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Abstract
Conventionally, researchers have favored the model-based control scheme for controlling gantry crane systems. However,
this method necessitates a substantial investment of time and resources in order to develop an accurate mathematical
model of the complex crane system. Recognizing this challenge, the current paper introduces a novel data-driven control
scheme that relies exclusively on input and output data. Undertaking a couple of modifications to the conventional marine
predators algorithm (MPA), random average marine predators algorithm (RAMPA) with tunable adaptive coefficient to
control the step size (CF) has been proposed in this paper as an enhanced alternative towards fine-tuning data-driven
multiple-node hormone regulation neuroendocrine-PID (MnHR-NEPID) controller parameters for the multi-input–multi-
output (MIMO) gantry crane system. First modification involved a random average location calculation within the al-
gorithm’s updating mechanism to solve the local optima issue. The second modification then introduced tunable CF that
enhanced search capacity by enabling users’ resilience towards attaining an offsetting level of exploration and exploitation
phases. Effectiveness of the proposed method is evaluated based on the convergence curve and statistical analysis of the
fitness function, the total norms of error and input, Wilcoxon’s rank test, time response analysis, and robustness analysis
under the influence of external disturbance. Comparative findings alongside other existing metaheuristic-based algorithms
confirmed excellence of the proposed method through its superior performance against the conventional MPA, particle
swarm optimization (PSO), grey wolf optimizer (GWO), moth-flame optimization (MFO), multi-verse optimizer (MVO),
sine-cosine algorithm (SCA), salp-swarm algorithm (SSA), slime mould algorithm (SMA), flow direction algorithm (FDA),
and the formally published adaptive safe experimentation dynamics (ASED)-based methods.
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Introduction

Effective handling of crane systems has received widespread attention in recent years due to their vast implications within
container and logistic industries, centering the loading and unloading process between cargo freighters and destined
harbors. Importance ultimately falls on considerably reduced freight costs, loading complexity, energy usage, compli-
catedness of operational mechanism, and transferrable capacity brought about by advancement of such technology.1

Controlling a crane presents a much more intricate set of challenges compared to controlling a bridge. Unlike bridges,
cranes are under-actuated systems, complex dynamics, and non-holonomic presence. This makes it exceedingly difficult to
achieve precise control, even with the aid of control devices like dampers that are attached between the crane and its
columns.2,3 Particular challenge has been recognized on the transferring of payloads which exhibit oscillating and hurdling
behaviors. Such has simultaneously given rise to an appealing handling issue among practitioners and control community
for the development of a precise controlling mechanism which secures swifter payload transference with minimized bounce
and oscillation.

Hopping on the academic bandwagon, a generous number of literature investigating the control precision of crane
systems were published, which enclosed numerous control algorithms such as finite time sliding mode controller for fuzzy
control,4 H-infinity output feedback based on fuzzy model,5 precision-positioning adaptive controller,6 nonlinear sliding
mode controls,7 backstepping controller,8 time-varying sliding mode control,9 dual sliding mode control,10 and LMI fuzzy
control.11 Upon recognizing the sole proficiency of aforementioned control schemes towards the handling of a single-input-
multi-output (SIMO) crane systems by regulation of a single input (i.e., force, voltage), they have fundamentally neglected
the influence of extreme coupling across disparate input channels within a real-time crane system which substantially
hinders the performance robustness of implemented controller. With this in mind, proposition was set by several researchers
on multi-input-multi-output (MIMO) control strategies with consideration for peripheral input channels due to their
increased real-time practicality. Numerous academic endeavors were then proceeded to examine the effective handling of
MIMO crane system, through investigated approaches such as enhanced-coupling nonlinear controller,12 nonlinear
adaptive tracking controller,13 adaptive fractional-order fast terminal sliding mode with fault-tolerant control,14 LQR
controller,15 robust tracking control using adaptive fuzzy control,16 adaptive fuzzy control,17 nonlinear controller em-
bedded with an integral term,18 and payload motion control.19 With model-based approaches being concurrently em-
phasized within the literature towards designing respective controllers for both SIMO and MIMO crane systems,
overwhelming efforts were especially invested to acquire the highly arduous mathematical model for each system.20 Such
attempts, nonetheless, come with the shortfalls of over reliance on a definite mathematical model towards the development
of a robust controller, as well as the inability to evade issue of un-modeled dynamics amidst model simplification for
controller design. Erroneous modeling ensues, whilst contributing dissatisfactory handling performance of a crane system.

On the other hand, data-driven or model-free control schemes which bypass the requirement of mathematical modeling
were essentially proposed in the controlling of crane systems. Viewing the system as an unexplored black box, such
approaches engage controller design by sole utilization of the input and output data.20,21 Its simplicity has further gained
considerable academic endorsement on crane system–related studies in recent years by implementing the metaheuristic
optimization algorithms. This is primarily exemplified through the paper by Jaafar and Mohamed22 in the year 2017 which
proposed the implementation of PID tuning method by employment of particles swarm optimization (PSO) for the control
of a nonlinear double-pendulum crane system. Having three independent PID controllers being installed towards over-
seeing each control variable of trolley position, hook sway, and payload oscillation, nine separate parameters were,
therefore, required from the PSO algorithm within this research. An alternative approach known as adaptive differential
evolutionary (ADE) algorithm was then introduced by Sun et al.23 in the following year to optimize the given parameters of
a fuzzy sliding mode anti-swing controller. Dynamic differential evolutionary (DDE) algorithm was additionally proposed
within this period by the authors as a recommended single objective stochastic optimization technique to attain the optimum
parameters for sliding mode controller (SMC) in elevating the performance of an under-actuated crane system.24

Comparative study in terms of position and swing angle was further undertaken by Solihin et al.25 in the year
2019 among the current metaheuristic-based algorithms such as PSO, cuckoo search (CS), and differential evolution (DE)
towards the optimization of fuzzy controller within a gantry crane system. However, Bayesian optimizer (BO) was es-
pecially operationalized by Bao et al.26 against the PID controller in the year 2020 for the tuning of data-driven model
predictive controller (MPC) with absence of analytical model knowledge concerning the implemented crane system. Such
was prior to the suggested implementation of fully informed particle swarm optimization (FIPSO) by Valluru et al.27 within
both multi-loop linear-PID and nonlinear-PID controllers of a crane system. However, the tuning of those controllers by
metaheuristic optimization algorithms is still in low accuracy and need to be improved. This is because the aforementioned
metaheuristic optimization algorithms have a high possibility of the solution getting stuck in local optima. Also, previously
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discussed literature have merely considered the application of SIMO crane system in view of its relatively lesser tunable
parameters.

In retrospect, a contemporary hybrid approach known as MFAC-PDTSFC was introduced by Roman et al.28 in the year
2019 for the handling of a MIMO nonlinear tower crane system through the incorporation of model-free adaptive control
(MFAC) to the proportional-derivative Takagi–Sugeno fuzzy controller (PDTSFC). They then proceeded with the de-
velopment of first-order active disturbance rejection-virtual reference feedback tuning (ADRV-VRFT) in the ensuing
year29; as well as the hybrid active disturbance rejection control-fuzzy controller in the year 2021,30 targeting effectual
operation of three-degree-of-freedom tower crane systems by implementing fine-tuning of the grey wolf optimizer (GWO).
Whilst a MIMO crane system was applied towards these studies, the investigated model has been especially designed in
parallel as a single-input–single-output (SISO) system comprising three specified domains of cart, arm angular, and
payload. Moreover, employment of an enhanced model-free adaptive control (MFAC) method based on recursive least-
squares (RLS) algorithm was introduced by Pham and Soffker31 in the year 2020 to uplift the effectiveness of a MIMO-
ship-mounted crane system, through a performance comparison against the projection algorithm (PA), MFAC, and
proportional-integral (PI) controller. Other approaches including the data-driven neuroendocrine-PID (NEPID) control,32,33

as well as the improved upon sigmoid-based secretion rate NEPID (SbSR-NEPID) control34 and multiple-node hormone
regulation (MnHR-NEPID) control35 have also been proposed by Ghazali et al. for the handling of MIMO crane system.
With majority of the NEPID approaches as proposed within these studies being personalized based on the adaptive safe
experimentation dynamics (ASED) algorithm, the enhanced NEPID controllers as observed via latter papers have
demonstrated superiority in controlling capacity over its untouched counterpart. Based on the reported data-driven control
schemes above, it is evident that the majority of them utilize a metaheuristic optimization algorithm to fine-tune controller
parameters. This approach has been shown to offer superior flexibility and effectiveness when applied to the control of
complex crane systems. The key advantage of metaheuristic optimization algorithms is their ability to search for global
optima stochastically or randomly, without requiring any gradient information. This makes it highly likely that the solutions
found will avoid becoming trapped in local optima and converge to the global optimum instead. As a result, metaheuristic
optimization algorithms are an excellent choice as a data-driven tool for identifying optimal controller parameters across a
wide range of crane systems, delivering highly accurate trajectory control with minimal swing angle.

Among others, current advocacy is particularly allocated on the marine predators algorithm (MPA) as a contemporary
metaheuristic-based algorithm for optimization of data-driven control scheme within a MIMO crane system.36 Designed
and introduced by Faramarzi et al. in the year 2020, the MPA algorithm is known for its nature-inspired metaheuristic
setting which replicates the strategic foraging of ocean predators with accounts for the inter-relationship between both preys
and predators. MPA stands out from other popular metaheuristic optimization algorithms due to its unique approach to
balancing the tradeoff between Levy and Brownian walks. This is achieved by leveraging Levy walks to enhance the
exploitation phase and Brownian walks to boost the exploration phase. Another distinguishing feature of MPA is its simple
configuration, with only two coefficients requiring adjustment. In addition, the optimization process is divided into three
main phases, with considerations for environmental issues and marine memory. These design elements contribute to a lower
computational burden, resulting in faster convergence speeds. Due to these advantages, there is a large volume of published
studies describing the role of the MPA in solving the optimization problems in various fields. For example, the MPAwas
used by Elminaam et al.37 in feature selection problems to improve classification accuracy. Here, they hybrid the MPAwith
k-Nearest Neighbors (k-NN) called MPA-KNN to evaluate the medical dataset benchmarks. Likewise, the MPA was
applied to the renewable energy sector towards fine-tuning its sensory requirement through fuzzy-logic–based maximum
power point tracking (MPPT) scheme.38 Thereafter, the algorithm was studied by Soliman et al.39 for the appropriate
extraction of electrical parameters for the triple-diode photovoltaic (TDPV) model of a photovoltaic (PV) panel. A hybrid
approach between MPA and moth-flame optimization (MFO) was adopted for the optimization of multi-level threshold
(MLT); in turn, boosted the image segmentation ability of CT-images against the COVID-19 pandemic.40 Such far-reaching
optimization preference is brought forward to the control engineering sector, with reviewed literature proposing the use of
MPA in the tuning of cascaded proportional-integral-derivative-acceleration (PIDA) controller within interconnected
power systems.41 This has been similarly reflected in the context of infinite bus power system and IEEE-39 bus system,
following the algorithm’s role as an optimizer in the PID cascaded controller.42 MPAwas further regarded by Sobhy et al. as
an effective optimizer in attainment of optimum PID gains for the load frequency control of modern interconnected power
systems.43 On another note, effectiveness of the algorithm was exploited as a tuning approach incorporated within the
damping controller for enhanced consistency of small-signal within a high wind integrated system.44 Previous discussion
has indisputably highlighted MPA as an effective optimization approach which outshined a number of other modern
metaheuristic-based algorithms, for multitude resolutions of control and operational problems in the engineering sector.
Such prominence is genuinely constructed above the overshadowing convergence accuracy as yielded by the algorithm of
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interest over its competing rival for majority of the benchmark functions.36 Its potential as an excellent optimization
algorithm for the control of a MIMO crane system is, therefore, justified. This is, yet, on the account of the approach’s
operational limitation with possessing an extreme entrapment possibility within the local optima. This is because during the
transition from exploration to exploitation in Phase 2 of algorithm operationalization, each prey updates its location at each
iteration only based on either its previous location or the location of the current best predator. If the location of the current
best predator suddenly traps in local region, it may pull other preys to be trapped in the same region. Similarly, if the current
location of the prey is suddenly trapped in the local optima region, it is difficult for it to jump out from the region since it
mostly depends on the information of its previous location. Alternatively, conducted preliminary investigation has es-
pecially highlighted overly hindering nature of the existing adaptive coefficient towards step size control (defined as CF),36

which undermined MPA’s proficiency in the balancing of exploration and exploitation phases. Therefore, the im-
plementation of an unadjusted MPA algorithm in a MIMO crane system would merely generate subpar control
performance.

Tackling the emerged shortfalls of MPA, random average marine predators algorithm (RAMPA) with tunable adaptive
coefficient for the controlling of step size (CF) is hereby proposed. The introduced algorithm consisted RAMPA as its
principal component which capitalizes computation of random average between both the current preys’ and the current best
predator’s locations to confront local optima issue during Phase 2 of algorithm operationalization. Specifically, both of prey
and predator within the outlier could avert their respective entrapments by assistance from both current best predator and
current preys. Peripheral component of the proposed algorithm further comprised tunable CF to improve a balance between
exploration and exploitation phases. Set to overcome the restrictive nature of MPA, increased flexibility is enabled via the
proposed method towards maintaining a balanced exploration and exploitation phases; in which, cumulatively encourages
searching competency.

Based upon the given arguments, random average marine predators algorithm (RAMPA) with tunable adaptive co-
efficient for controlling the step size (CF) has been strategically unveiled within this paper for the fine-tuning of data-driven
multiple-node hormone regulation of neuroendocrine-PID (MnHR-NEPID) within aMIMO gantry crane system. Such step
is taken to exploit the algorithm advantage of resolving local optima entrapment, as well as the issue of unbalanced
segregation between the exploration and exploitation phases. Replicated upon the reported work in refs. 34,35, the MnHR-
NEPID controller is particularly chosen for its overpowering precision and synergy between multiple nodes hormones, over
a standard NEPID controller and the SbSR-NEPID in the controlling of the specifiedMIMO system. With ASED algorithm
as proposed in the earlier paper being founded upon both local search principle and an extreme reliance on feasible selection
of initial control parameters, an indefinite global optimal solution from said algorithm has fundamentally propelled
consecutive investigation of RAMPA-based method with tunable CF towards similar research circumstance. Assessments
are further made in regards to the convergence curve and statistical analysis of fitness function, the total norm of error and
the total norm of input, findings as obtained from the Wilcoxon’s rank test, time responses, followed by performance
appraisal in the presence of external disturbance. Statistical comparison is consequently attempted alongside the con-
ventional MPA, as well as other preceding algorithms including PSO, GWO, MFO, multi-verse optimizer (MVO), sine-
cosine algorithm (SCA), salp-swarm algorithm (SSA), slime mould algorithm (SMA), and flow direction algorithm (FDA).
Additionally, the ASED-based method as examined in ref. 35 has been especially measured against the proposed algorithm
in pursue of the superior approach. Key contributions of the current work, thus, include:

(i) A random average location calculation is proposed in RAMPA, which will help the MPA to escape from the local
optima. The merit of the random average location between prey and current best predator is that the location of the
current best predator or the location of the current prey can help any trapped prey or predator to jump out from the
local optima region and continue a new search track.

(ii) Search competency of the conventional MPA is improved ensuing incorporation of tunable CF which permits
greater users’ freedom or flexibility towards balance in exploration and exploitation stages.

(iii) The current study essentially pioneered the implementation of multi-agent–based optimization (i.e., RAMPA
based method with tunable CF) for the fine-tuning of MnHR-NEPID controller. Results as registered from the
proposed algorithm further dominated its significant excellence over other recent multi-agent–based methods, such
as FDA, SMA, SSA, and MVO.

The remaining sections of this paper are coordinated as follows: The second section specifies on discussion of the
conventional MPA-based method and the contemporarily proposed RAMPA-based method with tunable CF. The third
section is then purposed for problem formulation concerning employment of the MnHR-NEPID controller within a MIMO
gantry crane system, followed by the systematic outlining of required procedure towards employment of the proposed
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method for performance optimization. Effectiveness of the proposed method is further validated in the fourth section. Last
but not least, concluding remarks concerning the entire research are given in the fifth section.

Improved marine predators algorithm

The current section sets to explain improvements made towards the conventional marine predators algorithm (MPA) for the
tuning of MnHR-NEPID controller within a MIMO gantry crane system. Herewith, the conventional MPA-based algorithm
has been initially interpreted and described. Discussion is then given on the RAMPA-based method with tunable CF as per
contemporarily introduced within this paper.

Review of the marine predators algorithm

Academically founded by Faramarzi et al.,36 marine predators algorithm (MPA) transpires a predator-inspired algorithm
that upholds the survival of the fittest within the ocean environment towards achieving the utmost optimal strategy amid
food foraging. Such food foraging phenomena commonly reviews the random walk strategies of ocean predators enclosing
both the Levy and Brownian walks. Levy walk which is drawn from a probability function based on power-law tail has a
characteristic of many small steps associated with longer relocations. It is usually employed for foraging prey with less
concentration.45 Meanwhile, the Brownian walk consists of step length drawn from a probability function based on Normal
(Gaussian) distribution which is utilized to search in prey-abundant areas.45 MPA, thus, intends to acquire the most
optimized strategy through reaching an equalized compromise between both the Levy and Brownian strategies. InMPA, the
predator is foraging for the food as well as the prey is foraging for its food.

Operationalization of MPA is primarily established on the random distributed of initial solutions for both preys and
predators across the provided search space in seek of resolving the given optimization issue

arg min
Xið1Þ,Xið2Þ…

fiðXiðkÞÞ (1)

for iterations k ¼ 1, 2,…, kmax, where the fitness function of agent i is being represented by fi, the position vector of agent i
is being represented by Xi, with the maximum number of iterations being represented by kmax. Having the search agents
being denoted by both preys and predators, definitions of the two main matrices including elite matrix E which comprises
the best predators and prey matrix Pwhich comprises the preys are necessarily obtained. Definitions of both the elite matrix
and prey matrix are, thus, written as

E ¼

2
664

X 0
1;1 X 0

1;2 / X 0
1, d

X 0
2;1 X 0

2;2 / X 0
2, d
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X 0
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P ¼

2
664

X1;1 X1;2 / X1, d
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Xn, 1

«

Xn, 2

«

/

«

Xn, d

3
775, (3)

where the total number of agents and dimensions are independently represented by the symbols n and d. In enabling
increased clarity and understanding, let X

0
i, j in equation (2) be the j-th element of the best predator vector X

0
i , which are

replicated n times in the matrix E. In this case, X
0
i is chosen from the best position vector among the search agent in each

iteration. Moving forward with equation (3), Xi, j presents the j-th dimension of i-th prey or agent Xi in equation (1). Both the
predators and preys are then updated based on three main phases as well as the environmental issues and marine memory to
find the global optimum solution. Details regarding the MPA structure are further described as follows:

Phase 1: Exploration phase. Acknowledging faster motions among the preys in Phase 1, such occurrence signals active food
foraging attempts within the prey against its more linger predator counterpart with little to no motion. Such circumstance is
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apparent for first tierce of the maximum iterations (kmax) ensuing full commencement of the exploration stage. Positions of
the preys are subsequently revised by employing the following equation

Pi ¼ Pi þ Q:r1Ä½RBÄðEi � RBÄPiÞ�, if k < 1

3
kmax, (4)

for i ¼ 1; 2,…, n. As observed in equation (4), Pi and Ei represent the i-th row of matrices P and E, respectively, with
vector of random numbers for the Brownian motion being further represented by RB. The element-wise multiplications
is then signified by the notationÄ, with Q being a constant number which has been predetermined at a value of 0.5 and
r1 being a random number as withdrawn from uniform distribution across the range of [0, 1].

Phase 2: Transition from exploration to exploitation phase. Both the predators and preys are maneuvering at similar rate in
Phase 2. Such occurrence symbolizes a deviation within the prey with perturbation of a subgroup approaching the ex-
ploitation stage and the locational update of the other subgroup as rooted by motions of the predators approaching the
exploration stage. Known for being a transitional process between both exploration and exploitation stages, motions of the
involved agents equally differ based on their exploration intention within the Brownian walk and the exploitation intention
within the Levy walk. Happened between one third to two third of kmax, updated positions of the prey for i ¼ 1; 2,…, n=2
are, therefore, acquired through the equation

Pi ¼ Pi þ Q:r1Ä½RLÄðEi � RLÄPiÞ�, if 13 kmax < k <
2

3
kmax, (5)

with updated positions for i ¼ n=2, n=2þ 1,…, n being further given by

Pi ¼ Ei þ Q:CFÄ½RBÄðRBÄEi � PiÞ�, if 13 kmax < k <
2

3
kmax: (6)

Random number based on the Levy distribution in equation (5) is hereby given by RL, whilst having random number
based on the Brownian distribution and adaptive coefficient that controls step size of the predator motion in equation
(6) being, respectively, given by RB and CF. The expression of CF is then detailed as per follows

CF ¼
�
1� k

kmax

��
2× k

kmax

�

: (7)

Phase 3: Exploitation phase. Phase 3 of the MPA structure further demonstrates a faster motion by the predators. Such
overshadowing pace against motion rate of the prey, thus, signifies increased exploitation. Such execution especially
occurs at the final tierce of maximum iteration kmax ensuing the predators’ operationalization within the Levy walk.
Consideration is subsequently placed on the synergy between each prey and the predators at an increased mobilizing
pace for i ¼ 1, 2,…, n, with respective locational updates that follows the equation

Pi ¼ Ei þ Q:CFÄ½RLÄðRLÄEi � PiÞ�, if k > 23kmax: (8)

Eddy formation or fish aggregating devices’ effect. Beyond the three principle phases of MPA as discussed previously lies
fundamental interest for the behavioral endeavors of ocean predators facing various circumstantial conditions known
as the eddy formation or fish aggregating devices (FADs) effect. Amidst the predators’ food hunting process within
domains of the Levy and Brownian walks, aspiration to reach a location with bountiful preys in the vast ocean would
motivate an extensive vertical leap and dive. Such attempt would ultimately prevent stagnating of the predators’within
the local optima. Nevertheless, effect of the FADs is written as per the equation

Pi ¼
�

Pi þ CF½LBþ r1ÄðUB� LBÞ�ÄU , if r2 ≤FADs,
Pi þ ½FADsð1� r2Þ þ r2�ðPr3 � Pr4Þ, if r2 >FADs, (9)

where FADs = 0.2, with values as randomly generated between the range of [0, 1] being denoted by r1 and r2, and the upper
and lower bound vectors being denoted byUB and LB, respectively.U is hereby given as the symbol that represents a binary
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vector with elements comprising the values of 0 and 1. On this note, a zero array shall be generated by U in the case where
r2 ≤ 0:2, vice versa. However, random indexes for column of the prey matrix are given by the symbols of r3 and r4.

Marine memory. Additional characteristic of MPA forwarded the structural capacity to retain and remember particular
positions with immense foraging activities among the predators towards evading local solutions. Emphasis is brought to the
appraisal of fitness for every prey towards updating of the elite matrix E following revision of the prey matrix P and
operationalization of the FADs effect. Comparison is hereby executed between fitness of each solution for the current
iteration and the equivalence from the previous iteration. Replacement would then occur shall the current solution is deemed
more feasible or well-fitted as a superior stand-in to the antecedent. The mechanism entirely simulates return of the
predators to their successful high production foraging area. With this in mind, marine memory is, therefore, undertaken for
quality improvement of acquired solution from the entire involved iterations.

A detailed explanation of MPA can be further obtained via ref. 36.

Random average marine predators algorithm with tunable CF

While MPA demonstrates robust performances and functionalities in overcoming a vast range of optimization problems,
shortfalls of the algorithm are observed from its crippled competency to withdraw from the local optima is weakened under
certain circumstances, as well as an inadequate balance between both exploration and exploitation phases upon tackling
specified optimization problems. Modifications are, therefore, proposed on the conventional MPA method to resolve the
previously mentioned stagnation issue within the local optima, whilst enhancing offsetting potential between both the
exploration and exploitation phases.

Random average location of preys in updating mechanism. Particular deficiency of the conventional MPA method has been
recognized on inability of the current best predator to withdraw from the local optima region. As the earlier discussed Phase
2 of the algorithm clearly highlights the revising of preys’ updated positions above the ground of its previous location or
location of the current best predator, trapping of the current best predator could possibly guide its preys into its current local
optima region. Previous position of prey which failed to escape the local optima region would further define its con-
sequential position at the same location. Such issue is deemed solvable by incorporating the random average between
current positions for both the preys and the best predators to the structure’s updating mechanism. With the computation of
random average being undertaken within individual iteration, any particular criteria for the process are, therefore, dis-
missed. Adoption of random average is hereby advantageous due to the competencies of current best predators and current
preys in aiding the escape of trapped best predators and prey from the local optima region; in turn, enabling their subsequent
exploration of contemporary search domains. Operationalization of the structure’s Phase 2, thus, encompasses revising of
the preys’ consecutive positions through the computation of individual element’s random average. Such process is further
described as per the equation

RAi, j ¼ Pi, jð1� r5Þ þ Ei, j:r5: (10)

As outlined in equation (10), RAi, j presents random average for current element of the prey’s location Pi, j, and current
element of the best predator’s location Ei, j for j-th dimension of i-th prey. In this case, an element for both Pi and Ei is
especially given by Pi, j and Ei, j, respectively. A random number as evenly segregated within the range of [0, 1] is then
denoted by r5. Following the adoption of equation (10) into both equation (5) and equation (6), the equations for RAMPA
are contemporarily revised for i ¼ 1; 2,…, n=2 as

Pi ¼ RAi þ Q:r1Ä½RLÄðEi � RLÄPiÞ�, if 13 kmax < k <
2

3
kmax, (11)

with the equation for i ¼ n=2, n=2þ 1,…, n being subsequently written as

Pi ¼ RAi þ Q:CFÄ½RBÄðRBÄEi � PiÞ�, if 13 kmax < k <
2

3
kmax, (12)

where RAi is a vector that consists of element RAi, j in equation (10).
Graphical illustration for a pre-established contour plot comprising a two-dimensional location (d ¼ 2) has been

presented in Figure 1 in ensuring greater clarification concerning RAMPA’s objective. Under the circumstance where the
current best predator Ei (blue circle) is unexpectedly entrapped within the local optima amidst operationalization of Phase 2,
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employment of a conventional MPA approach would present an immerse possibility where Ei retains its trapped position,
whilst worsening the situation shall drag the prey Pi (red circle) consequently towards the same location. Despite absence of
graphical illustration for equation (5), similar circumstance would prevail for the equation following a lofty percentage
where the current prey Pi would be entrapped within the local optima region, whilst its continuous probe for alternative
search track may be jeopardized. Represented by RAi (green circle) via Figure 1, the complication as encountered in both
cases is, nonetheless, solvable through the employment of random average between both Ei and Pi within the updating
mechanism.

Normal average, as introduced by Jui and Ahmad,46 capitalizes distance of the average location as a constant center to
both the current and the current best locations. However, such execution fails to replicate the stochastic nature of both prey
and predator motions. Towards offering an increased motional variations, a different approach has been proposed within the
random average method by randomizing distance of the random average location based on the random number r5. Under the
condition where r5 is 0.5, the distance of RAi would center between Pi and Ei. Under the condition where r5 is greater than
0.5, the distance of RAi would be randomized closer to Pi. Under the condition where r5 is smaller than 0.5, the distance of
RAi would then be randomized closer to Ei. The resultant RAi as acquired from such operation would inevitably possess
increased capacity for the withdrawal of trapped Ei or Pi towards their ensuing exploration at other regions for better
solution.

Tunable adaptive coefficient for controlling the step size. The tunable adaptive coefficient as proposed to control the step size
(CF) has been further elaborated within the current section. Herewith, improvement can be particularly made to the both the
exploration and exploitation phases of the conventional MPA through adjusting the current CF. Contradicted in nature, an
overwhelmed exploration would compromise the precision of global optimum value, with an overwhelmed exploitation
being the direct antecedent to stagnation issue within the local optima. Nevertheless, executed constraint toCFwithin Phase
2, Phase 3, and FADs for the structure of a conventional MPA-based method would dominate an unacceptable balance
between both exploration and exploitation. Such is observable through equation (7) where having the value of CF being
nonlinearly reduced from 1 to 0 has proven overly prohibitive to allow users’ resilience in controlling and manipulation of
both the exploration and exploitation phases. Concern as presented on the limitation imposed by the existingCF towards the
operationalization of MPA is then justified on the need for a more universalized equation admissible to a vaster range of
applications. Therefore, a tunable or adjustable CF can be employed to the currently studied algorithm for increased
freedom in maintaining an offsetting balance between both exploration and exploitation. In seek of greater search
competency, the equation of CF within equation (7) is, thus, revised and written as

Figure 1. Graphical representation of the random average location mechanism.
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CF ¼
�
1� k

kmax

��
β× k

kmax

�

, (13)

where the contemporarily introduced coefficient as tunable towards adjusting the ratio of both exploration and exploitation
phases under the tuning process is being given by β. With this in place, expectation especially falls on the employment of
RAMPA-based method with tunable CF as an enhanced alternative towards an increasingly promising performance in the
optimization of MnHR-NEPID controller for a MIMO gantry crane system. Additional benefit in the form of increased ratio
options between both exploration and exploitation phases would also enable the algorithm’s greater compatibility to a wide
extent of real-time optimization problems as compared to its unmodified predecessor. Flexibility as offered by the proposed
RAMPA-based method with tunable CF would then trace the procedure of a conventional MPA through the substitution of
CF in equation (13) to the CF in equation (8), equation (9), and equation (12). The implication for varying values of β
against value of the proposed CF has been further illustrated in Figure 2. As observed, an increased exploitation capacity
can be achieved in the case where β can be set greater than 2, for example, β ¼ 10. Conversely, an increased exploration
capacity can be achieved upon setting β to lower value than 2, for example, β ¼ 0:3. As such, pseudocode for the proposed
RAMPA-based method with tunable CF has been systematically outlined in Algorithm 1.

Algorithm 1. Proposed RAMPA with tunable CF algorithm

1. Initialize UB, LB, kmax, n, d,Q,FADs, and β
2. Randomly initialize the search agents Pi populations i ¼ 1; 2,…, n
3. k ¼ 1
4. While k < kmax
5. Evaluate the fitness of all Pi, followed by construction of the Ei matrix and accomplishing of the memory saving
6. If k < 1

3 kmax
7. Update Pi based on equation (4)
8. Else if 1

3 kmax < k <
2
3 kmax

9. Within first half of the populations ði ¼ 1; 2,…, n=2Þ
10. Update Pi based on equation (11)

Figure 2. Value of CF for different β.
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11. Moving forward to second half of the populations ði ¼ n=2, n=2þ 1,…, nÞ
12. Update Pi based on equation (12) by employing CF from equation (13)
13. Else if k > 2

3kmax
14. Update Pi based on equation (8) by employing CF from equation (13)
15. End (if)
16. Evaluate memory saving, followed by the updating of Ei

17. Applying FADs effect and update based on equation (9) by employing CF from equation (13)
18. End while

Having the above explanation as a basis, the proposed revision to the conventional MPA algorithm can be
segregated into two separate segments. The first segment hereby focuses equal allocation of the population towards
both the exploitation and exploration phases amidst Phase 2 of the MPA structure. Extreme velocity exerted by both
the involved preys and predators during this phase would cause an upsurge in the best predators’ and the preys’
possibilities of missing the global optima; whilst, entailing failure in avoiding the local optima region. A random
average location is, therefore, employed within a conventional MPA towards offsetting agile nature of the involved
agents, whilst enabling reciprocated corporations between the existing preys or predators and their outlier counterparts
to escape the local optima region for continuous exploration of new search space. As opposed to the correlation in
Phase 1, notable superiority in velocity of the preys as compared to the predators has propelled the prey for the
exploration of other search spaces and maneuver within the Brownian walk as the most active agents, with the
predators standing by for the preys’ locations. Following the preys’ continuous searching process that diminishes their
potential entrapment within the local optima, such reasoning, therefore, justified impertinence of the proposed random
average calculation within Phase 1. Similar situation is reflected for Phase 3, in which increased capacity towards
preys’ exploitation by predators’ that maneuver within the Levy walk would have diminished the credit of random
average calculation. Such endeavor as implemented during the previous phase has fundamentally enhanced the
avoidance capacity of preys’ from their entrapment within the local optima. On another note, tunable CFwould then be
applied solely within Phase 2, Phase 3, and FADs of the structure. With the predators maneuvering in Brownian manner
amidst second half of Phase 2’s populations, tunable CF is hereby implemented to secure the opportunity of ma-
nipulating the predators’ step size towards equalizing both exploration and exploitation. In the accounts of Phase
3 which capitalizes heightened exploitation, a shift in the predators motions towards the Levy walk does not entirely
overshadow the possibility of step size control in seek of enhancing the agents’ search capacity across global optimum.
However, employment of a tunable CF within FADs would further allow a divergence of vertical leaps among
predators with the aim of discovering other promising domains with bountiful preys. Discussed proposition has,
nonetheless, displayed thorough expectation on an improved operationalization of the conventional MPA through both
an enhanced local optima avoidance and an eminent balance between the exploration and exploitation phases.

Improved marine predators algorithm tuned data-driven multiple-node hormone
regulation neuroendocrine-PID controller of multi-input–multi-output gantry crane
system

Modeling of the multi-input–multi-output (MIMO) gantry crane system is initially described in the current section.
Explanation ensues on the problem formulation of multiple-node hormone regulation neuroendocrine-PID (MnHR-
NEPID) controller for MIMO gantry crane system. Application of random average MPA (RAMPA) based method with
tunable CF towards the tuning of MnHR-NEPID controller for MIMO gantry crane system is further described.

Modeling of multi-input–multi-output gantry crane system

Replicated based on a real-time gantry crane system, this study particularly employs the multi-input–multi-output (MIMO)
gantry crane model as proposed by Park et al..47 The structure has been outlined in Figure 3 in which swinging motions of
the payload is accomplished through maneuvering of the trolley. Both directions of the trolley’s horizontal maneuver and
the rope’s vertical course are individually denoted by the X-axis and Z-axis, respectively. Control input used to mobilize the
trolley in its horizontal course is further denoted by FxðtÞ, with the control input towards the hoist in the l-direction being
further denoted by FlðtÞ. However, recorded outputs with respect to the sway angles of payload, rope length, and trolley

10 Journal of Low Frequency Noise, Vibration and Active Control 0(0)



displacement are represented by θðtÞ, lðtÞ, and xðtÞ, independently. The equations enclosing motions of the studied gantry
crane system are, therefore, described as per the following

_xa ¼
�

_q
�M�1ðqÞ½Wmðq, _qÞ _qþ Rð _qÞ�

�
�
�

03×3
�M�1ðqÞ

��
1 0 0
0 1 0

�T
ua, (14)

where _xa6×1 ¼
�
x l θ _x _l _θ

�T
, ua2×1 ¼ ½ u1 u2 �T ¼ ½Fx Fl �T , q3×1 ¼ ½ x l θ �T

MðqÞ3×3 ¼
2
4mp þ mt mpsinθ mplcosθ

mpsinθ mp þ ml 0
mplcosθ 0 mpl

2 þ I

3
5, (15)

Wmðq, _qÞ3×3 ¼
2
4 0 mp

_θcosθ �mplsinθ _θ þ mpcosθ _l
0 0 �mpl _θ
0 mpl _θ mpl _l

3
5, (16)

and

Rð _qÞ3×1 ¼ ½ 0 �mpgcosθ mpglsinθ �T : (17)

Thereafter, acquired output for the container gantry crane would be given as

Figure 3. The container gantry crane system.
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y ¼
2
4 1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

3
5

2
666664

x

l

θ

_x

_l

_θ

3
777775 ¼

2
4 x
l
θ

3
5 ¼ q: (18)

Adopted directly from ref. 47, mp ¼ 0.73 kg, mt ¼ 1.06 kg, ml ¼ 0.5 kg, and I ¼ 0.005 kgm2 are further established as
key parameters to the currently studied gantry crane system.

Problem formulation

This section is especially allocated to the formulation of problem concerning synthesis of MnHR-NEPID control towards
the MIMO gantry crane system as previously described in Section 3.1. In accordance to the report by ref. 35, the block
diagram of MIMO gantry crane system as controlled using MnHR-NEPID has been detailed in Figure 4, with the reference,
control input and output measurement being individually represented by rðtÞ 2R

q, uðtÞ 2R
p and yðtÞ 2R

q, respectively.
Both dimensions of the control input uðtÞ and the output measurement yðtÞ are further denoted by independent symbols of p
and q.

As shown, the MnHR-NEPID controller comprising both a PID controller unit CU ðsÞ and the multiple-node
hormone regulation of neuroendocrine controller NMnHRðeðtÞ,ΔhðtÞÞ, is connected preceding the MIMO gantry
crane system as denoted by H. Herewith, CU ðsÞ as employed to control the given MIMO gantry crane system is
described as

CUðsÞp×q ¼
2
4C11ðsÞ / C1qðsÞ

« 1 «
Cp1ðsÞ / CpqðsÞ

3
5, (19)

where

CijðsÞ ¼ KPij

�
1þ 1

KIijs
þ KDijs

1þ 	KDij



Nij

�
s

�
: (20)

The PID controller for i ¼ 1, 2,…, p and j ¼ 1, 2,…, q is further represented by CijðsÞ in equation (20), with the
proportional gain, integral time, derivative time, and filter coefficient being independently represented by KPij 2R, KIij 2R,
KDij 2R, and Nij 2R. Moving forward, acquired output CU ðsÞ for the MIMO gantry crane system is subsequently ex-
pressed by

Figure 4. The MnHR-NEPID control system.

12 Journal of Low Frequency Noise, Vibration and Active Control 0(0)



uCUðtÞ ¼
"Xq

j¼1

h1j,
Xq
j¼1

h2j, …
Xq
j¼1

hpj

#T
, (21)

where the output individual Cij and the error of individual output plant H are given by hij ¼ CijðsÞejðtÞ and
ejðtÞ ¼ rjðtÞ � yjðtÞ, respectively. Following this, the expression for NMnHRðeðtÞ,ΔhðtÞÞ is then written as follows

NMnHRðeðtÞ,ΔhðtÞÞp×q ¼
2
4 YV11 / YV1q

« 1 «
YVp1 / YVpq

3
5, (22)

where

YVij ¼
	
1� ηj

�
Vij þ ηj

 Xp
k¼1

Xq
ι¼1

Vkι

!
, (23)

for i ¼ 1, 2,…, p and j ¼ 1, 2,…, q. Note that, Vkι has been devoted to remark all existing nodes of hormone regulation
within the neuroendocrine controller. Moving forward, single node of the neuroendocrine controller is subsequently given
as

Vij

	
eijðtÞ,ΔhijðtÞ

� ¼ αij

� ��ΔhijðtÞ��ζ ij
λij þ

��ΔhijðtÞ��ζ ij þ ρij

�
L1L2, (24)

where i ¼ 1, 2,…, p and j ¼ 1, 2,…, q, ΔhijðtÞ ¼ hijðtÞ � hijðt � tsÞ and ΔejðtÞ ¼ ejðtÞ � ejðt � tsÞ. The sampling time for
t ¼ ts, 2ts, 3ts,…, cts is further denoted by ts at the number of samples c. The hill coefficient of each hormone is denoted by
ζ ij, with the constant positive real numbers being, respectively, represented by ρij and λij. The direction factors of
neuroendocrine are then denoted by the symbols L1 and L2. With adherence to the criterion where VijðeijðtÞ,ΔhijðtÞÞ ¼ 0
when ΔhijðtÞ ¼ 0; ρij is, therefore, entirely specified to the value of 0. The description of equation (24) has been thoroughly
detailed in ref. 32; multiple-node switching mechanism ηj has further been deliberated as per the following

ηj ¼
�

0, if � Th ≤ ejðtÞ ≤ Th,
G
	
ej
�
, if � Th > ejðtÞ> Th,

(25)

where the error threshold and control variable error of each j output response are being independently represented by Th and
ej. Attention is hereby acknowledged on the selection of Th in accordance to the system’s settling time that falls within the
span of 2% to 5% of the final value. The normalized Gaussian function GðejÞ is described based on the equation

G
	
ej
� ¼ 1� exp

 
�	ej � μij

�2
2σ2

ij

!
, (26)

where both the variance and the center vector of ij node are being independently represented by σ2ij and μij. Upon ensuring
the normalized Gaussian function is centralized at zero value, the value of μij is correspondingly determined at 0 towards
ascertaining both positive and negative error of the control variable ej. On the accounts where an inverse normalized
Gaussian function ranged between the values of 0 and 1 is especially adopted for the current study, acquired output for the
function would, therefore, progress approaching the value of 1 to secure a greater control variable error ejðtÞ. Such outcome
would bring about high multiple-node switching mechanism for the hormone regulation ηj.

Output as obtained from NMnHRðeðtÞ,ΔhðtÞÞ has further been represented by

uNMnHRðtÞ ¼
"Xq

j¼1

YV1j,
Xq
j¼1

YV2j, …
Xq
j¼1

YVpj

#T
: (27)

On this account, total output as obtained from the MnHR-NEPID controller uðtÞ is, thus, given as

uðtÞ ¼ uCUðtÞ þuNMnHRðtÞ, (28)
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where uðtÞp×1 ¼ ½u1ðtÞ, u2ðtÞ,…, upðtÞ�T , uCUðtÞ 2R
p, and uNMnHRðtÞ 2R

p.
Performance of the MIMO gantry crane system handled using the MnHR-NEPID controller in Figure 4 is then assessed

based on the performance index as outlined in the following equations

ej : ¼
Z tf

t0

��rjðtÞ � yjðtÞ
��2dt, (29)

ui : ¼
Z tf

t0

juiðtÞj2dt, (30)

where the respective j-th elements of vectors rðtÞ and yðtÞ are individually denoted by rjðtÞ and yjðtÞ, with the i-th elements
of vector uðtÞ being further denoted by uiðtÞ. At t0 2f0g[Rþ and tf 2Rþ, the duration involved to assess the system’s
performance is given by an interval of ½t0, tf �. In order to optimize the system’s performance, we have carefully chosen a set
of performance indices. Our primary objective is to reduce the tracking error, which is essentially the deviation between the
reference inputs rðtÞ and the actual output measurements yðtÞ (such as the sway angles of the payload, rope length, and
trolley displacement). Additionally, we are also taking into consideration the energy required for the control inputs uðtÞ,
striving to minimize it as much as possible. This approach ensures that the system operates with maximum efficiency and
accuracy, delivering superior results. The application of these performance indices has garnered widespread acclaim among
researchers, who have lauded their ability to enhance the accuracy of gantry crane systems. Indeed, their efficacy has been
validated in numerous studies, such as those cited in refs. 34,35.

Furthermore, fitness function which will be used for the data-driven tuning of MnHR-NEPID controller within the
MIMO gantry crane system is given by

J
	
KP,KI ,KD,N , ζ , λ, α, σ2

� ¼Xq
j¼1

w1jej þ
Xp
i¼1

w2iui, (31)

where parameters of the MnHR-NEPID controller for the studied MIMO gantry crane system are
stated at KPd½KP11,KP12,…,KPpq�, KId½KI11,KI12,…,KIpq�, KDd½KD11,KD12,…,KDpq�, Nd½N11,N12,…,Npq�,
ζd½ζ 11, ζ 12,…, ζ pq�, λd½λ11, λ12,…, λpq�, αd½α11, α12,…, αpq�, and σ2d½σ211, σ212,…, σ2pq�. w1j 2R ðj ¼ 1, 2,…, qÞ and
w2i 2R ði ¼ 1, 2,…, pÞ further express the respective weightings of output and input as per determined by the system’s
designer. With the right side of equation (31) indicates both the tracking error term and the control input energy term, both
values of w1j and w2i are confirmed based on undertaken preliminary experimentations, such that a well-balanced
minimization between tracking error and control input energy is achieved.

Problem 3.1: Obtain CU ðsÞ and NMnHRðeðtÞ,ΔhðtÞÞ of the MnHR-NEPID controller for MIMO gantry crane system
such that the fitness function JðKP ,KI ,KD,N , ζ , λ, α, σ2Þ, in accordance to the data uðtÞ and yðtÞ, is minimized.

Application of RAMPA-based method with tunableCF for tuning the MnHR-NEPID controller of MIMO gantry
crane system

Towards addressing the minimization of fitness function as per outlined in equation (31), this section is particularly
dedicated to explain executed procedure for the optimization of MnHR-NEPID controller through the employment of
RAMPA-based method with tunable CF. The process is initiated by mapping position vector of individual prey or agent
Xi 2R

d from equation (1) to the design parameters of MnHR-NEPID controller, as follows

ψ ¼ �KP ,KI ,KD,N , ζ , λ, α, σ2
�2R

d , (32)

where each element of ψj ¼ 10Xi, jðj ¼ 1, 2,…, dÞ. The logarithmic scale has been especially adopted for the purpose of
facilitating an accelerated process towards the attainment of design parameters.

With the fitness function fi from equation (1) being concurrently mapped alongside the fitness function from equation
(31) at fi ¼ JðψÞ, the designated fitness function of each agent is, therefore, written as fi

	
10Xi, 1 10Xi, 2 … 10Xi, d

�
.

Technicality wise, position of the agent XiðkÞ would be revised with operationalization of the proposed approach in
conformity to the preys’ location Pi by mean of minimizing value of the fitness function fi. Dissimilar values of fi are hereby
generated by the updated XiðkÞ (from Pi) through paralleling both components of control input uðtÞ and error eðtÞ. Ensuing
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ranking of each produced fi, fi with the best value would be subsequently recorded, whilst having its respective best position
vector being registered as X

0
i ðkÞ of matrix E. Required procedure for updating the position vector of each agent XiðkÞ has

been systematically detailed in Algorithm 1, in accordance to the tuning operation of MnHR-NEPID controller. Such
duplex coordination between the proposed RAMPA-based method with tunable CF and MnHR-NEPID controller of the
MIMO gantry crane system is repetitively operationalized prior reaching the maximum iteration. The methodical procedure
towards optimization of the data-driven MnHR-NEPID controller is essentially summarized by:

Step 1: The mapping of fi ¼ JðψÞ and Xi, j ¼ logψjðj ¼ 1, 2,…, dÞ is established. Following this, UB, LB,
kmax, n, d,Q,FADs, and β are determined.

Step 2: Updating procedure of the RAMPA-based method with tunable CF from Algorithm 1 is operationalized.

Figure 5. Block diagram of RAMPA-based method with tunable CF implementation for MnHR-NEPID controller of MIMO gantry crane
system.
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Step 3:Upon reaching the maximum iteration kmax, optimal design parameters X
0
i would be obtained from elite matrix E.

The acquired optimal design parameters are further implemented to CU ðsÞ and NMnHRðeðtÞ,ΔhðtÞÞ as solution for the
MnHR-NEPID controller in Figure 4.

Remarks 3.1: The tuning method for MnHR-NEPID controller for the current study especially implements a data-
driven or model-free approach. The examined MIMO gantry crane system is, therefore, perceived as a “black box”
model, with exclusive parameters of the MnHR-NEPID controller as employed for the system being fine-tuned based
entirely on obtained information concerning the given input and output data at the absence of an established plant model.

A comprehensive flow diagram encompassing tuning approach as employed for the MnHR-NEPID controller using
RAMPA-based method with tunable CF is entirely outlined in Figure 5. As observed, two key blocks have been detailed,
enclosing both the implementation of the MnHR-NEPID controller for MIMO gantry crane system and the operation-
alization of RAMPA-based method with tunableCF. The first block sets towards attaining the minimal fitness function JðψÞ
by exploiting on the previously determined input uðtÞ and output yðtÞ. Further retrieved from Pi, Algorithm 1 is sub-
sequently performed upon mapping fi to JðψÞwithin the second block in seek of acquiring the updated design parameter of
individual prey Xi. Updated design parameter would then be adopted to the first block by definition of
ψj ¼ 10Xi, jðj ¼ 1, 2,…, dÞ. Such reciprocated circulation between both blocks is repetitively executed pending maximum
iterations in realizing the optimal design parameter X

0
i .

Implementation and results

The current section discusses appraised performance of the MIMO gantry crane control system with employment of
MnHR-NEPID controller fine-tuned using the proposed RAMPA-based method with tunable CF. Comparison is fun-
damentally made between effectiveness of the proposed approach, the conventional MPA-based method, and other existing
metaheuristic-based algorithms, viz. PSO,48 GWO,49 MFO,50 MVO,51 SCA,52 SSA,53 SMA,54 and FDA.55 Recorded
outcomes from the introduced RAMPA-based method with tunable CF are further evaluated against the formerly published
ASED-based method.35 Performances of the examined algorithms are essentially assessed by virtue of the following criteria

1. Convergence curves of average fitness function (out of 25 trials) as generated from RAMPA-based method with
tunable CF and the conventional MPA, PSO, GWO, MFO, MVO, SCA, SSA, SMA, and FDA-based methods are
contrasted. Inspection is especially made on the algorithms’ capacities to minimize their generated fitness function.

2. Fitness function JðKP ,KI ,KD,N , ζ , λ,α, σ2Þ from equation (31), the total norm of error
Pq
j¼1

ej, and the total norm of

input
Pp
i¼1

ui as acquired through 25 independent trials with reference to the mean, best, worst, and standard

deviation (std.) are statistically evaluated. As per mentioned, comparison is undertaken between the obtained
statistical analysis from RAMPA-based method with tunable CF, the conventional MPA-based method, and the
formerly stated algorithms.

3. Non-parametric statistical analysis by employment of the Wilcoxon’s rank test is pursued to engage the statistical
dissimilarity between examined algorithms at a significance level of 5%. Statistical test is essentially proceeded
between a pair of distinct algorithms by primarily contrasting their respective mean values to observe the sig-
nificance level based on its p� value. Significant divergence is established between simulated outcomes and
efficiency of respective algorithms in the case where p� value < 0:05. On the contrary, divergence between
simulated outcomes of respective algorithms is deemed insignificant in the case where p� value > 0:05. Addi-
tionally, the box plot is considered to evaluate the precision of the algorithms.

4. Time responses analysis of MIMO gantry crane system as acquired through employment of the proposed RAMPA-
based method with tunable CF and the preceding ASED-based approach35 are appraised with respect to its trolley
displacement y1ðtÞ, length of the rope y2ðtÞ, sway angle of the payload y3ðtÞ, trolley force u1ðtÞ, and hoist force u2ðtÞ.

5. Robustness of the MnHR-NEPID controller as optimized using the RAMPA-based method with tunable CF and the
ASED-based method35 is assessed with introduction of external disturbance to the MIMO gantry crane system.

Attempted simulations for the current study were performed based on MATLAB/Simulink R2020a using a personal
computer equipped with the specification of Microsoft Window 10, 8 GB RAM and Intel Core i7-6700 Processor
(3.41 GHz). The MnHR-NEPID control system as outlined in Figure 4 has been explicitly adopted for the control of MIMO
gantry crane system in Figure 3 at a total number of outputs q ¼ 3 and inputs p ¼ 2. Respective inputs and outputs of the
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studied system are further signified by u1ðtÞ ¼ FxðtÞ, u2ðtÞ ¼ FlðtÞ, y1ðtÞ ¼ xðtÞ, y2ðtÞ ¼ lðtÞ and y3ðtÞ ¼ θðtÞ. As opposed
to the previous work in ref. 35 which considered a trolley displacement from 1m to the origin and a rope’s length adjustment
from 1 m to 0.2 m, a shorter trolley displacement and adjustment of the rope’s length is accounted for the current research at
a reduced simulation time to minimize the required computation duration for the system’s tuning. With this in mind, the
desired trolley’s position, length of the rope, and sway angle are then considered as

rðtÞ3×1 ¼ ½ 0:5 0:5 0 �T"t, (33)

with initial position of the trolley, length of the rope, and sway angle of the payload being independently given at xð0Þ ¼ 1,
lð0Þ ¼ 1, and θð0Þ ¼ 0. Heightened clarification is further expressed through Figure 6 which comprehensively illustrates
the trolley’s movement and the rope’s length adjustment approaching their desired positions. As observed, initial position of
the trolley has been determined at 1 m from the origin, with initial length of the rope being conjointly determined at 1 m.
Thereafter, the trolley’s actuator is maneuvered forwarding the left sided direction approaching its desired position of 0.5 m.
In the meantime, adjustment is also undertaken by the installed pulley on the rope towards the desired length of 0.5 m. With
both swaying and oscillation of the involved payload being discernable throughout the trolley’s maneuver between both
locations; this study, nonetheless, aims in transferring the payload to its desired position at a minimal sway angle.

MnHR-NEPID controller for the MIMO gantry crane system from Figure 4 has been fundamentally considered as

CU ðsÞ2×3 ¼
�
C11ðsÞ 0 C13ðsÞ

0 C22ðsÞ 0

�
(34)

and

NMnHRðeðtÞ,ΔhðtÞÞ2×3 ¼
�
YV11 0 YV13

0 YV22 0

�
: (35)

With reference to equation (20), four design parameters for eachCijðsÞ controller are hereby accounted. Likewise, four other
design parameters as stated in equations (22)–(26) are alternatively considered for each of theNMnHRðeðtÞ,ΔhðtÞÞ controller.
Corresponding to ψ ¼ ½KP ,KI ,KD,N , ζ , λ,α, σ2� 2R

24, a total number of 24 design parameters are then contemplated for
the employed MnHR-NEPID controller. Initial position of each design parameter has further been randomly assigned in
accordance to the previous discussion in Section 2.1 to enable increased possibility among agents for the exploration of
search domains within their predetermined boundary. Implementation of the proposed RAMPA-based method with tunable
CF, thus, bypassed the time-consuming complicatedness of tedious preliminary investigations as operationalized in ref. 35
towards determining feasible initial design parameters of the chosen controller. Objectively, the fitness function in equation
(31) is minimized by obtaining ψ 2R

24, with the weighting coefficients being set at w11 ¼ 200, w12 ¼ 400, w13 ¼ 200,
w21 ¼ 1, and w22 ¼ 1 to reflect the circumstance of Ref.[35]. The error threshold Th as included in equation (25) is similarly
identified to such condition at a value of 0.05. Nevertheless, the simulation time in ref. 35 has been halved for the current

Figure 6. The trolley’s movement and the rope’s length adjustment to the desired position.
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study to a designated interval of tf ¼ 10 s. In view of the optimization related settings, both the upper bound and lower
bound for each design parameter have been primarily determined at the values ofUB ¼ 2:5 and LB ¼ �2:5. The maximum
number of iterations and the number of agents are further determined at kmax ¼ 150 and n ¼ 20, respectively. Such settings
essentially contributed a total of 3000 number of function evaluations (NFE). Several preliminary investigations sub-
sequently established the coefficient for RAMPA-based method with tunableCF at a value of β = 0.8. Default coefficients of
the MPA-based method are ultimately maintained succeeding implementation of the RAMPA-based method with tunable
CF at Q = 0.5 and FADs = 0.2. With each statistical element in place, 25 independent trials under the identical set of
coefficients were simulated to appraise the robustness of RAMPA-based method with tunableCF against the randomization
effect. Meanwhile, the coefficients of other existing algorithms as examined in this paper, comprising the PSO, GWO,
MFO, MVO, SCA, SSA, SMA, and FDA-based methods, are thoroughly tabulated in Table 1.

Table 1. Coefficients of PSO, GWO, MFO, MVO, SCA, SSA, SMA, and FDA.

Algorithm Coefficients

PSO Wmax ¼ 0:9,Wmin ¼ 0:2, c1 ¼ 2, c2 ¼ 2, Vmax ¼ 6
GWO a ¼ 2*

�
1�

�
k

kmax

��
MFO r ¼ �1þ k*

��1
kmax

�

MVO WEPmin ¼ 0:2,WEPmax ¼ 1, p ¼ 6
SCA r1 ¼ 2*

�
1�

�
k

kmax

��
SSA

c1 ¼ 2e
�
�

4k
kmax

�2

SMA a ¼ arctanh
�
�
�

k
kmax

�
þ 1

�
z ¼ 0:03

FDA β ¼ 1

Figure 7. Convergence curves of the average fitness function from 25 trials.
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Remarks 4.1: The maximum number of iterations, the upper bounds, the lower bounds, and the number of agents are
identically set for RAMPA-based method with tunable CF and each examined-based method to ensure comparable
performance assessments.

The convergence curves for average fitness function as generated from 25 trials by the RAMPA-based method with
tunable CF, as well as the conventional MPA, PSO, GWO, MFO, MVO, SCA, SSA, SMA, and FDA-based methods have
been comprehensively plotted in Figure 7. Recorded response through employment of the proposed RAMPA-based method
with tunable CF is particularly denoted by a thicker, blue-colored line alongside other thinner, colored lines that represent
the obtained responses from other examined algorithms. Further observed through the magnified plot as illustrated within
said figure, the proposed algorithm has demonstrated excellence in minimizing the fitness function of equation (31)
approaching final iteration of the simulation over the performances of other peripheral-based methods. Its proficiency
in minimizing the fitness function has, nonetheless, been firmly justified. However, statistical performances of the ex-

amined algorithms in terms of the fitness function J , total of norm error
P3
j¼1

ej, total of norm input
P2
i¼1

ui, and average CPU

time are further registered and exclusively depicted in Table 2. Highlighted in bold, RAMPA-based method with tunableCF
has dominated majority of the assessed domains for generating comparatively superior results against its predecessors. Such
is on the exception of the average CPU time, with SCA-based method committing the shortest duration due to its relatively
simpler operational principle,52 as compared to the three segregated phases and accounted environmental issues within
execution of the MPA-based method. With adherence to the explanation in Section 2.2, supplementary efforts as attempted
by the proposed algorithm towards computation of random average would contribute a longer average CPU time. In the
case where a supercomputer is employed to overcome such shortfall in computation time, obtained verdict from the aspects
of fitness function, total of norm error, and total of norm input have, thus, elevated RAMPA-based method with tunable CF
as a noteworthy optimization approach.

On a similar note, a non-parametric statistical test by employment of the Wilcoxon’s rank test at a significance level
of 5% was implemented to appraise the statistical difference in fitness function among each examined-based method.

Table 2. The statistical performance value of fitness function, total of norm error, total of norm input, and its corresponding average
CPU time.

Algorithm RAMPA MPA PSO48 GWO49 MFO50 MVO51 SCA52 SSA53 SMA54 FDA55

J Mean 62.2543 64.4061 131.4303 104.1759 117.4901 132.6459 240.3776 78.7033 114.9545 121.37
Best 59.299 59.9417 66.8138 68.2634 66.6816 60.22 96.3742 65.2359 61.4987 70.02
Worst 71.4381 72.1807 323.2 312.6823 268.3419 389.12 504.6742 270.8157 418.7346 267.84
Std 3.0196 3.7814 69.8926 62.8759 54.1885 106.6542 123.5538 78.7033 80.9156 52.11P3

j¼1
ej Mean 0.1949 0.2027 0.4744 0.3675 0.4072 0.4879 0.7769 0.5702 0.4044 0.37

Best 0.1802 0.1856 0.1999 0.2161 0.2182 0.1855 0.2827 0.1970 0.1875 0.22
Worst 0.2345 0.2444 1.4679 1.3984 0.9885 1.4396 2.0263 1.2519 1.6241 1.02
Std 0.0132 0.0161 0.3304 0.3029 0.2073 0.4312 0.4957 0.3687 0.3302 0.17P2

i¼1
ui Mean 10.5743 11.032 11.3402 11.2301 12.7837 11.6458 31.366 14.1230 11.0013 18.63

Best 7.7011 8.8831 1.2869 1.013 2.5483 4.9 0.7258 3.3682 2.6191 4.23
Worst 12.8519 14.4353 27.3371 17.4691 85.9382 31.6376 114.6787 92.5601 25.4499 72.14
Std 1.112 1.3651 6.9365 3.9105 16.0989 4.8319 30.3937 16.8364 5.0618 17.06

Average
CPU
Time(s)

Mean 3.27E +
03

3130.5 1.58E +
03

1.61E +
03

1.58E +
03

1.64E +
03

1.56E +
03

1572.5883 1.60E +
03

1.60E
+ 03

Table 3. Wilcoxon’s rank test of the fitness function between the RAMPA-based method with tunable CF and other based methods.

Algorithm

RAMPA with tunable CF Versus

MPA PSO48 GWO49 MFO50 MVO51 SCA52 SSA53 SMA54 FDA55

p � value 0.0189 2.8980E�9 2.8980E � 9 2.2857E � 9 2.7218E � 7 1.4157E � 9 2.5742E � 9 1.3090E � 7 1.596E � 9
S+ 223 325 325 325 281 325 325 306 325
S- 102 0 0 0 44 0 0 19 0
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Obtained results from the Wilcoxon’s rank test for pair-wise between the RAMPA-based method with tunable CF and
the other contrasted-based methods are then entirely tabulated in Table 3. In view of the recorded sum of ranks,
superior performance has been comparatively demonstrated by the proposed algorithm against the rivaling algorithms
when S+, with the yielding of contradictory outcome when S�.56 Comprehensive registration of S+ by RAMPA-based
method with tunable CF against its sparing contenders have further signified evident disparities between the proposed
algorithm and its predecessors. Recorded p� values between the proposed algorithm and the other examined based
methods of less than 0.05 have concurrently confirmed statistical significance of the former’s comparably robust
optimization competency. Moreover, developed box plots for the fitness function of each examined algorithm have
been graphically presented in Figure 8. Likewise, the smallest interquartile range as produced by the proposed
RAMPA-based method with tunable CF has justified its performance excellence with respect to its fitness function. A
heightened degree of consistency as exhibited by the proposed algorithm, thus, substantiated its competitive per-
formance precision.

Criteria are subsequently set on the evaluation of time responses with the purpose of accentuating both the proposed
algorithm’s optimization dominance and proficiency. On this account, observation is especially made on the rise time Tr, the
settling time Ts, percentage overshoot%OS of trolley displacement y1ðtÞ, length of the rope y2ðtÞ, maximum sway angle of
the payload y3ðtÞ, as well as the maximum inputs of both trolley force u1ðtÞ and hoist force u2ðtÞ; to assess the accuracy of
MnHR-NEPID controller in controlling a MIMO gantry crane system through the employment of dissimilar metaheuristic-
based methods. The aforementioned settling time is hereby understood as duration the system would require to achieve 2%
of the predetermined final response value, whilst rise time being duration the system would require to progress between
10% and 90% of said final response value. Comparison has been exclusively proceeded between the proposed algorithm
and the ASED based method as formerly introduced in ref. 35. Notably, contemporary fine-tuning of design parameters for
MnHR-NEPID controller within the current study has been operationalized in advertence to simulated nature of the
previously investigated ASED-based method.35 In this regard, initial values of the design parameters, coefficients of the
ASED based method, and weighting coefficient from ref. 35 are thoroughly retained towards controlling the MIMO gantry
crane system.

Optimal design parameters of the MnHR-NEPID controller based on both the proposed RAMPA-based method
with tunable CF and the ASED-based method, alongside the respective fitness function of each algorithm, have then
been tabulated in Table 4. As such, the optimal control parameters are especially decided apropos ideal of the lowest
fitness function as generated via 25 independent trials prior simulated implementations for the controlling of MIMO
gantry crane system to appraise the time responses as acquired through a number of output responses. As observed

Figure 8. Box plot of the fitness function produced by different algorithms from 25 trials.
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within the detailed table, a marginally diminished fitness function is recorded from the parameters of the proposed
algorithm at a value of 59.299 against a value of 59.7851 from the ASED-based method. Although the ASED-based
method has the advantage of choosing the initial design parameters that are quite closed with the optimal design
parameters, the RAMPA-based method with tunable CF can still produce better fitness function.

Following this, the output responses alongside their magnified versions of y1ðtÞ, y2ðtÞ, and y3ðtÞ have been separately
outlined through Figures 9–11; with the control input responses u1ðtÞ and u2ðtÞ alongside their magnified versions being
individually presented through Figures 12 and 13. Coinciding with the previous criterion, comparison is especially
proceeded between both the proposed RAMPA-based method with tunable CF and the ASED-based method.35 Never-
theless, the proposed algorithm has fundamentally exerted dominating output responses in terms of trolley displacement
y1ðtÞ for generating a relatively shorter settling time of Ts = 2.42 s, against the competing ASED-based method with a
settling time of Ts = 2.8 s. However, the latter approach has demonstrated outshining results for both the recorded rise time
Tr and the percentage overshoot %OS at the respective outcomes of Tr = 1.037 s and 5.9%, as compared to the registered
results of Tr = 1.06 s and 7.9% from the proposed algorithm. With this being said, reported discrepancies in performance of
the proposed algorithm do not compromise its exceptional applicability and output performance within a MIMO gantry
crane system.

Forwarded with response evaluation of the rope’s length y2ðtÞ, a shorter settling time has, yet again, been recorded by the
RAMPA-based method with tunable CF at a value of Ts = 1.19 s, against the result of Ts = 1.668 s from the ASED-based
method. Such excellence is similarly identified within the aspect of percentage overshoot %OS, in which the 5.74% as
produced by the ASED-based method is being considerably outperformed by the proposed algorithm with a percentage of
3.76%. In spite of a marginally superior response rate as demonstrated by the ASED-based method over the proposed
RAMPA-based method with tunable CF amidst the transient state following their respective performances of Tr = 0.445 s

Table 4. Optimal MnHR-NEPID controller parameters with corresponding fitness function obtained by RAMPA and ASED-based
methods for MIMO gantry crane system.

ψ MnHR-NEPID

RAMPA ASED35

X
0
i 10X

0
i X

0
i 10X

0
i

ψ1 KP11 0.624128 4.208506 0.412453 2.584952
ψ2 KI11 2.300254 199.6431 1.922952 83.74372
ψ3 KD11 �0.19479 0.638567 0.122947 1.327233
ψ4 N11 0.874059 7.482708 1.158438 14.40249
ψ5 ζ 11 �1.18688 0.065032 �1.21144 0.061455
ψ6 λ11 �1.73407 0.018447 �2.21508 0.006094
ψ7 α11 �1.33116 0.046648 �0.74954 0.178018
ψ8 σ211 0.866984 7.361804 1.564149 36.65633
ψ9 KP13 1.427022 26.73145 1.084276 12.1416
ψ10 KI13 �0.11684 0.764124 �0.46581 0.342128
ψ11 KD13 �0.85244 0.140462 �0.46397 0.343583
ψ12 N13 0.094668 1.243563 0.462779 2.902543
ψ13 ζ 13 1.004612 10.10675 0.622977 4.197364
ψ14 λ13 0.095831 1.246899 0.981306 9.578697
ψ15 α13 �0.66333 0.217106 0.335253 2.16398
ψ16 σ213 0.179427 1.511566 1.196119 15.70794
ψ17 KP22 0.819675 6.601997 0.793758 6.219541
ψ18 KI22 0.202942 1.595667 0.248673 1.772853
ψ19 KD22 0.061326 1.151664 0.352263 2.250417
ψ20 N22 �0.1493 0.709081 0.543821 3.498013
ψ21 ζ 22 �1.08102 0.082982 0.004553 1.01054
ψ22 λ22 0.0412 1.099513 �3.08616 0.00082
ψ23 α22 �1.08359 0.082491 �3.11668 0.000764
ψ24 σ222 �1.69782 0.020053 �2.82184 0.001507

J 59.299 59.7851
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Figure 10. Rope length y2ðtÞ responses.

Figure 9. Trolley displacement y1ðtÞ responses.
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and Tr = 0.49; noticeable excellence as exhibited by the proposed algorithm in both aspects of settling time and percentage
overshoot have undeniably conformed its proficiency as the better optimization approach for rope length performance
criteria.

Further outlined in Figure 11, attention is consequently relocated to the controllers’ responses to oscillations in the
system’s payload based on the registered sway angles y3ðtÞ throughout its transition. Herewith, the proposed

Figure 11. Sway angle y3ðtÞ responses.

Figure 12. The trolley force u1ðtÞ responses.
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RAMPA-based method with tunable CF has similarly generated an overshadowing response to the payload’s os-
cillations through its relatively smaller maximum sway angle of 0.1958 radian and a shorter settling time of Ts =
1.63 s, as compared to the recorded maximum sway angle of 0.2006 radian and settling time of Ts = 2.27 s from the
ASED-based method. Alternatively, results acquired for both the trolley force u1ðtÞ and the hoist force u2ðtÞ as,
respectively, outlined in Figures 12 and 13 have showcased competitive outcomes between the proposed algorithm
and its compared algorithm counterpart. Such has been utmost apparent following a marginally greater trolley force
u1ðtÞ as generated by the ASED-based method between the range of ≈ - 10.05 N and 1.172 N, over the lower control
input of RAMPA-based method with tunable CF that falls between the range of ≈ �8.978 N and 0.9261 N. On the
contrary, a relatively smaller hoist force u2ðtÞ was propelled by the ASED-based method between the range of
≈ �14.51 N to �3.479 N, as compared to the proposed algorithm with a greater control input that falls between the
range of ≈ �16.06 N and �3.681 N. Whilst a higher hoist force was yielded by the proposed algorithm, a shorter
settling time corresponding to encountered transformation in the rope’s length y2ðtÞ as per previously reported

Figure 13. The hoist force u2ðtÞ responses.

Table 5. The results of time responses analysis of the MIMO gantry crane system.

Response Performance parameters RAMPA ASED35

y1ðtÞ Rise time, Tr (s) 1.06 1.037
Settling time, Ts (s) 2.42 2.8
Percentage overshoot, %OS (%) 7.9 5.9

y2ðtÞ Rise time, Tr (s) 0.49 0.445
Settling time, Ts (s) 1.19 1.668
Percentage overshoot, %OS (%) 3.76 5.74

y3ðtÞ Maximum sway angle (radian) 0.1958 0.2006
Settling time, Ts (s) 1.63 2.27

u1ðtÞ Maximum input (N) 0.9261 1.172
Minimum input (N) �8.978 �10.05

u2ðtÞ Maximum input (N) �3.681 �3.479
Minimum input (N) �16.06 �14.51
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through Figure 10 has, nonetheless, reassured the approach’s superior compatibility in regulating and simultaneously
achieving the appropriated length of the rope within a MIMO gantry crane system. In view of an enhanced positional
precision and a diminished sway angle on the system’s payload, comprehensive analyses undertaken towards
recorded time responses have, therefore, advocated the proposed RAMPA-based method with tunable CF as an
excellent approach for the optimization of MnHR-NEPID controller. Collective findings from such appraisals are
further summarized and tabulated in Table 5.

Emphasis is subsequently allocated to the analyzing of interrelationship between both responses of error and
switching mechanism. Herewith, control variable error responses for trolley displacement, length of the rope, and
sway angle (e1ðtÞ, e2ðtÞ, and e3ðtÞ) as generated by RAMPA-based method with tunable CF have been cumulatively
demonstrated in Figure 14. Magnified results of switching mechanisms η1, η2, and η3 as previously expressed in
equation (25) for the operationalization of multiple nodes are further illustrated through Figures 15(a)–(c). In par-
ticular, regulation of the involved switching mechanisms would solely rely on the control variable error of
�Th > ejðtÞ> Th in accordance to the normalized Gaussian function as formerly stated in equation (26). Observed
through Figure 14, multiple nodes were activated ensuing a comparatively higher control variable error response that
surpassed the error threshold of Th ¼ ± 0.05 yielded between respective simulated intervals of 0–1.1 s, 0–0.6 s, and 0–
1.4 s for the individual factors of e1ðtÞ, e2ðtÞ, and e3ðtÞ. Pinpointed via the illustrated data tips, the magnified results of
switching mechanism η1 as presented in Figure 15(a) then regulated exponentially between the values of 0 to
1 following transformation in the control variable error from ± 0.05 to ± 4.67. Similar circumstance is encountered for
the magnified results of switching mechanism η2 as presented in Figure 15(b) with its value shifted from 0 to 1 ensuing
change in the control variable error from ± 0.05 to ± 1.28. On the same note, magnified results of switching mechanism
η3 as showcased in Figure 15(c) have demonstrated a pointier curve in normalized Gaussian function against its η1 and
η2 counterparts, whilst shifted its value from 0 to 1 upon experiencing a change in the control variable error from ±
0.05 to ± 0.64. Conversely, the control variable error responses e1ðtÞ, e2ðtÞ, and e3ðtÞ in Figure 14 for time intervals
1.16–10 s, 0.6–10 s, and 1.4–10 s, respectively, produce less control variable error than the threshold Th ¼ ± 0.05. In
this situation, the switching mechanisms became 0 as illustrated in Figure 15(a)–(c). Therefore, instead of using
multiple nodes hormone regulation, the single-node hormone regulation of the standard NEPID would be im-
plemented. Thus, the total interactions of the switching mechanism for MnHR-NEPID controller would reduce the
high control variable error that exceed the error threshold in order to produce better control accuracy.

In consideration of the algorithms’ applicability facing circumstance of uncertainties, performances of MnHR-NEPID
controller following implementations of the proposed RAMPA with tunable CF and the compared ASED-based method

Figure 14. The error responses for the MIMO gantry crane system by using RAMPA-based method with tunable CF.
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have been assessed under the situations of unexpected disturbance. In this case, simulation was performed on the examined
MnHR-NEPID–based method through introduction of disturbance dðtÞ ¼ � 0 0 dy3ðtÞ

�T
to the MIMO gantry crane

system. Succeeding settings of the disruptive signals in accordance to the illustration in Figure 16, external disturbance was
applied to the sway angle y3ðtÞ at a given equation as per follows

Figure 15. The switching mechanisms for the MIMO gantry crane system by using RAMPA-based method with tunable CF. (a) magnified
for η1, (b) magnified for η2, and (c) magnified for η3.
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Figure 16. Disturbance signal dy3ðtÞ.

Figure 17. Trolley displacement y1ðtÞ responses with disturbance.
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Figure 18. Rope length y2ðtÞ responses with disturbance.

Figure 19. Sway angle y3ðtÞ responses with disturbance.
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dy3ðtÞ ¼
8<
:

0, if 0 < t < 5,
0:1, if 5 ≤ t ≤ 7,
0, if 7 < t < 10:

(36)

Registered responses for trolley displacement y1ðtÞ, length of the rope y2ðtÞ, and sway angle y3ðtÞ of the studied
system, alongside their magnified versions amidst crucial oscillations upon encountering interruption of external
disturbance, have been independently outlined through Figure 17, 18, and 19. As shown in Figure 17, a smaller
oscillation was generated by the RAMPA-based method with tunable CF at a shorter recovery interval of 1.6 s
following the disturbance, against a settling time of 1.9 s from the former ASED-based method. While similarly
unchanged lengths of the y2ðtÞ have prevailed in Figure 18 for both the investigated algorithms; a marginally smaller
sway angle y3ðtÞ can be observed in Figure 19 for the proposed algorithm over the contending predecessor amidst
intervention of the external disturbance. A comparatively diminished settling time of 2 s as recorded for RAMPA-
based method with tunable CF against an interval of 2.3 s from the ASED-based method has further reaffirmed the
former’s marginal excellence in uncertainty management. Cumulative results, thus, verified the proposed algorithm as
a better approach towards the optimization of MnHR-NEPID controller for the controlling of a MIMO gantry crane
system in the presence of external disturbance.

Conclusion

Amidst introducing the RAMPA-based method with tunable CF as a contemporary optimization algorithm on the data-
drivenMnHR-NEPID controller of a MIMO gantry crane system, the current study has fundamentally unearthed three main
substantial contributions. Providing an increased withdrawal ability from the local optima, the first contribution hereby
confirmed the proposed method as an improvement to the conventional MPA in view of its random average location
calculation. The second contribution then contributes an advanced search capability to the conventional MPA by adoption
of the tunable CF that allows wider users’ flexibility in acquiring a balanced degree of exploration and exploitation within
the algorithm. Embracing the objective of ameliorating the practicality of a MIMO gantry crane system, this study is
ultimately revealed as a founding research which employed multi-agent–based optimization for the fine-tuning of MnHR-
NEPID control parameters.

Demonstrated through plotted convergence curves of the average fitness function, RAMPA-based method with tunable CF
prevailed as the superior approach over its other metaheuristic-based predecessors upon yielding the smallest fitness function.
Such eminence is complemented by the method’s comparatively superior performance in the aspects of fitness function, as well
as the total norms of error and input, in addition to an enhanced accuracy as confirmed through the conducted Wilcoxon’s rank
test and box plot statistics. A considerably diminished settling time for trolley displacement, percentage overshoot of the rope’s
length, maximummagnitude of the sway angle, as well as range of the recorded input force against performance of the formerly
published ASED-based algorithm has further established a better time response on the proposed method. Such has also been the
case when it comes to counteracting adversities brought about by the experimented disturbance.

In accounts of both feasibility and vast applicability of the RAMPA-based method with tunableCF, the proposed method
holds promising potential in actual implementations of numerous control applications. However, the method’s sole ex-
cellence in handling single fitness function is contravened by its deficiency in the concurrent management of multiple fitness
functions with contradicting objectives. Upcoming research concern within similar academic context is, therefore, allocated
to the examining of multi-objective RAMPA-based method with tunable CF for accuracy improvement. This is on the
realization that the proposed method can also be investigated towards resolutions of real-time issues as encountered within
systems ranging from automatic voltage regulator (AVR) control system, induction motor drive control of an electric
vehicle to maneuvering control of a twin-rotor MIMO system, through its alternative implementations within other
nonlinear PID controllers.
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Appendix

Abbreviations

MPA Marine predators algorithm
RAMPA Random average marine predators algorithm

CF Adaptive coefficient to control step size
PID Proportional-integral-derivative
PI Proportional-integral

PIDA Proportional-integral-derivative-acceleration
NEPID Neuroendocrine-PID

SbSR-NEPID Sigmoid-based secretion rate neuroendocrine-PID
MnHR-NEPID Multiple-node hormone regulation neuroendocrine-PID

SISO Single-input–single-output
SIMO Single-input-multi-output
MIMO Multi-input–multi-output
PSO Particle swarm optimization

GWO Grey wolf optimizer
MFO Moth-flame optimization
MVO Multi-verse optimizer
SCA Sine-cosine algorithm
SSA Salp-swarm algorithm
SMA Slime mould algorithm
FDA Flow direction algorithm

ASED Adaptive safe experimentation dynamics
LMI Linear matrix inequalities
LQR Linear quadratic regulator
ADE Adaptive differential evolutionary
DDE Dynamic differential evolutionary
SMC Sliding mode controller
CS Cuckoo search
DE Differential evolution
BO Bayesian optimizer

MPC Model predictive controller
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FIPSO Fully informed particle swarm optimization
MFAC Model-free adaptive control

PDTSFC Proportional-derivative Takagi–Sugeno fuzzy controller
ADRV-VRFT Active disturbance rejection-virtual reference feedback tuning

RLS Recursive least-squares
PA Projection algorithm

k-NN k-Nearest Neighbors
MPPT Maximum power point tracking
TDPV Triple-diode photovoltaic

PV Photovoltaic
MLT Multi-level threshold
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