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Abstract: In order to solve the problems of existing threat assessment algorithms, a threat assessment method based on
intuitionistic fuzzy three-way decision method is proposed. Firstly, the indexes are described by theory of intuitionistic fuzzy sets
on the basis of that the threat assessment index system is established. Then, TOPSIS method is used to calculate the target
threat. Finally, the targets are classified by three-way decision method according to the result of target threat. It is proved that it
is feasible to introduce three-way decision method into threat assessment. At the same time, an improved algorithm for
calculating the threshold of three-way decision is proposed. Experiments show that the improved algorithm has stable results
and good classification effect.

1Introduction
At present, the research on threat assessment of air targets is mostly
based on the selection and treatment of threat factors. While for the
research of the results of threat assessment, two-way decision
models are always used to make a choice. Decision makers need to
make decisions immediately based on the current information. For
targets whose threat value is higher than a certain threshold, they
should adopt attack strategy, and for targets whose threat value is
lower than that threshold, they should adopt the strategy of
abandoning attack. This kind of decision-making result is either
one or the other, so a two-way decision model may lead to a high-
cost loss due to the lack of suitable information for making a
precise decision.

Three-way decision is an uncertain theory put forward by Yao
Yiyu in recent years [1]. Its core idea is to divide a unified set into
three disjoint paired regions: positive domain, negative domain,
and boundary domain. It provides an effective strategy and method
for solving complex problems by formulating corresponding
decision-making strategies for each region. After the emergence of
the three-way decision, experts and scholars at home and abroad
have conducted extensive research on it. The research on the three-
way decision by combining intuitionistic fuzzy set and rough set is
a hot topic at present. Therefore, this paper intends to use the three-
way decision method based on intuitionistic fuzzy sets to study the
air combat threat assessment and the threat assessment from a new
perspective, hoping to provide new ideas and ways to solve the
problems in this field.

2Basic concepts
2.1 Three-way decision model based on intuitionistic fuzzy
set

Let the set of event objects be U and x be any event object in U,
satisfying rule x ∈ U. There are two kinds of decision state

descriptions: membership description P and non-membership
description N. The decision-maker can evaluate the event object
according to the evaluation function composed of membership
function and non-membership function, and determine the cost of
different decisions according to the cost matrix of decision-making
problem, as shown in Table 1. 

Let the evaluation function be F(ωx x) and ωx denote the
decision-making action of event object x, and ωP, ωN, ωB denote
the decision-making action of event object when it is divided into
positive domain, negative domain, and boundary domain. Positive
field indicates that object x belongs to L, that is, accepting event
object. Negative field denotes that object x does not belong to L,
that is, reject event object. The boundary region indicates whether
the uncertain object x belongs to L, i.e. the object of non-
commitment or delayed decision-making events. μ(x) and υ(x)
represent the membership degree and non-membership degree of
event object x, respectively. If event object x belongs to L, the cost
of evaluation function for executing decision-making action ωP,
ωN, ωB is λPP, λNP, λBP, respectively. If event object x does not
belong to L, then the cost of evaluation function for executing
decision-making action ωP, ωN, ωB is λPN, λNN, λBN. Considering
the significance of evaluation function in reality, it is reasonable to
assume that the cost of evaluation function above satisfies two
conditions: λPP ≤ λBP < λNP, λNN ≤ λBN < λPN.

According to the concept of intuitionistic fuzzy set, there are
three kinds of decision-making actions in Table 1:
0 ≤ μ(x) + υ(x) ≤ 1. The corresponding decision-making risk
assessment is obtained, in which the evaluation function F(ωx x) is
defined as the mathematical expectation of the risk of decision-
making action ωx.

The risk of accepting the object of the event:

F(P x) = λPP × μ(x) + λPN × υ(x) (1)

Table 1 Cost matrix for decision problems
Decision-making action Membership description Non-membership description
Acceptance decision:ωP λPP λPN

Rejection decision:ωN λNP λNN

Delayed decision:ωB λBP λBN
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The risk of rejecting the object of the event:

F(N x) = λNP × μ(x) + λNN × υ(x) (2)

Risks of delayed decision-making event objects:

F(B x) = λBP × μ(x) + λBN × υ(x) (3)

Decision-makers always choose the decision-making action with
the least risk when evaluating the decision-making risk of the event
objects. Therefore, three decision-making rules are obtained:

Acceptance of decision rules(P):if F(P x) ≤ F(N x) and
F(P x) ≤ F(B x) are true, then there is x ∈ POS(X);
Rejection of Decision Rules(N):if F(N x) ≤ F(P x) and
F(N x) ≤ F(B x) are true, then there is x ∈ NEG(X);
Delayed Decision Rules(B):if F(B x) ≤ F(P x) and
F(B x) ≤ F(N x) are true, then there is x ∈ BND(X).

If

α =
(λPN − λBN)

(λPN − λBN) + (λBP − λPP)

β =
(λBN − λNN)

(λBN − λNN) + (λNP − λBP)

γ =
(λPN − λNN)

(λPN − λNN) + (λNP − λPP)

(4)

By assuming λPP ≤ λBP < λNP and λNN ≤ λBN < λPN, α ∈ (0, 1],
β ∈ [0, 1), γ ∈ (0, 1) can be obtained, and 0 ≤ β < γ < α ≤ 1 can
be obtained. Thus, decision rules can be simplified as follows:

From hypothesis a, b, c, D can be obtained, and E can be
obtained. Thus, decision rules can be simplified as follows:

Acceptance of decision rules (P):if μ(x) ≥ α is true, there is
x ∈ POS(X);
Rejection of decision rules (N):if μ(x) ≤ γ is true, there is
x ∈ NEG(X);
Delayed decision rules (B):if β < μ(x) < α is true, there is
x ∈ BND(X).

2.2 Improved adaptive threshold algorithm

According to Bayesian Minimum Risk Decision-making Theory,
every decision-making behaviour will have corresponding risk loss
[2]. Choosing the behaviour with less risk to make decision can
calculate the threshold pair of decision-making boundary (α, β).
Aiming at the optimisation of decision-making risk loss, an
optimisation problem related to risk loss is constructed, and an
improved adaptive learning loss function value and threshold
algorithm is proposed. The conditional probability of each sample
is taken as the search space, and the appropriate probability value
is found as the decision boundary threshold to minimise the
decision risk based on the threshold.

Decision Rough Set chooses two state sets Ω = X, X  and
three action sets A = aP, aB, aN  to describe the decision problem.
The probability values of xi belonging to X for each object are
calculated by various theories and methods, marked as pi.
According to the three-way decision rough set model, normal rules
pi ≥ α are used for objects xi, negative rules are used for objects xj

satisfying condition pj ≤ β, and boundary rules are used for objects
pk of β < pk < α. Assuming λPP = λNN = 0, the total risk loss
caused by partitioning each object of the whole decision table is as
follows:

R = ∑
xi ∈ POS(X)

λPN(1 − pi) + ∑
x j ∈ NEG(X)

λNPpj

+ ∑
xk ∈ BND(X)

λBN(1 − pk) + λBPpk

(5)

According to Bayesian decision-making theory, the smaller the
total risk loss is, the better. The problem of optimizing decision-
making risk loss is as follows: (see (6)) Among them, ε is a penalty
factor to avoid dividing too many samples into boundary areas.

The three thresholds (α, β, γ) are calculated from six loss
function values. Assuming λPP = λNN = 0, the remaining four loss
function values can be deduced from formula (4) in reverse,
expressed by thresholds (α, β, γ) and λPN as follows:

λNP =
1 − γ

γ
λPN

λBN =
β(α − γ)
γ(α − β)

λPN

λBP =
(1 − α)(γ − β)

γ(α − β)
λPN

(7)

Assuming λPN = 1, the final optimization problem can be
expressed as:

min ∑
pi ≥ α

(1 − pi) + ∑
pj ≤ β

1 − γ

γ
pj

+ε ∑
β < pk < α

β(α − γ)
γ(α − β)

(1 − pk) +
(1 − α)(γ − β)

γ(α − β)
pk

s . t . 0 ≤ β < γ < α ≤ 1, ε ≥ 1

(8)

When solving the threshold, the search space is limited to the set of
probability values of all objects. The concrete idea is as follows:

(1) Firstly, the initial threshold value is set, and the total loss RX is
calculated and recorded as MinR.
(2) All objects are sorted according to the size of the probability
value, the big one is before the small one.
(3) The threshold (α, β, γ) is replaced by the probability value of
the target object. In order, all threshold combinations satisfying
condition α > γ > β are taken out in turn, and the thresholds are re-
assigned to (α′, β′, γ′).
(4) Recalculate the total risk loss RX′  of the sample set under the
new threshold. If condition RX′′ < MinR is satisfied, the threshold
(α, β, γ) is updated to (α′, β′, γ′), otherwise the threshold remains
unchanged.
(5) Determine whether all possible threshold combinations
satisfying the α > γ > β condition have been traversed completely.
If so, execute step (6), otherwise, go to step (3) until all
combinations have been traversed.
(6) The final threshold (α, β, γ) is the required result.

The flow chart is shown in Fig. 1. 

3Threat assessment index system
3.1 Construction of target threat assessment index system

(1) Air combat capability factor
Air combat capability mainly includes target type and target

jamming ability [3]. The corresponding relationship between target
air combat capability and intuitionistic fuzzy set is shown in
Table 2.
(2) Target Situation Information

min ∑
pi ≥ α

λPN(1 − pi) + ∑
pj ≤ β

λNPpj + ε ∑
β < pk < α

λBN(1 − pk) + λBPpk

s . t . 0 ≤ β < γ < α ≤ 1, ε ≥ 1

(6)
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Target situation information includes the target speed, the angle
between the target and the speed direction of the aircraft, and the
distance between the target and the aircraft. It can be expressed by
interval index. Interval-type indicators are divided into benefit-type
indicators and cost-type indicators. For benefit-based indicators,
there is:

[bi j
L, bi j

U] =
ai j

L

max1 ≤ k ≤ m (ak j
U)

,
ai j

U

max1 ≤ k ≤ m (ak j
U)

(9)

Similarly, for cost-based indicators, there is:

[bi j
L, bi j

U] =
max1 ≤ k ≤ m (ak j

L )

ai j
U

,
max1 ≤ k ≤ m (ak j

L )

ai j
L

(10)

Normalized interval numbers are transformed into intuitionistic
fuzzy numbers, whose membership degree and non-membership
degree are defined as

μi j = γ
bi j

U

max1 ≤ k ≤ m (bk j
U)

υi j = 1 − μi j −
bi j

U − bi j
L

bi j
U + bi j

L

(11)

Among them, γ ∈ [0.5, 1] is the optimistic index.
Target speed belongs to benefit interval index, and its

membership degree and non-membership degree are calculated by
reference formula (9). The target distance and the angle between
the target and the aircraft belong to the cost-type interval index,
and its membership degree and non-membership degree are
calculated by reference formula (10).

3.2 Target attribute weight

Definition 6 Let the universe of intuitionistic fuzzy sets be
X = {x1, x2, …, xn}, E(A) is Intuitional Fuzzy Entropy of A, which
is called Information Entropy for short. E(A) is determined by
Formula (12):

E(A) = −
1
n

∑
i = 1

n μA(xi) +
πA(xi)

2
log2 μA(xi) +

πA(xi)
2

+ υA(xi) +
πA(xi)

2
log2 υA(xi) +

πA(xi)
2

(12)

The corresponding weight of attribute C j is:

ωj =
1 − E j

n − ∑ j = 1
n

E j

(13)

Fig. 1 Flow chart of improved adaptive threshold algorithm for three-way decision
 

Table 2 Relationship between target air combat capability and intuitionistic fuzzy sets
Fuzzy language Membership degree Non-membership degree
high 0.90 0.05
higher 0.75 0.10
normal 0.55 0.25
lower 0.50 0.25
low 0.50 0.20
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The corresponding attribute weight of the target Ti is:

ω = (ω1, ω2, …, ωn) (14)

4Target threat assessment algorithms
Based on the operation rules of intuitionistic fuzzy sets, the weights
of target attributes are calculated, and the threat assessment of
targets is ranked according to the idea of TOPSIS method [4]. The
steps of the algorithm are as follows [5, 6]:

(1) Determine the target attribute matrix according to the threat
assessment index system. H = (hi j)m × n.
(2) The target attribute matrix is processed to get the target
intuitionistic fuzzy matrix F = ( f i j)m × n, ƒi j = ⟨μi j, υi j⟩.
(3) According to the intuitionistic fuzzy entropy, the weight of
target attributes ω = (ω1, ω2, …, ωn) is determined.
(4) The weighted intuitionistic fuzzy decision matrix R = (ri j)m × n

is determined by the target attribute weight ω and the target
intuitionistic fuzzy matrix F, and ri j = ⟨αi j, βi j⟩.
(5) Calculate the ideal and negative ideal solutions of the weighted
intuitionistic fuzzy decision matrix.

R
+ = (⟨α1

+, β1
+⟩, ⟨α2

+, β2
+⟩, …, ⟨αn

+, βn
+⟩) (15)

R
− = (⟨α1

−, β1
−⟩, ⟨α2

−, β2
−⟩, …, ⟨αn

−, βn
−⟩) (16)

αj
+ = max1 ≤ i ≤ m αi j, β j

+ = min1 ≤ i ≤ m βi j,
αj

− = min1 ≤ i ≤ m αi j, β j
− = max1 ≤ i ≤ m βi j, j = 1, 2, …, n

(6) Calculate the distance from each object to the ideal solution and
the negative ideal solution

Taking Ri = (⟨αi1, βi1⟩, ⟨αi2, βi2⟩, …, ⟨αin, βin⟩) as the vector
representing the i-th objective, the formulas for calculating the
distance Si

+ from the target i to the ideal solution and the distance
Si

− from the target i to the negative ideal solution are as follows [7,
8]:

Si
+ = d2(Ri, R

+)

=
1
2n

∑
j = 1

n

[(αi j − αj
+)

2
+ (βi j − β j

+)
2
+ (πi j − π j

+)
2
]

(17)

Si
− = d2(Ri, R

−)

=
1
2n

∑
j = 1

n

[(αi j − αj
−)

2
+ (βi j − β j

−)
2
+ (πi j − π j

−)
2
]

(18)

(7) Computing the relative closeness of each scheme

Wi =
Si

−

Si
− + Si

+ (19)

(8) Solution of Threshold Pairs
Taking target threat degree as input, the threshold pair of threat

assessment problem is calculated according to the improved
adaptive threshold algorithm proposed above.
(9) Dividing the threat area of the target according to the threshold
value.

For the target whose threat degree is greater than threshold α, it is
divided into threatening areas; for the target whose threat degree is
<β, it is divided into non-threatening areas; and for the target
whose threat degree is between α and β, it is divided into potential
threatening areas.

5Simulation analysis
Twenty targets are simulated, and the target information is shown
in Table 3 (for space reasons, only part of the data is shown). 

The intuitionistic fuzzy decision matrix of each target attribute
is determined according to step (2). Determine the weight of the
target attribute according to step (3), as shown in Table 4. 

The objective weighted intuitionistic fuzzy decision matrix is
determined according to step (4), as shown in Table 5. 

The positive and negative ideal solution targets are calculated,
and the distance between each objective and the positive ideal
solution is calculated. According to step (7), the relative pasting
progress of each objective and positive ideal solution is calculated,
as shown in Table 6. 

According to step (8), the threshold of the three decision-
making branches is calculated, and the initial threshold value is set
to α = 0.7, β = 0.3, γ = 0.4. The existing algorithm and the
improved self-adaptive algorithm are used to calculate the decision
threshold. The results of the threshold are recorded in Tables 7 and
8. According to the results of the threshold, the threat areas of the
target are divided, and the results are recorded in Tables 9 and 10. 

When the penalty factor in the boundary area increases from 1.1
to 1.15, the target in the potential threatened area changes from 19
to 0 and the target in the non-threatened area changes from 1 to 20.
It shows two points: (i) With the increase (or decrease) of the
penalty factor in the boundary region, there may be a sudden
change in the result of target region division. (ii) Existing

Table 3 Target information matrix
Target Type Jamming ability Speed, m/s Distance, km Angle, degree
T1 high high [890, 910] [99, 100] [0.9, 1.1]
T2 high higher [410, 430] [299, 300] [5.9, 6.1]
··· ··· ··· ··· ··· ···
T20 lower higher [30, 50] [119, 120] [17.9, 18.1]
 

Table 4 Target attribute weight
Type Jamming ability Speed Distance Angle

Weight 0.12434 0.21468 0.30383 0.26595 0.09121
 

Table 5 Target weighted intuitionistic fuzzy matrix of targets
Type Jamming ability Speed Distance Angle

T1 0.249,0.689 0.390,0.526 0.244,0.750 0.159,0.840 0.137,0.811
T2 0.249,0.689 0.257,0.610 0.097,0.894 0.045,0.955 0.012,0.986
··· ··· ··· ··· ··· ···
T20 0.083,0.842 0.257,0.610 0.010,0.904 0.127,0.873 0.004,0.996
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algorithms may get extreme values. When the threat factor is 1.15–
4, the threshold value, the difference between them is <0.001. At
this time, the result of target region division is very unreliable, and
almost no samples are divided into boundary regions.

Tables 8 and 10 show that when the penalty factor varies from
1.5 to 4, the threshold α decreases gradually with the increase of
the penalty factor in the boundary domain, while the threshold β

does not change significantly, and the threshold γ decreases
gradually. With the increase of the penalty factor in the boundary
area, the scope of the boundary area decreases gradually, and the
number of targets in the potential threat area decreases gradually,
and transforms into the threatened area and the non-threatened
area.

Comparing the simulation results of the two algorithms, we find
that there are some problems in the existing algorithms: the
algorithm is unstable, with the change of penalty factor, the results
of the algorithm have mutations, and it is difficult to determine the
appropriate penalty factor value. The improved algorithm is
simulated and analysed. The results show that the improved
adaptive threshold algorithm proposed in this paper is stable, has
good classification effect, and can overcome the shortcomings of
the existing algorithm. When the penalty factor is within a certain
range, the threshold solution results can maintain stability and
ensure the reliability of the algorithm.

6Conclusion
In order to solve the problems of existing threat assessment
algorithms, this paper introduces three-way decision theory into the
threat assessment of air combat decision-making and proposes a
threat assessment method based on intuitionistic fuzzy three-way
decision. The simulation proves the feasibility of introducing three-
way decision theory into the threat assessment problem. Aiming at
the shortcomings of the existing threshold solving algorithm, an
improved adaptive threshold algorithm for three-way decision is
proposed. The simulation proves that the threshold algorithm
proposed in this paper is stable and has good classification effect. It
can overcome the shortcomings of existing algorithms. When the
penalty factor takes a certain range, the solution result of the
threshold can be kept stable and the reliability of the algorithm is
guaranteed.
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Table 6 Target threat
Target Threat Target Threat Target Threat Target Threat
T1 0.636 T6 0.495 T11 0.304 T16 0.210
T2 0.321 T7 0.406 T12 0.498 T17 0.311
T3 0.298 T8 0.275 T13 0.513 T18 0.490
T4 0.368 T9 0.605 T14 0.348 T19 0.334
T5 0.637 T10 0.318 T15 0.431 T20 0.255

 

Table 7 Threshold calculation results with different penalty
factors under existing algorithms
Penalty value α γ β

1.05–1.1 0.7 0.63735 0.20950
1.15–4 0.63799 0.63767 0.63735

 

Table 8 Threshold calculation results with different penalty
factors under improved algorithm
Penalty value α γ β

1.5–2.5 0.63664 0.63656 0.39858
3–3.25 0.63656 0.63336 0.39858
3.5–4 0.40616 0.40237 0.39858

 

Table 9 Three-way decision results with different penalty
factor in existing algorithms
Penalty value Threatened

areas
Potential threat

areas
Non-threat

areas
1.05–1.1 0 19 1
1.15–4 0 0 20

 

Table 10 Three-way decision results with different penalty
factors under improved algorithm
Penalty value Threatened

areas
Potential threat

areas
Non-threat

areas
1.5–2.5 1 8 11
3–3.25 2 7 11
3.5–4 9 0 11
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