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Abstract: Eating less meat is increasingly seen as a healthier, more ethical option. This is leading to
growing numbers of flexitarian consumers looking for plant-based meat alternatives (PBMAs) to
replace at least some of the animal meat they consume. Popular PBMA products amongst flexitarians,
including plant-based mince, burgers, sausages and meatballs, are often perceived as low-quality,
ultra-processed foods. However, we argue that the mere industrial processing of ingredients of
plant origin does not make a PBMA product ultra-processed by default. To test our hypothesis, we
conducted a randomised controlled trial to assess the changes to the gut microbiota of a group of
20 participants who replaced several meat-containing meals per week with meals cooked with PBMA
products and compared these changes to those experienced by a size-matched control. Stool samples
were subjected to 16S rRNA sequencing. The resulting raw data was analysed in a compositionality-
aware manner, using a range of innovative bioinformatic methods. Noteworthy changes included
an increase in butyrate metabolising potential—chiefly in the 4-aminobutyrate/succinate and glu-
tarate pathways—and in the joint abundance of butyrate-producing taxa in the intervention group
compared to control. We also observed a decrease in the Tenericutes phylum in the intervention
group and an increase in the control group. Based on our findings, we concluded that the occasional
replacement of animal meat with PBMA products seen in flexitarian dietary patterns can promote
positive changes in the gut microbiome of consumers.

Keywords: gut microbiome; gut microbiota; plant-based meat alternatives; flexitarian; flexitarianism;
plant-based diets; meat alternatives; meat substitutes; plant protein; ultra-processed foods

1. Introduction

Demand for plant-based products is growing globally, led by increasing public knowl-
edge of the extent to which our food choices affect human health. Researchers continue to
unveil the strong links that exist between excessive meat consumption and the pathogenesis
of non-communicable diseases such as obesity [1,2], type-2-diabetes [3–5], cardiovascular
disease [6] and some forms of cancer [7,8]. Conversely, there is mounting evidence that
diets characterised by a higher consumption of plant-based foods promote health and
reduce the risk of a number of chronic conditions [9,10], and that high fibre and polyphenol
content of plant-based diets promotes the changes in gut microbiota composition that
mediate these positive health outcomes [11–15].

Recent research suggests that health- and environment-conscious flexitarians are more
likely to incorporate animal-free foodstuffs—including plant-based meat alternatives—into
their diets [16–18]. Research also shows that flexitarians, in addition to vegetarians and
vegans, are more attracted to plant-based meat foods that imitate processed meat products,
such as burgers, meatballs or sausages, than to those that imitate unprocessed meats, e.g.,
steak [19]. Additionally, dietary pattern analysis of consumers of plant-based foods has
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also found that convenience meals and snacks are highly appealing to this community [20].
These findings raise some concerns. Firstly, not all meat substitutes are sustainable. Some
contain palm oil, known to increase pollution, GHG emissions and land conversion [21,22],
and some may include genetically modified foods, which remain a contentious issue
worldwide [23]. Secondly, certain meat substitutes may be classed as ultra-processed [24]
because of their high fat or sodium content, or on the basis of a long list of what consumers
consider “unnecessary ingredients”, i.e., preservatives, sweeteners, etc. [25–27].

The facts we have laid out above present us with an interesting paradox: although the
evidence that plant-based diets promote human health continues to grow, the avoidance
of animal-based foods has been found to be associated with a higher consumption of
convenience, ultra-processed foods (UPFs) [28] that are typically seen as unhealthy. UPFs
are known to include reduced amounts of ingredients of high nutritional value along with
high levels of unhealthy fats and refined carbohydrates [29,30]. Fibre-poor UPFs are known
to alter the provision of nutrient substrate to the colon due to differing digestibility, thereby
promoting negative changes in both the composition and the metabolic activity of the gut
microbiota [31,32], leading to a deranged state known as dysbiosis [33,34]. Some plant-
based meat alternatives (PBMAs) may be classed as UPFs. However, we argue that the
mere industrial processing of ingredients of plant origin does not make a PBMA product
ultra-processed by default. In fact, we argue that the potential for a PBMA product to
promote either eubiotic or dysbiotic changes in the gut microbiota of consumers lies in
the nutrient profiles of each of its individual ingredients, and that quality assessments
should be carried out on a product-by-product basis or, at the very least, on PBMA product
lines made with highly similar ingredients by a manufacturer that follows the same food
production techniques across its product portfolio.

There is a distinct lack of literature on the quality of PBMAs from rigorously designed
intervention trials that helps compare the effects of PBMA products with those of con-
ventional (animal) meat products on the microbiome of consumers. Therefore, our study
aims to fill a knowledge gap in this intersection of nutrition, microbiology and consumer
behaviour. We posit that PBMA products, such as burgers, sausages or meatballs, manu-
factured with all-natural plant-based ingredients that are rich in vegetable protein, fibre
and phenolic compounds, can elicit positive changes in the gut microbiome of consumers
when used to substitute their animal meat product equivalents, even if this substitution is
only occasional, i.e., as in flexitarian dietary patterns. To test our hypothesis, we assessed
the changes in the composition and functionality of the gut microbiota in a group of 40
participants, 20 of whom substituted the aforementioned animal products with their cor-
responding plant-based products for 4 weeks, compared to a size-matched omnivorous
control group.

2. Materials and Methods

The materials and methods for this randomised controlled study are listed under the
following sections.

2.1. Participants
2.1.1. Recruitment Procedure

Prospective volunteers were sought by social media advertisement and 210 individuals
expressed interest in participating. After reading the participant information sheet, 48
individuals responded via e-mail to say they were not eligible to participate due to either
(1) failing to meet the inclusion criteria, or (2) meeting at least 1 of the exclusion criteria.
The inclusion and exclusion criteria are listed below:

Inclusion criteria:

• No underlying health conditions requiring prescription medication.
• Aged between 18 and 55.
• A BMI between 18.5 and 29.9.
• No antibiotics in the past 6 months.
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• No probiotic supplements in the past month.
• Eats red meat/poultry/fish/eggs/cheese daily.
• Does not eat plant-based meat substitutes.

Exclusion criteria:

• Immediate DNA family (mother, father, brother, sister) with a medical diagnosis of
ulcerative colitis, Crohn’s disease, irritable bowel syndrome, or bowel cancer.

• Allergic to soya.
• History of mental health disorders or brain cancer.
• Diagnosed with a condition for which they receive NHS support.
• Positive COVID-19 diagnosis or suspected COVID-19 symptoms in the previous

6 months.

Forty-two volunteers returned a signed consent form.
Two participants withdrew before the study commenced. One was unable to return to

the UK due to COVID-19 lockdown, and another had just started a course of antibiotics. An
additional participant was withdrawn due to not returning the first stool sample. Thirty-
nine healthy volunteers (19 male, 20 female) completed the entire 4-week study period
(Figure 1). Baseline characteristics (mean ± SD) of the 39 individuals who completed the
study were: age 37.5 ± 8.9 years (range 21–55); body weight 70.3 ± 11 kg (range 55–90);
BMI 23 ± 2.3 (range 19–27).

Figure 1. Study flow diagram.
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The study was fully explained to the volunteers, in writing, and each gave their
written, informed consent before participating. The School of Applied Science Ethics
Committee, London South Bank University, approved the study. The ethical approval
reference number is ETH2021-0025.

Data collection for the study took place during January and February 2021.

2.1.2. Randomisation and Group-Allocation Procedure

The Sealed Envelope Ltd software [35] was used to apply the stratified block ran-
domisation method to randomise participants into 2 groups (A, B), stratified for gender.
One person not directly involved in the study chose the group identity, assigning A to the
intervention group and B to the control group.

2.1.3. Plant-Based Products Consumed by the Intervention Group

Participants consumed a selection of commercially available plant-based protein meat
substitute products donated by The Meatless Farm, Leeds, UK [36]. They received a selec-
tion of plant-based mince, plant-based burger patties, plant-based sausages, plant-based
sausage patties, and plant-based meatballs, commercially available in the United Kingdom,
the United States of America, Canada, and the European Union. This is noteworthy in that
the intervention products are real-world products and not products manufactured solely
for the purpose of the study. The meatballs and patties are foodservice products at the time
of writing this paper. The nutritional composition of the intervention products is presented
in Table 1.

Table 1. Intervention products’ macronutrients and protein source.

Per 100 g Burger Sausage Mince Sausage Patty Meatballs Mean ± SD

Calories (kcal) 230 234 199 233 223 227.95 ± 7.07
Protein (grams) 17.1 14.4 19.1 16.6 15 15.23 ± 1.20
Fibre (grams) 3.7 3.2 4.9 2.5 4.2 3.64 ± 0.82
Fat (grams) 14.8 15.9 10.9 15 11.9 11.69 ± 5.16

(of which saturates) 4.7 5 3.9 4.2 0.8 2.00 ± 2.97
Carbohydrate

(grams) 5.3 6.9 7.8 10 11.8 6.70 ± 0.28

(of which sugars) 0.3 0.3 0.1 0 0.9 0.30 ± 0.00
Salt (grams) 1.49 1.27 0.62 1.26 1.36 1.38 ± 0.16

Cholesterol (grams) 0 0 0 0 0
Protein source Pea and rice Pea and rice Soy, pea and rice Pea Pea

Protein, fibre, fat (including saturates), carbohydrate (including sugars) and salt are all reported in grams per 100 g. 2 Saturated fat is
monosaturated fat from coconut oil.

Full product information sheets can be found in the Supplementary Materials section
for a complete nutrient breakdown, in addition to food safety considerations, storage, and
cooking instructions.

Pea was the main source of protein in all products, with the exception of the plant-
based mince. Phytonutrient analysis of pea flour, pea protein concentrate (dry fractionated)
and dehulled peas is provided in Table 2. We should like to highlight at this point the levels
of phenolic compounds such as lutein, ferulic acid and genistein, the relevance of which
will be explored in the results discussion.
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Table 2. Phytonutrient content in whole pea, pea flour and pea protein concentrate.

Protein
Source

Daidzein
(mg/kg)

Secoisolar-
iciresonol
(mg/kg)

Ferulic
Acid

(mg/kg)

Vitamin
K1

(µg/100 g)

Vitamin
K2(MK4)
(µg/100 g)

Vitamin
K2(MK7)
(µg/100 g)

Genistein
(mg/kg)

Lutein
(mg/kg)

Zeaxanthin
(mg/kg)

Pea Flour <0.5 <0.5 3.5 11.8 0.35 0.17 0.75 1.73 <0.5
Pea Protein
Concentrate
(Dry Frac-
tionated)

<0.5 <0.5 2.5 12 1.92 2.29 0.85 12.29 <0.5

Dehulled
Peas <0.5 <0.5 2.9 13.6 0.46 0.16 0.15 7.92 <0.5

Independent analysis carried out by Campden BRI (Chipping Campden, Gloucestershire, UK). Vitamin K, ferulic acid and genistein analysed
by LC/MS/MS liquid chromatography with mass spectrometry detection. Lutein and zeaxanthin analysed by liquid chromatography with
UV detection.

2.1.4. Study Design and Procedure

The study adopted a randomised controlled, pre-and post-intervention assessment
design to investigate the effects of regular consumption of plant-based foods on the gut
microbiota of participants in comparison to a control group. Participants in the control
group received no intervention. Instead, they were requested to carry on consuming
animal products including red meat, poultry, fish, eggs, and cheese daily, i.e., they simply
continued to adhere to the kin d of dietary pattern that was specified in the inclusion criteria,
as per Table 1 above. All researchers, with the exception of the person who managed the
participants, were blinded to the group allocation of the participants until the data analysis
was concluded.

Both groups of participants received two stool test kits (Atlas Biomed, UK). Once
they returned their first completed stool sample, the intervention group received the first
delivery of plant-based ingredients (including mince, meatballs, sausages, sausage patties
and burgers) sufficient to cook 1 plant-based meal per day for 14 days. Participants were
requested to replace a minimum of 4 animal-protein based meals with a plant-based
meal per week for four weeks and to log the number of meals at which they consumed
the meatless products they were supplied with. At the end of the first two weeks, the
plant-based ingredient delivery was repeated.

For the convenience of participants, and to optimise compliance with the study
protocol, enough plant-based ingredients were sent to feed all members of the household.
The ingredients were sent frozen with thawing instructions, along with a recipe booklet
provided by the organisers with ideas (26 in total) for participants to cook the PBMA
products provided for the intervention. The recipe booklet sent to participants can be
found in the Supplementary Materials section.

At the end of the 4-week period, participants in both the intervention and the control
group were reminded to complete the second stool test and to send it to the laboratory.

2.1.5. Participant Data Collection

After enrolment and randomisation to group allocation, participants were asked to
provide anthropometric data. Two tables (one detailed and one summarised) are available
from the Supplementary Materials section. Unless otherwise stated, data are expressed as
mean ± SD. Anthropometric characteristics were compared using the one-way ANOVA
for numerical values, and Fisher’s Exact Test for nominal values. Data were analysed using
IBM SPSS (IBM, Armonk, New York, NY, USA) (Statistics for Windows, Version 25.0) [37].

At this point, participants received two gut microbiota test kits (Atlas Biomed, UK [38])
with detailed instructions on how to collect the samples in the convenience of their own
home. The first stool sample was collected and returned by all participants before the inter-
vention started, and the other stool sample was collected and returned by all participants
at the end of the 4-week intervention period (on day 28). Participants in the intervention
group provided consumption data and side effect/adverse symptom data at the end of
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each of the 4 weeks to the researcher managing the interventions and participants. A
flow diagram of the study can be seen in Figure 1. Comprehensive anthropometrics, meal
consumption data and self-reported side effects per week are available in separate files in
the Supplementary Materials section.

2.2. Gut Microbiome Analysis
2.2.1. Sample Collection

Microbiome sample collection was performed using the Omnigene Gut OM-200
kit [39,40], provided by UK-based biotech company Atlas Biomed [41] in ISO 13485:2016-
accredited packaging (medical device) [42]. The OM-200 kit facilitated the DNA extraction
and stabilisation [43] prior to being sequenced by the Illumina MiSeq platform [44,45].
The raw data were then analysed using the Deblur algorithm [46]. Variable trimming
length was used: the maximum value (max_len) was determined as the most frequent read
length across all samples, and then each value of trimming length in the range [max_len-
1:max_len-4] was processed separately. The taxonomic classification of the denoised reads
was performed with the QIIME2 Naive-Bayes classifier [47]. The classifier was trained on
the Greengenes database v.13.5 [48] with 97% OTU similarity. ASVs (amplicon sequencing
variants) detected in negative control samples that were known to be skin or environmental
dwellers were removed from the analysis. For alpha-and beta-diversity analysis, the
classified reads were randomly rarefied to the same number (3000 reads per sample),
for each sample. Estimation of alpha-diversity for each sample was performed using
the Shannon [49] and Chao1 diversity metrics [50]. Beta-diversity (pairwise dissimilarity
between the gut community structures) was estimated using a Bray–Curtis dissimilarity
metric [51,52]. Read counts of microbial species, genera, and families were calculated as
the sum of reads assigned to the ASVs (amplicon sequencing variants) belonging to the
respective taxon.

2.2.2. Extended Statistical Analysis of the Microbiome Data

There is increasing awareness of the fact that microbiome datasets generated by
high-throughput sequencing of 16S rRNA gene amplimers are compositional because
they have an arbitrary total imposed by the instrument. For this reason, we performed
the microbiome data analysis in a compositionality-aware manner, replacing zero values
in the abundance table after removing all taxa with relative abundance greater than 1%
in fewer than 5 samples. For the remaining taxa, all zero observations were replaced
using a Bayesian-multiplicative replacement method (the CMultRepl function from the
zCompositions package by Palarea-Albaladejo and Martín-Fernandez [53].

Our compositionality-aware approach to analyse beta-diversity included evaluation
of Aitchison distance—the Euclidean distance in clr coordinates—with further Principal
Coordinate Analysis (PCoA). Significant associations with the time-point were identified
via the PERMANOVA test for each group separately. Associations of beta-diversity be-
tween paired samples (magnitude of change) and metadata (age, gender, BMI, weight and
number of consumed meals) were analysed using a linear model for each group separately.
Associations of beta-diversity between the paired samples with intervention group were
also analysed using a linear model.

Associations of alpha-diversity changes (Shannon and Chao1 indexes) with interven-
tion group were analysed using ANCOVA analysis with the following formula:

(diversity after intervention) ~ intercept + (diversity before intervention) + group

Associations of alpha diversity change with metadata were calculated using linear
regression separately for each of the groups.

The taxonomic differential abundance analysis in a compositionality-aware manner
was implemented using two different approaches: within-group and between-group analy-
ses. Firstly, the differences in taxa balances were estimated in each group separately with
the DBA algorithm (discriminative balance analysis) [54]. The DBA variant which favours
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smaller balances was selected (sbp.fromADBA). The algorithm selects ilr (isometric log ratio)
coordinates based on the metadata (in our case, the time point). Then we calculated balance
values in selected coordinates. Next, using a linear regression (mixed-effect model with
subject ID as a random effect) we evaluated the significance of change for each balance. We
then performed multiple comparison correction using the Benjamini–Hochberg method to
control the False Discovery Rate (FDR) [55,56].

Secondly, between-class analysis was performed to investigate if the changes of taxa
abundances differed between groups. In order to eliminate the changes which appeared
because of baseline differences between the groups, we included an additional filtration
step involving the removal of taxa for which the difference between groups before the
intervention was higher than the difference after the intervention. In summary, the protocol
for our analysis procedure included the following steps:

• Detection of the taxa for which the between-group differences before the intervention
were lower than between-group differences after the intervention (using ALDEx2
algorithm [57]);

• Calculation of the matrix of bacterial changes (abundance_after/abundance_before)
using only bacteria detected by ALDEx2;

• DBA on matrix of bacteria changes using interventional group as a factor (sbp.fromADBA)
to obtain ilr coordinates;

• Calculation of the balance values before and after the intervention using DBA-defined
ilr coordinates;

• ANCOVA analysis for each balance using the following formula:

(balance after intervention) ~ intercept + (balance before intervention) + group

• Estimation of the p-values for group factor and FDR correction.

2.2.3. Gut Microbiome Metabolic Potential Estimation

To estimate the metabolic potential of the microbial community we conducted closed-
reference OTU picking using the usearch algorithm implemented in QIIME1.9 [58] against
a 16S rRNA sequence database (Greengenes v. 13.5 [48], 97% OTU similarity) followed
by version 1 of the Phylogenetic Investigation of Communities by Reconstruction of Un-
observed States (PICRUSt1) algorithm [59]. Butyrate-producing activity was estimated
using the Knomics-Biota bioinformatics platform [60], where curated butyrate-producing
pathways abundances were estimated. We analysed differences in butyrate pathway abun-
dance changes between groups using ANCOVA with further Benjamini–Hochberg (FDR)
correction for enhanced statistical precision [55].

In addition, we estimated the change of butyrate-producing potential based on the
abundance change of its producers. For this purpose, we created a list of butyrate-
producing taxa from the literature and ensured that these microbes had non-zero abundance
in our data. We used these taxa as the numerator in the balance, and all other microbes
were used as denominators. The balance was checked for association with a group using
ANCOVA analysis.

3. Results
3.1. Participant Data: Meal Consumption and Side Effects

Participants in the intervention group (group A) were asked to report the number
of meals cooked with the plant-based foods provided consumed per week. The averages
(mean ± SD) were 5.97 ± 2.70 for week 1, 5.39 ± 1.70 for week 2, 5.10 ± 1.81 for week 3
and 4.53 ± 1.23 for week 4. This resulted in an average across the 4 weeks of the study of
5.20 ± 0.56. Taking into consideration that each of the 26 recipes in the booklet contained
a minimum serving per person of 100 g of the PBMA products provided, and that the
average fibre content of these PBMAs (as per Table 1 above) was 3.65 ± 0.56 (mean ± SD,
in grams per 100 g), that means that every participant in group A added an average of 18.98
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g of fibre to their weekly diet during the study. This might explain why >50% of group
A participants reported increased gas/bloating at each of the three follow-ups, making
this the most commonly reported adverse symptom. Consumption of a high fibre diet
is known to delay intestinal gas transit by driving changes in the composition of the gut
microbiota, in addition to decreasing bolus propulsion to the rectum, which may elicit
gaseous symptoms by promoting gas retention [61]. However, we found no statistically
significant association between increased intestinal gas and number of meals consumed
per week (Pearson chi-square p > 0.1), with only a weak indication (Pearson chi-square
p > 0.06) of such possibility at the first follow-up (day 7). We also did not find a statistically
significant association between increased gas and gender (Fisher’s exact p > 0.1).

Other side effects reported by some of the participants included “less lethargic, consti-
pation has improved” (n = 1), “improved stool consistency” (n = 1), “more regular bowel
movements (n = 3), “bowel movements have increased in volume by 100%” (n = 1), “bowel
movements more regular and tiredness after meals have disappeared” (n = 1), “improve-
ment of IBS symptoms” (n = 1), and “stomach discomfort several hours after consumption”
(n = 1). Given the small sample size and the heterogeneity of the comments, it was not
deemed necessary to perform a thematic analysis of this qualitative data.

All participant comments were recorded in a spreadsheet entitled “Meal Consumption
and Adverse Effects”, which is available in the Supplementary Materials section. This
document also contains the statistical analyses mentioned previously in this section.

3.2. Baseline Taxonomic Composition of the Participants’ Microbiota

Baseline microbiome composition of the participants stool was dominated by Bac-
teroides (23 ± 13%), Prevotella (10 ± 17%) and Faecallibacterium (9 ± 4%) (Supplementary
Figure S1). In general, microbiome composition corresponded to the previously described
stool microbiome content of the urban population [62]. The diversity (Shannon and Chao1
metrics) did not differ between the intervention and the control groups at baseline (Stu-
dent’s t test, p > 0.8). Similarly, there were no differences in taxa balances (defined by DBA,
see Methods) between groups (linear model FDR > 0.2).

All samples except one (099-756-826, Control group) showed a good quality expressed
in a high number of mapped reads (38,734 ± 4387). Sample 099-756-826 with low coverage
(seven reads mapped) and its paired sample were excluded from the analysis.

3.3. Microbiome Composition Changes Due to the Intervention
3.3.1. Beta-Diversity

Overall microbiome composition change measured as beta-diversity between paired
samples before and after the intervention (Aitchison distance) was not significantly associ-
ated with the study group (linear model, p = 0.3, Figure 2). However, when within-group
changes were estimated (PERMANOVA analysis with Stata 17 [63]), a significant result
was detected only in the intervention group (paired distance 6.46 ± 2.46), but not in the
control group (paired distance 5.78 ± 1.20). We also compared the magnitude of change
with all participant metadata, including age, gender, BMI, and weight, separately in each
group, and with the number of meals consumed by participants in the intervention group.
No significant results were found in this analysis (p > 0.1).
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Figure 2. Major taxa. Boxplots detailing the distribution of relative abundance for the 10 most abun-
dant genera; for appropriate display on a log scale, zero values were replaced with a pseudocount
(0.1%). In addition, boxplots detailing the distribution of relative abundance for the 25 most abundant
taxa in each taxonomic rank at baseline are available in the Supplementary Materials section.

3.3.2. Between-Group Differential Abundance Analysis

As a result of between-class differential abundance analysis, we obtained a balance
(DBA, please see Methods) associated with the difference of microbiome changes in group
A (intervention) and group B (control). The outcome of this biostatistical analysis revealed
the relationship between Coprococcus and Roseburia and between Parabacteroides and
unclassified genera from the Tenericutes order ML615J-28 (ANCOVA, FDR > 0.05, Figure 3).
The first balance tended to decrease more in the intervention group than in the control,
whereas the second shows precisely the opposite association.
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Figure 3. General changes of microbiome composition after the intervention (Aitchison distance): (a) intervention (Group
A) (PERMANOVA p = 0.01, R2 = 0.88%); (b) control (Group B), (p = 0.571, R2 = 0.27%); (c) intervention and control groups
combined. Please note that the red dots denote the samples before the intervention, and the blue dots, after.

3.3.3. Within-Group Differential Abundance Analysis

The differential abundance analysis of taxa aims to detect differences in taxonomic
composition between samples or conditions [64–66]. Here, differential abundance analysis
was applied to microbial balances to investigate the microbiome composition changes in
each of study groups following a compositionality-aware method [54,64–66]. Microbial
balance is a ratio between two groups of bacterial taxa (numerator and denominator)
calculated in a specific manner and used as a microbiome composition feature; for details,
please refer to the protocol by Egozcue et al. [67]. No statistically significant changes of
taxa balances were found in either group (FDR > 0.05), as defined by DBA. Please refer to
the Methods section for DBA definition. However, we identified a noteworthy, marginally
significant trend (0.05 < FDR < 0.06) in the balances of the Lachnospira/Faecalibacterium
and Ruminococcaceae/Oscillospira taxa in the intervention group only, whereas no such
behaviour was seen in the control group, as seen in Figures 4 and 5.

Figure 4. Within-group differential abundance analysis using DBA. Microbial balances associ-
ated with the plant-based intervention. (a) Lachnospira/Faecalibacterium balance. (b) Ruminococ-
caceae/Oscillospira balance. Dots denote associations very close to significance (FDR < 0.06).

In the balances concept, the numerator of the balances (Lachnospira and Ruminococ-
caceae unclassified) increased in relation to the denominator taxa (Faecalibacterium and
Oscillospira, respectively) in the intervention group. Interestingly, both numerator and
denominator members include butyrate producers [68–72] and taxa associated with healthy
dietary patterns.
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Interactive heatmaps representing the relative abundance of major microbial genera
in the samples at day 1 and day 28 of the study for the intervention and control groups are
available at: http://bit.ly/ETH2021-0025a.

Figure 5. (a) Between-group differential abundance analysis results. Significantly changed balance values before and after
the intervention in both the control and the intervention groups. Figure interpretation is as follows: There is one point per
participant. If the point is under the grey line, for the participant, the balance decreased. If the point is above the line, the
balance increased. Asterisks denote significant associations (FDR < 0.05). (b) The relative abundance of the taxa included in
numerators and denominators of significantly changed balances (%). If we consider these relative abundances, it can be
suggested that the main impact in the second balance was provided by unclassified Tenericutes.

Alternatively, the analysis was replicated with the selbal method. The method revealed
one significant association (unclassified Tenericutes_ML615J-28)/Sutterella balance (cross-
validation AUC = 0.68 ± 0.11). In this balance only unclassified Tenericutes showed reliable
reproducibility (74%), whereas Sutterella can only be considered an unreliable part of the
balance due to its low reproducibility (34%).

Summarising the results of the two analyses, we can conclude that the change in
Tenericutes_ML615J-28 abundance was significantly different in the intervention group
compared to the control; namely, it relatively decreased in the intervention and relatively
increased in the control group.

http://bit.ly/ETH2021-0025a
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3.3.4. Alpha-Diversity Changes

Overall, the Shannon index decreased slightly in the intervention group (group A),
with a Shannon index change from 5.65 ± 0.94 to 5.44 ± 0.85 (Welch’s test p = 0.45 ×
10−5, n = 40 samples), and increased in the control group (group B), with a Shannon index
change from 5.65 ± 0.94 to 5.44 ± 0.85 (Welch’s test p = 0.57 × 10−5, n = 38 samples).
The changes were significantly different between the two groups (ANCOVA p = 0.004,
Figure 6). This change was not associated with age, gender, BMI or weight in either group
(p > 0.05). Interestingly, the fractional decrease in diversity in the intervention group was
not associated with the reported weekly number of meals cooked with the plant-based
meal alternative (PBMA) ingredients provided (p > 0.1).

Figure 6. Alpha-diversity values before and after the intervention. (a) Shannon index ANCOVA (p = 0.004). (b) Chao index
ANCOVA (p = 0.243).

We found no significant differences in diversity by Chao1 index between the groups
(ANCOVA p = 0.243)

3.4. Potential Changes to Butyrate-Producing Taxa

We estimated the butyrate-production potential change in three alternative ways.
Firstly, we calculated the balance by placing the main taxa involved in the production of bu-
tyrate in human gut in the numerator, and all other taxa in the denominator. The following
butyrate producers were assessed: Faecalibacterium, Eubacterium, Roseburia, Ruminococcus,
and Anaerostipes.

The change of this balance was not significantly different between groups (p = 0.08).
However, we observed a slightly stronger increase in participants who consumed the
plant-based foods provided for the intervention, compared to those in the control group
(Figure 7).



Foods 2021, 10, 2040 13 of 26

Figure 7. Changes to taxa with butyrate-production potential. (a) Changes of balance between main
butyrate-producing taxa and all other bacteria in the intervention and control groups. (b–d) Butyrate
synthesis pathways before and after the intervention in two groups.

Secondly, we investigated the Lactobacillus and Bifidobacterium genera for their reported
cooperating relationship with butyrate producers [73–75]. We found their total change was
not significantly different between the groups (p = 0.14).

Thirdly, we analysed the relative abundance of three curated pathway variants for
butyrate synthesis commonly present in human gut microbes, using a biostatistical method
covered in the Supplementary Materials section. Changes in the “glutarate” pathway
were significantly different between the two groups (FDR = 0.0382, Figure 7b–d). For the
“4-aminobutyrate/succinate” pathway, we observed a non-significant trend in the same
direction (FDR = 0.0891).

3.5. Availability of Data for Educational and Research Purposes

Being educators in the field of microbiome and food science, we are acutely aware of
the need for real-world datasets that can be used for educational purposes. For that reason,
we are pleased to make all FASTQ available on open access for educational use. They can
be downloaded from: dataview.ncbi.nlm.nih.gov/object/PRJNA738373?reviewer=5h6j0
rs8dejqdch5ts6ur5n0t7. The project id is PRJNA738373.

4. Discussion
4.1. Review of Findings

One of the greatest challenges in defining “a healthy gut” is that most of the vari-
ance (~85%) within the human microbiome is still unaccounted for, as confirmed by
population-wide studies [76,77]. However, the relative abundance of microbes able to
ferment non-digestible substrates such as dietary fibres to produce short-chain fatty acid
(SCFAs) continues to be one of the indisputable criteria for such a definition [78–82]. Of the
major SCFAs produced—acetate, propionate and butyrate—butyrate is particularly impor-
tant for the simple reason that it constitutes the main energy source for colonocytes [83].

dataview.ncbi.nlm.nih.gov/object/PRJNA738373?reviewer=5h6j0rs8dejqdch5ts6ur5n0t7
dataview.ncbi.nlm.nih.gov/object/PRJNA738373?reviewer=5h6j0rs8dejqdch5ts6ur5n0t7
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Butyrate can also activate intestinal gluconeogenesis, having beneficial effects on host glu-
cose and energy homeostasis [84]. In addition, depletion of this microbe-derived metabolite
is linked to several non-communicable diseases, such as type 2 diabetes (T2D) [85], obe-
sity [86] and cardiovascular disease [87]. Furthermore, a reduced abundance of butyrate-
producing genera has been shown to facilitate the establishment of enteric pathogens in
animal models [88,89], and it has been associated with markers of systemic inflammation,
e.g., C-reactive protein (CRP) in people living with inflammatory bowel diseases such as
Crohn’s [90] and ulcerative colitis (UC) [91]. Although we did not observe a statistically
significant increase in the relative abundance of any particular butyrate-producing taxon,
we did identify a significant increase in the butyrate-production pathways only in the
intervention group, with the glutarate butyrate-metabolising pathway being of particular
significance. Moreover, trends in the same direction were detected for the acetyl-CoA and
X4-aminobutyrate-succinate pathways, and in the joint abundance of butyrate produc-
ers. Amongst these microbes, we identified a noteworthy, marginally significant trend in
the balances of the Lachnospira/Faecalibacterium and Ruminococcaceae/Oscillospira taxa in
the intervention group only, whereas no such behaviour was seen in the control group.
Genera within the Ruminococcaceae and Lachnospiraceae families are well documented as
butyrate producers [68,69,92–94]. In addition, metagenomic screening of 3184 sequenced
bacterial genomes from the Integrated Microbial Genome database by Vital et al. [95]
suggests that genera in the Ruminococcaceae and Lachnospiraceae families are representative
of the butyrate-producing taxonomic core characteristic of individuals with healthy colons.
Furthermore, members of the Oscillospira genus, such as Flavonifractor plautii, have been
found to be more abundant in individuals who adhere to dietary patterns characterised
by the abundance and variety of fibre and polyphenol sources [60,71,96,97]. Faecalibac-
terium species, such as Faecalibacterium prausnitzii, have also been documented to thrive on
both Mediterranean-type and plant-based dietary patterns [98–100]. The PBMA products
provided contained a range of soluble and insoluble fibres from chicory root, carrot, pea,
and potato (please see the Supplementary Materials section for full details) including
hemicellulose, pectin, lignin and cellulose, which have been found to have a range of
benefits to human health [101]. In addition, the phytonutrients in whole pea, pea flour
and pea protein concentrate—the base ingredients of the PBMAs consumed by the in-
tervention group—also contained phytonutrients such as lutein, genistein, daidzein and
ferulic acid, all of which have been reported as modulating agents of the gut microbiome,
favouring the growth of SCFA-metabolising microbes [102–105]. Butyrate plays a critical
role in health and disease [95]; therefore we cautiously interpret the joint abundances of
butyrate-producing microbes and the heightened presence of synthesis pathways in the
intervention group as a positive sign of the effects of the substitution of meat-containing
meals with PBMA-containing meals. A study with a larger number of participants should
enable us to confirm our interpretation. Additionally, we interpret the observed changes in
butyrate-producing bacteria and pathways as consistent with the microbial signature of “a
healthy gut”, and thus see them as a confirmation of our hypothesis that not all PBMAs are
necessarily ultra-processed and damaging to the human gut microbiome.

It is important to mention that the replacement of animal meat with the PBMA
products provided was encouraged but not mandatory. Our aim was to understand
the potential impact of the PBMAs on the gut microbiome in real world settings, in which
consumers are free to eat as many or as few PBMA-containing meals per week as they wish.
Moreover, the recipes in the booklet provided to participants in the intervention group
also made it explicit that the substitution of meat with one of the PBMAs was to be carried
out as part of a healthy balanced diet. For clarity, the intention was not for participants to
consume PBMAs exclusively, but to use these products in cooking as part of their existing
dietary pattern. We did account for the number of PBMA-containing meals consumed by
participant per week and found that an average of 5 was sufficient to elicit the positive
changes we observed.
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We were particularly interested in the change experienced by the Tenericutes phylum.
First and foremost, overall Tenericutes levels decreased in the intervention group and
increased in controls, and the statistical significance of the difference in relative abundance
between groups was strong. This behaviour was observed in the landmark study by
David et al., in which researchers demonstrated how short-term consumption of diets
composed entirely of animal or plant products alters microbial community structure. In
this study, the Tenericutes phylum increased in participants who consumed mostly animal
products, compared to those who consumed mostly plants [106]. Secondly, the most
prevalent Tenericutes taxon in our sample, namely the ML615J-28 order, has not been
previously associated with diet change or phenotypic change in humans, and the little
observational evidence that is available for this taxon in diseased human cohorts does
not help explain this change. A study by Bonder et al. [107] assessed the modulation of
the gut microbiomes of 21 healthy volunteers who followed a gluten-free diet for four
weeks. The authors found the Tenericutes ML615J-28 order decreased as a result of the
exclusion of gluten. This is interesting because the plant-based products provided for
the intervention group were gluten free, but participants were not advised to reduce or
indeed to exclude gluten from their diets for the duration of the study. Although data
about gluten consumption was not collected, we are not aware—albeit informally—of
such a behaviour in the intervention group. Although the PBMA products provided to the
intervention group were indeed gluten free, participants were not encouraged to exclude
gluten-containing foods from their diet during the study. Hence, we find the similarity of
our findings and those of Bonder et al. coincidental. Another study by Patrone et al. [108]
found that Tenericutes tended to increase in mice fed a diet high in polyunsaturated fat
compared to those fed a diet high in medium chain triglycerides from coconut. The plant-
based products provided to the intervention group did contain small amounts of coconut
oil. However, given the lack of substantial clinical precedent for the dietary modulation of
Tenericutes, these arising hypotheses would need further testing in order to be confirmed.
One murine model study found Tenericutes levels decreased significantly in a group of
mice fed oolong tea extract and citrus peel—both rich sources of phenolic compounds—in
addition to the amino acid L-carnitine, compared to mice that were fed the L-carnitine
alone [109]. L-carnitine is one of the most prevalent amino acids in meat. It is metabolised
by intestinal bacteria to trimethylamine N-oxide (TMAO), a compound that has been
associated with cardiovascular disease [109] and some types of cancer [110,111]. Chen and
colleagues measured the levels of the pro-inflammatory markers in both mouse groups
and found that TMAO levels were greatly reduced in mice that were fed the tea and citrus
extracts compared to controls, suggesting that dietary phenolic compounds in oolong tea
extract and citrus peel reduced TMAO formation ability by gut microbiota, downregulating
carnitine-induced vascular inflammation [109].

We also observed small changes in both alpha- and beta-diversity in both groups. The
intervention group experienced a small decrease in alpha-diversity, whereas the control
group experienced a small increase in alpha-diversity that did not bear a statistically
significant association with the number of PBMA meals consumed. As per the study
limitations (please see below), our statistical analysis did not take into account the putative
effect of the increased fibre and phenolic compounds in the fresh fruit, vegetables, pulses,
whole grains, etc. consumed with the PBMA foods provided. This, however, may be
a moot point, on the basis that the PBMAs provided to the intervention group were
meant to be consumed as part of a dietary pattern that features sources of dietary fibre
and polyphenols. The main limitation of the study was our sample size. Based on that
factor alone, it is difficult to establish the relevance of these changes. Interestingly, a
slight but significant decrease in alpha-diversity was observed after a short-term high-
fibre dietary intervention involving 16S rRNA sequencing of stool samples from 248
citizen-science volunteers. Although the effect appeared to be opposite to the correlation
between diversity and long-term vegetable consumption clearly seen in that cohort, there
is evidence to suggest that alpha-diversity may be sensitive to short-term dietary changes,
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but that longer intervention times are needed in order to assess the permanence of such
changes [62]. The authors interpreted these unexpected changes as “shock effects of a
relatively rapid change in the spectrum of incoming nutrients, which may transiently
disrupt the ecology of the gut community”, or as a facet of microbiota “stress” linked to
this transitory period [62]. The importance of allowing enough time for the response to
dietary interventions to be considered to be stable/permanent has been documented in
several high-impact publications. In addition, we agree with Johnson and Burnet of Oxford
University that lessons from wider ecological systems demonstrate that diversity is just one
of myriad factors to consider when analysing an ecosystem, and that its stability, structure
and function are equally important [112]. Therefore, we see the marginal changes in alpha-
and beta-diversity as part of the natural state of self-organisation of the gut microbiome,
which we see as a living complex adaptive system engaging in ongoing acclimatisation,
one of the principal characteristics of complex-adaptive dynamics [113,114]. The gut
microbiome is constantly being challenged by ongoing micro-perturbations, e.g., ingestion
of different compounds from different plant-based foods, each day; thus, it is safe to say
that it is in a constant state of flux. In a recent study based on daily sampling of 34 healthy
participants over 17 days, Johnson et al. [115] demonstrated that microbiome composition
can be altered in as little as 48 h, and that daily microbial responses to diet were highly
personalised. On that basis, including data from interim microbiome tests, e.g., asking
participants to provide one sample every 7 days, may have added to the robustness of the
study by providing better insight into the stability of the observed changes.

4.2. An Interesting Paradox

Despite the undisputed health benefits of fruit and vegetables, nuts and seeds, whole
grains and legumes [116–120], the reality is that meat and other animal products continue to
be the central element of many dietary patterns and cultures around the world [121]. As an
example, recent cross-sectional analysis using data from the UK National Diet and Nutrition
Survey published by researchers at the University of Reading found that 43% of British
adults (men 57% and women 31%) consumed more than the 70 g/day of red and processed
red meat [122] alone, i.e., without including additional poultry or fish, eggs or dairy.
However, eating less meat and other animal products is increasingly seen as a healthier,
more ethical, more sustainable option [123], that is not only “better for you” but also “better
for the planet” [124]. Rising awareness of these facts has contributed to shifts in policy
focus and public attitudes to meat consumption. For instance, Public Health England’s
salt-reduction target reports have featured PBMAs since 2017 [125,126] and the recent
European Institute of Innovation & Technology (EIT) Food study “The V-Place-Enabling
consumer choice in Vegan or Vegetarian Food Products”—carried out by scientists at the
Hohenheim Research Center for Bioeconomy—concluded that approximately 75 million
European consumers purchase vegan or vegetarian foods each year and that this trend is
rising [127]. Moreover, public health messages around COVID-19 have highlighted the
interconnected nature of disease epidemics, food systems, and nutrition [128], emphasising
the role of a healthy, well-balanced diet as a pragmatic risk management approach for
the support of healthy immunity [129–131]. Further, public health messages during the
COVID-19 pandemic have highlighted the interconnected nature of disease epidemics,
food systems, and nutrition [132,133]. Thus, a growing number of people have increased
consumption of plant-based foods and reduced consumption of animal produce. As a
result, these are the two most frequently reported changes in eating habits by populations
from around the world during the pandemic [134–140].

One of the outcomes of this systemic change is the growth of flexitarianism as a
popular social identity and lifestyle choice. Health- and environment-conscious flexitarians
embrace a “quasi vegetarian” dietary pattern that allows for occasional consumption of
meat, fish, seafood, poultry and other animal products [141,142]. Beyond the indisputable
focus on improving personal health and wellbeing, flexitarian motivations to eat less meat
include price, a desire to increase dietary variety and the reduction of social unease when
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eating with peers who may disapprove of meat eating [143,144]. Other more altruistic
motives include concerns about the future of the environment and animal welfare [145,146].
Furthermore, all these reasons for the reduction of meat consumption—or at least the
intention thereof—have been embedded as societal norms with powerful effects on our
food choice and intake. Eating less meat is increasingly seen as a healthier, more ethical,
more sustainable option [147], so people adjust their eating behaviours to manage their
public image and “to create a certain impression on others” [148]. Interestingly, recent
research suggests that flexitarians are more likely to include plant-based meat alternatives
(PBMAs) in their diets [149,150]. Research also shows that flexitarians, in addition to
vegetarians and vegans, are more attracted to plant-based meat substitutes that imitate
processed meat products, such as burgers, meatballs or sausages, than to those that imitate
unprocessed meats, e.g., plant-based steaks [151]. This may be explained by the fact that
people are attracted to foods for a range of different reasons, including the pleasure they
experience as a result of their taste [152–156]. Realistic-looking and -tasting plant-based
alternatives to these meat-containing products provide consumers with a similar experience
that is more aligned with their values. Additionally, consumers of PBMAs are more likely
to eat other convenience plant-based meals and snacks compared to meat eaters [20]. All of
these factors have contributed to an increasing demand for plant-based meat substitutes
around the world, a market that continues to flourish at a rate that enabled its growth to a
total of USD 3.6 bn in 2020, with a predicted increase in value to USD 4.2 bn by the end of
2021 [157].

Provided they are planned appropriately and include a diversity of high-quality
ingredients, plant-based diets can be nutritionally adequate and confer a range of health
benefits [158–160]. Unfortunately, a plant-based diet is not always a healthy diet, and
trying to critically appraise this statement can prove a difficult task because the majority
of studies of plant-based diets group all plant foods together. In fact, it was only recently
(2016–2017) that researchers from the Department of Nutrition at the Chan School of
Public Health at Harvard University published the first studies that demonstrated the
divergent effects of healthy and unhealthy plant-based diets on cardiovascular disease
and type 2 diabetes risk in adults [161,162], highlighting that plant-based diets are only
as healthy as the quality of the foods consumed as part of them. Nonetheless, even these
recent “deep dives” into the science of plant-based nutrition have neglected the fact that
PBMA products are being consumed daily by millions of people around the world, and
that the avoidance of animal-based foods appears to be paired with the introduction of
larger amounts of ultra-processed foods containing high levels of calories, refined starches,
and unhealthy types of fat, in addition to low fibre and micronutrient levels [20,27,28].
According to the NOVA food classification by Monteiro et al. [24], ultra-processed foods
(UPFs) are made to be hyper-palatable and attractive, and to have a long shelf-life for
the consumer’s convenience [24]. UPFs have also been documented for their ability to
alter the provision of nutrient substrates to colonic bacteria, due to the fact that refined
carbohydrates and sugars are digested in the upper portion of the gastrointestinal tract,
thereby promoting negative changes to both the composition and the metabolic activity of
the gut microbiota [31–33,163,164]. Most relevantly, some plant-based meat alternatives
(PBMAs) may have reduced levels of ingredients of high nutritional value, thus fitting the
UPF definition [29,30].

We disagree with the suggestion that the mere industrial processing of ingredients
of vegetable origin makes the resulting PBMA product ultra-processed by default. To
test our hypothesis, we posited that the real-world, commercially available plant-based
mince, burgers, sausages, sausage patties and meatballs used for the intervention would
be able to elicit positive changes in the gut microbiota of participants randomised to the
intervention group, compared to those in the control group. Given the growing body
of literature documenting the negative impact of UPFs on the human gut microbiome,
and the fact that microbial composition and functional features are associated with a
range of health markers, we consider the changes in the gut microbiota of participants
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as evidence to support our argument, namely, that consuming PBMA products as part of
a healthy balanced diet can elicit changes in the gut microbiota consistent with positive
health outcomes.

As part of the study conceptualisation, we identified a distinct lack of good qual-
ity evidence to inform consumers, nutritionists, food scientists and food manufacturers
about the impact of PBMAs on human health, and to help researchers across a number of
fields—including nutrition, microbiology, endocrinology, mental health and public health—
compare these with the effect of animal meat. Moreover, we realised that randomised
controlled trials (RCTs) aiming to compare the impact of PBMA products on the gut mi-
crobiota of consumers with the impact of animal meat were largely non-existent. To our
knowledge, our study is the first RCT conducted with the purpose of establishing that
comparison, thus contributing to fill the identified knowledge gap.

4.3. Limitations of the Study

We consider the study sample size as the main limitation of the study, and that a
larger sample may have provided more clarity about some of the findings that were just
slightly above the accepted confidence interval for statistical significance. We are aware of
the advantages of a crossover trial design, but finding participants who meet the inclusion
criteria and are committed to the study for the duration of the intervention is a difficult task.
Health sciences literature deems crossover designs to be superior in terms of data reliability.
However, we have been recruiting for several small trials at our laboratory during the past
several years and observed lower levels of participant compliance and higher dropout rates
in crossover design studies [165]. This becomes much more problematic than in parallel
trials from a statistical perspective [166]. In addition, funding for our trial was very limited.
Based on these practicalities, we choose a parallel design as a starting point, with views
to using a crossover design that incorporates interim sampling, e.g., each 7 to 10 days, in
future iterations of the study. Moreover, the analysis of metabolic potential for the synthesis
of SCFAs relied on bioinformatic analyses of 16S rRNA raw data. Again, we see this as
a starting point, and would hope to retest our hypotheses with the addition of shotgun
metagenomic sequencing data.

Another issue that we discussed during the design stage was whether to ask par-
ticipants to provide detailed food consumption records. Although we acknowledge the
value that this data would have added to the study, our team’s focus was to facilitate an
experience that was as close to “real-world” as possible for participants. Based on our
own experience of using various food reporting questionnaires, participants tend to forget,
misestimate and misreport their food consumption, sometimes intentionally, because they
may feel embarrassed by the lack of compliance, for example. On that basis, we pondered
the potential effect of asking for a detailed food log for 30 days, and decided to evaluate
our findings on the basis of the number of meatless meals consumed per week, in addition
to the potential side effects reported. We do not rule out the use of a food reporting tool
in a future iteration of the study, but are still highly aware of the well-known caveats we
mentioned above.

The timing of the study may have posed another potential limitation given that it ran
during January, a month when many people attempt healthier diet and lifestyle changes,
with a popular campaign known as Veganuary [167] running throughout this first month
of the year. We did advise participants to continue to consume the kinds of foods they
normally shopped for which, as per our inclusion criteria, were “typically British” [168,169],
i.e., including meat, fish, eggs, and dairy most days of the week, if not daily. We did not,
however, capture dietary information from the control group, so there is a possibility that
some controls might have decided to improve their diet and lifestyle during this period by
cutting down on meat and including more fruit, vegetables and other foods of plant origin
during this period. We identified another potential source of bias in the control group.
The participant information sheet sent to all participants made them aware of the fact that
they would be receiving their test results after the study was completed. It is therefore
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possible that, knowing they would receive before and after results from their microbiome
tests, participants in the control group saw this as an opportunity to engage in a dietary
change that they did not share with the researchers in order to measure themselves. We
are also aware that January is a month when people tend to participate in other kinds of
“health kicks”, such as drinking less alcohol or exercising more, both of which are known
to have an impact on the gut microbiota [170,171].

5. Conclusions

Our team aimed to test the hypothesis that the mere industrial processing of ingredi-
ents of plant origin does not make a PBMA product ultra-processed by default, arguing
that the potential for a PBMA product to promote either eubiotic or dysbiotic changes in
the gut microbiota of consumers lies in the nutrient profiles of each of its individual ingre-
dients. We performed 16S rRNA sequencing of stool samples provided by participants who
replaced ∼5 meals/week containing animal produce with meals containing plant-based
mince, meatballs, sausages, sausage patties and burgers, and compared the results to those
from samples provided by size-matched control group. Compositionally-aware bioinfor-
matic analysis of before/after data revealed small but statistically significant changes in
the presence of butyrate-producing pathways—chiefly the 4-aminobutyrate/succinate and
glutarate pathways in the intervention group—in addition to a consistent increase in the
joint abundances of butyrate-producing taxa. We also observed a decrease in the Teneri-
cutes phylum and higher beta-diversity between paired samples in the intervention group
only, alongside an increase in the Tenericutes phylum in controls. Despite the limitations of
a small sample, a parallel trial design, and the reliance on 16S rRNA data only, we were
able to confirm that the PBMA products provided to participants in the intervention group
elicited changes in their gut microbiota that are consistent with eubiosis, i.e., “a healthy
gut microbiome”, meaning that the occasional replacement of animal meats with PBMA
products seen in flexitarian dietary patterns may promote positive changes to the gut
microbiome of consumers. This provides us with a starting point from which to continue to
test our hypotheses with a crossover trial design and the addition of shotgun metabolomics
data.
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4a. Anthropometric data (summarised). 5. Recipe book. 6. Study flow diagram. 7. Pea protein
phytonutrient analysis data. 8–12. Product information sheets. 13. Supplementary data visualisations.
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