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Abstract Typography is overlooked in knowledge maps
(KM) and information retrieval (IR), and some deficiencies
in these systems can potentially be improved by encoding
information into font attributes. A review of font use across
domains is used to itemize font attributes and information
visualization theory is used to characterize each attribute.
Tasks associated with KM and IR, such as skimming, opinion
analysis, character analysis, topic modelling and sentiment
analysis can be aided through the use of novel representations
using font attributes such as skim formatting, proportional
encoding, textual stem and leaf plots and multi-attribute
labels.

Keywords Fontattributes - Text visualization - Information
density - Alphanumeric glyphs - Quantitative typography

1 Introduction

The potential of typography to convey information is often
overlooked in many knowledge maps (KM) and information
retrieval (IR) displays. But fonts have properties, such as bold
and italic, which can make some text visually pre-attentive
and otherwise add more information into textual displays.

In areview of KM and IR visualizations [10], only a quar-
ter use font attributes, suggesting a missed opportunity. To
effectively leverage font attributes in KM and IR interfaces
it is necessary to:
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1. Assess existing KM and IR interfaces including deficien-
cies which could be improved through the use of font
attributes.

2. Itemize font attributes based on a review of current usage
to encode data in various domains.

3. Characterize font attribute capabilities based on infor-
mation visualization (infovis) theory.

4. Identify KM and IR applications, including:

e skimming texts such as lead paragraphs;

e encoding quantitative data in search lists using the
novel technique of proportional encoding;

e profiling metadata associated with topics, entities and
facets via extensions to stem and leaf plots; and

e multivariate labels for data-dense knowledge maps.

The contribution of this article includes an overview of
font attributes and their application to tasks associated with
KM and IR, including skimming, opinion analysis, character
analysis, topic modelling and sentiment analysis.

2 Existing KM and IR interfaces

Information retrieval is a complex activity comprising of
search, browsing, filtering, formulating queries, identifying
entities, skimming content, comparing results, and so on [48].
Therefore, systems for information retrieval may contain a
variety of components for interacting with results to support
these different tasks (Fig. 1), such as:

(a) List of resulting documents (e.g. web search interfaces).

(b) Detailed text for one or a few matching items, such as
lead sentence, lead paragraph, abstract, keyword in con-
text (KWIC), or an integrated document viewer (e.g.
TextArc [46], TRIST[49]).
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Fig. 1 Multi-component IR interfaces: improvise [63], a blog post with topics and tags (http://blog.btemplates.com/tag-clouds-on-blogger), http://

macys.com department browsing

(c) Facet lists, such as topics, publication dates, named
entities, tags, etc. used for profiling results and query
refinement (e.g. many shopping web sites, TRIST, UO
Western History Collections Improvise interface [63]).

(d) Corpus overview such as a top level categories (e.g.
http://macys.com) or knowledge map(s).

Knowledge maps are multi-variate visualizations that provide
an overview of large-scale knowledge spaces. Hundreds to
billions of items are spatially located and visual attributes
such as colour and size depict data. They may be large-scale
static images or interactive visualizations enabling explo-
ration and drill down (Fig. 2).

Information visualizations may be used in these IR com-
ponents with techniques such as highlighting query terms,
visualizing elements associated with results such as facets, or
relationships between words and documents [27,61]. Knowl-
edge maps are one type of visualizations that may be a
component in an IR system, e.g. InSpire (e.g. Fig. 2d [66]).
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Other IR components may also be presented as visualiza-

tions, e.g. facet lists as tag clouds (Fig. 17) or as time series

charts (Fig. 2x); the document overview may be a visualiza-
tion [46] (Fig. 3, left); or the list results presented as icons

[49] (Fig. 3, right).

Various benefits can be achieved with KM and IR visu-
alizations. For example, TRIST enabled junior analysts to
review twice as many documents in half the time com-
pared to traditional internet search (e.g. Google). KMs can
reveal adjacencies, patterns of collaboration, social net-
works, gaps, frontiers and dynamics [7]. The Bohemian
Bookshelf [58] facilitates serendipitous discoveries in digital

libraries.

2.1 Problems with KM and IR visualizations

In visualization, data are transformed into visual attributes
such as size, colour, bold or italic. In some KM and IR visu-

alizations, these encodings are problematic. For example:


http://blog.btemplates.com/tag-clouds-on-blogger
http://macys.com
http://macys.com
http://macys.com
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Fig. 2 Example knowledge maps: Skupin’s self-organizing map [52]; Usenet treemap [25] and InSpire [66] with galaxy map (fop centre d) and
flow map of themes (bottom right d)
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Fig. 3 Visualization-focused IR: TextArc [46] with the document view as a visualization; TRIST [49] with the search result list as icons
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Fig. 4 Search term highlights can reduce text legibility, e.g. blue on
purple (colour figure online)

Query term highlighting Text legibility depends on the con-
trast between the characters and background [50]. When
multiple data attributes are encoded with colour there is the
potential for bad combinations. For example, Fig. 4 is an
early version of Google toolbar (2009) using foreground text
colour to differentiate links, text fragments and metadata;
and background color for term highlights. This results in a
difficulty to read blue on purple combination. Poor design
choices can result in illegible text, but the text is a critical
element in an IR solution.

Tag clouds (Fig. 1T) and Treemaps (Fig. 2, top right [25])
are popular visualization techniques that vary word size in
proportion to data (e.g. tag frequency, size of topic area).
However, tag clouds and treemaps are spatially inefficient:
some text is larger—taking up more space, and other text
become smaller, some of which may become too small to
read. Jakob Nielsen is critical:

[Compared to tag clouds] a one paragraph summary
would probably be more enlightening, faster to scan,
take up less screen space allowing for more items to be
summarized on any given page [45].

2.2 Why font attributes

Font attributes such as bold, italics and case have existed for
hundreds of years, but their use in KM, IR and infovis is
currently low:

e http://Scimaps.org is a repository of knowledge maps—
only 28 % of these visualizations use font-specific
attributes, and in most cases they only differentiate
between compositional elements (e.g. tick labels, item
labels, legend).

e Similarly, in Hearst’s examples of IR infovis, only 29 %
use font-specific attributes [27].

e The lists of visual attributes compiled by infovis
researchers relegate text to a single entry [3,17,19,37,40,
42,62,65] with no indication of font attributes, although
Borner recently included some [6].

Several current factors suggest font attributes may provide
unique opportunities to encode information:

Improved technology Infovis, similar to the Internet, evolved
in an era when screen displays were 72-96 pixels per inch

@ Springer
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Fig. 5 Enlarged nine-point Futura and Baskerville fonts on an 86-PPI
screen (left) vs the same on an iPad3 with 264 PPI (right). With more
than nine times resolution, the fine details of text are legible

Georpe Quicks

(PPI). Subtle variations in fonts are not possible at small
sizes and low resolutions, and user interface guidelines in
the 1990s recommended against italics, weights, small caps,
and so on [32]. These constraints are not an issue on current
high-resolution devices (e.g. 150-300 PPI) which can bet-
ter represent the subtle details of typography (Fig. 5). New
font rendering technology (e.g. Windows ClearType, Mac
Quartz) improves the display of screen fonts. A wide range
of typefaces have been designed for the screen (e.g. 500+ free
web fonts on http://google.com/fonts) and better control over
markup formats are available (e.g. CSS, HTMLS, SVG). Web
interface guidelines have evolved into recommendations to
more broadly use font attributes in user interfaces and web
including mixing type families, weights, italics and capital-
ization (e.g. [57]).

Unique capabilities of text vs. other glyphs The use of glyphs
is becoming popular in infovis [5,38]. While glyphs may
work well for concrete nouns that can be used across lan-
guages (e.g. http://thenounproject.com), text glyphs are a
unique type of glyph that offer capabilities beyond other
glyphs (such as pictographs) including:

e Font attributes such as bold, italic and case are not avail-
able to other glyphs.

e Literal encoding with text is unambiguous compared to
pictographic glyphs [3].

e Letter order with text can be used to created ordered
representations (i.e. alphabetic order, such as an index).

e Glyph design can be difficult, particularly when there are
many categories to encode. Corresponding text does not
require a design task.

Extensions to text-based interfaces One problem with tag
clouds is “many users do not know how to use them” [45],
even though they show similar information to most facet lists
(i.e. a set of terms for refinement plus to size indicate term
frequency). In general, new visualization techniques need to
be learned as they may look and interact very differently
than familiar techniques. Applying font attributes to existing
textual interfaces has the potential to reduce learning as the
representation is simply an extension to an already familiar
interface.

Given the problems with some types of visualizations, plus
with the improved capabilities of visual displays, the renewed
interest in glyphs and extensibility of existing textual inter-
faces, it is appropriate to further investigate the opportunities
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that font attributes may provide to all the components of an
information retrieval system.

3 Font attributes across domains

While font attributes may not have been formally investigated
by infovis researchers, font attributes are sometimes used in
infovis and have a long history in other domains.

Knowledge maps frequently use text labels: places and
spaces (http://scimaps.org) is a repository of information
visualizations and maps typically organizing large informa-
tion spaces (i.e. knowledge maps). Of 144 maps, 80 % use
some form of text in the central visualization. When text is
used, 2/3 use traditional infovis attributes of size and colour
(e.g. text size corresponding to size of a region or size of
a node). Text-specific attributes are used in 28 % of the
examples; however, these are typically used only to differen-
tiate between compositional elements (e.g. labels, axes, tick
labels, hyperlinks, city, region, body of water in a map). In
only a few instances (mostly maps, infographics and a few
infovis) are a broader mix of font attributes used, e.g. case,
italics and spacing [24,52].

Information retrieval infovis has similar usage. Of 45 exam-
ples in Hearst’s infovis chapters [27], half use traditional
visual attributes of size and/or colour. There are 13 examples
using one type-specific attribute, either bold, caps, or font
family. In most cases these are used simply: to either high-
light a search term or differentiate between types of data, e.g.
category title vs. instance; axis title vs. tick label. Similarly,
van Hoek’s IR infovis survey [61] has only a passing mention
of boldface.

Text visualization systems, such as Termite or Tiara [18,35],
often utilize well-known infovis techniques (e.g. adjacency
matrices, stream graphs) and may utilize the visual attributes
of hue and size but ignore the opportunity of font attributes.
Early innovators include Baecker and Marcus [2] who uti-
lize bold, italics, font size, underlines, serif/sans-serif to
enhance readability of computer code—a practice now com-
monplace in most code editors (e.g. WebStorm). Weaver’s
interactive markdown [63] exposes many HTML tags to for-
mat textual metadata including bullets, lines, bold, italics,
super/subscript and so on.

Other infovis also use font attributes, e.g. italics [47], upper-
case [16] or bold [23]. Fat fonts [43] is a specialized font that
varies as font weight per character so that the ink varies in
proportion to the numeric value represented. Muriel Cooper’s
Visible Language Workshop explored 3D typographic spaces
with variations in size, case, colour and font family, e.g. [54].
Typographic maps [1] use only type to create geographic
maps.

Typography and cartography have centuries of history with
innovative font encoding of information. For example,

Cyclopaedia from 1728 (Fig. 6, top) provides an early knowl-
edge map as a hierarchy with italics denoting broad topics,
small caps for specific fields, roman for explanatory text and
superscript for chapter numbers. The genealogy chart from
1820 (Fig. 6, bottom) uses bold uppercase for major branches,
plain uppercase for small branches, mixed case for direct
descendants, sovereign rulers in small caps and spouses in
italics.

There are many techniques for creating emphasis and
differentiation with font, with various guidelines and con-
ventions (e.g. typographic [36,55], cartographic [30,51], and
user interface design [29,32,57]). Some cartographic texts
explicitly indicate font attributes as a means for encoding
data (e.g. [34]) and enumerate conventions for use, such as
italics for water features (e.g. [22]). Figure 7 uses font family,
case, spacing, multiple underlines to encode data.

Text-based search results in information retrieval and nav-
igation interfaces differentiate metadata associated with a
document using type size, colour, underlines (e.g. links)
or font family (e.g. titles). Bold or colour is frequently
used to highlight search terms; see Hearst [27] or popular
search interfaces, e.g. Google, Yahoo, Bing, Ebay, Amazon,
NYTimes, LinkedIn, etc.

Notation systems such as mathematical formulas (e.g.
pe(A) = inf{A,(0) | O € O,A C 0}), chemical formulas
(e.g. [As@Nij2Asy]°7), and markup notation (e.g. (div
class = “body”) Text (/div)) use different type elements to
emphasize, delineate or otherwise add information to text.

After reviewing these above domains, a list of font-specific
properties (not including generic colour and size visual
attributes) can be compiled.

4 Font attribute capabilities

All font attributes can be used simply to encode differenti-
ation (i.e. a binary encoding) and in many use cases, (e.g.
magazines, web sites), a small mix of 2-3 typefaces, size,
bold, case, etc. may be used to create an information hier-
archy (e.g. title, headings, body, caption, labels, ticks, etc.)
differentiating among elements on the screen and aiding the
viewer to orient themselves in relation to the content [36].
However, many of the font attributes can go beyond differen-
tiation and be used to encode more levels of either categoric
or quantitative data. Furthermore, font attributes have differ-
ent levels of effectiveness; for example, bold or italic may
visually be detected almost immediately but the difference
between sans and serif may not be noticeable if the two
typefaces are very similar.

e Weight (bold) can range up to nine levels of weight.
Weight can be used to encode quantitative data, with
heavier text indicative of greater magnitude [21,34].
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Fig. 6 Upper text tree from
Cyclopaedia [15] uses italics,
small caps, roman text and
superscripts to differentiate
elements. Lower genealogy
chart [14] uses bold, italics, case
and small caps in this text graph

"Their Powers and Propersies—called Pursicxs, and Watumat Partosopnr &,
Abfiralls thereof—called METApHYSICS 7 ONTOLOGY.
which fubdivides into ¢ PxEumaroroGy,

iries thereof, called Ma- C Anrrineric ® mwhence 3 ANALYTICS 9,
THEMATICS—— Which di- ALGeexa '°,

vides, according to the Sub- IGONOMETR Y,
je@ of the Oii-isami:y, G GeoMETRY ' — whence ggngmc:.
StaTics '3, HERICS.

BRANCH of VALOIS ; from which sprang the 5 sma!l Brinches of
ALENGON, ANJjou, BURGUNDY, ORLEANS, and ANGOULEME.

. 1. Margaret of Anjou, 4= 1299.
bathos of Valile; ks it o o

+ 1325. 3. Matilda of Chatillon, . 1338,

LR R R

of Constantinople, 4~ 1308.
ALENCON.

Fig. 7 The left map [31] uses
four different font families
(blackletter, outlined slab-serif,
italic serif and sans-serif). The
right map [33] uses single and
multiple underlines (top) and
both forward and reverse
sloping italics (bottom left)

e [talic or oblique are both sloped fonts but italics have

Fig. 7). Historically there was bias to using simpler sans

different letterforms. Sloped fonts vary in slope angle
including instances of reverse italics and even vertical
italics [36]. Slope can be used to encode a diverging scale,
ranging from reverse, to vertical, to forward slope.
CASE includes UPPER, lower, Mixed and SMALL CAPS.
Uppercase is designed to standout from lowercase while
small caps blend in. Case is sometimes used in cartogra-
phy for ordered data, e.g. states in uppercase and counties
in lowercase [34].

Typeface indicates font family, e.g. sans, blactletter ,
script, source, MATHBOLD, etc. Typeface is best used to
symbolize categoric information. Many typographic and
cartographic references suggest using no more than two
typefaces although there are examples with more (e.g.

@ Springer

serif fonts on screen due to limited resolutions but more
detailed fonts are now used in web design, e.g. [8,41].
Underline can be distracting. Many typographers and

not interfere with descenders. Underlines can express
ordered data (e.g. dot, dash, single, double as in Fig. 7).
‘Width of a string is used in cartography to indicate
the range of an area feature, and thus has possibilities for

encoding quantities. Different ways to set width include:

o Ultra-condensed Condensed Normal Extended
are specifically designed widths of a given typeface
for applications such as tight spaces. Few fonts are
available in a range of widths.
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Table 1 Font attributes relation to visual channels and encodings

Visual Channel
&) o ?, o Best for encoding:
a g E -H+4— | Q: quantitative

g E ‘E s B 5@ O: ordered

S5 e 5 8 8 &% | ccategoric
Font @8 8¢ a5 §2| G grouping/relationshi

. ] 5 & o g% grouping/re! p

Attribute & a5 O ®W O AR | Lliteral
Font weight R J HP | Q (2-9 levels)
Oblique/Italic * HP | C, Q using slope angle
Case L 2 P | C,possible O (2-3 levels)
Typeface L 4 P | € (2-6levels)
Underline ¢ HP | C, 0, Q (using length)
Condensed L 2R HP | Q,0 (2-4levels)
Squished L 2 HP | ©Q
Spacing ® - HP | Q
Super/subscript| ¢ * HP | C (2levels)
Delimiters ¢ D ©
Text Glyph L g D L O
Symbols * D ¢C
4 / ¢+ indicates primary / secondary visual channel for font attribute

1 HP: Highly probable, P: probable, D: doubtful

e Squished/Stretched are horizontally scaled fonts.
Typographers recommend against these distortions.

e Spacingincludes adjusting the space between letters
(tracking) and between lines (leading).

Superseribt and qubseript €ncode via size and position rela-

tive to adjacent text. They can be used to encode a high
number of categories (e.g. Fig. 10 in [56]).

e ‘Paired delimiters’ evoke enclosure by pairing the same
(or mirrored) shapes, e.g. ([ 1,{},”,* *, etc.)

e Alphanumeric glyphs (A, B, C, 1, 2, 3) can literally
encode data and are uniquely orderable. Glyphs not native
to the viewer (e.g. o, B, y) are also orderable, but sym-
bols (e.g. oo, V, D) are not orderable. While other font
attributes may visually be perceived without active atten-
tion for quick perception, words and phrases must be
actively read which is slower.

These typographic attributes have different levels of effec-
tiveness, just as other visual channels (e.g. size, hue, orienta-
tion, shape). Visual channels have been researched in detail
for their ability to be detected rapidly (i.e. pre-attentiveness
e.g. [26,67]); and accuracy of perceiving magnitude (e.g.
[20,28]). Font-specific attributes can be mapped to these
well-known visual channels [10] as summarized in Table 1.
The diamonds indicate the primary visual channel that the
font attribute uses, with a small diamond indicating a sec-
ondary visual channel that may be used. The pre-attentive
potential column indicates whether the font attribute is likely
to be perceived pre-attentively (i.e. perceived almost imme-
diately, ahead of active focused attention) based on the
properties of the underlying visual channel [67].

Visualization researchers have created rankings of visual
channels (e.g. [3,19,37,62,65]), although a definitive rank-
ing for different types of encodings and number of uniquely
perceivable levels does not exist. These rankings can be used
as a heuristic to determine which kind of data is best encoded
with a particular font attribute (last column on Table 1). For
example, font weight, which utilizes visual channels of size
(i.e. line width) and intensity (i.e. amount of ink per glyph)
will rank higher for effectiveness of ordered or quantitative
data encodings than font family, which utilizes the visual
channel of shape. Font family, however, will be effective for
encoding categoric data.

Encoding data using typography utilize the inherent prop-
erties of a well-designed font. Consistency in stroke angle,
weight, heights, etc. establishes a consistency across all
glyphs within the same font family: disrupting this expec-
tation causes a visual anomaly that visually stands out such
as a shift to italic. Furthermore, a well-designed font has
tweaked letterform shapes, spacing and weight such that if
one squints at a page of text, the paragraphs appear as gray
blocks. Typographers refer to this as colour, not to be con-
fused with hue as discussed in infovis. As a result, a viewer
does not perceive any particular letters standing out in a field
of type all using the same typeface. The even pattern and
density of type can then have information added using font
attributes to make desired subsets of text standout. Addition-
ally, these font attributes have been designed to be combined
together while retaining legibility, such as underline + bold
+italic + ALL CAPS.

5 Fonts for knowledge maps and information
retrieval

Font attributes can be used to encode additional information
at different levels of use in knowledge mapping and infor-
mation retrieval, ranging from low-level document views, to
search lists, to the macro-level overviews. A few examples:

5.1 Font visualization on texts

In some search results, previews of full sentences, abstracts
or lead paragraphs are presented (e.g. BioText Search
Engine, Wikipedia’s Today’s Featured Article archive). Font
attributes can be used to adjust words to facilitate rapid com-
prehension without changing layout.

5.1.1 Skim formatting of previews
Text skimming is a reading technique of rapid eye movement
across a large body to text to get the main ideas and content

overview. At a low level, the strategy requires the reader to
dip into the text looking for words such as proper nouns,

@ Springer
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The flights of the 1902 glider had demonstrated the efficiency of our
system for maintaining equilibrium, and also the accuracy of the
laboratory work upon which the design of the glider was based. We
then felt that we were prepared to calculate in advance the
performance of machines with a degree of accuracy that had never
been possible with the data and tables possessed by our predecessors.
Before leaving camp in 1902 we were already at work on the general
design of a new machine which we proposed to propel with a motor.

The flights of the 1902 glider had demonstrated the efficiency of our
system for maintaining equilibrium, and also the accuracy of the
laboratory work upon which the design of the glider was based. e
then felt that we were prepared to calculate in advance the
performance of machines with a degree of accuracy that had never
been possible with the data and tables possessed by our predecessors.
Before leaving camp in 1902 we were already at work on the general
design of a new machine which we proposed to propel with a motor.

Fig. 8 Lead paragraph of How We Made the First Flight by Orville
Wright before and after formatting for skimming using font weight and
italic with search term underlined

unusual words, enumerations, etc. Word frequency analysis
can be used such that the least common words in the corpus
have the heaviest weight while the most frequent words have
the lightest weight (Fig. 8).

Font weight draws visual attention to the highest contrast
which are the least frequent words as per text skimming strat-
egy. In the above introductory paragraph on flight, the terms
glider and motor have the heaviest weight and visually pop-
out. They are unambiguous words and could be terms for
query refinement. Visual weighting of proper nouns, enu-
merations and unusual words facilitates fact-finding tasks.

Evenly weighted text (for reading) and skim-formatted
text (for skimming) can be toggled between. Note that the
layout of the words remain in similar places before and
after formatting. Text formatted for reading has a consistent
medium weight (i.e. referred to as book weight in typogra-
phy). The skim formatting adjusts some words to a heavy
weight (which is slightly wider than book text) and some
words to a lighter weight (which is slightly narrower than
book text)—thereby retaining words in similar positions
between the two views. This consistency of position between
modes allows the viewer to maintain reading position and use
spatial memory to move around the text even when toggling
between modes.

Instead of weighting words based on English language
word frequency, specific domain vocabularies could be used
[39]; or, more advanced text analytics could be used to iden-
tify salient entities, phrases and sentences, which in turn are
weighted more heavily in relation to other phrases and sen-
tences with lower scores. Other font attributes can also be
applied to the text. For example, in Fig. 8 underline indi-
cates search terms and less important parts of speech (e.g.
articles, pronouns, etc.) are italicized to create greater differ-
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entiation to enhance figure-ground separation between the
heavy-weight words and background.

Expert feedback has been collected via interviews with
information visualization researchers and prospective users
in news organizations. There appears to be a strong appeal
with responses ranging from visceral to observational:

“Can you install this on my iPad now?”

“I can see using this immediately in my own visualization
research.”

“This is similar to how we used multiple underlines in
our paper textbooks in college.”

“The ability to toggle is key: people who consume news
all day will need to move back and forth between reading
and skimming.”

“The technique can work well by aiding recognition of
keywords instead of relying on searching (recall).”
“Perhaps the same technique could be used to make the
words pop-out that make the text more memorable, the
way that Kennedy or Martin Luther King used spoken
emphasis on words.”

5.2 Font visualization on lists

Search results generate lists: lists of documents, lists of
facets, lists of topics, lists of words, and so on. Visualiza-
tion techniques that enhance text lists could improve tasks
associated with scanning query results, comparing alternative
queries, filtering facets, assessing topics and comprehending
analytics such as opinion analysis.

5.2.1 Query result lists and proportional encoding

Query results may include quantitative data, e.g. relevance,
score, readership, number of citations, etc. Newsmap.jp
displays news headlines in a treemap, with headline size
indicating readership and background brightness indicating
recency (Fig. 9).

Instead, using a fixed size text enables a greater number
of legible headlines to be displayed and then font weight can
be used to encode readership, either by setting the weight per
headline (Fig. 10, top), or proportionally encoding readership
by setting bold to proportionally correspond to the magnitude
(Fig. 10, bottom).

Any visualization technique has some degree of lossiness
as data are transformed into a visual encoding. Lossiness can
be evaluated in the above representations by measuring:

1. Number of readable headlines if a headline is too trun-
cated, too small to read or does not appear, it is considered
unreadable. Six point was used as the threshold for too
small for a 96-dpi screen.
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Fig. 9 Top portion of Newmap
[64] from 02/28/2014. Size
represents readership

A 5 . custody for Sahara | calculated :I’:‘:O‘J;‘nft‘f
I patrOI ' al rport N U kra | ne'S st R0y provocation webcam users
Venezuela student Chinese police Thai protesters | World News 12

Crimea

Ukraine crisis: US urges
restraint and warns it is
‘watching Russia'

Ukrainian ex-leader Ukraine's fugitive
Viktor Yanukovych
vows fightback

Dozens of armed men

president turns
up in Russia

State Forest Dept South Korea call ~ GCHQ secretly
guest house is police | North missile tests  ¢aptured

crush online tomove outof | die in Doha
tafficking, rescue | most Bangkok | restaurant
382 babies rally sites blast

protest in Caracas

ends in clashes

Bladerunne Mexican kingpin's | School bus tragedy | Risien cout puts
AQRUNNOLS fall clouds future  kills 15, injures 45 Lo

murder trial shaping | of drug heartland

up as reality TV

Hallande: France | Updat

Israel urges IAEA to
issue full report on
Iran nuclear research

Ukrainian ex-leader Viktor Yanukovych vows fightback

Ukraine's fugitive president turns up in Russia

Ukraine crisis: US urges restraint and warns it is 'watching Russia’

Bladerunner's murder trial shaping up as reality TV circus

Israel urges IAEA to issue full report on Iran nuclear research

Mexican kingpin's fall clouds future of drug heartland

Myanmar suspends aid agency Medecins Sans Frontieres

Turkey PM 'tapped calls fabricated by the police'

School bus tragedy kills 15, injures 45

Russian court puts Putin foe under house arrest

Hollande: France Seeks to Preserve CAR Unity

Update 1-Italy approves decree to stave off bankruptcy for Rome council

Migrants flock to Spanish enclave of Melilla

Chinese police say suspect set bus fire that killed 6 people in southwestern city...

Switzerland Launches Money Laundering Probe Against Ousted Ukraine Leader

Gunmen kill Egypt policeman as 1 killed in protest

Crackdown on shares fraud yields 110 arrests in Europe, US

McDonald's Sued for $1.5Million Over Napkin Dispute

Hundreds of babies rescued as Chinese police smash four child-trafficking rings

Austria freezes bank accounts of fugitive Ukranian President Yanukovych and ...

I'd dump the Israelis Tomorrow --Ex-CIA Michael Scheuer Tells CongressEx-CIA
lent Joe Biden ca ¢

US Vice Pre

ela Merkel

Germany's

Ukrainian ex-leader Viktor Yanukovych vows fightback
Ukraine's fugitive president turns up in Russia
Ukraine crisis: US urges restraint and warns it is 'watching Russia'
Bladerunner's murder trial shaping up as reality TV circus
Israel urges IAEA to issue full report on Iran nuclear research
Mexican kingpin's fall clouds future of drug heartland
Myanmar suspends aid agency Medecins Sans Frontieres
Turkey PM "tapped calls fabricated by the police'
School bus tragedy kills 15, injures 45
Russian court puts Putin foe under house arrest
Hollande: France Seeks to Preserve CAR Unity
Update 1-Italy approves decree to stave off bankruptcy for Rome council
Migrants flock to Spanish enclave of Melilla
Chinese police say suspect set bus fire that killed 6 people in southwestern city...
Switzerland Launches Money Laundering Probe Against Ousted Ukraine Leader
Gunmen kill Egypt policeman as 1 killed in protest
Crackdown on shares fraud yields 110 arrests in Europe, US
McDonald's Sued for $1.5Million Over Napkin Dispute
Hundreds of babies rescued as Chinese police smash four child-trafficking rings
Austria freezes bank accounts of fugitive Ukrainian President Yanukovych and ...
I'd dump the Israelis Tomorrow --Ex-CIA Michael Scheuer Tells CongressEx-CIA
US Vice President Joe Biden calls Ukraine PM Arseny Yatseniuk, pledges support
Germany's Angela Merkel urges 'strong' UK in EU
0 1000 2000 3000 4000 5000 6000

Length of bold indicates Number of Related Articles

Fig. 10 Top same headlines as Fig. 9 with font weight indicating read-
ership. Bottom same with proportion of bold indicating readership

Table 2 Relative information density of headlines vs. treemap

Variant Normal Dense Sparse
Font weight 1.42x 0.67x 0.86x
Proportion 2.68x 2.22x% 2.07x

2. Number of uniquely perceivable sizes can be estimated
using prior experimental data [28], e.g. area £5 % or
length £2.5 %. For font weight, a show of hands in sem-
inar settings yielded the most responses for 4 levels of
perceptible weights.

3. Area of the overall plot.

Information density is a function of the measures (#read-
able x #sizes / area). Density was measured across three
variants and repeated for different aspect ratios with different
numbers of items (i.e. in addition to the example shown, a
sparse example started with a treemap where the area was
large and almost all the initial headlines were readable; and
a dense example started with a treemap where the area was
small and most of the initial headlines were too small to
read). Information density for the proportional encoding con-
sistently outperformed the treemap by a factor of 2 while the
font weight encoding could underperform as shown in Table
2 (see [11] for details).

These three different encodings were presented to three
different groups of infovis researchers, each with more
than ten attendees. Proportional encoding received a pos-
itive response. None of the participants were confused by
the encoding and consistently scored 3 or 4 on a 1-4 scale
on three questions indicating desirability, understanding and
perceived ease of use for general population.

While the technique scores well, interviews indicate some
hesitation for some participants: they fully understand how
the technique addresses the shortcomings of a treemap, but
feel that a treemap offers some other benefits including
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Fig. 11 Wikipedia articles with
bold length indicating number
of authors and underline length
indicating number of readers

Action of 1 January 1800: The Action of 1 January 1800 was a naval bat
Kenneth Walker: World War II Brigadier General Kenneth Newton Walker (
Richard Nixon: Richard Milhous Nixon (January 9, 1913 - April 22, 1994
New Forest pony: The New Forest pony is one of the recognised mountain
Rhodesian mission to Lisbon: Politics portalln 1965, Britain's self-go
1968 Thule Air Base B-52 crash: On 21 January 1968, an aircraft accide
Pinguicula moranensis: P. moranensis var. moranensisP. moranensis var.
Dreadnought: The dreadnought was the predominant type of battleship in

Green children of Woolpit: The

(a) ease of understanding—no axis, explanation or note is
required; and (b) aesthetic appeal of variously sized boxes
offers visual interest that proportional encoding does not
offer.

The approach can be extended to convey multiple quan-
titative data attributes using separable font attributes, such
as font weight and underline. Figure 11 shows a list of
Wikipedia articles, based on a Featured Articles search. Bold
length indicates the number of authors and underline length
indicates the number of readers. This combination of font
attributes visually shows that authorship and readership are
not correlated: the obscure article Green Children of Wool-
pit has the most readers and very few authors while Richard
Nixon has the most authors. Layering this additional infor-
mation into the text can aid analysis, e.g. editors (looking for
highly edited articles), researchers (looking for popular arti-
cles), or analysts (looking for relationships between both).

In addition to comparison between rows proportionally
encoded, the approach can be used to compare between
result sets. For example, the movie review web site http://
rottentomatoes.com provides a key quote for each movie
reviewer set out on a web page. However, with 100+ movie
reviews and no macro-ordering the viewer is simply read-
ing random quotes. Figure 12 shows a list of quotes evenly
sample from an ordered set of reviews. The proportion of
bold along the quote indicates the reviewer’s score. Various
visual comparisons can be made between the two sets of
opinions:

e The amount of bold, per movie, is indicative of the overall
rating. In this sample it can be seen that Despicable Me 2
has less bold than How to Train your Dragon indicating
a lower rating.

e Within a single movie, the slope formed by the boundary
between bold and non-bold text provides an indication of
dispersion. Between movies, the slope can be compared,
e.g. Despicable Me 2 has a shallower slope than How to
Train your Dragon indicating higher dispersion for the
former.

e The initial portion of the reviewer’s opinion can be read
and compared, for example, the worst review for each
movie at the top; or the best reviews for each movie at
the bottom.
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legend of the green children of Woolpit

One early concern expressed with proportional encoding
is that the maximum proportion length is limited to the short-
est headline (Fig. 10). This can be addressed by adding the
beginning of the lead sentence to the end of the title (Fig.
11); or appending ellipses to end, similar to entries in a table
of contents (Fig. 12).

The approach of proportional encoding could lead to new
techniques for rapidly scanning through search results and
comparing multiple search results. For example, news search
on financial information systems (e.g. Reuters, Dow Jones,
Bloomberg) typically results in dense lists of headlines on
screens where space is at a premium. Font-based approaches
can be used to provide additional information without requir-
ing any additional space.

5.2.2 Word lists and stem and leaf text plots: for facets,
categories, topics, entities, keywords, descriptors, etc.

With query results there may also be a variety of additional
metadata. For example, lists of facets (keywords) are often
in narrow side panels and used to filter results.

In some cases, proportional encoding may be effective.
Figure 13 represents facets for query refinement where the
length of underline has been added to indicate the quantity
of matching items (this example based on an Amazon search
for information retrieval).

In other uses proportional encoding may not be effective.

Sometimes there are many categories, making a list cumber-
some to get an overview as the entire list may not fit on screen
when set out linearly, or there may be lists of lists, such as a
list of topics with each topic containing a list of keywords, or
entity extraction with each entity containing a list of descrip-
tors. In these cases, stem and leaf plots (as popularized by
[59,60]) can be extend with font attributes:
Entity extraction is a subtask associated with search and
information retrieval that seeks to extract and classify ele-
ments in text such as the names of persons, organizations
and locations. The entities can be enhanced with additional
information from the text, such as sentiment, keywords or
other descriptors associated with those entities.

Figure 14 is an extension of a stem and leaf plot to text. The
stem, left side, lists characters from Grimms’ Fairy Tales. The
leaves, right side, list adjectives occurring within 43 words


http://rottentomatoes.com
http://rottentomatoes.com
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Fig. 12 Movie review quotes
from Rotten Tomatoes ordered
by reviewer rating, evenly
sampled, and proportion of bold
indicating rating
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Computers & Technology
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Web Development & Design
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Fig. 13 Facets with underline length indicating number of matching

items

Despicable Me 2

This is a sequel that's evefiless necessary than Monsters University; often times it fee
Despicable Me, the animated cupervillain comedy from 2010, was an average flick wi'
Given the outlandish premise, you'll wish the film twinkled with a more savvy sense ¢
For cynics and detractors, it may at'@me feel like this sequel exists for nothing more t
Cute family fun, but lacks the pop of thy,original. Gru has gone from despicable to dc
Its hyperactive vibrancy is universally bdrvlom-proof ........................................................
Not a great movie for sure, but if your kids want to see this there is enough humor to
Gru still has charm and kids will adore the Miniofs. ...
Steve Carell's Slavic inflections as Gru do the trick, as before. Wiig's clever hesitatior
Once again, there's nothing here that's particularly origiaal or memorable, but the ch
The film easily surpasses the original, while leaving roomiqr further sequels..............
An animated sequel that, despite not achieving the inspired lusacy of the first movie
Parts James Bond flick, "Get Smart" episode and Pixar-esque farhily adventure, "Des
Ranks as one of the best animated sequels of all time..................... % oo nee e
Though jammed-up with too much pointless plot, Despicable Me 2 remains one of tl
Not as consistently funny as the original, Despicable Me 2 still proves itself\a quite-(
The pratfalls, gizmos and Loony Tunes 'violence' will elicit giggles from kids Wwhile ¢
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How to Train your Dragon

Everything from the angle of the shot to thé\speed of the editing projects an end visu
Here, Viking life is grim, hostile and heavy with social pressure -- kind of like Gossip ¢
The visuals are striking, the script sharp and well paced and it all wraps up with a bre
Full of wonder, charm and dragons not doubling as\stand-up comics.........................
It's a brisk, amusing piece that doesn't have the weaiy sarcasm that besets a Shark ~
Following a slow, overly verbal start, this dragon tale takes flight ...
Baruchel, Ferguson and Butler supply a contagious sense,of eccentricity that spread
Beautifully animated and superbly written, this is a hugely &ntertaining, frequently fu
Magical storytelling that makes perfect family entertainmentfor the Easter holidays
It's not only better than | thought it was going to be, it's a lot betier than | thought it v
Beautifully crafted and effortlessly entertaining, this is an unexpesgted triumph
It respects its audience enough without sticking to cheap shots and'had jokes...........
The dragon designs are wonderful, the action is exciting and the anti-warmongerinc
How to Train Your Dragon is a visual marvel, and not just because it's in3-D...........
Knowledge is power in this film, and | always love a good pro-intellect story; even be¢
Though the 3-D effects are awesome, this movie also succeeds in two-dimeisions
Undoubtedly Dreamworks' best film yet, and quite probably the best dragon mavie €
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weight makes more frequently used adjectives visually stand-
out. Focusing on characters with frequent adjectives, the most
frequent adjectives are as expected: princesses tend to be
beautiful, whereas kings tend to be old and great, girls are
little and poor, and witches tend to be old more frequently
than they are wicked. The visualization can also act as an
interface to both target entities (by clicking on the entity)
and specific sentences associated with descriptors (by click-
ing on the adjectives).

Topic models may be used to characterize themes in docu-
ments, such as latent Dirichlet allocation (LDA) [4]. These

from each character, sorted and weighted by frequency. At
a macro-level, the longest adjective lists in these fairy tales
are associated with birds, kings, princesses and wives. Font

models generate topics based on word co-occurrence across
a corpus returning a list of words per topic. Topic model out-
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Fig. 14 Characters from
Grimms’ Fairy Tales and
associated adjectives weighted
by frequency

bird beautiful splendid open w
cat little one long

Character List of adjectives, weighted by frequency: 2 3 4-5 6-9 10+

oden like hanging

fox old dead young

gretel e

hans ill good

hansel little

I
fat

bride false true first right rea
king old great one young three angry beautiful married like third ready sic

princess beautiful young last dear

nchantea strange trug wnir

girl little poor lazy pretty ) dead beautiful silly

queen beautiful late little far
wife standing married next poor two beautiful new one dear true first
witch old vicked
o 5 10
Approximate number of unique adjectives
Topic List of terms
77 MUSIC Dance Sone PLay Sine SINGING Banp PLaveD SANe Sones Dancing Piano Playing Rhythm
82 LITERATURE Poem PoeTry Poet Plays Poems ~lzy Literary Writers Drama \/rot= Poets Writer
166 PLAY BALL GAME PLAYING HiT PLavep BaseBaLL Geawmes Bat Run Throw Balls Tennis home catch

Weighted word frequency rank:

2000 2-4000 4-10000 10,000+

Caps by topic probability: UPPER >0.04, SmaLLCaps 0.02-0.04, Proper 0.01-0.02, lower <0.01

Fig. 15 Three topics generated by latent Dirichlet allocation. Case indicates probability of word in topic, weight indicates overall word frequency

with low-frequency, less ambiguous words in higher weights

puts may need to be verified to ensure the words correspond
to meaningful topics and evaluations of topic quality rely on
examination of the words associated with topics (e.g. [44]).
Each topic is simply a list of words and the probability asso-
ciated with each word for that topic. Interfaces for displaying
topics, in many cases, may simply be a list of top n words per
topic. Some interfaces highlight topic words in the context
of the original texts with markup such as bold, colour, boxes
and superscripts.

Figure 15 is a view of three topics, one topic per row,
based on topic analysis of the TASA corpus by Steyvers and
Griffiths [56]. Words in each row are listed in order of proba-
bility occurrence which is also reinforced with capitalization
from highest probability to lowest: ALL CAPS, SMALLCAPS,
Proper Case, lower case.

There can be many challenges with topic models, for
example, the meaning of words may be ambiguous. In
this example, all three topics contain the word play, which
has a different meaning in the context of each topic. The
top five words in topic 166 are all ambiguous words with
multiple meanings. Less frequent words (based on Eng-
lish language usage) may have less ambiguity and be more
salient to the analysis: by weighting the infrequent words
with the heaviest weight, these words visually stand out.
In topic 166, BASEBALL and Tennis are more weighted
and are less ambiguous terms than the higher probabil-
ity terms PLAY or BALL, which are both ambiguous
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and both can be associated either with sports or with the
arts.

In addition to probability and salience, there can be many

attributes of interest to display along with keywords, such as
word count, sentiment, pointwise mutual information (PMI)
score, human-selected best words, other ratios. Combining
these many different data sets into a visual representation is
a problem of representing set membership.
Set membership of items that may belong to many different
sets can be challenging to encode in a small space. Given a
large space, a table can list each item (rows) and set properties
(columns), but the table uses more space than may be avail-
able to a facet list. Instead, combinations of visual attributes
can be used. However, traditional visual attributes may inter-
fere with one another, for example, size and shape combined
can result in small dots of indistinguishable shape, or mul-
tiple uses of a visual attribute such as colour may result in
potentially illegible combinations (Fig. 4). Set membership
of text lists can be facilitated through the use of multiple font
attributes. Bold, italics, underline, font family and case can
be combined together retaining legibility while maintaining
the ability to comprehend the separate attributes.

Entities in facet lists may have many attributes, e.g. peo-
ple have gender, age, family connections and so forth, which
may be relevant to the task. For example, searching for infor-
mation on the RMS Titanic, there are many stories regarding
passengers and crew (e.g. on Google 90m Titantic results,
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Fig. 16 24 large families from
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Fortune  Mark Charles
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families fop and third-class Bessie HELEN Allison Hudson HUDSON
families bottom. One row per Lucile LUCILE Carler William WILLIAM
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Margaret RUBY Daisy Ford Edward WILLIAM
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JEANNIE Frances MATHILDE IDA Lefebre HENRY
Alma TORBORG STINA Palsson PAUL GOSTA
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2m passenger and crew results). Figure 16 is a double-sided
stem and leaf plot showing a small set of Titanic passengers
from http://encyclopedia-titanica.org with sets for gender,
survival, age group and class. Each row is a family: the centre
column is the family surname, with given names for female
on the left and male on the right. The upper half of the image
is a subset of first class passengers and the lower half a subset
of third class passengers. In this example:

Font weight indicates survival: bold indicates death.
Italics represent gender: italic indicates female.

CASE indicates age: all caps makes children stand out.
Font family indicates class: a plain font for third class
vs. a serif font for first class.

b

One can see patterns among this small set Tifanic pas-
sengers, without a need to click through to detailed data.
For example, among the first class (serif) there is more
bold (deaths) lowercase (adults) non-italic on right-hand side
(male). This is seemingly consistent with phrase women and
children first. However, this pattern is not apparent in the
third class: unfortunately most passengers die (bold). Simi-
larly visually enhanced facet lists could provide insight into
broad patterns and outliers at a high level otherwise not vis-
ible.

5.3 Font visualization on macro-views

Knowledge maps are macro-scale visualizations of large
domains of information which provide an overview of
the information structure. Labels (or interactions such as
tooltips) are required to identify information such as cate-
gories, topics and entities. Font attributes can be utilized to
increase the information content without requiring interac-

Thomas John Charles ASSAD TANNOUS

tion thereby (1) providing faster access to details (a glance
is faster than movement), (2) increasing information density
and (3) providing the opportunity to visibly identify mean-
ingful patterns that are otherwise not visible, i.e. serendipity
[12,58].

5.3.1 Multi-attribute labels

In some knowledge maps, large amounts of information can
be organized and each discrete entity plotted directly, such
as the US Senate (100 senators), countries (200), stock index
(30-1000) or the Internet (hundreds of thousands of web
sites). However, in some cases, these maps are visualized
where traditional visual attributes such as size, shape and
colour may be used without any labels, for example, the sen-
ate as a floor plan (e.g. Sunlight Foundation bit.ly/1KeteBH)
or just a few labels (e.g. http://internet-map.net) as in Fig. 17.
To access additional information, interaction such as tooltips,
zoom or reconfiguration is required, but active interaction is
slower than shifting attention.

Instead discrete items can be represented as a text label
gaining the benefit of identifying each unique entity, plus
additional attributes conveyed in font attributes. For example,
Fig. 18, shows similar information to Fig. 17, plus individ-
ual senator names, gender, tenure, age category, education,
ethnicity and party affiliation. All this information can be
represented in the same area while retaining legibility.

Another example is choropleth maps (Fig. 19) which use
coloured regions to indicate data values. These maps are
extremely popular, however, they have issues, including:

1. Small areas can be invisible (e.g. Dubai, Singapore are
not visible on a world map).
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Fig. 17 Knowledge maps with
low label usage. Left US Senate
map (http://bit.ly/1KeteBH),
Right Internet map (http://
internet-map.net)

Fig. 18 US Senators. Set
membership indicated by italic,
bold, caps, underline, typeface
and colour (colour figure online)

2. Perception can be biased by large regions that are more
prominent than small regions but the task may require that
regions be perceived equally (e.g. comparison of poli-

cies).

3. Identification of a selected area or finding a named target
can be difficult, e.g. 63 % of young adults in USA could
not locate Iraq on a map in a National Geographic survey

The 100 Senators

Party
W Oemocrat M independent M Repudican

AL FRANKEN

Ben Cardin

BRIAN SCHATZ
CLAIRE MCCASKILL
Dick Durbin

Harry Reid

JEFF MERKLEY
KIRSTEN GILLIBRAND
Mazie Hirono
Richard Blumenthal
TAMMY BALDWIN
Angus King

Chuck Grassley
DAVID PERDUE
JAMES LANKFORD
Jim Inhofe

JOHN CORNYN
Johnny Isakson
LINDSEY GRAHAM
MIKE CRAPO

Mitch McConnell
RAND PAUL

ROGER WICKER
STEVE DAINES
THOM TILLIS
Gender: Male Female

SUNLIGHT

AMY KLOBUCHAR
Bill Nelson

CHRIS COONS
CORY BOOKER
Edward Markey
HEIDI HEITKAMP
JOE DONNELLY
MARIA CANTWELL
MICHAEL BENNET
RON WYDEN

TIM KAINE

Bernie Sanders
CORY GARDNER
DAVID VITTER
JEFF FLAKE

Jim Risch

JOHN HOEVEN
JONI ERNST

LISA MURKOWSKI
Mike Enzi

Orrin Hatch
RICHARD BURR
RON JOHNSON
SUSAN COLLINS
TMSCOTT

Terms: first 2 or more

yahoo.com

Barbara Boxer

BOB CASEY, JR.
CHRIS MURPHY
DEBBIE STABENOW
ELIZABETH WARREN
JACK REED

Joe Manchin

MARK WARNER
Patrick Leahy
SHELDON WHITEHOUSE
Tom Carper

BEN SASSE

Dan Coats

DEAN HELLER

Jeff Sessions

JOHN BARRASSO
John McCain

KELLY AYOTTE
Marco RUBIO

MIKE LEE

Pat Roberts

Richard Shelby

ROY BLUNT

TED CRUZ

TOM COTTON

Age: under 65, OVER 65

Education: Bachelor's Degree Graduate or Professional Degree
Ethnicity: White Latino Asian American Rfrican American
Party: Democrat Republican Independent

in 2006 (http://on.natgeo.com/1Vzfiay).

4. Data encoding is typically limited to a single value, such

as hue or brightness.

Instead of using shapes to identify regions, mnemonic
codes (e.g. ISO country codes) can be used. With some spa-
tial adjustment to remove overlap, all labels are visible while
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maintaining local proximity. Visual attributes such as colour
or font weight encode data, e.g. Fig. 20.
The labelled cartogram map (Fig. 20) and a corresponding

geographic choropleth map with no labels (Fig. 19) have

been evaluated on tasks for location and identification with
two small groups of people (ten undergraduate university
students, seven information visualization professionals). The

identification task marked a particular country on the map

and required the viewer to name the country. The location

task required the viewer to find a named country on the map
and report the colour of that country. Each viewer had a set of
eight questions evenly distributed between the two task types

and the two map types. The labelled cartogram outperforms
the unlabelled choropleth map in both tasks, with an overall
2.2 x performance improvement (Table 3).


http://bit.ly/1KeteBH
http://internet-map.net
http://internet-map.net
http://on.natgeo.com/1Vzfiay
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Fig. 19 Choropelth map of o
country health expenditure as % SN
of GDP, from http://data.
worldbank.org/indicators
04/09/2013

Fig. 20 Cartogram of GRI

equal-sized labels with font

weight encoding data CAN

USA BMU

MEX BHS
cus ICA
CYM HTI DOM PRI
JAM VIR
KNA
ATG
GTM HND DMA
SLV NIC LCA BRB
CRI ABW GRD VCT
PAN CUwW TTO
COL VEN GUY SUR
ECU
PER BOL BRA
PRY
URY
CHL ARG

BLZ

Table 3 Performance of identification and location tasks

Task ISO code ISO code
map (%) performance

Choropleth
map (%)

15
53
34

65
85
75

4.4x
1.6x
2.2x

Identify
Locate
Total

Once labels are used instead of shape, visual attributes can
be used to encode multiple data attributes. Health expendi-
tures, life expectancies and HIV data are represented using
bold, case and italic into a single label in Fig. 21; as well
as colour to indicate region. Note that italics and case are
encoded using a proportional encoding along the length of
the string enabling these attributes to express four levels of
quantities rather than only two (e.g. the mnemonic code USA
using proportional case can represent four different values as
USA, USa, Usa and usa). This single label allows complex
queries to be made visually, e.g. Are there countries with high
HIV (italics) and short lives (lowercase) even though a sig-

ISL
FRO

NOR SWE FIN
EST
LVA
NLD DNK POL LTU BLR
BEL LUX DEU CZE SVK UKR
FRA CHE |[|F AUT HUN ROM MDA
ADO MCO SMR SVN HRV SRB BGR
PRT ESP ITA BIH KsV
MLT MNE MKD GEO UZB KGZ
ALB GRC TUR ARM AZE TKM TJK
CYP LBN SYR IRN AFG

IRL GBR RUS

MNG PRK
KAZ KOR JPN
CHN
HKG
MAC
MNP

CPV MRT MAR DZA TUN ISR JOR IRQ PAK NPL BTN VNM PHL GUM
SEN LBY EGY WBG KWI IND BGD LAO MHL
GMB MLl NER TCD SDN SAU BHR LKA MMR THA PLW FSM
GNB ERI QAT ARE MDV KHM
GIN BFA YEM OMN MYS KIR
SLE BEN SSD DJI SGP BRN SLB
LBR CIV GHA TGO NGA ETH SOM IDN PNG TUV

CMR CAF UGA KEN TMP  VUT ASM
STP GNQ RWA FJI WSM

GAB COG BDI TZA NCL TON

ZAR ZMB MWI PYI

AGO ZWE MOZ COM SY( AUS

NAM BWA SWZ MDG

ZAF LSO MUS NZL

nificant portion of GDP is spent on health care (ultrabold)?
[Answer: yes, e.g. Rwanda (rwa) or Sierra Leone (sle)].

This mnemonic map can be compared for information
density and relative lossiness to the choropleth map in a simi-
lar approach as discussed earlier (Sect. 5.2.2). The choropleth
map loses information as small countries become too small
to identify (e.g. Dubai, Singapore) as shown in Table 4. The
mnemonic map does not have the loss of small countries and
thus results in an incremental information density. Further-
more, the mnemonic map enables the encoding of multiple
data attributes simultaneously, significantly increasing data
density.

Given greater information density, lower data lossiness
and improved task performance, there should be a strong
potential for richly labeled maps.

5.3.2 Multi-level labels and font attributes

In many knowledge maps (e.g. scimaps.org) the designer
requires a strategy for revealing labels at different scales from
high-level categories and topics down to lower level entities
and individual documents. Some approaches include:
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Fig. 21 Map indicating data
via label with colour, bold, italic

Health Expenditure, Life Expectancy and HIV by country 2010

and case (colour figure online) ISL NOR SWE Fin
ESt
LVva
CAN IRL GBR NLD DNk PO/ LTu BLr
BE/ LUX DEu CZe SVk UKr
FRA CHE AUT HUn ROm Mda Mng
USa SVn HRv SRb BGr Kaz KOR JPN
PRt ESP ITA
MLT GEo Kgz
MEx BHs GRC TUr ARm AZe Tjk
Ccub LBn IRn afg
Hti DOm Pv. mrt MAr TUn ISR Pak Np/ Btn VNm Pr
JAm sen E Bgd Lao
gmb m er tcd Sdn Ka Mmr THa
Blz gnb MDv Khm
GTm Jir bfa Yem MYs
SLv Nlc BRbL sle dji SGF
CR/ lbr civ Gha tgo nga th ir
PAn Tto uga ken
Col ( SU Stp gng rwa
ECt bdi tza
BRa zmb mwi
PRy moz Co AUS
URy Nam bwa swz M
CH/ ARg zaf Iso MUs NZL

Health Expenditure
(% of GDP) font weight:

AAA <4.0%

AAA 4.0-55 AAA 85-10
AAA 55-70 AAA >10%

Table 4 Information density of various maps

Map variant # Countries # Attributes Relative
discernable info density
Choropleth 1 var 163 1 1.0
Mnemonic 1 var 187 1.15x
Mnemonic 4 vars 187 4 4.6x

e Skupin’s self-organizing maps [53] labels with size indi-
cating topic scale and breadth. The labels, regardless of
size, do not overlap.

e Paley’s graph of science [47] uses tiny discrete labels for
specific topics overlaid on top of large labels for broad
topics.

e Boyack and Klavans [9] use colour to indicate broad top-
ics and overlay labels to call out specific items of interest
(e.g. emerging topics).

Font attributes can be used on labels in knowledge maps
and more generally any label in a visualization, such as
graphs and scatterplots [12]. Figure 22 shows a knowledge
map depicting the top 500 largest public companies in the
US. The base map is organized as a spring-based graph
layout with links based on company co-citations among
news sources, research analysts, and portfolio modellers.
With hundreds of companies, the company names are not
depicted as there is insufficient space. Instead, the base
map includes large-scale sector labels (e.g. Financials, Info
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Prevalence of HIV
(% of population age 15-49) italics:

Life Expectancy

(at birth, in years) caps:

AAA 7.0-85 abc <60 ABC abc <0.1%
Abc 60-70 ABC abc 0.1-0.6
ABc 70-80 ABC abc 0.6-1.6
ABC >80 ABC abc >1.6%

Tech) and smaller industry labels (e.g. Banks, Chemicals,
Software). Zoom adds successively smaller industries (e.g.
Regional banks, Cruises, Internet software, etc.) and succes-
sively smaller companies.

Overlaid on the base map are news data:

e Node colour represents news sentiment over the day per
company (a red to green gradient).

e Label weight indicates news volume: heavier than normal
news is set in heavier font weights. Industry and sector
label weights indicate net news volume for constituents.

e Label italic angle and colour indicate sentiment. This is
a double encoding: the same variable is encoded to two
different visual attributes reinforcing each other.

e Individual company labels are represented only if their
news volume is over a user-defined threshold, are set on
a dark background overlaid on the base map.

e Uppercase company labels indicate companies with fresh
news stories in the last 10 min.

This example uses the traditional attribute of font size on
the base map to distinguish between levels of hierarchy. It
then adds additional attributes using colour, font angle, font
weight and uppercase. In this particular example, there is
not a lot of news in materials (light-weight). There is neg-
ative news in gas utilities (red and reverse italics). There is
fresh news on a few companies in uppercase, such as Express
Scripts, General Electric and Altera.
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Fig. 22 Knowledge map of Constellation Brands
hundreds of companies using O E‘('&TT__‘]
font angle, weight and caps to r}
convey news sentiment, volume
and recency
EXPRESS SCRIPTS
O
WALGREENS BOOTS
Costco Wholesale
O
Intel ) Mﬂll BEYOND
ALTERA A v,
' L Brapds
Il PG&E

Compared to a traditional treemap or tag cloud, this
labeled graph representation indicates three data attributes
(sentiment, volume, recency via font angle, font weight and
caps), plus explicit depictions of linkages and summaries
at multiple levels; whereas a treemap or tag cloud typically
indicates two data attributes (via size and hue) and may not
represent linkages or summaries.

6 Discussion

As shown, there are eight different font attributes (weight,
italic, case, typeface, underline, width, super/sub script,
paired delimiters) in addition to alphanumeric glyphs. These
have been characterized in relation to known visual channels
and characterized for different types of data to encode. These
attributes can be used to encode additional data in many appli-
cation areas in KM and IR (e.g. skimming, readership, facets,
entity lists, topic models, set membership, knowledge maps).
The large number of font attributes, different ways of encod-
ing data (e.g. proportional encoding, words) and the many
application areas imply that there is a large design space
with many potential visualizations of which only a few have
been explored and presented herein. When confronted with

a large design space, one should consider a broad range of
alternatives across the design space rather than focusing on
a narrow subset of design space, e.g. [13,42], meaning that
other novel visualization techniques in KM and IR using font
attributes should be explored.

The examples shown have been small-scale prototypes
with limited datasets. They have been sufficient to engage
with experts, conduct surveys, perform measurements and
otherwise generate insight. For example, a journalist first
noticed that the skim formatting preserved word location
and that he could toggle interactively back and forth between
unformatted and skim-formatted texts while reading.

With regards to the specific applications shown, evaluation
is ongoing. Some early evaluation includes:

Expert evaluation in infovis has been conducted via inter-
views with a half dozen infovis practitioners, each with more
than 20 years experience. Response has been been positive,
with a particularly strong positive reaction to text skimming.
The expert feedback has been generally positive to textual
stem and leaf plots and multi-attribute labels, in part because
these techniques are addressing open issues such as opinion
analysis and topic analysis. Proportional encoding is under-
stood as addressing shortcomings with other visualization
techniques although there is some hesitation regarding the
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aesthetic appeal and time to understand, both of which should
be investigated further.

Some surveys have been conducted including more than
20 computer science graduate level students; more than 20
actively working programmers, designers and journalists. In
some cases, time was limited and the surveys brief. One sur-
vey asked participants to score different visualizations and
in particular focused on the novel visualization technique
of proportional encoding (Fig. 11) in terms of (a) perceived
desirability, (b) understanding and (c) perceived ease of use
for general population. In all three questions, proportional
encoding scored either 3 or 4 on a scale from 1-4 indicated
agreement or strong agreement with the statement and indi-
cates that all participants understood the encoding technique.

Desirability, by ranking different visualization techniques,
resulted in a ranking with skim formatting and proportional
encoding top, followed by stem and leaf, with multi-label
attributes last (e.g. Fig. 21). The latter item may have
ranked lowest, because, perhaps, it has the highest number
of different data attributes encoded: in the skim formatting,
proportional encoding and stem and leaf encodings, typi-
cally only one or two data attributes were added into the text
whereas the multi-attribute label had three to five attributes
encoded. When more data attributes were encoded in a single
visualization this tended to generate more questions from the
participants, e.g. “what does the colour mean in that label” or
“what does case mean in that stem and leaf display”. This sug-
gests where multiple data attributes are encoded into a single
item there is greater potential for misinterpreting the encod-
ing, perhaps because the cognitive load is increased when
the viewer needs to remember each encoding. Visualization
design-time heuristics can aid in reducing cognitive load,
for example, using intuitive mappings (e.g. a data attribute
representing a magnitude maps well to font weight); or by
avoiding mappings where multiple visual attributes interfere
with the perception of the individual attributes (e.g. integral
vs. separable attributes [62]).

Measured tasks have been used to compare choropleth maps
vs. labelled cartogram, specifically comparing identification
and location tasks, which showed higher performance for
the labelled map (Table 3). However, this result is specific to
mapping of geographic entities and has not been tested more
generally against a broader range of knowledge maps, such
as graphs or self-organizing maps.

Measurement of lossiness and fidelity is a general approach to
measuring and comparing information content across alter-
native visualization techniques [11] as shown in Tables 2,
3 and 4. While these calculations have not been shown for
the other visualizations herein, in general, the use of font
attributes increases information density compared to plain
text. For example, Fig. 15 shows topic words ordered by
probability, with caps indicating probability and weight indi-
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cating word frequency: the original plain text version does
not show the information encoded in these attributes and has
alower information density assuming other attributes remain
the same. In general, font attributes may have lower lossiness
compared to some other visual attributes, such as size (e.g.
Fig. 10) or shape (e.g. Fig. 19).

Design critiques from typographers were sought as typogra-
phers have deep knowledge on the subtleties of fonts, their
use and applications. At a high level, critiques were posi-
tive across the wide range of new visualization techniques,
with some specific criticisms related to individual techniques,

e.g.:

“This represents a whole new way of thinking about
type.”

“These are very creative new uses of typography.”
“This is what typographers have always done: changing
type attributes for different applications. What is new is
the application of type to show quantities.”

“Type attributes visually work as validated over centuries
of empirical refinement. These are new applications of
proven techniques.”

“Multivariate labels are engaging and can stimulates
analysis.”

“Mnemonic labels are interesting: if you do not recog-
nize a code immediately, you have still got the code and
adjacent codes that you can use as a cue to search your
memory.”

“You have to be careful with the encoding. If the encoding
is intuitive as in these examples, it makes the application
easy to understand.”

“When you change the font, you change the semantics.
So using the right attributes for the target application is
required to express what you are trying to encode.”
“The skim format approach could instead encode seman-
tics. For example, comics use conventions for shout,
whisper, and so on.”

“Multivariate encoding works well for labels, but for
prose readability may be impacted.”

“You have to be careful when mixing many attributes
together in prose. Readability can be impacted.”

While broadly positive, the typographers raise issues not
identified by other evaluations, particularly with regards to
issues such as readability—topics generally not considered
in infovis and suitable for further investigation.

7 Conclusion
The design space for the use of text and font attributes

within information retrieval and knowledge maps is large
and this article illustrates a number of emerging visualization
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techniques. These techniques are applicable to the different
components that comprise an information retrieval system,
including:

e Result lists and contextual sentences via proportional
encoding (Figs. 10, 11, 12).

e Paragraph and document views via skim formatting (Fig.
8).

e Facets (e.g. entities, topics) via textual stem and leaf plots
(Figs. 14, 15, 16).

e Knowledge maps via multi-attribute labels (Figs. 18, 21,
22).

One challenge is current software limitations. Off-the-
shelf visualization tools rarely expose font attributes. Basic
bold and italic may be accessible in some tools but mul-
tiple weights, slopes and widths require programming and
access to large font families. Some of these are addressable
with flexible visualization libraries (e.g. D3.js) combined
with commercial fonts (e.g. Adobe, Linotype) or high-quality
open source fonts (e.g. http://google.com/fonts). Adobe’s
open source Source Sans Pro font was used in many of the
examples.

Given that the use of font attributes to encode data is a
newly evolving area, KM and IR researchers in the near future
should acquire an understanding of techniques from infovis,
typography and cartography such as texts (e.g. [6,36]) design
courses, and conferences. KM and IR projects, whether
short term hackathons or large-scale systems, should also
consider cross-disciplinary collaboration between domain
experts, text analytics experts, and researchers from infovis,
typography and/or cartography.

Future work should consider different representations, i.e.
there may be other novel visualizations. For example, the
semantics of the text, rather than word frequency, reader-
ship or other statistics, could be reflected in the typographic
attributes—such as the formatting of words to indicate emo-
tions, or the examples shown here have focused at the level
of words, sentences and paragraphs: how might variation of
font attributes be utilized within a single word, for example,
to indicate word stems in a keyword search or topic analysis.

Feedback, metrics and surveys collected so far are promis-
ing and indicate that font-specific attributes could be used to
increase data density in texts (e.g. abstracts, lead paragraphs),
lists (e.g. result lists and word lists) to aid tasks such as fact
finding, information gathering and query refinement, and also
add information to knowledge maps, (e.g. use of labels and
data added to labels). There are many additional different
levels of evaluation that should be considered including, eval-
uation of the efficacy of font attributes to encode data; issues
of interference when multiple attributes are used together
on the same label; the usability and effectiveness of specific
novel font-based techniques; and the creation and evaluation

of a system that uses a combination of these novel techniques
in a larger KMIR system.
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