. The fault detection threshold () is calculated in the training phase by solving Equation (4‑14). 
In the online phase, the input data is the condition monitoring data after standardisation.  is the MD calculated using Equation (4‑13) for the monitored data. The machine/ equipment is considered normal if ; and anomalies are detected if . Considering that false alarms can be present, it is assumed that the machine/equipment is faulty when the  continuously exceeds the fault detection threshold.
[image: ]
[bookmark: _Ref12632723][bookmark: _Toc81553368]Figure 4.4 Model 1: NARX based fault detection model
[bookmark: _Toc81553286]Case studies: fault detection using the NARX model
Case 1: misalignment fault in a pump
In this case study, the NARX fault detection model was trained on the data for the period from 10th Mar 2013 to 21st Jun 2013, during which there was no recorded damage to the pump. The model was then tested using data from 22nd Jun to 6th Jul 2013, during which time a misalignment fault occurred (see Figure 3-14). The inputs and outputs of the NARX models for pump bearings are listed in Table 4.1.
[bookmark: _Ref33213293][bookmark: _Toc81553476]Table 4.1 Inputs and output of NARX models for pump bearings
	Variables
	Radial bearing model 1
	Radial bearing model 2
	Thrust bearing model 1
	Thrust bearing model 2

	Speed
	✓
	✓
	✓
	✓

	Suction pressure
	✓
	✓
	✓
	✓

	Discharge pressure
	✓
	✓
	✓
	✓

	Actual Flow
	✓
	✓
	✓
	✓

	Radial Vibration Overall Y1
	O
	
	
	

	Radial Vibration Overall Y2
	
	O
	
	

	Radial Bearing Temperature 1
	O
	
	
	

	Radial Bearing Temperature 2
	
	O
	
	

	Radial Vibration Overall X1
	O
	
	
	

	Radial Vibration Overall X2
	
	O
	
	

	Thrust Position Axial Probe 1
	
	
	O
	

	Thrust Position Axial Probe 2
	
	
	
	O

	Thrust Bearing Temperature 1
	
	
	O
	

	Thrust Bearing Temperature 2
	
	
	
	O


Notes: Inputs (✓) & Outputs (O)
The offline training phase can be seen in Figure 4.5 (a), where the blue points are healthy data, the magenta line is the reference MD threshold, and the red points are anomalies. The reference threshold () was calculated during the training stage, with confidence level , the number of nodes in the hidden layer was set to 10, and the delay time was set to 1 hour [105].
The online monitoring phase is presented in Figure 4.5 (b). In the figure, the pump was healthy before 06:00 4th Jul 2013, as no continuous anomalies exceeded the threshold. After that time, continuous anomalies were detected, which indicated that the pump was suffering a fault. It was worth noting that, parameters such as confidence level , the number of nodes in the hidden layer, and the delay time, will influence the performance of the NARX fault detection model. These parameters are considered and explored in the following paragraphs.


[bookmark: _Ref63179856][bookmark: _Toc81553369]Figure 4.5 The MD calculated in the training and monitoring phases by the NARX model for Case 1, (a) MD calculated in the offline training phase, (b) MD calculated in the online monitoring phase.
A 2D contribution map of the NARX model for Case 1 was calculated and is shown in Figure 4.6. As can be seen, measurements for the four bearings, such as temperature and overall vibration, contributed to the increase of the system feature. Such results gave maintenance staff a clear indication of a bearing related fault, such as misalignment, or rotor unbalance.
[image: ]
[bookmark: _Ref63197111][bookmark: _Toc81553370]Figure 4.6 2D contribution map of NARX model for Case 1
The ROC curves and AUC values of the NARX model for Case 1 were calculated and the results presented in Figure 4.7 and Figure 4.8. The confidence level  influenced the value of the fault detection threshold, and accordingly, influence the FDR and FAR. The ROC curves were obtained with change in confidence level , which changed the values of both the FDR and FAR from 0 to 1. Considering the results can be slightly different for each training and test phase, we tested the programs three times, so that the ROC and AUC values presented in Figure 4.7, Figure 4.8 and Figure 4.9 were average values. Similarly, the results obtained for ROC and AUC in other test cases in this chapter are all average values.
Figure 4.7 shows the ROC curves and AUC values of the NARX model for Case 1, with different numbers of NARX nodes and delay time set to 1 hour, and Figure 4.8 presents the ROC curves and AUC values with three different delay times 2, 4 and 6 hours, with the number of nodes in the hidden layer set to 10. As explained in Section 4.1.7, a good fault detector should yield a high FDR and a low FAR in the ROC plot, and accordingly, a high AUC value. Both figures show that the NARX model performed well in Case 1.
[image: ]
[bookmark: _Ref63199553][bookmark: _Toc81553371]Figure 4.7 ROC curves and AUC values of NARX model for Case 1, (a) ROC curves for NARX model with different numbers of NARX nodes, (b) AUC values for NARX model with different numbers of NARX nodes.
[image: ]
[bookmark: _Ref63199785][bookmark: _Toc81553372]Figure 4.8 ROC curves and AUC values of NARX model for Case 1, (a) ROC curves for NARX model with different delay time, (b) AUC values for NARX model with different delay time (unit: hour).
Figure 4.9 shows the AUC values for Case 1, for the NARX model with a wider range of nodes and delay times compared to Figure 4.7 and Figure 4.8. As can be seen, the NARX model performed well, as the AUC values were all above 0.97, when the numbers of nodes ranged from 2 to 20, and delay time from 1 to 10 hours.


[bookmark: _Ref63202319][bookmark: _Toc81553373]Figure 4.9 AUC values for the NARX model with different numbers of nodes and delay time for case 1, (a) 3D figure, (b) 2D figure.
Case 2: misalignment fault and pump bearing fault
In this case study, the NARX fault detection model was trained on the data for the ten month period from 1st Sep 2015 to 11th Jul 2016, during which there was no recorded fault in the pump. The model was then tested using data from 12th Jul to 23rd Aug 2016, during which a misalignment fault and a bearing fault occurred (see Figure 3-15). The inputs and outputs of NARX models for pump bearings are listed in Table 4.1.  
The offline training phase can be found in Figure 4.10 (a), where the blue points are considered healthy data, the magenta line is the reference MD threshold, and the red points are anomalies. The threshold was calculated during the training stage, with confidence level , the number of nodes in the hidden layer was 10, and the delay time was set to 1 hour [105].
The online monitoring phase is presented in Figure 4.10 (b). In the figure, the pump was considered healthy before 16:00 on 17th Jul 2016, as no continuous anomalies exceeded the threshold. After that time, continuous anomalies were detected, which indicated that the pump suffered at least one fault. The parameters such as confidence level , the number of nodes in the hidden layer, and the delay time, can influence the time at which fault(s) were detected and the performance of the NARX fault detection model. These parameters are discussed later in this section.


[bookmark: _Ref63204504][bookmark: _Toc81553374]Figure 4.10 The MD calculated in the training and monitoring phases of the NARX model for Case 2, (a) The MD calculated in the offline training phase, (b) The MD calculated in the online monitoring phase.
A 2D contribution map of the NARX model for Case 2 was established and is shown in Figure 4.11. As can be seen, from 16:00 on 17th to 14:00 on 19th Jul 2016, there were increases in certain of the system features; in the overall vibration X and Y of the two radial bearings, and the temperature of the two radial bearings and the two thrust bearings. These results give maintenance staff a clear indication of the presence of bearing related faults, such as bearing faults and misalignment.
[image: ]
[bookmark: _Ref63245842][bookmark: _Toc81553375]Figure 4.11 2D Q statistic contribution map of NARX model for Case 2
After the misalignment fault was remedied by maintenance staff, then from 14:00 on 19th Jul 2016 in Figure 4.11, we see that it was overall vibration X of radial bearing 2 that contributed most to an increase in system fault features. The results gave the maintenance staff a clear indication of a fault in bearing 2.
The ROC curves and AUC values of the NARX model for detection of the misalignment in case 2 were calculated and was presented in Figure 4.12 and Figure 4.13. Figure 4.12 shows the ROC curves and AUC values of the NARX model for case 2, with three different numbers of NARX nodes and delay time fixed at 1 hour, and Figure 4.13 presents the ROC curves and AUC values for three different delay times 2, 4 and 6 hours. The number of nodes in the hidden layer was fixed at 10. In both figures the AUC values were above 0.8, but under 0.9. The NARX model performed well and detected the misalignment fault.


[bookmark: _Ref63257780][bookmark: _Toc81553376]Figure 4.12 ROC curves and AUC values of NARX model for detection of misalignment in Case 2, (a) ROC curves for NARX model with different numbers of NARX nodes, (b) AUC values for NARX model with different numbers of nodes.


[bookmark: _Ref63257788][bookmark: _Toc81553377]Figure 4.13 ROC curves and AUC values of NARX model for detection of misalignment in Case 2, (a) ROC curves for NARX model with different delay times, (b) AUC values for NARX model with three different delay times.
[bookmark: _Hlk68685470]The AUC values for the NARX model with a wider range of the number of nodes and delay times for detection of the misalignment, compared to Figure 4.12 and Figure 4.13, for Case 2 is shown in Figure 4.14. As can be seen, the NARX model performs well in this case, as the AUC values were above 0.82, with the number of nodes ranging from 2 to 20, and delay time ranging from 1 to 10 hours. As can be seen in Figure 4.14 (b), the model performed best when there were fewer than 14 nodes and the delay time was greater than 1 hour.


[bookmark: _Ref63260214][bookmark: _Toc81553378]Figure 4.14 AUC values for the NARX model with different numbers of nodes and delay times for detection of the misalignment in Case 2, (a) 3D figure, (b) 2D figure.
The ROC curves and AUC values of the NARX model for detection of the bearing fault in Case 2 were calculated and are presented in Figure 4.15 and Figure 4.16. Figure 4.15 shows the ROC curves and AUC values of the NARX model, with 10, 14 and 18 NARX nodes and delay time set to 1 hour. Figure 4.16 presents the ROC curves and AUC values with three different delay times, 2, 4 and 6 hours, with the number of nodes in the hidden layer set to 10. In both figures, the AUC values were above 0.98, which indicated that the NARX model performed very well when detecting a bearing fault.


[bookmark: _Ref63262901][bookmark: _Toc81553379]Figure 4.15 ROC curves and AUC values of NARX model for detection of bearing fault in Case 2, (a) ROC curves for NARX model with three different numbers of NARX nodes, (b) AUC values for NARX model with three different numbers of nodes.


[bookmark: _Ref63262912][bookmark: _Toc81553380]Figure 4.16 ROC curves and AUC values of NARX model for detection of bearing fault in Case 2, (a) ROC curves for NARX model with three different delay times, (b) AUC values curves for NARX model with three different delay times
[bookmark: _Hlk68685577]The AUC values for the NARX model with a wider range of the number of nodes and delay times compared to Figure 4.15 and Figure 4.16, for detection of the bearing faults in Case 2 is shown in Figure 4.17. As can be seen, the NARX model performed very well, with AUC values above 0.97, with the number of nodes ranging from 2 to 20, and delay time from 1 to 10 hours. In this case, as can be seen in Figure 4.17 (b), the model gave a better performance when the number of nodes was less than 10 and the delay time greater than 1 hour.


[bookmark: _Ref63263100][bookmark: _Toc81553381]Figure 4.17 AUC values for the NARX model with different numbers of nodes and delay times for detection of bearing fault in Case 2, (a) 3D figure, (b) 2D figure.
Case 3: bearing faults in compressor
In this case study, the NARX fault detection model was trained on the data for the half year from 1st Feb to 22nd Aug 2014, during which time were no recorded faults in the compressor. The models were then used to assess the health condition of the compressor from 23rd Aug to 23rd Oct 2014, during which time bearing faults occurred (see Figure 3-21). The inputs and outputs of the NARX models for the compressor are listed in Table 4.2.
The offline training phase can be seen in Figure 4.18 (a), where the blue points are healthy data, the magenta line is the reference MD threshold, and the red points are anomalies. The reference threshold () was calculated during the training stage, with confidence level, , the number of nodes in the hidden layer was set to 10, and the delay time was set to 1 hour [105].
The online monitoring phase is presented in Figure 4.18 (b). In the figure, some anomalies were found between 13th Sep and 4th Oct 2014. These points can be considered the detection of an incipient fault when compared with the original signals shown in Figure 3-21. Continuous anomalies were found after 4th Oct 2014, indicating a developed fault. The parameters influencing the performance of the NARX fault detection, are considered and explored in the following paragraphs.
[bookmark: _Ref63285435][bookmark: _Toc81553477]Table 4.2 Inputs and outputs of NARX models for Case 3
	Inputs
	Outputs

	Shaft speed
Stage 1 Suction Pressure
Stage 1 Suction Temperature
	Stage 1 Discharge Pressure
Stage 1 Discharge Temperature
Stage 2 Suction Pressure
Stage 2 Discharge Pressure
Stage 2 Suction Temperature
Stage 2 Discharge Temperature
Stage 3 Suction Pressure                
Stage 3 Discharge Pressure
Stage 1-2 DE Radial Vibration Overall X
Stage 1-2 DE Radial Vibration Overall Y
Stage 1-2 NDE Radial Vibration Overall X
Stage 1-2 NDE Radial Vibration Overall Y
Stage 1-2 Thrust Position Axial Probe-1
Stage 1-2 Thrust Position Axial Probe-2
Stage 3 DE Radial Vibration Overall X
Stage 3 DE Radial Vibration Overall Y
Stage 3 NDE Radial Vibration Overall X
Stage 3 NDE Radial Vibration Overall Y
Stage 3 Thrust Position Axial Probe-1
Stage 3 Thrust Position Axial Probe-2




[bookmark: _Ref63285496][bookmark: _Toc81553382]Figure 4.18 The MD calculated in the training and monitoring phases of the NARX model for Case 3, (a) MD calculated in the offline training phase, (b) MD calculated in the online monitoring phase.
[bookmark: _Hlk63631453]A 2D contribution map of the NARX model for Case 3 is presented in Figure 4.19. It shows that it was the overall vibration, X and Y, of the radial DE bearing at the 3rd stage of the compressor that contributed most to the increase of the system feature, indicating this bearing was suffering from a fault. After 16th Oct, anomalies were found in many variables, for example, the stage 2 suction and discharge pressures, and the overall vibration X and Y of the stage 1-2 radial DE bearing and stage 3 NDE bearing. This indicated that the system was in a very dangerous condition. An inspection and maintenance needed to be carried out urgently to prevent the system having an unplanned shutdown.


[bookmark: _Ref63286639][bookmark: _Toc81553383]Figure 4.19 2D Q statistic contribution map of NARX model for Case 3
To assess the performance of the NARX fault detection model for the early detection of a fault, when calculated the ROC curves, the training data was from 1st Feb 2014 to 22nd Aug 2014, and the test data was from 23rd Aug to 24th Sep 2014. The results are presented in Figure 4.20 and Figure 4.21. Figure 4.20 shows the ROC curves and AUC values of the NARX model, with different numbers of NARX nodes and delay time set to 1 hour. Figure 4.21 presents the ROC curves and AUC values with three different delay times, 2, 4 and 6 hours, with the number of nodes in the hidden layer set to 10. Both figures show that the NARX model performed well in Case 3, with AUC values above 0.799.


[bookmark: _Ref63266370][bookmark: _Toc81553384]Figure 4.20 ROC curves and AUC value of NARX model for Case 3, (a) ROC curves for NARX model with different numbers of NARX nodes, (b) AUC values for NARX model with different numbers of nodes.


[bookmark: _Ref63266375][bookmark: _Toc81553385]Figure 4.21 ROC curves and AUC value of NARX model for Case 3, (a) ROC curves for NARX model with different delay times, (b) AUC values for NARX model with three different delay times.
The AUC values for the NARX model with a wider range of number of nodes and delay than shown in Figure 4.20 and Figure 4.21, for detection of the incipient compressor bearing fault in Case 3 are shown in Figure 4.22. As can be seen, the NARX model performed well with AUC values above 0.82 (but below 0.92), when the number of nodes was less than 10 and delay time greater than four hours.


[bookmark: _Ref63266437][bookmark: _Toc81553386]Figure 4.22 AUC values for the NARX model with different numbers of nodes and delay times for Case 3, (a) 3D figure, (b) 2D figure.
[bookmark: _Toc81553287]PCA based anomaly detection model
[bookmark: _Ref32992933][bookmark: _Toc81553288]Implementation of PCA based fault detection model
The second fault detection approach is to use the PCA model, see Figure 4.23. 
In the offline phase, the model is trained using healthy historical data. The input variables of the PCA model () include all the measurements of the pump or compressor. PCA is an unsupervised learning method, which reduces the number of original features, with some data loss, but retains the most important variables. The number of remaining principal components needs to be selected. This can be by data analyst directly, or it can be calculated using Equation (4‑6). The reference fault detection threshold () is calculated during the training stage by solving Equation (4‑14).
In the online phase, the test outputs  are calculated by multiplying the test inputs () by the score for each input variable obtained in the training stage. The real-time  is calculated for the test outputs. The machine is considered healthy if , and is regarded as abnormal if .
[image: ]
[bookmark: _Ref17060255][bookmark: _Toc81553387]Figure 4.23 Model 2: PCA-based fault detection model
The difference between the NARX model and the PCA model is that the PCA is unsupervised, while the NARX is a supervised machine learning method, which means that the input and output of the NARX anomaly detection model should be selected, while there is no need to select the input and output of PCA model.
[bookmark: _Toc81553289]Case studies: fault detection using the PCA model
Case 1: misalignment fault in a pump
In this case study, the PCA fault detection model was trained on the data for a quarter of the year period from 10th Mar to 21st Jun 2013, the same as the training data applied in the NARX model. The model was then tested using data from 22nd Jun to 6th Jul 2013, where a misalignment fault occurred during this period (see Figure 3-14). The inputs and outputs of the PCA model for the pump were all the measurements listed in Table 3-1.
The offline training phase of the PCA model can be seen in Figure 4.24 (a), where the blue points are healthy data, the magenta line is the reference MD threshold, and red points are anomalies. The reference threshold () was calculated during the training stage, with confidence level . The number of principal components was 8 (contribution 90%).
The online monitoring phase is presented in Figure 4.24 (b). In the figure, The pump was considered healthy before 14:00 on 3rd Jul 2013, as no continuous anomalies exceeded the threshold. After that time, continuous anomalies were detected, which indicated that the pump was suffered from a fault. The parameters such as confidence level  and the number of principal components can influence the time at which the fault is detected and the performance of the PCA fault detection model.


[bookmark: _Ref63194227][bookmark: _Toc81553388]Figure 4.24 The MD calculated in the training and monitoring phases of the PCA model for Case 1, (a) MD calculated in the offline training phase, (b) MD calculated in the online monitoring phase.
[image: ]
[bookmark: _Ref63197348][bookmark: _Toc81553389]Figure 4.25 2D contribution map of PCA model for Case 1
A 2D contribution map of the PCA model for Case 1 is shown in Figure 4.25. As can be seen, the PCA model indicated that it was abnormal of the two thrust bearings’ temperature that mainly contributed to the increase of the system feature. The results failed to show the abnormalities in the temperature of the radial bearings when compared with the original signals, see Figure 3-14.
The ROC curves and AUC values of the PCA model with different numbers of principal components for Case 1 were calculated and presented in Figure 4.26. The ROC curves were obtained with the changing of confidence level , which influences both the FDR (on the Y-axis) and FAR (on the X-axis) ranged from 0 to 1. The figure shows that the performance of the PCA model was very good for Case 1, with high FDRs and low FARs in ROC plots, and high values of AUC (above 0.97).


[bookmark: _Ref63201593][bookmark: _Toc81553390]Figure 4.26 ROC curves and AUC values of PCA model for Case 1, (a) ROC curves for PCA model with different numbers of principal components, (b) AUC values for PCA model with different numbers of principal components.
The AUC curve for the PCA model with a wider range of principal components, 1 to 14, is shown in Figure 4.27. As can be seen that, the PCA model performed very well in this case, with AUC values above 0.977.
[image: ]
[bookmark: _Ref63377430][bookmark: _Toc81553391]Figure 4.27 AUC curve for the PCA model with different numbers of principal components for Case 1
Case 2: misalignment fault and pump bearing fault
In this case, the PCA fault detection model was trained on the data for the 10-month period from 1st Sep 2015 to 11th Jul 2016, during which there were no recorded faults in the pump, the same training data as used in the NARX model. The model was then tested using data from 12th Jul to 23rd Aug 2016, during which a misalignment fault and a bearing fault occurred (see Figure 3-15).  The inputs and outputs of the PCA model for the pump were the measurements listed in Table 3-1.
The offline training phase can be found in Figure 4.28 (a), in which the blue points are healthy data, the magenta line is the calculated reference MD threshold, and the red points are anomalies. The threshold was calculated during the training stage, with the confidence level , and the number of principal components was 4 (contribution 90%).
The online monitoring phase is presented in Figure 4.28 (b). In the figure, the pump was considered healthy before 16:00 on 17th Jul 2016, as no continuous anomalies exceeded the threshold. After that time, continuous anomalies were detected, which indicated that the pump was suffering from a fault. As previously, choice of confidence level  and number of principal components, can influence the performance of the PCA fault detection model.


[bookmark: _Ref63240628][bookmark: _Toc81553392]Figure 4.28 The MD calculated in the training and monitoring phases of the PCA model for Case 2, (a) MD calculated in the offline training phase, (b) MD calculated in the online monitoring phase.
A 2D contribution map for the PCA model was calculated, see Figure 4.29. As can be seen, from 16:00 on 17th to 14:00 on 19th Jul 2016, increases in the system feature were due to anomalies in the discharge temperature, overall vibration Y, temperature of the radial bearing 1, and overall vibration X and Y of radial bearing 2. The results of the PCA model failed to show the anomalies in the temperatures of the two thrust bearings.
After 14:00 on 19th Jul 2016, see Figure 4.29, the PCA model successfully showed that the overall vibration X of the radial bearing 2 was the main contributor to the increase in the system’s features. 


[bookmark: _Ref63256566][bookmark: _Toc81553393]Figure 4.29 2D contribution map of PCA model for Case 2
The ROC curves and AUC values of the PCA model for detection of the misalignment in Case 2 were determined and presented in Figure 4.30. The figure shows that the AUC values were all above 0.8 and less than 0.9 when the number of principal components equalled 10, 12, and 14. The AUC value decreased with increase in the number of principal components. The PCA model performed well when detecting the misalignment.


[bookmark: _Ref63261392][bookmark: _Toc81553394]Figure 4.30 ROC curves and AUC values for the PCA model for detection of the misalignment in Case 2, (a) ROC curves for PCA model with different numbers of principal components, (b) AUC values for PCA model with different numbers of principal components.
The AUC curve for the PCA model with a wider range of principal components, 1 to 14, compared to Figure 4.30, is shown in Figure 4.31. As can be seen, the PCA model performed well in this case, with AUC values above 0.84, however, the AUC values showed a decreasing trend with increase in the number of principal components. The model performed best when the number of principal components was less than 3.
[image: ]
[bookmark: _Ref63261898][bookmark: _Toc81553395]Figure 4.31 AUC curve for the PCA model with different numbers of principal components for detection of the misalignment in Case 2.
The ROC curves and AUC values of the PCA model for detection of the bearing fault in Case 2 were determined and are presented in Figure 4.32. The figure shows that the AUC values were all above 0.9 when the number of principal components equalled 10, 12, and 14. This figure did not show a clear relationship between the AUC values and the number of principal components. The PCA model performed very well when detecting the bearing fault, yielding high FDRs, low FARs, and high AUC values.


[bookmark: _Ref63262046][bookmark: _Toc81553396]Figure 4.32 ROC curves and AUC values for the PCA model for detection of bearing fault in Case 2, (a) ROC curves for PCA model with different numbers of principal components, (b) AUC values for PCA model with different numbers of principal components.
The AUC curve for the PCA model with a wider range of principal components, 1 to 14, compared to Figure 4.32, is shown in Figure 4.33. As can be seen that, the PCA model performed very well in this case, with AUC values above 0.92. The model performed best with AUC values above 0.98, when the number of principal components was less than 11.
[image: ]
[bookmark: _Ref63262072][bookmark: _Toc81553397]Figure 4.33 AUC curve for the PCA model with different numbers of principal components for detection of bearing fault in Case 2
Case 3: bearing faults in compressor
In this case study, the SAE fault detection model was trained on the data for the period from 1st Feb to 22nd Aug 2014, during which there were no recorded faults with the compressor. This was the same training data as applied in the NARX model. The models were then used to assess the health condition of the compressor from 23rd Aug to 23rd Oct 2014, during which period there were bearing faults (see Figure 3-21). The inputs and outputs of the PCA model for the compressor were the measurements listed in Table 3-4.
The offline training phase can be seen in Figure 4.34 (a), where the blue points are healthy data, the magenta line is the reference MD threshold, and the red points are anomalies. The reference threshold () was calculated during the training stage, with confidence level , and the number of principal components was 8 (contribution 90%).
The online monitoring phase is presented in Figure 4.34 (b). The compressor was considered healthy before 29th Sep 2014, as no continuous anomalies exceeded the threshold. After that time, continuous anomalies were detected, which indicated that the pump suffered a fault. The parameters, which influence the performance of the PCA fault detection model, such as confidence level , and the number principal components, will be explored later in this section.


[bookmark: _Ref63281374][bookmark: _Toc81553398]Figure 4.34 The MD calculated in the training and monitoring phases of the PCA model for case 3, (a) MD calculated in the offline training phase, (b) MD calculated in the online monitoring phase.
A 2D contribution map of the PCA model for Case 3 is presented in Figure 4.35. It shows that the overall vibration X and Y of the radial DE bearing at the 3rd stage of the compressor is the main contributor to the increase of the system fault feature. Then, from 6th Oct, the overall vibration X and Y of the radial NDE bearing at the 3rd stage showed a fault. However, when compared with the original measurements presented in Figure 3-21, no abnormal trends in these two signals can be found from 6th Oct to 11th Oct. After 16th Oct, anomalies were found in more signals, such as speed, stage 3 discharge pressure, overall vibration X and Y of stage 1-2 radial DE bearing and stage 3 NDE bearing. This indicated that the system was in a very dangerous condition and there was an urgent need to carry out a maintenance inspection.


[bookmark: _Ref63282618][bookmark: _Toc81553399]Figure 4.35 2D contribution map of PCA model for Case 3
The ROC curves and AUC values for the PCA model with different numbers of principal components for Case 3 were determined and presented in Figure 4.36. When calculating the ROC curves, the training data was from 1st Feb to 22nd Aug 2014, and the test data was from 23rd Aug to 24th Sep 2014. As can be seen, the FAR has a value of more than 0.4 if the FDR is 0.8, for the range of principal components used. In the figure, the AUC values ranged from 0.698 to 0.783, which is not as high as the values in Cases 1 and 2 (see Figure 4.26 and Figure 4.32).


[bookmark: _Ref63265606][bookmark: _Toc81553400]Figure 4.36 ROC curves and AUC values of PCA model for Case 3, (a) ROC curves for PCA model with different numbers of principal components, (b) AUC values for PCA model with different numbers of principal components.
The AUC curve for the PCA model with a wider range of principal components, 1 to 23, compared to Figure 4.36, is shown in Figure 4.37. As can be seen, for detecting the incipient bearing fault in the compressor, the performance of the PCA model for Case 3 was not as good as its performance for detecting the misalignment in Case 1 or the bearing fault in Case 2. In Figure 4.37, the PCA model performed reasonably well with AUC values above 0.75, but below 0.82, but only when the number of principal components was between 12 and 23.
[image: ]
[bookmark: _Ref63265615][bookmark: _Toc81553401]Figure 4.37 AUC curve for the PCA model with different numbers of principal components for Case 3
[bookmark: _Toc81553290]SAE based anomaly detection model
[bookmark: _Toc81553291]Implementation of SAE based fault detection model
The fault detection model using the SAE is presented in Figure 4.38. The SAE is a special unsupervised feed-forward neural network, with the number of inputs equalling the number of outputs. As with the PCA, the input variables of the SAE model include all the measurements made on the pump and compressor. 
In the offline training phase, the SAE model is trained using historical data after pre-processing and standardisation. In the SAE model, the outputs reconstructed the inputs. The reference  is calculated during the training stage using Equation (4‑14).
In the online monitoring phase, the real-time  is calculated for the condition monitoring data using the developed SAE model trained in the offline phase. The machine is considered healthy if , and is regarded as abnormal if . 
[image: ]
[bookmark: _Ref32995262][bookmark: _Toc81553402]Figure 4.38 Model 3: SAE based fault detection model
[bookmark: _Toc81553292]Case studies: fault detection using the SAE model
Case 1: misalignment fault in a pump
In this case study, the SAE fault detection model was trained on the data for the period from 10th Mar to 21st Jun 2013, the same training data as applied in the NARX and PCA models. The model was then tested using data from 22nd Jun to 6th Jul 2013, during which time a misalignment fault occurred (see Figure 3-14). The inputs and outputs of the SAE model for the pump were the measurements listed in Table 3-1, as for the PCA model, because these two models use unsupervised machine learning.
The offline training phase can be seen in Figure 4.39 (a), where the blue points are healthy data, the magenta line is the reference MD threshold, and the red points are anomalies. The reference threshold () was calculated during the training stage, with confidence level  [105], the number of nodes in the hidden layer set to 10, and sparsity regularisation value set to 1.


[bookmark: _Ref63196616][bookmark: _Toc81553403]Figure 4.39 The MD calculated in the training and monitoring phases of the SAE model for case 1, (a) MD calculated in the offline training phase, (b) MD calculated in the online monitoring phase.
The online monitoring phase is presented in Figure 4.39 (b). In the figure, the pump is considered healthy before 04:00 on 3rd Jul 2013, as no continuous anomalies exceeded the threshold. After that time, continuous anomalies were detected, which indicated that the pump had suffered a fault. The influence of the parameters such as confidence level, , the number of nodes in the hidden layer, and sparsity regularisation value, on the performance of the SAE fault detection model is presented below for each case study.
A 2D contribution map of the SAE model for Case 1 is presented in Figure 4.40. It clearly shows that the temperatures of the four bearings, and the discharge pressure contributed to the increase of the system fault feature. The results give maintenance staff a clear indication of bearing related faults, e.g. bearing faults, misalignment, and/or rotor unbalance.
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[bookmark: _Ref63198779][bookmark: _Toc81553404]Figure 4.40 2D contribution map of SAE model for Case 1
The ROC curves and AUC values of the SAE model for Case 1 with different numbers of nodes in the hidden layer and different sparsity regularisation values, were presented in Figure 4.41 and Figure 4.42, respectively. The ROC curves were obtained by changing the confidence level , which influences both the FDR and FAR. Both figures show that the SAE model performs very well in Case 1 with high FDRs, low FARs, and high AUC values (above 0.97).


[bookmark: _Ref63201846][bookmark: _Toc81553405]Figure 4.41 ROC curves and AUC values of SAE model for Case 1, (a) ROC curves for SAE model with different numbers of SAE nodes, (b) AUC values for SAE model with different numbers of SAE nodes.


[bookmark: _Ref63201858][bookmark: _Toc81553406]Figure 4.42 ROC curves and AUC values of SAE model for Case 1, (a) ROC curves for SAE model with different sparsity regularisation values, (b) AUC values for SAE model with different sparsity regularisation values.
AUC values for the SAE model with a wider range of nodes and sparsity regularisation values for Case 1 compared to Figure 4.41 and Figure 4.42 are shown in Figure 4.43. As can be seen that, the SAE model performed very well in this case, as the AUC values were above 0.95, when the number of nodes ranged from 4 to 20, and sparsity regularisation values ranged from 0.1 to 4.2.


[bookmark: _Ref63202905][bookmark: _Toc81553407]Figure 4.43 AUC values for the SAE model with different numbers of nodes and sparsity regularisation for Case 1, (a) 3D figure, (b) 2D figure.
Case 2: misalignment fault and pump bearing fault
In this case study, the SAE fault detection model was trained on data for the period from 1st Sep 2015 to 11th Jul 2016, during which there was no recorded fault with the pump, the same training data as was applied to the NARX and PCA models. The model was then tested using data from 12th Jul to 23rd Aug 2016, during which a misalignment and a bearing fault occurred (see Figure 3-15). The inputs and output of the SAE model for the pump were the measurements listed in Table 3-1.
The offline training phase can be found in Figure 4.44 (a), with the blue points healthy data, the magenta line the calculated reference MD threshold, and the red points anomalies. The threshold was calculated during the training stage, with confidence level  [105], the number of nodes in the hidden layer set to 10, and the sparsity regularisation value set to 1.
The online monitoring phase is presented in Figure 4.44 (b). The pump was healthy before 16:00 on 17th Jul 2016, as no continuous anomalies exceeded the threshold. After that time, continuous anomalies are seen, which indicates that the pump suffered a fault. The effects of parameters, such as confidence level , the number of nodes in the hidden layer, and the sparsity regularisation value, all of which can influence the performance of the SAE fault detection model are investigated and the results presented below.


[bookmark: _Ref63244134][bookmark: _Toc81553408]Figure 4.44 The MD calculated in the training and monitoring phase of the SAE model for Case 2, (a) MD calculated in the offline training phase, (b) MD calculated in the online monitoring phase.
A 2D contribution map of the SAE model for Case 2 was determined and is shown in Figure 4.45. As can be seen, from 16:00 on 17th to 14:00 on 19th Jul 2016, there was an increase in the system feature caused by anomalies in the temperatures of the four bearings. The results clearly indicated to maintenance staff the presence of bearing related faults, such as misalignment.


[bookmark: _Ref63257083][bookmark: _Toc81553409]Figure 4.45 2D contribution map of SAE model for Case 2
After the misalignment fault was corrected, from 14:00 on 19th Jul 2016, see Figure 4.45, it was the overall vibration X of radial bearing 2 that contributed most to the increase of the system feature. The results clearly indicated to the maintenance staff the presence of a fault in bearing 2.
The ROC curves and AUC values of the SAE model for detection of the misalignment fault in Case 2 were determined and are presented in Figure 4.46 and Figure 4.47. Figure 4.46 shows the ROC curves and AUC values of the SAE model, with different numbers of nodes in the hidden layer and sparsity regularisation value set to 1. Figure 4.47 presents the ROC curves and AUC values for three different sparsity regularisation values, 0.2, 2.2 and 4.2, and the number of nodes in the hidden layer set to 10. Both figures show that the SAE model performs very well with high FDRs, low FARs, and high AUC values (the latter all above 0.95).


[bookmark: _Ref63263296][bookmark: _Toc81553410]Figure 4.46 ROC curves and AUC values of SAE model for detection of the misalignment in Case 2, (a) ROC curves for SAE model with different numbers of SAE nodes, (b) AUC values for SAE model with different numbers of SAE nodes.


[bookmark: _Ref63263303][bookmark: _Toc81553411]Figure 4.47 ROC curves and AUC values of SAE model for detection of the misalignment in Case 2, (a) ROC curves for SAE model with different sparsity regularisation values, (b) AUC values for SAE model with different sparsity regularisation values.
In addition, the AUC values for the SAE model with a wider range of nodes (from 4 to 20) Figure 4.46 and Figure 4.47 sparsity regularisation values (from 0.2 to 4.2) for Case 2 compared to is shown in Figure 4.48. As can be seen from Figure 4.48 (b), the SAE model performed better (AUC values above 0.97) when sparsity regularisation values were greater than 1 and the number of nodes greater than 6.


[bookmark: _Ref63263706][bookmark: _Toc81553412]Figure 4.48 AUC values for the SAE model with different numbers of nodes and sparsity regularisation for detection of the misalignment in Case 2, (a) 3D figure, (b) 2D figure.


[bookmark: _Ref63264206][bookmark: _Toc81553413]Figure 4.49 ROC curves and AUC values of SAE model for detection of bearing fault in Case 2, (a) ROC curves for SAE model with different numbers of SAE nodes, (b) AUC values for SAE model with different numbers of nodes.


[bookmark: _Ref63264214][bookmark: _Toc81553414]Figure 4.50 ROC curves and AUC values of SAE model for detection of bearing fault in Case 2, (a) ROC curves for SAE model with different sparsity regularisation values, (b) AUC values curves for SAE model with different sparsity regularisation values.
The ROC curves and AUC values of the SAE model for detection of the bearing fault in Case 2 were calculated and are presented in Figure 4.49 and Figure 4.50. Figure 4.49 shows the ROC curves and AUC values of the SAE model, with different numbers of nodes in the hidden layer and sparsity regularisation value set to 1. Figure 4.50 presents the ROC curves and AUC values with different sparsity regularisation values and the number of nodes in the hidden layer set to 10. Both figures show that the SAE model performs very well producing high FDRs, low FARs, and high AUC values (all values above 0.99). 
The AUC values for Case 2 and the SAE model with a wider range of nodes (from 4 to 20) and sparsity regularisation values (from 0.1 to 4.2) compared to Figure 4.49 and Figure 4.50 are shown in Figure 4.51. As can be seen, the SAE model performed very well in this case, as the AUC values were all above 0.988.


[bookmark: _Ref63264231][bookmark: _Toc81553415]Figure 4.51 AUC values for the SAE model with different numbers of nodes and sparsity regularisation for detection of bearing fault in Case 2, (a) 3D figure, (b) 2D figure.
Case 3: bearing faults in compressor
In this case study, the SAE fault detection model was trained on the data for the period from 1st Feb to 22nd Aug 2014, during which time were no recorded faults in the compressor, the same training data as applied with the NARX and PCA models. The models were then used to assess the health condition of the compressor from 23rd Aug to 23rd Oct 2014, during which period bearing faults occurred (see Figure 3-21). The inputs and outputs of the SAE model for the compressor were the measurements listed in Table 3-4.
The offline training phase can be seen in Figure 4.52 (a), where the blue points are healthy data, the magenta line is the reference MD threshold, and the red points are anomalies. The reference threshold () was calculated during the training stage, with the confidence level  [105], the number of nodes in the hidden layer set to 10, and sparsity regularisation value set to 1.
The online monitoring phase is presented in Figure 4.52 (b). In the figure, the compressor was considered healthy before 13th Sep 2014, as no continuous anomalies exceeded the threshold. After that time, continuous anomalies were detected, which indicated that the compressor was suffering a fault. The parameters, such as confidence level , the number of nodes in the hidden layer, and the sparsity regularisation value, all of which influence the performance of the SAE fault detection model are investigated and discussed below.


[bookmark: _Ref63279126][bookmark: _Toc81553416]Figure 4.52 The MD calculated in the training and monitoring phases of the SAE model for Case 3, (a) MD calculated in the offline training phase, (b) MD calculated in the online monitoring phase.
A 2D contribution map of the SAE model for Case 3 is presented in Figure 4.53. It clearly shows that it was the overall vibration X and Y of the radial DE bearing at the 3rd stage of the compressor contributed most to the increase of the system feature. The results provide the maintenance staff with a clear indication that the radial DE bearing at the 3rd stage of the compressor was subject to a fault. After 16th Oct, anomalies were found in the stage 2 suction and discharge pressure, overall vibration X and Y of stage 1-2 radial DE bearing and stage 3 NDE bearing, and the vibration of stage 1-2 thrust bearing. This indicated that the system was in a very dangerous condition and needed emergency maintenance to avoid an unplanned shutdown.


[bookmark: _Ref63279280][bookmark: _Toc81553417]Figure 4.53 2D contribution map of SAE model for Case 3


[bookmark: _Ref63266115][bookmark: _Toc81553418]Figure 4.54 ROC and AUC value of SAE model for Case 3, (a) ROC curves for SAE model with different numbers of SAE nodes, (b) AUC values for SAE model with different numbers of nodes.
To assess the performance of the SAE fault detection model for the early detection of a fault when calculating the ROC curves, the training data was from 1st Feb to 22nd Aug 2014, and the test data was from 23rd Aug to 24th Sep 2014. The ROC curves and AUC values of the SAE model for Case 3 with different numbers of nodes in the hidden layer and different sparsity regularisation values, are presented in Figure 4.54 and Figure 4.55, respectively. Both figures show that the SAE model performed well with Case 3 with high values of the FDR, low values of FAR, and high values of the AUC (over 0.844).


[bookmark: _Ref63266095][bookmark: _Toc81553419]Figure 4.55 ROC curves and AUC values of SAE model for Case 3, (a) ROC curves for SAE model with different sparsity regularisation values, (b) AUC values for SAE model with different sparsity regularisation values.
The AUC values for the SAE model with a wide range of the number of nodes (from 4 to 20) and sparsity regularisation values (from 0.1 to 4.2) for Case 3 are shown Figure 4.56. As can be seen, the SAE model performed very well with the AUC value above 0.85 when the sparsity regularisation values were between 0.1 and 2.


[bookmark: _Ref63266132][bookmark: _Toc81553420]Figure 4.56 AUC values for the SAE model with different numbers of nodes and sparsity regularisation for Case 3, (a) 3D figure, (b) 2D figure.
[bookmark: _Toc81553293]Results and discussion
This section compares the fault detection performance of the three data-driven models (PCA, NARX, and SAE). The comparison includes three aspects, capacity to detect a fault, the effectiveness of isolating abnormal variables, and the maximum AUC value of each of the detection models.
[bookmark: _Toc80304943][bookmark: _Toc80396074][bookmark: _Toc81542285][bookmark: _Toc81553294]Case 1: misalignment fault in a pump
The comparison of the fault detection results via NARX, PCA, and SAE models are presented in Figure 4.57. It can be seen from the figure that the maximum MD values of the three models are NARX - 37.49, PCA - 25.68, while that of the SAE was 109.7.  The MD value for the SAE was substantially higher than for either the NARX or PCA models and indicates that the fault was more discernible when using the SAE model.


[bookmark: _Ref63107514][bookmark: _Toc81553421]Figure 4.57 Fault detection results of three models for Case 1, (a) NARX model, (b) PCA model, (c) SAE model.


[bookmark: _Ref63172226][bookmark: _Toc81553422]Figure 4.58 AUC values of the three models with parameters change for Case 1, (a) AUC value of PCA model with varied number of principal components, (b) AUC value of NARX model with varying number of nodes in the hidden layer and delay time change, (c) AUC value of NARX model with varying number of nodes in the hidden layer and sparsity regularisation change, (d) the maximum AUC value of the three fault detection models.
The AUC values for Case 1 for the three fault detection models with change in parameters are shown in Figure 4.58. For the PCA model, Figure 4.58 (a), the AUC values were calculated with principal components in the range 1 to 14. The maximum AUC value for the PCA model was 0.9843, as can be seen in Figure 4.58 (d). For the NARX model in Figure 4.58 (b), the AUC values were calculated with the number of nodes in the hidden layer ranging from 2 to 20, and delay time varied from 1 to 10 hours. The maximum AUC value for the NARX model was 0.9988, as shown in Figure 4.58 (d). For the SAE model in Figure 4.58 (c), the AUC values were calculated with the number of nodes in the hidden layer ranging from 4 to 20, and the sparsity regularisation value increased from 0.1 to 4.2. The maximum AUC value for the SAE model was 0.9985. In Case 1, the maximum AUC values for the three fault detection models were similar, which indicates that all three models were able to achieve a very good performance with appropriate choice of parameters.
In addition, according to the Q statistic contribution maps of the three fault detection models in Figure 4.6, Figure 4.25, and Figure 4.40, the SAE and NARX models clearly indicated the bearing related faults, misalignment, or rotor unbalance. However, the PCA model failed to show the abnormal temperature of the two radial bearings.
[bookmark: _Toc81553295]Case 2: misalignment fault and pump bearing fault
This case is to detect a misalignment fault and a bearing fault in a pump. The comparison of the fault detection results via NARX, PCA, and SAE models are shown in Figure 4.59. It can be seen from the figure that the maximum MD value of the NARX model after the fault being detected was 30.24, that value of the PCA model was 22.04, and that of the SAE model was 22.61. In this case, the models perform equally well.


[bookmark: _Ref63112957][bookmark: _Toc81553423]Figure 4.59 Fault detection results for Case 2, (a) NARX model, (b) PCA model, (c) SAE model.


[bookmark: _Ref81548962][bookmark: _Toc81553424]Figure 4.60 AUC values of the three models for Case 2 with parameters changes, (a) AUC value for PCA model with number of principal components, (b) AUC value for NARX model with number of nodes in the hidden layer and change in delay time, (c) AUC value for SAE model with numbers of nodes in the hidden layer and changes in sparsity regularisation, (d) the maximum AUC value for the three fault detection models.
Case 2 contains two faults, misalignment and pump bearing fault. Regarding detection of the misalignment, the AUC values of the three fault detection models with parametric change are presented in Figure 4.60. For the PCA model, see Figure 4.60 (a), the AUC values were calculated with the number of principal components ranging from 1 to 14, and the maximum AUC value was 0.9293, as can be seen in Figure 4.60 (d). For the NARX model, see Figure 4.60 (b), the AUC values were calculated with the number of nodes in the hidden layer ranging from 2 to 20, and delay time varied between 1 to 10 hours. The maximum AUC value for the NARX model was 0.9393, as shown in Figure 4.60 (d). For the SAE model, see Figure 4.60 (c), the AUC values were calculated with the number of nodes in the hidden layer ranging from 4 to 20, and the sparsity regularisation value from 0.1 to 4.2. The maximum AUC value for the SAE model was 0.9967. Comparing the three models, the SAE had the highest maximum AUC value. Because the maximum AUC of all three models was greater than 0.9, each of the models achieved a good performance with suitably selected parameters. 
In addition, as can be seen in Figure 4.60 (a), the AUC values of the PCA model dropped below 0.9 when the number of principal components was greater than 3. In Figure 4.60 (b), most of the AUC values of the NARX model were below 0.95, while in Figure 4.60 (c), most of the AUC values of the SAE model were above 0.95. This indicated that, when detecting the misalignment fault in Case 2, the SAE model generally outperformed the NARX and PCA models.
The AUC values for the three fault detection models with parametric change for detection of the bearing fault in Case 2, are shown in Figure 4.61. For the PCA model, see Figure 4.61 (a), the AUC values were calculated with the number of principal components ranging from 1 to 14. The maximum AUC value for the PCA model was 0.9968, as can be seen in Figure 4.61 (d). For the NARX model, see Figure 4.61 (b), the AUC values were calculated with the number of nodes in the hidden layer ranging from 2 to 20, and delay time varied from 1 to 10 hours. The maximum AUC value for the NARX model was 0.9966, see Figure 4.61 (d). For the SAE model in Figure 4.61 (c), the AUC values were calculated with the number of nodes in the hidden layer ranging from 4 to 20, and the sparsity regularisation value increased from 0.1 to 4.2. The maximum AUC value for the SAE model was 0.9962. 
When detecting the bearing fault in Case 2, all these models performed very well with properly selected parameters, because 1) the maximum AUC of all three models were above 0.99; 2) even with changes in the parameters, the AUC values of the three models were all above 0.9 (see Figure 4.61 (a) – (c)).


[bookmark: _Ref63175655][bookmark: _Toc81553425]Figure 4.61 AUC values of the three models with parametric changes for detection of bearing fault in Case 2, (a) AUC value of PCA model with number of principal components, (b) AUC value of NARX model with number of nodes in the hidden layer and delay time, (c) AUC value of SAE model with number of nodes in the hidden layer and sparsity regularisation, (d) maximum AUC values for the three fault detection models
In addition, according to the Q statistic contribution maps of the three fault detection models in Figure 4.11, Figure 4.29, and Figure 4.45, the SAE and NARX models clearly detected the misalignment as well as radial bearing 2’s fault. While the PCA model detected the faults, it successfully indicated only the fault with radial bearing 2. With the misalignment, the PCA model failed to show the anomalies in the temperature of the two thrust bearings.
[bookmark: _Toc81553296]Case 3: bearing faults in compressor
This case is to detect bearing faults in a compressor. The comparison of the fault detection results via NARX, PCA, and SAE models are presented in Figure 4.62. It can be seen from the figure that the maximum MD value of the NARX model after the fault was 40.98, of the PCA model was 29.56, and of the SAE model was 55.12. In this case, it is obvious that the fault detection results were similar among the three models, with SAE a bit higher than the other two models.


[bookmark: _Ref63113278][bookmark: _Toc81553426]Figure 4.62 Fault detection results of three models for Case 3, (a) NARX model, (b) PCA model, (c) SAE model.
The AUC values of the three fault detection models change with change in parameters see Figure 4.63. For the PCA model, Figure 4.63 (a), the AUC values were found with the number of principal components ranging from 1 to 14. The maximum AUC value for the PCA model was 0.8070, see Figure 4.63 (d). For the NARX model, Figure 4.63 (b), the AUC values were found with the number of nodes in the hidden layer ranging from 2 to 20, and delay time varied from 1 to 10 hours. The maximum AUC value for the NARX model was 0.9139, see Figure 4.63 (d). For the SAE model, Figure 4.63 (c), the AUC values were found with the number of nodes in the hidden layer ranging from 4 to 20, and the sparsity regularisation value increasing from 0.1 to 4.2. The maximum AUC value for the SAE model was 0.9523. Comparing the three models, the SAE had the highest maximum AUC values. 


[bookmark: _Ref81549060][bookmark: _Toc81553427]Figure 4.63 AUC values of the three models with parametric changes for Case 3, (a) AUC value of PCA model with numbers of principal components change, (b) AUC value of NARX model with changes in number of nodes in the hidden layer and delay time, (c) AUC value of NARX model with changes in number of nodes in the hidden layer and sparsity regularisation, (d) the maximum AUC value of the three fault detection models.
As can be seen in Figure 4.63 (a), the AUC values of the PCA model were above 0.8 only when the number of principal components equalled 16, 17, 21 and 22. In Figure 4.63 (b), most of the AUC values of the NARX model were above 0.75 but below 0.90, while in Figure 4.63 (c), a large proportion of AUC values of the SAE model were above 0.90. This indicated that, in Case 3, the SAE model outperformed the NARX and PCA models.
In addition, according to the 2D Q contribution maps of the three fault detection models, see Figure 4.19, Figure 4.35, and Figure 4.53, the SAE and NARX models can clearly isolate the abnormal variables and detect the fault. While for the PCA model, its contribution map showed the NDE bearing at the 3rd stage had a fault from 6th Oct to 17th Oct, but when compared with the original measurement in Figure 3-21, no abnormal trends in these two signals can be found during this period.
Note that the sparse autoencoder can have more than one layer, in which case it turns into a deep autoencoder. The selection of layers depends on the applied data. Our data was recorded as one point per hour, which is a relatively low sampling rate and hence the volume of the data was not large. We have tried deep autoencoder when developing the model. However, we found that the results are quite similar using either one-layer autoencoder or deep autoencoder.
[bookmark: _Toc81553297]Summary
This chapter tested each of three fault detection models, based on PCA, NARX, and SAE, to analyse condition monitoring data from a pump and a compressor used in the petrochemical industry. The results show that the SAE model is a more efficient method for early anomaly (fault) detection than the PCA and NARX models The SAE model outperformed the NARX and PCA model in three ways: 
1) Obviousness of detecting a fault. 
Especially in the first case, the maximum MD value of the NARX model after the fault being detected was 37.49, that value of the PCA model was 25.68, in contrast, that value of the SAE model was 109.7, which was much higher than NARX and PCA model.
2) The effectiveness of isolating abnormal variables
The SAE and NARX models generated clearer contribution maps in all three fault cases to show which signal(s) contributed to the detected anomalies.  The PCA model was unable to display the abnormal variables in Case 1 correctly, nor the misalignment in Case 2 and Case 3.
3) The maximum AUC value of each detection model
The ROC curves and AUC values were calculated for the three fault detection models with parametric changes. The results show that the SAE model yielded relatively higher AUC values in all three test cases when compared with PCA and NARX models. The PCA model was the weakest among the three models.



                             

                   										 
[bookmark: _Toc81553298]
A Comprehensive Health Indicator based on Condition Monitoring Data for Pump and Compressor System
                   										 

The purpose of this chapter is to develop a system health indicator from a dynamic risk assessment using condition monitoring data. This strategy is carried out in four steps: fault detection, probability of fault calculation, the consequence of fault determination, and dynamic risk. A system health indicator should identify the faults and show the deterioration of the system using a dynamically updating the process risk at each sampling instant. First, a condition-based dynamic risk assessment method based on the PCA approach, as proposed by Zadakbar et al., [94], is developed and a health indicator for the pump and compressor system obtained. Next, based on their work, a general condition-based dynamic risk assessment methodology based on the system feature (developed in Chapter 4) is proposed. A comprehensive health indicator for the pump and compressor system is obtained from the proposed methodology. The proposed methodology can not only reduce maintenance cost but also improve the safety of the plants.


[bookmark: _Toc81553299]Condition-based risk assessment maintenance methodology based on PCA approach
[bookmark: _Toc81553300]Overall methodology
The methodology for determining a system health indicator is via a process of risk calculation using PCA and condition monitoring data, see in Figure 5.1, as proposed by Zadakbar et al., [94]. In this method, the system health indicator is calculated at any time instant using the output from the PCA. 
At each time step, the condition monitoring data are projected on the principal component subspace via the offline PCA model. The health indicator is the risk assessor of the system, which is composed of the probability of a fault () and its associated severity (). The system is viewed as healthy if the calculated risk stays within predefined boundaries. A fault is detected, and alarm(s) triggered when the calculated risk continuously exceeds the predefined threshold(s). The detailed processes are described in Sections 5.1.2, 5.1.3, and 5.1.4.
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[bookmark: _Ref63503197][bookmark: _Toc81553428]Figure 5.1 Flow chart of condition-based risk assessment maintenance methodology using a PCA approach [94]
[bookmark: _Toc81553301]Probability of fault model designed for PCA
The probability of a fault event increases as the process moves away from normal operation. According to [94], this behaviour can be captured by a cumulative normal distribution. The probability of a fault for each predicted score point is calculated using Equation (2‑10) and (2‑11). A detailed explanation of the development of these equations can be found in Section 2.3.2.
	For , 
	(5‑1)

	For , 
	(5‑2)


where , and  is the number of principal components, , and  is the number of samples.  is the mean value, and  is the standard deviation of the input .
According to these equations, when an input is at the threshold (), the probability of the fault is 0.5 as it can either return to normal or continue deteriorating to a fault event. Any predicted points outside the thresholds will be considered anomalies, and the further from the threshold, the higher the probability of a fault.
[bookmark: _Toc81553302]Severity of fault model designed for PCA
The consequence of a fault in this methodology is replaced by the severity score of the fault. The severity can be calculated using Equations (2‑12) and (2‑13).
	For , 
	(5‑3)

	For , 
	(5‑4)


Where  is the severity score of a selected principal component. , and  is the number of original process signals. , and  is the number of principal components, , and  is the number of samples.  is an intensity coefficient of individual variables, and  is the absolute loading for each principal component.
[bookmark: _Toc81553303]System health indicator designed for PCA
Risk is defined as the possible harm or loss caused by an event, if inspection, maintenance and/or corrective actions are not carried out in time. In the methodology proposed by Zadakbar et al., [94], the risk is calculated based on two factors: the probability of the fault () and the severity of the fault (), and is given by:
	
	[bookmark: _Ref43471893](5‑5)


If the risk exceeds the fault detection threshold, an alarm will be triggered. Subsequently, inspection and maintenance suggestions will be made to reduce the risk. However, if no corrective actions are taken or the actions fail to reduce the risk, and the risk exceeds a second threshold (shutdown threshold), the automatic safety system (emergency shutdown system) will be activated.
[bookmark: _Toc81553304]Case studies: development of system health indicator using PCA approach
Case 1: misalignment fault in a pump
The data used in this case study was obtained from a multivariate condition monitoring system mounted on a high-pressure injection pump in a petrochemical plant. The dataset contained 15 continuous measurements, including the shaft speed, discharge pressure, discharge temperature, bearing temperature. The full list of measurements for the pump are given in Table 3-1. 
PCA was applied on the 15 measurements after data pre-processing and standardisation. In this case study, the training data was selected for the period from 10th Mar 2013 to 21st Jun 2013, a period during which there had been no recorded pump faults or damage. The health indicators were then used to assess the health condition after 22nd Jun 2013. The training results are shown in Table 5.1. The first eight principal components were retained, these captured over 90% of the total variation. 
[bookmark: _Ref41443976][bookmark: _Toc81553478]Table 5.1 Principal component analysis for Case 1
	Number
	% variance captured for each principal component
	% variance captured (total)

	1
	30.23
	30.23

	2
	21.31
	51.54

	3
	12.58
	64.12

	4
	8.88
	73.00

	5
	6.69
	79.69

	6
	4.96
	84.64

	7
	4.65
	89.29

	8
	3.50
	92.80


According to [94], the principal component was manually selected, subject to the condition that it should be able to detect the fault as early as possible. Thus, in this case, the 1st principal component was selected for further analysis. 
The next step is prediction via linear regression (), and in this case, fifty points backwards were used as training data to predict four points forward. Root Mean Square Error (RMSE) was calculated to assess the accuracy of the predictions. The true value and the predicted results of the first order principal component can be seen in Figure 5.2. 
[image: ]
[bookmark: _Ref63573983][bookmark: _Toc81553429]Figure 5.2 True and predicted values for the first order principal component for Case 1
The risk calculation has two parts: POF and severity (). POF is calculated based on Equation (2‑10) and (2‑11), and is shown in Figure 5.3. As can be seen in the figure, the POF was below the 0.5 threshold from 22nd Jun to 22:00 5th Jul 2013, which indicated that the pump was in a healthy condition during this time. At 22:00 on 5th Jul 2013, the probability of the fault reached 0.5, and it did not return to normal, rather the condition of the pump deteriorated further and the POF continued to increase to 1, indicating a fault.
[image: ]
[bookmark: _Ref63574536][bookmark: _Toc81553430]Figure 5.3 POF of the pump system for Case 1 based on PCA method
Severity is another essential term in risk assessment, and it is estimated using Equation (2‑12) and (2‑13). The intensity coefficient of the individual variable, , was defined based on process knowledge and experience. In our data, the discharge temperature is usually higher in summer and lower in winter, which indicates that this measurement was influenced by the surrounding environment. Therefore, to reduce the influence of the surrounding environment, we gave a value of unity to the intensity coefficient of discharge temperature and give a value of two to the intensity coefficients for the other measurements. Table 5.2 listed the intensity coefficient and loading of each measurement for the first principle component. Loadings of each PC () was calculated using Equation (4-5).
[bookmark: _Ref41942737][bookmark: _Toc81553479]Table 5.2 Values of intensity coefficients and loadings for Case 1
	Measurements
	Intensity coefficient
	Loadings by PCA

	Speed
	2
	0.42681

	Suction pressure
	2
	-0.12972

	Discharge pressure
	2
	-0.11618

	Discharge temperature
	1
	-0.01409

	Actual Flow
	2
	0.01639

	Radial Vibration Overall X
	2
	-0.12451

	Radial Vibration Overall Y
	2
	0.12639

	Radial Bearing Temperature 1
	2
	-0.01800

	Radial Vibration Overall X1
	2
	-0.37740

	Radial Vibration Overall Y1
	2
	0.23295

	Radial Bearing Temperature 2
	2
	-0.06627

	Thrust Position Axial Probe1
	2
	-0.10606

	Thrust Position Axial Probe 2
	2
	0.21548

	Active Thrust Bearing Temperature 1
	2
	-0.03201

	Inactive Thrust Bearing Temperature 1
	2
	-0.70387


Applying the values in Table 5.2 into Equation (2‑12) and (2‑13), the severity score of a fault happening in the pump system can be obtained, and the fault consequence are presented in Figure 5.4.
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[bookmark: _Ref63576777][bookmark: _Toc81553431]Figure 5.4 Severity score of a fault happening in the pump system in Case 1
The system health indicator of the pump (risk) which is the product of severity and the probability of fault was plotted in Figure 5.5, which shows the risk profile calculated for the first principal component.
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[bookmark: _Ref41443190][bookmark: _Toc81553432]Figure 5.5 Risk profile of the pump using the first principal component.
The threshold that closes to the bottom in Figure 5.5 was the fault detection threshold. This threshold was calculated using Equation (5‑5) with . This threshold suggests the operators make an inspection or other scheduled response to avoid system failure. The shutdown threshold is for system protection. If no inspection and/or maintenance was carried out after the risk crossed the fault detection threshold, or the maintenance actions failed to reduce the risk, then the risk would be expected to increase until it exceeded the shutdown threshold, activating the safety system to shut the pump down. These thresholds are set based on acceptable risk criteria for the specific processes. There are few guiding principles for calculating acceptable risk in process operations. This threshold could be set by experts with consideration of the specific requirements of a company. In reference [94], the shutdown threshold was ten times higher than the fault detection threshold. As can be seen in Figure 5.5, in our case, the company did not take any remedial actions to inspect the pump, and the risk kept growing. The company shut down the pump 6 hours later than the suggested time by Figure 5.5.
Case 2: misalignment fault and pump bearing fault
The data used in this case study was obtained from the same pump as in Case 1. The dataset contained 15 continuous measurements as listed in Table 3-1. 
PCA was applied on the 15 measurements after data pre-processing and standardisation. In this case study, the training data was selected for the ten months period from 1st Sep 2015 to 11th Ju1 2016, during which time there was no recorded damage to the pump. The health indicators were then used to assess the health condition after 12th Jul 2016. The training results are shown in Table 5.3. As can be seen, the first four principal components captured over 90% of the total variation. 
[bookmark: _Ref63587763][bookmark: _Toc81553480]Table 5.3 Principal component analysis for Case 2
	Number
	% variance captured for each principal component
	% variance captured total

	1
	56.18
	56.18

	2
	24.91
	81.10

	3
	7.79
	88.89

	4
	4.22
	93.11

	5
	2.42
	95.54

	6
	1.59
	97.13

	7
	1.04
	98.18

	8
	0.53
	98.70

	9
	0.39
	99.09

	10
	0.37
	99.46


As previously the principal component selected should be able to detect the fault at the earliest possible moment. However, there were two faults in this case, the first fault (misalignment) showed mainly on the 5th principal component, and the second fault (a bearing fault) was present mainly on the 9th principal component. Therefore, in this case, the 5th and 9th principal components were selected.
Again, the prediction was carried out via linear regression (), with fifty points backwards used as training data to predict four points forward. The true values and predictions for the 5th and 9th order principal components can be seen in Figure 5.6 (a) and (b), respectively. 
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[bookmark: _Ref63588665][bookmark: _Toc81553433]Figure 5.6 The true values and the predicted results of the principal components for Case 2, (a) the results for the 5th principal component, (b) the results for the 9th principal component.
The risk calculation has two parts: POF and severity calculation. POF is calculated based on Equation (2‑10) and (2‑11). The severity is another essential term in risk assessment, and it is estimated using Equation (2‑12) and (2‑13). Intensity coefficient of individual variables  was define based on process knowledge and experiences. The intensity coefficients used had the same values as listed in Table 5.2, and the loadings for the 5th and 9th principal components are calculated using Equation (4-5).
The system health indicators of the pump were obtained by the risk of the fault, which combined the effect of severity with the probability of fault. Figure 5.7 (a) and (b) show the risk profiles and the fault detection and shutdown thresholds calculated for the 5th and the 9th principal components, respectively.
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[bookmark: _Ref63609967][bookmark: _Toc81553434]Figure 5.7 Risk profile of the pump for Case 2, (a) risk profile calculated using the 5th principal component, (b) risk profile calculated using the 9th principal component.
[bookmark: _Hlk70671401]In Figure 5.7, the fault detection threshold was calculated using Equation (5‑5) with , and the shutdown threshold was set as ten times higher than the fault detection threshold [94]. In Figure 5.7 (a), a fault was detected after 22:00 on 18th Jul 2016, and the health indicator suggested action needed to be taken to reduce the risk. By 07:00 on 20th Jul 2016 the shutdown threshold had been crossed. The original measured signals, see Figure 3-15, show the pump underwent maintenance at 15:00 on 19th Jul, 17 hours after crossing the fault detection threshold and 16 hours before crossing the shutdown threshold, as suggested by the system health indicator. 
In Figure 5.7 (b), the second fault was detected at 03:00 on 22nd Jul 2016, and it was suggested that the pump be shut down at 12:00 on 27th Jul. Compared with the original measured signals in Figure 3-15, the pump underwent maintenance on 23rd Aug, which was 27 days later than suggested by the health indicator. 
In this case, the suggested maintenance time for the first fault was close to the time that the company carried out maintenance. However, for the second fault, the suggested time was far ahead of the actual maintenance. This indicated that the value of the shutdown threshold needed to be modified.
Case 3: bearing faults in compressor
The data used in this case study was obtained from a multistage compressor used in the petrochemical industry. The measurements for the compressor are listed in Table 3-4. PCA was applied to the process data after it had been pre-processed and standardised. In this case study, the training data was selected for a half year period from 1st Feb 2014 to 22nd Aug 2014, during which time the compressor experienced no faults. The models were then used to assess the health condition of the compressor from 23rd Aug 2014 to 23rd Oct 2014, when bearing faults occurred (see Figure 3-21). The training results are shown in Table 5.4. The first eight principal components were retained. These captured over 90% of the total variation. 
[bookmark: _Ref63625681][bookmark: _Toc81553481]Table 5.4 Principal component analysis for Case 3
	Number
	% variance captured for each principal component
	% variance captured total

	1
	51.37
	51.37102

	2
	11.77
	63.14320

	3
	9.88
	73.02711

	4
	6.59
	79.61898

	5
	4.64
	84.26283

	6
	2.60
	86.86558

	7
	2.11
	88.97364

	8
	2.06
	91.03774


In this case, the 3rd principal component was selected for further analysis. The prediction of the score of the principal component was via linear regression (). As in the previous case studies, fifty points backwards were used as training data to predict four points forward. The true values and predicted results of the first order principal component can be seen in Figure 5.8. 
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[bookmark: _Ref63626266][bookmark: _Toc81553435]Figure 5.8 The true value and the prediction results of the 3rd principal component for Case 3
POF is calculated based on the predicted results using Equation (2‑10) and (2‑11). The POF is shown in Figure 5.9. It can be seen that the POF was below the 0.5 threshold from 23rd Aug to 13:00 10th Sep 2014, which indicated that the compressor was healthy during this period. At 13:00 on 10th Sep 2014, the POF value reached 0.5, and until 23rd Sep, it fluctuated around 0.5, but most of this time stayed below 0.5. After 01:00 on 23rd Sep, the POF crossed the threshold of 0.5 and although it continued to fluctuate for most of the time exceeded 0.5. Soon after, the POF increased to 1, which meant the system kept deteriorating until a fault occurred.
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[bookmark: _Ref63626398][bookmark: _Toc81553436]Figure 5.9 POF of the compressor system for Case 3 based on PCA method
The severity is another essential term in risk assessment, and it is estimated using Equation (2‑12) and (2‑13). Here, the suction and discharge temperatures are usually higher in summer and lower in winter, which indicates that they are influenced by the surrounding environmental conditions. To reduce this effect, we gave a value of unity to the intensity coefficient of discharge and suction temperatures and a value of two to the intensity coefficients of the other measurements. Loadings of each PC () were calculated using Equation (4-5). Table 5.5 lists the intensity coefficient and loading of each measurement for the third principal component.
[bookmark: _Ref63626955][bookmark: _Toc81553482]Table 5.5 Values of intensity coefficients and loadings for third principal coefficient for Case 3
	Measurements
	Intensity coefficient
	Loadings by PCA

	Shaft speed
	2
	-0.07994

	Stage 1 Suction Pressure
	2
	0.06180

	Stage 1 Discharge Pressure
	2
	0.02882

	Stage 1 Suction Temperature 
	1
	-0.06423

	Stage 1 Discharge Temperature
	1
	0.06180

	Stage 2 Suction Pressure
	2
	0.13972

	Stage 2 Discharge Pressure
	2
	0.14767

	Stage 2 Suction Temperature
	1
	-0.17958

	Stage 2 Discharge Temperature
	1
	-0.33979

	Stage 3 Suction Pressure                
	2
	0.14440

	Stage 3 Discharge Pressure
	2
	0.30611

	Stage 1-2 DE Radial Vibration Overall X
	2
	-0.03396

	Stage 1-2 DE Radial Vibration Overall Y
	2
	-0.04044

	Stage 1-2 NDE Radial Vibration Overall X
	2
	-0.10515

	Stage 1-2 NDE Radial Vibration Overall Y
	2
	-0.05252

	Stage 1-2 Thrust Position Axial Probe-1
	2
	-0.24733

	Stage 1-2 Thrust Position Axial Probe-2
	2
	-0.27074

	Stage 3 DE Radial Vibration Overall X
	2
	0.32258

	Stage 3 DE Radial Vibration Overall Y
	2
	0.36488

	Stage 3 NDE Radial Vibration Overall X
	2
	0.36222

	Stage 3 NDE Radial Vibration Overall Y
	2
	0.25538

	Stage 3 Thrust Position Axial Probe-1
	2
	-0.15293

	Stage 3 Thrust Position Axial Probe-2
	2
	-0.17568


Inserting the values in Table 5.5 into Equation (2‑12) and (2‑13), the severity scores for a fault that occurred in the compressor system can be obtained and are presented in Figure 5.10.
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[bookmark: _Ref63629322][bookmark: _Toc81553437]Figure 5.10 Severity score of a fault happed in the compressor system in Case 3
The system health indicator of the compressor was obtained by the risk of the fault, which combined the effect of severity with the probability of fault. Figure 5.11 shows the risk profile calculated by the third principal component.
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[bookmark: _Ref63629527][bookmark: _Toc81553438]Figure 5.11 Risk profile of the compressor using the third principal component
As can be seen in Figure 5.11, the health indicator first exceeded the fault detection threshold at 13:00 on 10th Sep 2014, and then fluctuated with most indicator values remaining below the fault detection threshold. At 01:00 on 23rd Sep 2014, the indicator exceeded the fault detection threshold again, and after this time most fluctuations were above the fault detection threshold. The health indicator suggested shutting down the compressor to carry out maintenance at 08:00 on 14th Oct 2014. Compared with the original measured signals in Figure 3-21, the company did not take action to inspect the compressor, and the risk kept growing. The compressor was shut down on 24th Oct. However, as can be seen in Figure 3-21, only the overall vibration X and Y of the radial DE bearing at the 3rd stage of the compressor were abnormal at first. After the 16th Oct, anomalies were observed in many variables, for example, overall vibration X and Y of stage 1-2 radial DE bearing and stage 3 NDE bearing. This indicated that after 16th Oct, the system was in a very dangerous condition. The health indicator indicated shutting down the compressor at 08:00 on 14th Oct, which was about two days before the system deteriorated to a dangerous condition. The health indicator is intended to protect the compressor system from breakdown. 
[bookmark: _Toc81553305]SAE based risk assessment maintenance methodology 
[bookmark: _Toc81553306]Overall methodology
The overall methodology for calculating a system health indicator is shown in Figure 5.12, which is composed of an offline phase and an online phase. Here, the system health indicator is obtained from the risk profile of the system using condition monitoring data. The detailed process is seen in Figure 5.12 and is described below.


[bookmark: _Ref39089871][bookmark: _Toc81553439]Figure 5.12 Flow chart of obtaining the system health indicator via the proposed methodology
In the offline phase, training data is selected from the historical data, where there were no faults or failures recorded in the relevant machine. The offline fault detection model is trained by applying the training data to it, as explained in Chapter 4, and an integrated system feature, which is represented by the Mahalanobis distance (MD), is calculated. The offline POF model is built based on this system feature, and the offline consequence of fault (COF) model is developed using a selected loss function (i.e. inverse normal loss function) and related financial factors using default values. The fault detection threshold () for the health indicator is calculated in the offline phase.
In the online phase, the condition monitoring data is fed into the trained fault detection model, calculating the real-time system feature in terms of the MD. The real-time POF of the online phase is obtained by taking the calculated online MD into the offline POF model. When the POF value is greater than 0.5, the 2D contribution map is applied to analyse the possible fault type, which will then be used to update the COF value. The comprehensive system health indicator is obtained from the risk profile of the system by combining the online POF and COF. The shutdown threshold () for the health indicator is calculated in the online phase. 
The developed system health indicator can be used for fault detection in real-time, indicating the degradation of the system and dynamically updating the risk at each sampling instant, and suggesting an appropriate shutdown time before the system has suffered severe damage. This methodology is developed for pumps and compressors, but it can be adapted to other machines, such as turbines and motors. 
[bookmark: _Toc81553307]Probability of fault model
The probability of fault (POF) indicates the probability of an unwanted event that leads to failure of a piece of equipment. Hence, the POF should be calculated using measurements that reflect the health status and degradation process of the item of equipment. Usually, only one key variable is selected to calculate the probability, and this variable is expected to be the most sensitive one in the system [27]. In our method, MD is used as the system-wide feature to calculate POF.
A visual depiction of the proposed  is presented in Figure 5.13. It is obtained by moving the cumulative distribution function (CDF) of the training data horizontally by a distance  , where  is the fault detection threshold using MD, and   is the point where . The aim of this movement is to let . Therefore, when no fault is detected in the system, ; when a fault or an anomaly is detected, ; if no maintenance actions are taken after a fault is detected, the POF will grow until it reaches unity. The range of POF is from 0 to 1. 


[bookmark: _Ref63673554][bookmark: _Toc81553440]Figure 5.13 The proposed POF model
In Figure 5.13, the blue curve is the CDF of a standard distribution of the training data, which can be written as:
	
	[bookmark: _Ref63675494](5‑6)


where  is the probability density function (PDF) which depends on the chosen distribution. Some well-known distributions and their PDFs are summarised in Table 5.6. The parameters of the distributions can be estimated using the maximum likelihood estimation. A goodness-of-fit test, such as the Kolmogorov-Smirnov (K-S) test, Anderson-Darling test, Cramer-von Mises test, and Chi-Squared test, should be performed to quantify how well the selected distribution matches the original data.  is the system feature and can be calculated via Equation (4-13).
The black curve in Figure 5.13 is the offline POF model, which is obtained by moving the CDF (blue curve) horizontally to a new position, with the movement distance equal to .   can be calculated by solving Equation (5‑7).
	
	[bookmark: _Ref63675422](5‑7)


Therefore, the POF model is given by:
	
	[bookmark: _Ref63718657](5‑8)


where  is the fault detection threshold using MD, and it can be calculated by Equation (4-14).  is the system feature and can be calculated via Equation (4-13).
[bookmark: _Ref38815393][bookmark: _Toc81553483]Table 5.6 The probability density functions and their parameters
	Life distribution
	Probability density function
	Parameters

	Generalised extreme value distribution
Type I (), Type II (), Type III ().
	For , 

For 

	 is the shape parameter.
 is the scale parameter.
 is the location parameter.

	Lognormal distribution
	
	 is the mean of logarithmic values.
 is the standard deviation of logarithmic values.

	Normal distribution
	
	 is the mean value.
 is the standard deviation.

	Kernel distribution
	
	 is the bandwidth.
 is the sample size.



[bookmark: _Toc81553308]Consequence of fault model
In the condition monitoring phase, the process loss starts to increase if the process variables that contribute most exceed their normal operation thresholds, and the maximum process loss is reached after any of these variables breach the shutdown threshold [126]. In our methodology, the COF model is used to quantify such losses due to failure, and it is expressed by the loss function using Equation (5‑9) [125], [126].
	
	[bookmark: _Ref63676597](5‑9)


The loss function shown in Equation (5‑9) is the inverted normal loss function, which is the most widely used for describing random variables [125]. In the equation,  represents the estimated maximum financial loss based on the worst conditions, and can be calculated as:
	
	(5‑10)


where  is downtime production loss,  is the material cost,  is the labour cost,  is the technical support cost,  is the economic consequence of asset loss,  is the economic consequence of human health loss, and  can include environmental clean-up cost, indirect costs that represent secondary effects, etc. 
In Equation (5‑9),  represents the system feature in terms of MD, calculated using Equation (4-14),  is the target value of the variable when the financial loss is zero [125]. Hence,  in this case.  is the shape parameter defining the value of the process variable at which maximum loss is reached. The shape parameter  is calculated using Equation (5‑11) and the least-squares method.
	
	[bookmark: _Ref63684774](5‑11)


where  is the financial loss based on the worst-case conditions,  is the COF value when MD reaches the shutdown threshold, . The shutdown threshold is set to ensure the safe running of the machine, avoid unplanned shutdowns and large financial losses. In our case, when the performance feature exceeds its shutdown threshold, the degradation of a machine can increase rapidly, and its performance becomes very difficult to predict. The value of the shutdown threshold is based on the acceptance criteria of the specific process system. Alternatively, according to [127], when not enough information is available, the shutdown threshold of a measurement can be defined as four times larger than its maximum operating value. The shutdown threshold is given by Equation (5‑12).
	
	[bookmark: _Ref63705455](5‑12)


where is a combination matrix, which covers any variable in the training data becoming four times larger than its normal operating value. The value of  can also be given by the end-users based on the acceptance criteria of the specific process system.  is the reconstructed output.  and  are adopted directly from the training phase as calculated in Equation (4-13).
When the online MD value exceeds , a machine is in a very dangerous condition, but there still exists some time for the faulty machine to reach its maximum financial loss. In this case, the financial loss is set to 50% [127] of EML when MD reaches the shutdown threshold , which means . 
In our case, we assume that critical faults can be detected by condition monitoring and fault detection systems. When a fault is not detected,  is given an initial value (), which is composed of inspection cost and production loss that are caused by a shutdown inspection. When a fault is detected, the fault analysis scheme analyses the cause of the fault and infers the fault type; and the  value would be updated according to the possible fault type.
[bookmark: _Toc81553309]System health indicator using condition monitoring data
The system health indicator is determined by risk, which depends on two factors: the probability of occurrence of a fault () and the associated consequence (). The system health indicator is given by:
	
	(5‑13)


The fault detection threshold of the health indicator is given by:
	
	(5‑14)


where  is the fault detection threshold of MD using Equation (4-14). is the Mahalanobis distance calculated by Equation (5‑7).  is the initial estimated maximum financial loss before a fault is detected.  is the shape parameter of the loss function, calculated by Equation (5‑11).
The shutdown threshold of the health indicator is given by:
	
	[bookmark: _Ref63724668](5‑15)


Where  is the shutdown threshold of MD in Equation (5‑12).  is the estimated maximum financial loss for a specific fault type. Alternatively, the shutdown threshold can be decided by operators according to the maximum risk that a company is willing to take. is the estimated maximum financial loss for a specific fault type.
The health indicator can be used for fault detection as well as for taking supervisory decisions to activate appropriate safety systems in real-time. If , it indicates that the system’s health indicator is under the fault detection threshold, and the system can be presumed healthy. If , the system’s health indicator exceeds the fault detection threshold () but is less than the shutdown threshold. Suggesting the operators respond by, for example, ordering an inspection of the equipment and scheduling a time for maintenance. The fault analysis scheme assesses the contribution of each measurement, infers the possible fault type, and suggests maintenance planning. If , the system is in a dangerous condition, and thereafter, the automatic safety system (i.e., emergency shutdown system) would be activated to avoid an unplanned shutdown.
To demonstrate the effectiveness of the proposed methodology, three case studies have been carried out, using data collected from a pump and a compressor system in a petrochemical plant. The fault detection model in the proposed methodology can use different data-driven methods, such as SAE, NARX, and PCA. According to Chapter 4, compared with NARX and PCA, the SAE had the best performance, so SAE is applied in the following cases.
[bookmark: _Toc81553310]Case studies: development of the SAE based system health indicator
Case 1: misalignment fault in a pump
The data used in this case study was obtained from a multivariate condition monitoring system mounted on a high-pressure injection pump in the petrochemical plant. The dataset contained 15 continuous measurements, including the shaft speed, discharge pressure, discharge temperature, and bearing temperature. The measurements for the pump are listed in Table 3-1. 
[bookmark: _Hlk70777197]SAE was applied on the 15 measurements after data pre-processing and standardisation. In this case study, the training data was selected for the period from 10th Mar 2013 to 21st Jun 2013, during which time there were no recorded pump faults. In the SAE model, the number of nodes in the hidden layer was set as 10, and sparsity regularisation was 1. This value is set according to the previous work presented in Sections 4.5.1 to 4.5.3, where this setting gave good results for incipient fault detection, with a high fault detection rate above 85% while producing few false alarms. 
The system feature was calculated as  using Equation (4-13). The histogram of the system feature (presented as ln(MD)) can be seen in Figure 5.14 (a); the results of fitting distributions of the system feature of the training data in Case 1 can be seen in Figure 5.14 (b) and (c).


[bookmark: _Ref63712783][bookmark: _Toc81553441]Figure 5.14 Distribution fitting of system feature using training data of Case 1, (a) histogram (b) probability density functions (c) cumulative distribution function.
[bookmark: OLE_LINK11]The four candidate distributions were: generalised extreme value, lognormal, normal (Gaussian) and kernel. In this chapter, the K-S test [150] was applied to determine if one or more of the hypothesised distribution fitted the data set, because this test can be used for small as well as large sample sizes. The K-S test compared the sample’s empirical CDF () with the CDF of a selected distribution . If  deviated too much from , the null hypothesis would be rejected. The null hypothesis (H0) was that the selected distribution fitted the sample data. The alternate hypothesis (H1) was that the proposed distribution did not fit the measured results. The K-S test was then used to test the null hypothesis. The output of the K-S test is the p value, and larger the p value the better the fit and the more likely the null hypothesis is accepted. The results of the K-S test for the four distributions are listed in Table 5.7, and the null hypothesis accepted at the 5% level for all four distributions (p > 0.05). 
[bookmark: _Ref63713248][bookmark: _Toc81553484]Table 5.7 Results of the K-S test for case 1
	Distribution
	
	p

	Generalized extreme value
	0
	0.8916

	Lognormal
	0
	0.0524

	Normal
	0
	0.3773

	Kernel
	0
	0.9999


However, as can be seen in the table, the Kernel distribution had the highest  value among the four distributions and hence, the Kernel distribution was selected. By the maximum likelihood estimation, the selected distribution had a bandwidth of 0.0659 and was a normal kernel type.
After the distribution was selected, the fault detection threshold () was calculated based on Equation (4-14) with confidence level  [105]. In other words, 99% of the training data was viewed as healthy data, and 1% was anomalous data. In this case, the calculated  was equal to 7.5913, with ln value 2.0270.
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[bookmark: _Toc81553442]Figure 5.15 Offline training process for SAE fault detection model and MD threshold calculation. (blue points - healthy data; red points - anomalies; magenta line - reference MD thresholds)
The online monitoring data was from 10th Mar to 21st Jun 2013. The system feature was calculated in real-time and was predicted via a third-order polynomial regression (). Again, fifty points backwards were used as training data to predict four points forward. RMSE was calculated to assess the accuracy of the predictions. The true values and predicted results (presented as ln(MD)) can be seen in Figure 5.16. 
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[bookmark: _Ref63717964][bookmark: _Toc81553443]Figure 5.16 True value and the prediction results of the system feature via third-order polynomial regression for Case 1
Based on the predicted system feature, the POF was calculated according to Equation (5‑8). The results are presented in Figure 5.17. The red line in the figure is the POF calculated using the fault detection threshold . In our model, the . The values below this line were regarded as normal, and above the line were viewed as anomalies. As can be seen in the figure that, the POF was below the threshold () from 22nd Jun to 05:00 3rd Jul 2013, which indicates that the pump was in a healthy condition during this period. The POF value crossed the threshold at 06:00 on 3rd Jul 2013, and it could have returned to normal, but the condition kept deteriorating and the POF increased to 1, leading to a fault.


[bookmark: _Ref63720047][bookmark: _Toc81553444]Figure 5.17 POF calculated using the system feature in the online phase for Case 1 (red line - POF calculated by the fault detection threshold, )
When the system feature went beyond the threshold  then, at the same time, the POF value crossed the threshold . After the system feature exceeded the threshold , the fault analysis module deduced the possible fault type, and calculated the COF value of the fault. In our methodology, a two-dimensional Q statistic contribution map was calculated (for details see Chapter 4). The results of the analysis are presented in Figure 5.18.


[bookmark: _Ref63721353][bookmark: _Toc81553445]Figure 5.18 Contribution map by SAE model for Case 1
Figure 5.18 clearly showed that the temperatures of four bearings and the discharge pressure were the main contributors to the increase in the system features. The results gave maintenance staff a clear indication of the presence of bearing related faults, e.g., bearing faults, misalignment, and rotor unbalance. After the fault type had been inferred, the financial factors used in estimating the maximum financial loss () were updated. The financial factors and their values are listed in Table 5.8. The COF at the online phase can be found in Figure 5.19.
[bookmark: _Ref63723649][bookmark: _Toc81553485]Table 5.8 Updated financial factors and their values for bearing related fault in the pump
	Financial factors
	Values ($)

	Downtime cost () 
	83,000

	Material cost ()
	4,000

	Labour cost ()
	1,080

	Technical support cost ()
	4,000

	
	33,048



[image: ]
[bookmark: _Ref63723714][bookmark: _Toc81553446]Figure 5.19 Consequence of a fault in the online phase for Case 1
The system health indicator is a dynamic risk profile of the pump, obtained by combining the COF with the POF in the online phase. The system health indicator presented by the risk profile of the pump is shown in Figure 5.20.
[image: ]
[bookmark: _Ref63724189][bookmark: _Toc81553447]Figure 5.20 System health indicator presented by the risk profile of the pump for Case 1
In Figure 5.20, the first threshold  was used for fault detection, which meant that if the value exceeded this threshold, it should be considered as indicative of a fault. This threshold also suggests the operators prioritise a response (i.e., schedule a proper maintenance time) for the detected fault. In this case, the health indicator gave a warning at 06:00, 3 Jul 2013. Comparing to the measured variables from the pump’s condition monitoring system in Figure 3-14, the health indicator successfully detected the fault at its incipient stage.
The second threshold  in Figure 5.20 was used for system protection.  was calculated for the online stage using Equation (5‑15) after a fault had been detected and fault type deduced. If no corrective action were taken or the corrective action failed to reduce the risk, the risk factor would exceed the second threshold and the emergency shutdown system would be activated to avoid an unplanned shutdown. 
As the health indicator is updated with condition monitoring data, it can reflect the system’s health status in real-time. It considers the probability of failure and financial loss, showing the system’s risk in $. In this case, the company shut down the pump when the risk was quite close to , avoided an unplanned shutdown. 
Case 2: misalignment fault and pump bearing fault
The data used in this case study was obtained from the same pump as in Case 1. The dataset contained 15 continuous measurements, including the shaft speed, discharge pressure, discharge temperature, and bearing temperature. The pump measurements are listed in Table 3-1. 
SAE was applied to the 15 measurements after data pre-processing and standardisation. In this case study, the training data was selected for ten months period from 1st Sep 2015 to 11th Jul 2016, during which time there had been no faults recorded in the pump. In the SAE model, the number of nodes in the hidden layer was 10, and sparsity regularisation was 1, the same parameter setting as in Case 1.
The system feature was calculated as  using Equation (4-13). The histogram of the system feature (presented in terms of ln(MD)) can be seen in Figure 5.21 (a); the results of fitting distributions to the system feature of the training data in Case 2 can be seen in Figure 5.21  (b) and (c).


[bookmark: _Ref63760217][bookmark: _Toc81553448]Figure 5.21 Distribution fitting of system feature using training data of Case 2, (a) histogram (b) probability density functions (c) cumulative distribution function.
The K-S test was applied to help select the best distribution among the four candidate distributions which, as above, were generalised extreme value, lognormal, normal and kernel distributions. The results of the K-S test for the four distributions are listed in Table 5.9.
[bookmark: _Ref63760313][bookmark: _Toc81553486]Table 5.9 Results of the K-S test for Case 2
	Distribution
	
	p

	Generalized extreme value
	0
	0.2406

	Lognormal
	1
	0.0000

	Normal
	0
	0.5912

	Kernel
	0
	0.1833


As can be seen in the table, the normal distribution satisfies the null hypothesis and had the highest  value among the four distributions. Hence, a normal distribution was selected with mean  and standard deviation . After the distribution was selected, the fault detection threshold () was calculated based on Equation (4-14) with confidence level  [105]. In other words, 99% of the training data was viewed as healthy data, and 1% was anomalous data. In this case, the calculated  was equal to 6.9850, with ln value 1.9440.
[image: ]
[bookmark: _Toc81553449]Figure 5.22 Offline training process for SAE fault detection model and MD threshold calculation for Case 2. (blue points - healthy data; red points - anomalies; magenta line - reference MD thresholds)
The online monitoring data was from 12th Jul to 23rd Aug 2016. The system feature was calculated in real-time and was predicted via third-order polynomial regression (). As previously, fifty points backwards were used as training data to predict four points forward. RMSE was calculated to assess the accuracy of the prediction method. The true values and the predicted results of the system feature can be seen in Figure 5.23. 
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[bookmark: _Ref63761408][bookmark: _Toc81553450]Figure 5.23 True value and the prediction results of the system feature via three-order polynomial regression for Case 2
Based on the predicted system feature, the POF can be calculated according to Equation (5‑8). The results are presented in Figure 5.24. The red line in the figure is the POF calculated using the fault detection threshold d1. Here . The values below this line were regarded as normal, and above the line were viewed as anomalies. As can be seen in the figure the POF was below the threshold from 12th Jul to 06:00 3rd Jul 2016, which indicates that the pump was in a healthy condition during this period. The POF value crossed the threshold at 06:00 on 3rd Jul 2016, and after this time the POF fluctuated above 0.5 and increased to 1, leading to a fault.
[image: ]
[bookmark: _Ref63761427][bookmark: _Toc81553451]Figure 5.24 POF calculated by the system feature in the online phase for Case 2 (red line - POF calculated for the fault detection threshold )
When the system feature exceeded the threshold , concurrently, the POF value would exceed the threshold . After the system feature exceeded the threshold , the fault analysis module deduced the possible fault type, and then, calculated the COF value of the fault. In our methodology, a two-dimensional Q statistic contribution map was calculated (for details see Chapter 4). The results of the analysis are presented in Figure 5.25.


[bookmark: _Ref63801902][bookmark: _Toc81553452]Figure 5.25 Contribution for SAE model for Case 2
[bookmark: _Hlk70705451]As can be seen in Figure 5.25, from 16:00 on 17th to 14:00 on 19th Jul 2016, the increase of the system feature was caused by anomalies in the temperatures of four bearings. The results gave the maintenance staff a clear indication of bearing related faults, such as misalignment. After the misalignment fault was remedied, from 14:00 on 19th Jul 2016, it was the overall vibration X of radial bearing 2 that contributed most to the increase of the system feature. The results gave the maintenance staff a clear indication that bearing 2 was faulty.
After the fault type had been inferred, the financial factors used in estimating the  were updated. The financial factors and their values are listed in Table 5.8. The COF at the online phase can be found in Figure 5.26.
[image: ]
[bookmark: _Ref63761876][bookmark: _Toc81553453]Figure 5.26 Consequence of a fault in the online phase for Case 2
The system health indicator was a dynamic risk profile of the pump. It was obtained by combining the COF with the POF in the online phase. The system health indicator of the pump is shown in Figure 5.27.
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[bookmark: _Ref63761949][bookmark: _Toc81553454]Figure 5.27 System health indicator presented by the risk profile of the pump for Case 2
In Figure 5.27, the first threshold  was used for fault detection. In this case, the health indicator gave a warning at 18:00, 17 Jul 2016. Comparing to the measured variables from the pump’s condition monitoring system in Figure 3-15, the health indicator successfully detected the fault at its incipient stage. 
The second threshold  in Figure 5.27 was used for system protection. For the misalignment fault, the health indicator suggested shutting down for maintenance no later than 07:00 on 20th July. As shown in Figure 3-15, the company shut down the pump at 15:00 on the 19th July, quite close to the time shown by the health indicator. 
For the fault in radial bearing 2, the health indicator detected the presence of a fault at its start, and suggested shutting down for maintenance when the risk value reached threshold . The company shut down the pump on 23rd Aug, see Figure 3-15, which is close to the time the risk approached the shutdown threshold.
Case 3: bearing faults in compressor
The data used in this case study was obtained from a multistage compressor in a petrochemical plant. The dataset was condition-based process data, including the shaft speed, suction pressure and temperature for different stages, discharge pressure and temperature for different stages, bearing vibration and temperature. The measurements for the compressor are listed in Table 3-4. 
In this case study, the training data was selected for the period from 1st Feb 2014 to 22nd Aug 2014, during which time the compressor was fault free. In the SAE model, the number of nodes in the hidden layer was 10, and sparsity regularisation was 1, the same as the parameters set in the first two cases.
The system feature was calculated as  using Equation (4-13). Figure 5.28 (a) presents the histogram of the system feature (in terms of ln(MD)). The results of fitting standard distributions to the system, featuring the training data in Case 3 are shown in Figure 5.28 (b) and (c).


[bookmark: _Ref63804079][bookmark: _Toc81553455]Figure 5.28 Distribution fitting of system feature using training data of case 3, (a) histogram (b) probability density functions (c) cumulative distribution function.
The K-S test was applied to determine which of the four candidate distributions (generalised extreme value, lognormal, normal and kernel) best fitted the measured data. The results are listed in Table 5.10. The Kernel distribution had the highest  value among the four distributions and its . Hence, the Kernel distribution was selected. By maximum likelihood estimation, the parameters of the selected distribution were bandwidth = 0.0398, and kernel type was the normal kernel.

[bookmark: _Ref63804344][bookmark: _Toc81553487]Table 5.10 Results of the K-S test for Case 3
	Distribution
	
	p

	Generalized extreme value
	0
	0.8916

	Lognormal
	0
	0.0524

	Normal
	0
	0.3773

	Kernel
	0
	0.9999


After the distribution was selected, the fault detection threshold () was calculated based on Equation (4-14) with confidence level  [105]. In this case, the calculated  was equal to 9.7380, with ln value 2.276.
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[bookmark: _Toc81553456]Figure 5.29 Offline training process for SAE fault detection model and MD threshold calculation. (blue points - healthy data; red point - anomalies; magenta line - reference MD threshold)
The online monitoring data was from 23rd Aug to 23rd Oct 2014. The system feature was calculated in real-time and predicted via a third-order polynomial regression (). Again, fifty points backwards were used as training data to predict four points forward. RMSE was calculated to assess the accuracy of the prediction method. The true value and the prediction results of the system feature (presented in terms of ln MD) can be seen in Figure 5.30. 
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[bookmark: _Ref63804514][bookmark: _Toc81553457]Figure 5.30 True value and the prediction results of the system feature via third-order polynomial regression for Case 3
Based on the predicted system feature, the POF can be calculated according to Equation (5‑8). The results are presented in Figure 5.31. The red line in the figure is the POF calculated using the fault detection threshold . Here . The values below this line were regarded as normal, and above the line were viewed as anomalies. As can be seen in the figure the POF was below the threshold from 23rd Aug to 04:00 16th Sep 2014, which indicates that the pump was in a healthy condition during this period. The POF value crossed the threshold at 04:00 on 16th Sept, and it fluctuated mostly in the normal range until 13:00 on 23rd Sep. After that, the POF continuously increased to 1, leading to a fault.


[bookmark: _Ref63804579][bookmark: _Toc81553458]Figure 5.31 POF calculated from the system feature in the online phase for Case 3 (red line - POF calculated from the fault detection threshold )
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[bookmark: _Ref63804596][bookmark: _Toc81553459]Figure 5.32 Contribution map for SAE model for Case 3
When the POF value exceeded the threshold  at 13:00 on 23rd Sep, the fault analysis module deduced the possible fault type, and calculated the COF value of the fault. In our methodology, a two-dimensional Q statistic contribution map was determined (for details see Chapter 4). The results of the analysis are presented in Figure 5.32.
Figure 5.32 clearly showed that it was the overall vibration X and Y of the radial DE bearing at the 3rd stage of the compressor that contributed most to the increase of the system feature. The results gave maintenance staff a clear indication that the radial DE bearing at the 3rd stage of the compressor had suffered a fault. After the fault type was inferred, the financial factors in  were updated for bearing related faults. The financial factors and their values are listed in Table 5.11. The COF at the online phase can be found in Figure 5.33.
[bookmark: _Ref63772608][bookmark: _Toc81553488]Table 5.11 Financial factors and their values updated for bearing related fault in the compressor
	Financial factors
	Values ($)

	Downtime cost () 
	62,500

	Material cost ()
	1,000

	Labour cost ()
	720

	Technical support cost ()
	3,000

	
	33,048
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[bookmark: _Ref63772627][bookmark: _Toc81553460]Figure 5.33 Consequence of a fault in the online phase for Case 3
The system health indicator was a dynamic risk profile of the compressor. It was obtained by combining the COF with the POF in the online phase. The system health indicator of the compressor is shown in Figure 5.34.
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[bookmark: _Ref63772639][bookmark: _Toc81553461]Figure 5.34 System health indicator presented by the risk profile of the compressor for Case 3
In Figure 5.34, the health indicator firstly crossed the fault detection threshold  at 04:00 on 16th Sep 2014, which meant that the compressor was healthy before this time. From 04:00 on 16th Sep to 13:00 23rd Sep, the indicator fluctuated but most of its values remained below the threshold . After 13:00 23rd Sep, the magnitude of the indicator rose above , which indicated that a fault had been detected. This indicated that the proposed health indicator had successfully detected the fault at its incipient stage. When comparing with the measured parameters of the compressor’s condition monitoring system, Figure 3-21, we see that only slight changes appeared in the measurements made on the compressor. 
The proposed health indicator exceeded the shutdown threshold  at 17:00 on 16th Oct 2014. In this case, the company shut down the compressor on 23rd Oct, which is seven days later. As can be seen in Figure 5.32 and Figure 3-21, from 22nd Sep to 16th Oct, it was the measurements made on the stage 3 DE bearing that were clearly abnormal. However, after 16th Oct, many other measurements (i.e., the vibration levels of the stage 1-2 DE bearing and the stage 3 NDE bearing, and the suction temperature of stage 2) were affected by the faulty bearing, which indicated the system had deteriorated and was in a dangerous condition. As can be seen in Figure 5.34, the developed health indicator, no later than 16th Oct, suggested the compressor be shut down to avoid operating in a dangerous condition.
[bookmark: _Toc81553311]Methodology and results comparison
[bookmark: _Toc81553312]Methodology comparison
Sections 5.1.1 and 5.2.1 described two methodologies for obtaining a condition-based system health indicator. In Section 5.1.1, the condition-based risk assessment proposed by Zadakbar et al., [94] used a PCA approach. Based on their work, a general approach was proposed SAE based approach in Section 5.2.1. Three case studies were carried out to demonstrate the effectiveness of the proposed methodology using the SAE fault detection model. The differences between the two methodologies are listed in Table 5.12. Case studies applying both methodologies are compared in Section 5.3.2 to 5.3.4. 
[bookmark: _Ref41437136][bookmark: _Toc81553489]Table 5.12 The difference between the PCA based and SAE based methodologies
	
	PCA based Methodology
(proposed by Khan et al. [94])
	SAE based Methodology 
(proposed)

	Similarity
	Health indicator at a system level.
Both system health indicators were obtained by dynamic risk assessment using condition monitoring data.


	Difference
	· Designed for PCA
	· Proposed a general reconstruction approach (applied SAE)

	
	· Used a selected principal component for fault detection and POF calculation; However, some faults are a combination of several principal components, and one principal component is unable to encompass the entire process of fault deterioration. It is hard to select the principal component in this situation.
	· Developed a system feature, which integrated the outputs from the fault detection model. Thus, there is no requirement to select the most sensitive variable or feature to calculate the POF.

	
	· POF was assumed to fit a normal distribution; however, the normal distribution may not be the best-fitted distribution for some datasets. 
	· [bookmark: _Hlk80294122]K-S test automatically selected the best-fitted distribution among various candidate distributions.

	
	· COF was defined as a severity score and not related to maintenance costs.
	· COF model was built relative to maintenance costs.

	
	· The health indicator was unitless. It was hard for end-users to define the acceptable risk and shutdown threshold. 
	· The proposed health indicator presents the system’s risk in $, making it easier for operators to make maintenance decisions.



[bookmark: _Toc81553313]Case 1: misalignment fault in a pump
The system health indicators for Case 1 obtained by the two methods can be seen in Figure 5.35. Clearly, the proposed SAE based health indicator, described in Section 5.2.1, detected the fault nearly two days earlier than the PCA method proposed by Zadakbar et al., [94], and described in Section 5.1.1.  
[image: ]
[bookmark: _Ref63844722][bookmark: _Toc81553462]Figure 5.35 The system health indicators obtained by two methodologies for Case 1, (a) system health indicator obtained using PCA method proposed by Zadakbar et al., [94], (b) system health indicator obtained by the proposed SAE based method.
The shutdown threshold in Figure 5.35 (a) was set ten times higher than the fault detection threshold. The company shut down the pump 6 hours later than the suggested time. While in Figure 5.35 (b), the shutdown threshold was calculated in the online stage using Equation (5‑15). The company shut down the pump several hours before the suggested time (exceeded ). In reality, the value of  can be set by operators according to the specific conditions in their plants. As can be seen in Figure 5.35 (a), the health indicator was unitless making it hard for end-users to define the acceptable risk and shutdown threshold. In contrast, in Figure 5.35 (b), the proposed health indicator presented the system’s risk in $, making it easier for operators to set their own shutdown threshold and planning for maintenance.
[bookmark: _Toc81553314]Case 2: misalignment fault and pump bearing fault
Case 2 has two faults occurring in the pump. The results for the system health indicators obtained by the two methods for the misalignment fault in Case 2 can be seen in Figure 5.36. 
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[bookmark: _Ref63846632][bookmark: _Toc81553463]Figure 5.36 The system health indicators obtained by two methodologies for the misalignment fault in Case 2, (a) system health indicator obtained using PCA method proposed by Zadakbar et al., [94], (b) system health indicator obtained by the proposed SAE based method.
In Figure 5.36 (a), the health indicator was calculated using the 5th principal component. It detected the fault at 22:00 on 18th Jul, and suggested the downtime at 7:00 on 20th Jul. In comparison, in Figure 5.36 (b), the proposed health indicator detected the fault at 18:00 on 17th Jul, which was about one day earlier. The suggested downtime by the two methodologies was the same.
In addition, in Figure 5.36 (a), the 5th principal component was unable to detect radial bearing 2’s fault which was reflected in another principal component. In contrast, in Figure 5.36 (b), the proposed health indicator was able to detect both misalignment and bearing faults.
The results for the system health indicators obtained by the two methods for the bearing fault in Case 2 can be found in Figure 5.37.
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[bookmark: _Ref63847785][bookmark: _Toc81553464]Figure 5.37 The system health indicators obtained by two methodologies for the bearing fault in Case 2, (a) system health indicator obtained using PCA method proposed by Zadakbar et al., [94], (b) system health indicator obtained by the proposed SAE based method.
In Figure 5.37 (a), the health indicator was calculated using the 9th principal component. It detected the bearing fault at 11:00 on 22nd Jul. In comparison, Figure 5.37 (b) shows that the proposed health indicator detected the fault soon after the misalignment fault, which was about two days earlier. As can be seen in the original measured signals in Figure 3-15, the overall vibration X of bearing 2 started to increase just after the misalignment fault. Therefore, the proposed health indicator successfully detected the bearing fault at the earliest time.
In Figure 5.37 (a), the PCA health indicator suggested shutdown at 12:00 on 27th Jul, which was 27 days earlier than the company actually shut the pump down. This might have avoided unplanned downtime but could have been at the cost of the bearing being run to destruction.
In contrast, in Figure 5.37 (b), the proposed health indicator suggested a shutdown time that is very close to the time that the company took action. As with Case 1, the value of  can be set by operators according to the specific conditions of their plants. Again the health indicator in Figure 5.37 (a) is unitless, while in Figure 5.37 (b), the proposed health indicator presents system risk in $, making it easier for operators to set their own shutdown threshold and planning for maintenance.
[bookmark: _Toc81553315]Case 3: bearing faults in compressor
The results of the system health indicators obtained by the two methods for Case 3 can be seen in Figure 5.38. In Figure 5.38 (a) and (b), both health indicators continuously stayed above the fault detection threshold after 23rd Sep. The PCA indicator showed significant fluctuations in Figure 5.38 (a), while the proposed indicator presented a relatively stable increase trend in Figure 5.38 (b).
In Figure 5.38 (a), the PCA health indicator reached the shutdown threshold 08:00 on 14th Oct, which was nearly two days earlier than suggested by those variables influenced by the bearing fault (see Figure 5.25 and Figure 3-21). In comparison, in Figure 5.38 (b), the proposed health indicator reached the shutdown threshold on 16th Oct, which matched the time indicated by those variables influenced by the bearing fault. Both methods can protect the compressor system from an unplanned shutdown, but the proposed SAE based method was better, because it allowed the system to fully use its remaining life.

[image: ]
[bookmark: _Ref63850672][bookmark: _Toc81553465]Figure 5.38 The system health indicators obtained by two methodologies for Case 3, (a) system health indicator obtained using PCA method proposed by Zadakbar et al., [94], (b) system health indicator obtained by the proposed SAE based method.
[bookmark: _Toc81553316]Summary
A health indicator targets the safety issues of a process system. It is obtained by condition-based risk assessment methodology. It indicates the need for maintenance based on real-time health monitoring of assets. In this chapter, two methodologies for obtaining a condition-based system health indicator are described, in Sections 5.1.1 and 5.2.1. Both methodologies are demonstrated on a pump and a compressor system, using industrial process data. Comparing the case studies, the proposed SAE based methodology (described in Section 5.2.1) outperformed the PCA methodology described Section 5.1.1 in four ways:
1) High performance and easy to apply.
· In Case 1 the proposed SAE based health indicator detected the misalignment fault one day earlier, and the bearing fault two days earlier than the PCA method. 
· In Case 2, the proposed health indicator was able to detect both the misalignment fault and the bearing fault. While PCA health indicator could detect only misalignment using the 5th principal component and detected only the bearing fault using the 9th principal component.
2) [bookmark: _Hlk80294252]No requirement for human intervention.
· The PCA method used a selected principal component as input, which needed human intervention. Careful selection of a principal component that reflects a fault is needed. However, the proposed SAE based method calculates a system feature that integrates the outputs from the fault detection model with no requirement to select the most sensitive variable or feature to calculate the POF.
3) More options for accurate POF calculation.
· [bookmark: _Hlk80294220]In the PCA method, the training and predicted data was assumed to fit the normal distribution, but many data sets follow a non-normal distribution. In the proposed SAE based method, the end-user can add a variety of distributions, with the K-S test selecting the best-fit. Therefore, the POF obtained using the proposed methodology is likely to be more accurate.
4) Consideration of financial loss and easy to set thresholds of the health indicator.
· In the PCA methodology described in Section 5.1.1, the ‘consequence’ in the risk model is replaced by a severity score for a fault designed for PCA. The risk value is unitless and greatly influenced by the value of the intensity coefficient , which is defined based on process knowledge and experiences. Thereafter, it is difficult to set up the second alarm threshold, which is used for system protection.
· In the proposed SAE methodology, the consequence model was related to unplanned downtime cost, including production loss, material, labour, technical support cost, etc. The risk value was related to cost, which made it easier for operators to set the second alarm threshold considering the specific situation of their company or plant.



                             
                   										 
[bookmark: _Toc529370846][bookmark: _Toc531629375][bookmark: _Toc81553317]
Conclusions and Future Work 
                   										 

[bookmark: _Hlk47303989]This chapter reviews the research aim and objectives. The corresponding achievements are summarised. On this basis, conclusions for the entire thesis are drawn, and a summary of the contributions to knowledge of this research are listed. Finally, suggestions are given for future work.


.

[bookmark: _Toc446420539][bookmark: _Toc452300313][bookmark: _Toc465934492][bookmark: _Toc529370847][bookmark: _Toc531629376][bookmark: _Toc81553318]
Review of research objectives and achievements
The thesis has accomplished the aim of the project and have successfully developed a comprehensive health indicator for rotating machinery, which can assess the health condition of the equipment by merging risk assessment, condition monitoring data, and financial factors. To achieve the aim, the project also successfully met the objectives listed in Section 1.2, as presented below:
Objective one: Develop an effective fault detection model, which can detect anomalies at its incipient stage in the system via condition monitoring data captured from industrial gas compressors and pumps.
Achievement One: In Section 1.2, the condition monitoring system that is applied in the sponsor’s refineries is introduced. In Section 2.3.1, multivariate fault detection methods that are commonly used in fault detection of rotating machinery are reviewed, with emphasis on data-driven methods. Chapter 3 provides a brief introduction of the pump and multi-stage compressor from which the data are collected. The overview of original datasets are presented. In addition, the faults in the pump and compressor data sets are described and explained.
In Chapter 4, the methodologies of three data-driven fault detection models – PCA, NARX, and SAE are described in detail. These methods are applied to determine the presence of anomalies (faults) in industrial multivariate data for three case studies using condition monitoring data from a pump and a compressor used in the petrochemical industry. Parameters influencing the fault detection models are explored. The performance of models is evaluated via three aspects, which are fault detection, the ability to show the main signals that contributed to fault detection on a contribution map, and fault detection rate and false alarm rate statistics via ROC curves and AUC values.
Objective two: Develop a probability of fault (POF) model based on the selected fault detection model (Objective one) to describe the degradation of the system.
[bookmark: _Hlk80390187]In Chapter 5, firstly, the a POF model based on the PCA approach, as proposed by Zadakbar et al., [94], is developed. Next, based on their work, a general probability of fault model is proposed using the extracted system feature from Chapter 4. Compared with the PCA based probability model, the proposed SAE based method calculates a system feature that integrates the outputs from the fault detection model without the requirement to select the most sensitive variable or feature to calculate the POF. In addition, in the proposed method, the POF result is more accurate, because instead of assuming of the data sets follow a normal distribution, our method applies the K-S test to select the best-fitted distribution among a variety of candidate distributions.
Objective three: Develop a financial loss model to describe the consequences of faults in the system. Financial data collected from the operational sector is used in the proposed model.
Achievement three: This thesis proposed a condition-based risk assessment method using system features. In the proposed method, the consequence model in Section 5.2.3 is expanded to include unplanned downtime cost, production loss, material, labour, technical support costs, economic consequences of asset loss and human health losses. It quantifies the system deterioration into financial loss. 
Objective four: Develop an integrated system health indicator for rotating machinery considering the POF model (Objective two) and the financial model (Objective three). The indicator is able to alert the operators on any detected fault and suggest a proper maintenance time to minimize the operational and maintenance costs.
Achievement four: Chapter 5 develops a comprehensive system health indicator from a dynamic risk assessment methodology using condition monitoring data. This indicator is calculated in four steps: fault detection, POF calculation, COF calculation and dynamic risk calculation. The financial factors are considered in the COF model. The system health indicator is able to identify the faults and show the degradation of the system with process risk dynamically updated at each sampling instant. The application of this dynamic risk-based health indicator provides early warnings prior to the fault threatening the system so that the operators have sufficient time to analyse and select the best maintenance procedure considering the specific situation of their plants.



[bookmark: _Toc465934493][bookmark: _Toc529370848][bookmark: _Toc531629377][bookmark: _Toc81553319]Conclusions
In this thesis, the key findings are summarised as follows:
Conclusion 1:
According to our sponsor (SHELL) and the comparison of reviewed maintenance strategies in Section 2.2, the major limitations of the currently applied maintenance strategies are summarised as follows:
· Many strategies (i.e., PPM and RBM) are ineffective for detecting faults at their incipient stages.
· Sometimes, making maintenance decisions is overly complex due to too many alarms activated at one time.
· Maintenance cost can be high, due to system degradation, unplanned shutdowns or over-maintenance.
The limitations of traditional and current maintenance strategies make it necessary to seek effective and cost-saving maintenance strategies to deal with the increasingly complex problems posed by modern industrial systems [3], [20]. Intelligent and integrated maintenance strategies, which apply state-of-the-art diagnosis algorisms, or utilise the advantages of different strategies, to achieve higher efficiency and lower life cycle cost, can be a solution for the above problems. These, therefore, are becoming a feature of new maintenance strategies.
Conclusion 2:
Chapter 4 develops three fault detection models based on PCA, NARX, and SAE, respectively. An integrated system feature in terms of MD value is calculated for each fault detection model. The two-dimensional Q statists contribution map, which stacks multiple observations into one image, is applied to illustrate the contribution of the different variables over the entire fault data times series. Three case studies are carried out for each model using condition monitoring data from a pump and a compressor in a petrochemical plant. The results show that, compared with the PCA and the NARX models, the SAE model is a more efficient method for early anomaly detection. The SAE model outperforms the NARX and PCA model in three ways: 
· The obviousness of a detected fault.
The system feature was obtained from each model’s detection of a fault. Especially in Case 1, the maximum value of the system feature for the SAE model was 109.7, much higher than the NARX (system feature value: 37.49) and PCA model (system feature value: 37.49).
· The effectiveness of isolating abnormal variables.
The SAE and NARX were able to create clearer contribution maps in all three fault cases to show which signal(s) contributed most to the detection of the anomalies. The PCA model was unable to correctly show the abnormal variables for the pump misalignment fault in both Case 1 and Case 2, and the bearing fault in Case 3.
· A higher value of the maximum AUC.
The ROC curves and AUC values were calculated for the three fault detection models to assess the models’ performance. The results showed that the SAE model yielded relatively higher AUC values in all cases when compared with the PCA and NARX models. The PCA model was the weakest among the three models.
Conclusion 3:
In Chapter 5, a comprehensive health indicator is proposed, calculated using a general condition-based dynamic risk assessment methodology. The proposed methodology (described in Section 5.2.1) is based on the work of Zadakbar et al., [94] ’s (described in Section 5.1.1). Three case studies are carried out with both methods applied to industrial process data from Shell Global Solutions. Comparing the case studies, the proposed methodology outperforms the existed methodology in four ways: 
· High performance and easy to apply.
Compared to the existing PCA method, the proposed SAE based risk assessment method detected faults nearly two days earlier in Case 1, one day earlier for the misalignment fault, and two days earlier for the bearing fault.  
In Case two, the proposed health indicator was able to detect both the misalignment fault and the bearing fault. The PCA health indicator detected the misalignment using the 5th principal component, and the bearing fault using the 9th principal component.
· No requirement for human intervention.
The existed PCA method used selected principal component as input, which needed human intervention to select the principal component relevant to the fault. However, the proposed SAE based risk assessment method used the calculated system feature, which is an integrated value and there is no requirement for human intervention.
· More options for accurate POF calculation.
In the proposed SAE based risk assessment method, four candidate distributions were provided, though the end-user can add more distributions according to their requirements. The K-S test was applied to select the best-fit distribution. In the existing PCA method, the training and predicted data was assumed to fit the normal distribution. Therefore, with a better-fitted distribution the POF will be more accurate when using the proposed SAE based risk assessment method. 
· Consideration of financial loss and easy to set thresholds of the health indicator. 
In the existed method, the ‘consequence’ in the risk model was a unitless severity score designed for PCA. Accordingly, the calculated health indicator was unitless, and the indicator value (risk value) was greatly influenced by the value of the intensity coefficient , which was defined based on process knowledge and experiences. Thereafter, it is difficult to set up the second alarm threshold, which is used for system protection. 
In contrast, in the proposed SAE based risk assessment method, the consequence model quantified the system deterioration into financial loss, so that the risk value is related to financial loss, which makes it easier for operators to set the second alarm threshold considering the specific situation of their companies or plants.

[bookmark: _Toc465934494][bookmark: _Toc529370849][bookmark: _Toc531629378][bookmark: _Toc81553320]Contributions to knowledge
A number of practical analyses have been performed for the purpose of developing a comprehensive health indicator for use in an advanced maintenance strategy to ensure plant performance, maximising the safety of the plant whilst minimising operational costs and extending the life of industrial machines. The contributions to knowledge of this research are summarised as follows:

First contribution:
The health indicators for popular maintenance strategies are reviewed and summarised. A condition-based risk assessment is introduced, with its key processes (condition-based fault detection, probability of fault calculation, consequence of fault calculation, and risk calculation) reviewed and described in detail. It can be used as a useful reference for researchers working on maintenance optimisation.
Second contribution:
An efficient fault detection method is developed based on the unsupervised machine learning method SAE and is evaluated via condition-based multivariate process data obtained from a pump and a compressor used in petrochemical plant. Instead of selecting a key variable, or a single feature from numerous varying features, for fault detection the proposed methodology merges multiple variables into one system-wide feature. Fault identification can be achieved by a reconstruction-based calculation. A two-dimensional Q statistics contribution map is used to stack multiple observations into one image to clearly illustrate the contribution of the different variables over the entire fault data times series.
Third contribution:
A comprehensive system health indicator is proposed calculated using a general condition-based dynamic risk assessment methodology using real-time health monitoring of assets. In this method, the consequence model and risk value are quantified in terms of financial loss, (production loss, material, labour, technical support cost, etc.). This makes it easier for operators to set the shutdown threshold after considering the specific situation of their companies or plant. The proposed SAE based risk assessment method is demonstrated on an industrial pump and compressor, using condition-based multivariate process data. Compared to the existed PCA method developed in [94], the proposed method had the advantages of 1) early fault detection, 2) no requirement for human intervention for selection of variable or feature, 3) more accurate POF calculation due to the automatic selection of the best-fitted distribution among the candidate distributions, 4) the value of the health indicator was related to financial loss, which makes it easier for operators to select the optimum time for maintenance.
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The recommendations for the continuation of this research are summarised as follows:
[bookmark: OLE_LINK331][bookmark: OLE_LINK332][bookmark: OLE_LINK333]Recommendation 1:
Apply imputation techniques when dealing with missing and erroneous data. Examine the performance of different imputation techniques, especially when more than one variable exhibit missing data at the same time. 
Recommendation 2:
Due to sensor or measuring equipment faults, some measured variables may be completely unusable for training. Capturing only a limited number of signals could be considered for the fault detection and fault isolation model. 
Recommendation 3:
Explore more time series machine learning methods to better predict the health condition of compressors and pumps. For example, compare the performance of the SAE and NARX method used in this thesis with long short-term memory, which is a powerful learning model that has shown extraordinary capability in a wide range of machine learning tasks such as machine remaining useful life prediction and visual object recognition. 
Recommendation 4:
Apply transformations (frequency, time-frequency, etc.) on vibration data, and use feature extraction from these domains for condition-based maintenance, and prognostics and health management.
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