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Abstract

The Clifford algebra for the group of rigid body motions is described. Linear elements, that is points, lines
and planes are identified as homogeneous elements in the algebra. In each case the action of the group of
rigid motions on the linear elements is found. The relationships between these linear elements are Jfound in
terms of operations in the algebra. That is, incidence relations, the conditions Jor a point 1o lie on a line for
example are found. Distance relations, like the distance between a point and a plane are Jound. Also the
meet and join of linear elements, for example, the line determined by two plane and the plane defined by a
line an a point, are found. Finally three examples of the use of the algebra are given: a compuier graphics
probletn on the visibility of the apparent crossing of a pair of lines, an assembly problem concerning a
double peg-in-hole assembly, and a problem from computer vision on Jinding epipolar lines in a stereo
vision system.

1 Introduction

In a paper by Ruiz and Ferreira [6], formulae were derived for the distances between points and planes,
points and lines and so forth. The main aim of that work describes how to sotve problems involving several
of these geometrical constraints using the technique of Grobner bases. However, the derivation of the
geometrical formulac was rather cumbersome and the representation of the linear elements, the points lines
and plancs was somewhat arbitrary.

In this work the relations between linear elements in space is studied in some detail, that is the distances
between points, lines and planes, conditions for incidence and so on. By introducing the Clifford algebra
we are able to describe the possible relations in a systematic way, so that, for example the condition for
incidence between a pair of linear elements is given by a single equation no matter whether the elements
are points, lines or planes. Moreover, these relations are rather simple in form and hence the system of
equations that would be generated by sets of geometric constraints are in general, simpler than those found
in [6].

Several other attempts have been made to introduce Clifford algebras into engincering, notably Lasenby
et al [3]. This work concentrates on the Clifford algebra associated with the group of rotations. This means
that lines and planes which do not pass through the origin cannot be incorporated in a natural way. By
contrast, this work follows Porteous 5] in looking at a Clifford algebra naturally associated with the group
of rigid body motions. These ideas in fact can be traced back to Clifford himself who introduce what he
called “biquaternions” to model the group of rigid body motions, [2].
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The rest of this paper is organised as follows. The next section introduces the Clifford al gebra, showing
how the group of rigid body motions can be identificd with a subset of the algebra. The following section
introduces the linear elements, the points, lines and planes, showing which al gebra elements correspond
to these geometric objects. Then follows a section which deals with the relationships between the linear
clements. This is done on a case by case basis, but a final subsection summarises the result derived. Finalty,
three examples are given, a computer graphics problem on the visibility of the apparent crossing of a pair
of lines, an assembly problem concerning a double peg-in-hole assembly, and a problem from computer
vision on finding epipolar lines in a stereo vision system.

2 The Clifford Algebra

As mentioned above the treatment here closely follows Porteous {5, p.276], and used in [7, Chap. 9]. A
Clifford algebra is an associative algebra generated by a number of basis elements €1, €3, ...,€,. The product
of algebra elements is simply denoted by juxtaposition, for example the product of a pair of generators is
written ¢y¢;. This is a new element of the algebra and we can produce more elements with more products.
However, the products of generators are subject to a few relations. First of all the product of generator
elements is anti-commutative,

eie; = —ee;, forall iz j

The second set of relations concerns the squares of the generators. In standard approaches to Clifford
algebra the square of a generator elements is always —1, see for example [3], however, it is also possible io
require that generators square to 0 or +1. Here we will consider an algebra which has 3 generators e, €3, €3
which square to —1 and a single generator ¢ which squares to 0,

Thus the algebra has 2* = 16 basis elements,

1
€1,62,€3,€
€1€7, £1€3, €1€, €283, €28, €3€
€1€2€3, €1€32€, £1€38, €2€3€
21e2€3¢

A general element of the algebra is a linear combination of these basis elements. For example, 1 +e3
or e +2e1e3. The product of two such elements can be simplified by applying the distributive rule, the
anti-commutation properties and relations for the squares of generators,

(I+es)(ez+2e1e5) = e5+2e1e3+eser+2eze1e3
e+ 2e1e3 - epe3 — 2010383
e2+2e1e3 — eze3 1 2ey

Notice that each basis element has a grade corresponding to the number of generators it contains. So this
algebra contains one basis element of grade 0, four of grade 1 (the generators), six of grade 2, four of grade 3
and one of the highest grade 4. Algebra clements which consist of linear combinations of basis elements all
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of the same grade are called homogeneous elements. In the following, subspaces of homogeneous elements
play a major role.

Finally here, we define an operation called conjugation on the algebra. This operation is a linear map-
ping of the algebra to itsell. The conjugation of an element will be denotes by an asterisk, so for ex-
ample e] = —ey. In fact the conjugate of any generator is simply the negative of the generator. The
conjugate of other basis elements can be found by conjugating the individual generators and revers-
ing their order. For example, (e1e2)" = (—e;)(~e1) = —eje;. A three generator example would be,
{e1e203)" = (—e3)(—ez)(—e1) = e1e2¢3. The conjugate of any element of the algebra can now be found
by using the linearity property of the operation. That is, the conjugate of a general element of the algebra
is found by conjngating the generators. For example, if @ = ¢; + 3e;e; then the conjugate of a will be,
a*t = —€1 —36182.

Grade O elements, (scalars) are required to be unchanged by conjugation. Notice that this is consistent
with our previous definitions,

.'|.’|= = (—8121)* = —ff{t?-lh = -—£18) = 1

It is not difficult to see that for any pair of elements a and & in the algebra, the conjugate of the product is
given by, {(ab)” = b*a*.

2.1 The Group of Rigid Body motions

The reason why this Clifford algebra is so important is that it contains the the group of rigid body motions
in 3-D, actually its double cover. It also contains the Lie algebra of the group and several geometrical
representation. That is, the spaces of points lines and planes in 3-D which are transformed by the group of
rigid body motions.

Here we look at the group of rigid body motions. The group elements are elements of the al gebra which
have the shape,

1
The translation part of the rigid body motion corresponds to,
I =ke) +hex+tes

where Iy, Iy and 1, are the x, y and z-components of the translation vector.
The rotational part of the motion is given by,

h = cos(8/2) +sin(8/2) (veezes + vyeser +v,e1e0)

where 8 is the angle of rotation and vy, vy and v, are the components of the unit vector along the axis of
the rotation. Notice that these elements satisfy the condition, kt* = /°h = 1 since V24 v§ +v2=1. In fact
the group of element defined above double cover the rotations since both k and —k correspond to the same
rotation. This is probably best understood by considering the action of these group elements on points. Let
a point in R® be represented by Clifford algebra element of the form, 7 = rye; + ryeéa + re3. The action of
the rotation group on these points can now be written as,

' =hri*

This is straightforward but tedious to check. Notice that the product of two rotations is represented by the
Clifford product of the corresponding algebra elements.
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Returning to the group of rigid body motions we see that the action of a rotation on a translation is given
by,
A1+ %Ie) —(ht %hte) —(ht %(hth*)he)

Just as we would expect.
Finally here notice that the elements of the group will satisfy the equation,

g8 =1
A more detailed account of the above can be found in [7, Chap. 9]

2.2 Hodge Star

In this section a new operation on the algebra is iniroduced, the Hodge star. This is often used in exterior
algebras as a way of introducing a metric. The Clifford algebras are very closely related to the exterior al ze-
bras. In Clifford algebras where all the generators square to —1 this operation is simply (left) multiplication
by the basis element of highest grade. Hence a separate operation is unnecessary. Here though, the basis
clement of highest grade, e1e2¢5¢ will not give an isomorphism of the algebra. The product with any other
basis element containing the generator e will give 0.

As usual, we will define this linear map by specifying its action of the basis clements of the algebra
and then extend the definition to all other elements by demanding linearity. We write the Hodge star of an
algebra element a as xa. For basis elements we require that a(xa) = e) e,e3¢, thus for the basis elements we
have,

*1 = e1e,e3e *ei1¢ze3e =1
*€] = @2€3€ *€y€38 = —eg
*€2 = €381¢ *&€3€1€6 = —¢&g
*€3y = £E1é2¢ *€1e2€¢ = —¢€3
*€ — —@£1€2€3 *€1€283 = €

*k€1€3 = €3€ *€3€ = €189
*€283 = €18 *€E = €383
*€3€)1 = ¢gae *e2€ = @3¢

So, for example, if p=eeze3 +2Xxe2¢3€ 4 yesere 4 zejeze then xp = e — xey —yes —zés.

3 Points, Lines and Planes

In this section we detail the representation of points, lines and planes as elements in the Clifford algebra.
Also we show how the group of rigid body motions acts on these elements.

3.1 Planes

We can specify a plane by giving its unit normal vector n and the perpendicular distance from the origin,
see figure 1. As usual, the vector equation of the plane is given by,

n-r=d
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Figure 1: A Plape

where r is any point on the plane. Notice that these are oriented planes since reversing the sign of n and d
will invert the orientation of the plane.
In the Clifford algebra we can represent planes as elements of the form,

N = Heey + Myey +ige3 +de
These elements must satisfy the quadratic condition,
=1

this ensures that the vector n has unit length. Note that, n* = —zx, hence we could also write the condition
as a2 = —1. Now if we subject the plane toa rigid body motion the normal vector and distance to the origin
will change as follows,

n=Rn, d=d+(Ra)-t

This is most casily seen by considering the effect on the vector equation for the ptane above. In the Clifford
algebra this can be represented by,
w = gug"
Explicitly this will be,
1 1 1 .
= (h+ Ethe) (n+de)(h* + Eeh*ht) = hnk*+ (d — 5 (hnh't + thak*))e

where we have made extensive use of the relations of the Clifford algebra.
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3.2 Points
We will represent points in R by elements of the Clifford algebra of the form,

P =e€1ere3+xerese + yesere + zejeae

The effect of a rigid body motion is given by,

v =gpsg

Notice that these points satisfy the equation pp* = 1, (or p® = 1, since p* = p) however, they are not
the only sotutions. There is another R® of solutions where the cocfficient of e1e2e3 18 —1 instead of +1. We
could think of these as “negative’ points, or points with the opposite orientation (whatever that means).

This representation is different from the one given in {5] and used in [7]. That representation has a
slightly different group action, which would make the relations given below more complicated.

3.3 Lines

Lines in R® can be specified by a pair of vectors, a unit vector v, in the direction of the line and a moment
vector u =r X v, see figure 2. These vectors will thus be orthogonal v-u = 0. In the Clifford algebra we
will represent a ling by elements of the form,

£=(viere3 +vyeze; +vie1e9) + (e + Uyese + u-eze)

burt satisfying the relation,
=1

This relation combines the requirements that v is a unit vector and that v and u are orthogonal. These lines
are in fact directed lines since —¢ is the same line as £ by with the opposite direction.
The effect of a rigid body motion on these vectors is given by,

v =Ry, u =Ru+txRy
and hence the effect of a rigid body motion on a line can be represented as,

¢ =gig*

4 Relations between Points, Lines and Planes

In this section we investigate the relations between the linear elements. There are several forms of relation
to copsider, conditions for incidence, distances between elements and operations which form a new element.
In different cases the the relations which are appropriate will be different, There is no distance to consider
if the elements intersect in the general case, like a line and a plane. Often the condition for incidence is
that the distance between the elements vanishes. Moreover, the operation to construct a new element from
others will usually fail if an incidence condition is satisfied, for example consider the plane formed by a
point and a line, if the point lies on the line then no unique plane is defined.
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Figure 2: A Line in Space

4.1 A Pair of Planes

The simplest case to consider turns out to be a pair of planes, this is because we are representing planes by
grade one elements in the Clifford algebra. So consider a pair of planes,

W = ARe+Ryer+agest+de
Ny = #ne;+ Aayer +hoes +dae

In general, a pair of planes will determine a line. Since the line lies in both planes, it wili be perpendicutar
io both normal vectors. Hence the direction of the line will be proportional to the vector product of the
normals to the planes,

VoI Xy

To find the moment of the line, consider a point r on the line. Since this point lies in both planes we have
n; -r =d; and my -r = dp. Thus the moment is given by,

EXVverx(ng Xn)=dn —dn,

The formula for the vector triple product has been used here. Notice that the constant of proportionality is
the same as above.
INow consider the Clifford algebra formula,

130 — Mply = 2(My1 i — Ry Ryz)eaes +2(n e — R in)eser + 2(Matyy — Ry e )e en+
2(danyg — dh He)ere+ 2(d2ny1 — dlnﬂ)eze +2({dzny — dinp)ese
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This is clearly proportional to the line determined by the planes. The constant of proportionality is the
magnitude of m; x my, the sine of the angle between the planes. Hence, if the planes are parallel or anti-
parallel the above expression yiclds zero. A condition for the planes to be parallel or anti-parallel is thus,

MMy — Ty =0
Otherwise, the line determined by the planes can be found by setting,
WMy — MR = A, sothatthelineis  £=A/VAA*

Notice that, interchanging the order of the planes changes the sign of £. That is, the orientation of the
line is reversed.

4.2 A Line and a Plane

Here we take a line,
£ =vieres+veser +vie1e0 +zere+ Byese +uese
and a plane,
R =nye| +nyer +ne3+de

Usually, a line and a plane will meet at a single point. Suppose this point is r, then since the point lies on
the plane we have n-r=4d. Also because the point lies on the line we have r x ¥ = . So consider the
following triple product,

nx(rxv)=nxu=(n-vir—dv

using the formula for the vector triple product. The intersection point is therefore proportional to,
renxutdv

and the constant of proportionality is 1/(n-v).
A short computation shows that the Clifford algebra formula is given by,

£+ ol =2(nVe + nyvy + NV, Jerenes+
2(myb, — nytdy + dvy)esese + 2(nyu, — nylt; + dvy)esere+ 2(nzuty — Rylty + dv; e e2e

The quantity, n- v only vanishes when the line is perpendicular to the plane’s normal. Moreover,
Int+nf=0

gives the condition for the line to lie the plane. Otherwise, we get a unique point of intersection given by
setting,

in4 nf = p, so that the point is 2=p/pp*
Actually this will give a “positive’ or ‘negative’ point depending on the sign of n-v, it is a simple matter
to choose the positive point by taking the positive or negative square root according to which gives the
coefficient of eqeze3 as +1.
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4.3 Three Planes
Here we find the point determined by three planes. The planes will be written,

n = Mxe1 +Myer +Hnac3+ die
Wy = myey+npert+mpent die
W3 = May€) +Mayey +Hagez +dae

The point common to these three planes will be the solution to the system of linear equations,

RyX+nryy+rpz = d
M X+ Ryyy+mz = d
Py X+ Nayy+137 = da

This is easily solved in terms of determinants. Now in the Clifford algebra we can take the alternating sum
of the products of three planes,

) Ay T3 — M0 T3 -+ Mo M3y — M3 A + M3y My — My Az Ay =

mix My Ny di my m,
Olmx my, my |erese;+6|d; My Ny |exeset
Hix M3y N3 d3 ny n
Rix d2 ny xRy d
Oingy dy ny  |ezeres+6|ny Rzy dy |ejeqe
MWy d3 n3 mx n3y ds

Hence we may find the point of intersection by setting,

T M N3 — TepTy M3 + MMMy — M3y + T3 My — T M3y =
and then the point is,

p=p/vpp*

As usual, we must take care io take the sign which produces a positive point, one where the coefficient of
eyeqe3 is +1.

4.4 A Point and a Plane
Given a point,
P =e1e2e3 +1ie2e3¢+ryesee+reieze
and a plane,
== 1ye1 + Myes + 83+ de

the minimum distance between the them lies along a normal to the plane and is given by,l=n-r—d,seec

figure 3. This quantity will be positive if the point is on the same side of the plane as the normal vector.
In terms of the Clifford algebra, we have,

ap— pr = 2le erese
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Figure 3: Distance from a point to a plane

That is, .
I= 3* (mp — pr)
The condition for the point to lie on the plane is simply,
ap—pr=>0

We can also find the line perpendicular to the plane and passing through the point. Clearly the direction
of the line is the same as the normal vector o the plane and the moment of the line is given by r x n. In the
Clifford algebra we have,

prtap=-2 (leezeg; +nueses +merey + (nry — myrp)ere + (g1 — ngryeze + (nery — nyrx)eg;e)

4.5 A Point and a Line

Let the point be,
P = e1ee3 +1yereze+ryesere+re1e2€

and the line,
L =vyere3+vyese; +vie1€ +ue e+ Uyer€+ Ueze

As long as the point does not lic on the line then the point and line will determine a plane. Now if q is a
potnt on the line we have,
(Q—r)Xv=u—rxv=sn

where 5 is the distance from the point (o the line and n is the unit normal to the plane containing the point
and the line. To find the distance of the plane to the origin we can take the dot product of the normal with a
point r on the plane,

(u—rxv)-r=u-r=sd
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In the Clifford algebra we have,
£p— pl=2(ux — ryv; + rivy)esese 4+ 2(uy — rovy — rev;)esere + 2(u; — ravy — ryve)ereze
Hence, the condition for the point to lie on the line is simply,
fp—pf=0

To produce the plane determined by the line and the point we need the Hodge star operation. In the
Clifford algebra we have,

(xE)(*p) + (xp) (%) = —2(rxtax + ry1ty + ryuz)er2€3
2(ux —ryv, + vy Yesese — 2ty — r,vy — 15 )esere — 2(u; — IiVy —TyVi)eieze
So if we set,
(*0)(xp) + (xp) (x£) = g, thenthe plane is = = (x0)/1/(x0){x0)*
Notice that the orientation of the plane is determined by the direction of the line and the position of the
pOII;ZTLinally here, consider the expression,
Plt+Ep = —2vier —2vyes - 2vie3 —2(ravy+ryvy L rpncde

This, up to an overali constant is the plane perpendicular to the line £ but passing through the point p.

4.6 Pairs of Lines

Here, we look at the disposition of a pair of lines,
£ = vnerez+vyeser +vierer +uneie + upere + uyeze
£r = vpeses -+ Vyesel +vpeiez +uneie + uyrere + upese

We have several things to consider here. First the angle between the lines a, this is given {up to a sign)
by, ¥1 -¥2 = cosa. Then there is the distance between the lines, this is the minimum distance which is
measured along the common perpendicular. Let s be this distance and suppose r; and r, are the respective
points on the two lines which meet the common perpendicular. Now r, —r, is a vector of length 5 along
the perpendicular which is parallel to the vector vo x v;. Hence we have,

ssina=(ry—ry) -vax v =v;-up+uy-vy

This gives the distance s, which is always positive and hence the sign of the angle between the line.
In the Clifford algebra we have,

b182 + £28) = —2(Va1Vin + Vy1Vy2 + Vv )+
2(vattty + Vy1lyy + Vitlizy + Uy vy + HyiVyy +iz1Vp )e1es€3e

That is, .
5 (416, + £2£7) = cosa — ssinae ese3e
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Remember that {* = —£. This means that if 1/2(£,£; + £2£1) = %1 then the lines ¢; and ¢, are parallel or
anii-parallel. On the other hand if 1/2(£;1£;+ £2£]) = O then the lines meet and are perpendicular.

Finally here, we look at the line perpendicular to a pair of lines. From above we have that the line ¢
perpendicular to a pair of lines £; and £; must satisfy the linear equations,

OE4HE=0  and  GE +U5=0

It is simple to check that the commutator expression £, £, — £, £, satisfies both equations, unfortunately it is
not usuelly a line, that is it does not satisfy £6* = 1. In the Clifford al gcbra the commutator is,

£16y — by =2(vy1v2 — vuvp)eres + 2(v1 v — v v)eser + 2 vivyz — Vy1va)erer+
2(vyrttgn — Ve iyn + ity Vyz — W1 Vyn)ere 4 2(Voytyy — Vi1 ttys + Uy Vi — i) V3 )ese+
2(varitys —Vy1ier + sy V,3 — Uy V2 )e3e
Now consider a specific example, say £; = ees, this is a line along the x-axis, and £, = cos agres +
sinaere; — ssinae;e + scosaeze, which is at an angle o to the first line but displaced s units along the z-

axis. The line perpendicular to this pair of lines is clearly along the z-axis. The commutator 1 J2(816— b2 61)
is,

1 . .

2 (£182 — £281) =sinae;e; + scosaeze = (sina+ scosaejerese)ee,
Suppose now we have an arbitrary pair of lines in space, we can always find a rigid body motion g which
will translate the lines to the configuration given above. The transform of a line is given by ¢ = glg’
and hence the commutator transforms as 1/2(614, — £,£1) = 1/2g(£14; — £,£1)g*. The coefficient (sin o+

sC08eeze3¢) is easily seen to be invariant with respect to rigid transformations. Hence, for a general pair
of lines we have the result,

N (£1£2 — £2£4)) = (sina+scosaejesese)l
where o is the angle between the lines s their minimum distance and £ the common perpendicular line.
The commutator defined above plays a centrat role in the Lie algebra of the group of rigid body motions,

see [7].
4.7 Pairs of Points
Let the two points be,

P11 = eiexez-tr1e€ze3e+yie3e1e 2121828
P2 = e1@e3 +Xaereze - yaese12413e18q¢

The line joining the two points in the direction from p; to p; can be found from the formula,

(xp1)(xp2) = (*p2)(*p1) = 2(¥122 - z1y2)erea +2(z1%0 — X122)e3ey + 2(x1y2 —vix)erea+-
Z(Iz —xl)e1e+ 2(}'2 -— y1)82€+2(22 - Zl)ege

So the line can be found by setting,
(xp1) (%p2) — (xp2)(xp1) = A, and thus the line is €= (xN)// (3RA) (xA)*
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The distance between a pair of points can be found from the relation,
Pip2— Pap1 = 2x1 ~Xp)ere+ 2y — ya)eze + 2(z) — 2p)ese
However, a shorter method results from the relation,

(P2 =P (P2~ 1)) = (2 — 32 + 02— 1 )2 + (22— 21)) erezese

4.8 Three Points

Finally here, we look at the plane determined by three points, Let the three points be r; 5 and r5 represented
by the Clifford algebra elements,

1 = e1e3+xiexezet yi1ezere+z1e1e2e
P2 = eiexeztneresetyiezere+ reieze
P3 = eiexe3+xerese+Nezere 4 ae1ene

The normal to the plane determined by the points will be proportional to,
nx(—F)X(r—r) =rXrs+rxr+rxen

The distance from the origin can be found by taking the scalar product of the normal with any point on the
plane,
d=mn-rp <r;-(r: xr3)

In the Clifford algebra we look at the alternating sum,

(1 )(xP2) (xP3) — (xp2) (xp1) (%P3} + (*p2) (xp3) (xp1) -
(xp3) (xp2)(xp1) + (xp3) (xp1} (xP2) — (xp1) (*P3) (xp2) =
6(y122 —21¥2 +¥223 — 22¥3 + 2153 — Y123 )eaeae+
6(z1%2 — X122+ Za%3 — X223 + 2351 — X371 )esere+
6(x1y2 —y1X%2 + X2¥3 — yaxs + Y1305 — X1 )e epet
6(x122¥3 ~ X13223 + Y1223 — Y1225 + Z1V243 )ereze3

Hence, if we set,
(1) (xP2) (xP3) — (*P2)(xP1) (xP3) + (xp2) (xps) (xp1) —
(xp3)(kp2) (%p1) + (xP3) (k1) (xp2) — (%p1) (+p3) (xp2) = ©

%= (xa)// (xo)(x0)*

Notice that the condition for the point to be collinear will be,

then the plane wilt be given by,

o=0
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4.9 Summary

In this summary section the main results given above are collected together in a more convenient form. First
of all the incidence relations,

¢ A point p lies on a line £ if and only if pé* + £p* =0.
@ A point plies on a plane m if and only if pn* Lap* =0.
e A line £ lies in a plane x if and only if " -+ nf* = 0.

Notice how the inclusion of the conjugate makes these relations look uniform. Recall that, p* = p while
#=—fandn* = —m.
In general two lines in 3-D are skew, the condition for them to be coplanar is, *(£3£5 + £2£;)e = 0. That

is, the coefficient of e;esese in the expression (£1€3 + £4¢}) is zero. Notice that, for lines to be coplanar,

cither they meet at a point or they are parallel. Parallel lines are often thought of as meeting “at infinity”.
Next we look at the distance relation between pairs of elements. In most cases only positive distances
make sense, hence nothing is lost if the square of the distance is found.

» The distance s, between a pair of points p; and ps can be found from,

1
st = 200)0)* where p=pip,—ppy

Recall that, in this case we also have the simpler formula, s> = x({(p1 — pa) * (p — p2)).

e The perpendicular distance s, from a point p to a line ¢ can be found from,
1 ,
&= Z(w)(:w) where v={p—pf
¢ The perpendicular distance {, from a point p to a plane x is

I= %*(np—p:rt)

This is a directed distance, the quantity is positive if the point is on the same side as the normal to
the plane and negative if it is on the other side of the plane. Notice however, that this formula is
congistent with the ones given immediately above since,

P= ()08 where §—xp—pn

The intersection between pairs of linear elernents is another linear element sometimes referred to as the
meet of the two original elements. The formulae for the meet of general efements are given by,

¢ The point determined by the intersection of a line £ and a plane x s,
p==xpf+/pp* where p=/fa*—ni

The sign is chosen so that the coefficient of e;eze3 is +1.
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e The line determined by the intersection of a pair of planes x; and m; is,
£=7/VM* where A=mn}—mu}
e The point determined by the infersection of three planes my, &; and s is given by,

p==%p/y/pp* where p= & I [Tk
iji

Again the sign is chosen which gives 41 as the coefficient for the term e1eze3. The symbol g; in the
above represents the alternating tensor, this has a value of 41 if i jk is and even permutation of 123
and —1 if the permutation is odd, is all other cases its value is O.

The join of a pair of linear elements is the linear span of the subspaces determined by the elements. The
results we have found for the joins of elements are,

e The line determined by a pair of points p, and p, is given by,
€= (A)/VERA) where A= (xp1) (kp2)" — (p2)(xp1)”
o The plane determined by a point p and a line ¢ is given by,
%= (x0)/y/ () (0} where &= (+£)(xp)" ~ (xp) (xt)"
¢ The plane determined by three points p;, p; and p; is given by,
n=(x0)/y/(x0)(x0)* where o= Uzkaz‘jk(*Pl)(*PZ)(*m)

where we have used the alternating tensor &% again.

The relations between pairs of lines are slightly different in character from the results given above. This
is because they involve the notion of perpendicularity. Given a pair of lines #; and £ we have,
1 . .
5 (L1fy +1i28]) = (cosa—ssinaeiesese)

% (f1b2~b28)) = (sina+scosaeiezese)d

where, a is the angle between the lines, s the minimum distance between the lines and £ the line perpen-
dicular to both lines. From these result it is possible to derive conditions for the lines to be parallel or
perpendicular.

There are two final results on perpendicularity,

e The plane &', perpendicular to a line £ and passing through a point p is given by,
1
al = E(Pfk ~£p*)
» The line £, perpendicular to a plane x and passing through a point p is given by,

i
£ = 5 (pn* —ap")
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Image Plane Focus

Figure 4: The Apparent Crossing of Two lines

5 Examples

5.1 Visibility

In many graphics applications the following problem is of some importance. Suppose we have a pair of
lines in space, £; and £;. In general these line will be skew, but if we project them onto an image plane their
projections will meet, usually at a point, see figure 4. The problem is to compute the coordinates of this

crossing point. To simplify the computations we suppose that the focus of the projection is located at the
origin, this point will be labelled, py = 1eze3. The plane of projection will be be taken to be the plane,

n=e3+4 fe

That is, a plane parallel to the xy-plane but displaced f units in the z-direction.
The two lines will be given by,
&1 = vaeestvyieser +vaeiertuneieuyere+uyese

by = vneles+vpese +vperes uneiet Uyprere +upese

To find the crossing point of the projections of these lines we find the line through the focus which meets
both lines. This line will be the meet of the two planes formed by the focus and each of the lines in space.
The plane formed by the first line and the focus is given by,

(aw1) o (%1 ){xp0) + (%po) (xf1) = 2up ereze + 2uyrezere+ 2uy ereae

hence,
w1 < —(un1€q + uy1€2 + Uz e3)
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and a similar expression can be found for the plane formed by the second line. The meet of these two planes
can be computed as follows,

£ o (mymy — mpmy ) = (uyqiyn — Uz Uy )eres + (Uprttg — Uy ity esey + (Mx1ttyz — Uy 2102

The constants of proportionality will be zero if either line passes through the focus or if both lines project to
the same line in the image plane. In these cases the solution is not defined. However, in all other cases we
don’t need to find the constant of proportionality since the image coordinates of the crossing point (x7, y;),
are given by,

_ (s — wg ) _ e —ugun)

(tx1itys — ty1u52)° (sxrttyz — yyt4x2)

These simple formulae demonstrate the utility of specifying a line using its direction and moment vector,
the solution is given in terms of the components of the vector product of the moment vectors of the two
lines. To reinforce the point we can look at what happens under a change of viewpoint.

Suppose the change of viewpoint is given by a rigid body motion g, that is both the focus and the image
plane undergo the same transformation. Usually the result will be required in the local coordinates fixed
to the image plane, hence rather than transform the focus and image plane we can apply g* to the lines.
Assume that the transformation g* is given by a rotation R and a translation t, as in section 2.3 above, the
vector product of the moment vectors is now,

x5 and i

u; X B = (Ru; +tx Rv;)  (Ruz +t x Rvy)

Finally here, it is important to know whether or not the apparent crossing can be seen. That is, do both
the points on the lines corresponding to the crossing point in the projection, lie in front of the image plane?
To find the point where the ray through the crossing point meets #; we can intersect £; with the plane mp,

P % £ay +mply & (Vi + Vyiltyr + Vo2 )e ese3+

(1t — ity  uza )esese + (wntt — upn)ezere -+ (Uy1itxs — sty e ege

The constant of proportionality here is clearly v; - uy. Now, if we assume for the sake of argument, that the
point can be seen if it is on the opposite side of the image plane (;x = ¢3 + feé) to the origin then we will get,

TPy - P = (iy10e2 — Uxrttyy — F(v1 - 02) )e1e2e3e

V-2
The coefficient is positive, and hence the point visible, when,
Uy1ty — Uy Uyy > f¥1-1p)

For the apparent crossing to be visible both this point and the corresponding point on £; must be visible.

5.2 Assembly

The following example is taken more or less directly from [6]. The problem is to insert a pair of peg into
two holes. Each peg or hole determines a line in space hence the problem becomes; Find group clements
which transform a line £, to ¢} and simultancously map the line £ to £5. Where £; and #] are the lines
determined by the first peg and hole and ¢; and £, come from the second peg and hole.
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Now we may express the problem as a pair of equations in the group elements g,

6 = ghgt
&6 = ghg

A simple manipulation turns these equations into a system of homogeneous linear equations for the coeffi-
cients of g,

fig—gh = 0
He—gbh = 0

Each of these Clifford algebra equations represents 4 equations for the eight unknown coefficient of the
group element g. This gives 8 linear equations in all which, together with the quadratic condition gg* = 1
for the group elements means that the system is over-determined. Hence, we seek conditions for a solution
to exist. Take the first of the equations and post multiply it by the conjugate of the second to give, after a

little rearrangement,
ghbe =06"

If we perform the same operation in the other order and add the result to the above we get,
gty +06)g" = (WG +68) = (66" +£6°)

Since, the combination ¢;£; + £2£7 is invariant under the action of the group. The relation derived above
tells us that if a solution exists then the angle and separation of the two pais of lines must be the same.
Now suppose that two different solutions exist g1 # g2. If we set g = £1£5 then is not difficult to see
that we must have,
518 = g£1 and fgg = gﬁz

The condition g; # g2, implics that g # 1. The general solution to one of the above equations, say the first,
is a linear combination of the elements 1, e1e3e3¢, £ and £1e,e2eq¢. If £1 5 £> then a simultancous solution
to the two equations cannot contain £1. For a non-trivial solution we must have f1e1ese3e = lherepeze. This
implies that the lines are parallel since it tells us that the direction vectors along the lines arc the same.

5.3 Stereo Vision

Suppose we have a pair of cameras looking at the same scene. As in section 5.1 above, cach camera can
be specified by a focus point and an image plane. An object point in the scene determines a line through
the focus of each camera. The image point is the point where that line meets the image plane of the
particular camera. Now, the correspondence problem in stereo vision is the problem of identifying pairs
of image points, one from each camera, which correspond to the same object point in the original scene.
This problem is greatly simplified by finding the epipolar line. Suppose we know the image point in the
right camera, the original object point must have been a point lying on the line Jjoining this right image
point with the right focus, let us call this line £. The set of possible image points in the left camera is now
restricted to intersections of the left image plane with lines through the left focus which meet £z. This set of
possibilities for the left image point comprise a line in the left image plane which is known as the epipolar
line see figure 5(a).

In the standard case where the cameras are identical and their relative positions are given by a pure
trapslation perpendicular to the optical axes of the cameras, the problem of finding the epipolar line is
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4
Left Image Plane Right Image Plane Right Image
Plane
)
d
Left Focus Right Focus ‘ )
Epipolar Line (a) Left Focus (b)

Figure 5: (a) The Epipolar Line in a General Set-Up (b) A Particular Example of a Stereo System

trivial and can be found in any standard Robot vision text. See [4, Chap. 7], for example. If the cameras are
in general position the problem is much harder, especially if we are forced 1o rely on schaolbook geometry.
However, using the methods developed above we can give a simple method for the most gencral situation.
Let p; and p, be the left and right focus points respectively and suppose p; is the image point in the
right plane. Now we find the plane formed by these three points and intersect this planc with the left image
planc z;. The resulting line is the epipolar line corresponding to the right image point p;. Notice that in
practice we do not need the plane given by the three points but only the algebra element proportional to the
plane. This is because normalisation will take place at the end of the computation anyway. So we compute,

= Y ek (xpi) (+P;) (%Px)
and then,
A = my (*0) — (%0)my,
and the epipolar line is £ = A/v/AN".

A shght complication to this very simple scheme is that usually points and lines in both the left and
right image planes will be specified in terms of local (image) coordinates. Suppose that the left camera is
located so that the focus coincides with the origin and the image plane is perpendicular to the z-axis. With
this choice of coordinates the global coordinates correspond with the image coordinates of the left camera
and we have,

P2 = e16z€3
Next suppose that the group element g takes the right camera to the standard position described above. If
Dr =e1€2e3 and pr = e €383 4 xgereze+ yrese1e + frereze are respectively the position of the right focus
and image points given in [ocal coordinates ( f is the focal distance from the focus to the image plane}). In
the global coordinate system these points become,

pi=gprg, and  py=g'pg

Using these values in the procedure outlined above will yield the epipolar line in coordinates local to the
left camera.

Often the line in the left image will be required in the form of the standard equation, ax + by = ¢. The
epipolar line in the left image plane will be given by,

£ =viere3+vyese) + fryeie+ fryere + {(xrLvy — yrv:)ese
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Let (x, y) be a point on the line in image coordinates, the equation of the line expresses the fact that the
projection of the point onto a direction perpendicular to the line is constant. That is, v,x — v,y = c. We can
see {rom this that ¢ is the z-component of the moment of the line:

VX = VY = Uy

To make the above clearer we can look at a particular example. Consider the case of two identical
cameras, whose optical axes lie in a plane and whose focal lengths are both f. Further, suppose that the
distance between the focus of either camera and the meeting point of the optical axes is d, see figure 3(b).
This is a fairly common configuration, familiar from normal human vision. The angle between the optical
axes is known as the angle of vergence and will be denoted 8 here. The computation for the equation of the
epipolar line proceeds as follows.

9+ . B dsi i}
g8 = COSE Sin 58331 — asin 2

P = gleiereg
erez¢3 +dsinBeseze + d(1 — cosB)e ese

P2 = e1éxes
Pz = g (e1e2e3+xperese+yresere+ feere)g
= e1ez¢3+ (xpcos® — fsinB)erese + yresere + (xrsin®+ foosO+ d(1--cosf))ercze
o = Neu(xp)(ep;) (kpr)
= 6d (yR(I —cosB)ezese + (xz(1 —cosB) + fsinB -+ d(1 — cosB) sinB)eseie — ygsin 981626)
my = es+fe
A= mp(*0) — (%ol
= Beges —Aesey +Afere+Bfee+Cfese
where
A = 12dyp(l—cosB)
B = 12d{xg(1—cos0)+ fsinB+d(1—cosB)sind))
C = [2dygsin®

Hence the equation of the epipolar line in the left camera corresponding to the point {x&, ¥&) in the right
camera is,
—Ax; —Byy =C
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or more explicitly,
¥r{1 —cos®)xz + (xr(1 — cosB) + fsin®+ d(1 — cosB) sin®))y; + ygsin® = 0

Notice, that we could fix d and 8 to get a result which simply relates the coordinates of the point in the right
image to the epipolar line in the left image. The above result would also be useful for more general stereo
vision systems with actuated cameras.

6 Concluding Remarks

Some of the results found above will be familiar from Clifford’s original biquaterion algebra, [2]. However,
by staying with the original Clifford algebra we are able to include relations concerning points and planes.

The relations we have found are not particularly efficient from a computational point of view. By careful
study it may be possible to improve this situation by not computing terms which will eventually cancel. For
manual computations however, these term can be used to check for errors.

However, the main purpose of the results presented above is for symbolic rather than numerical com-
putations. There are many situation where symbolic results are preferable to numerical ones. For example,
returning to the example in section 5.3, supposc the stereo vision system had movable cameras as in many
tete-presence devices currently under development. It would be sensible siore the relations for the epipo-
lar line in a symbolic form, so that in a particular position the relevant line could be computed by simple
substitution.

As another example, many workers have suggested that computer drafting systems should have some
symbolic capability. This would enable them to store symbolic relationships between parts, and hence be
able to exclude infeasible configurations, see [1] for example.

The work Clifford algebra for points lines and planes presented above, can be extended in a reasonably
simple way to represent flags, see [7, Chap. 10}. Flag is a nested sequence of linear elements, for example
a pointed line is a line containing a distinguished point. From the above, it is clear that we can represent
a pointed line by an algebra element of the form, p+ £. Where pis a homogeneous element of grade 3
satisfying pp* = 1, that is a point, and £ is homogeneous of grade 2 satisfying £4* = 1, that is a line. To
ensure that the point lies on the line we must have p£* + £p* = 0. Notice that this shows that the space of
all pointed Jines is an algebraic variety. This has important consequences for the study of the geometry of
the space. There are other spaces of partial flags: pointed planes and lined planes and also complete flags,
consisting of a point on a line in a plane. The complete flags were called ‘soma’ by Study, [8]. These flag
spaces are useful when looking at problems involving simple mechanical joints. For exampie, a pointed line
can be used to represent a hinge or revolute joint while a lined plane can represent a sliding or prismatic
joint.

Finally, in other work on Clifford algebra, notably [3], much is made of the maximum/minimum prob-
lems like finding least squares solutions to systems of constraint equations. A geometrical approach to such
problems would be to differentiate with respect to vectors tangent to the group of rigid body motions, In
the Clifford algebra we can represent such derivatives as commutators with elements of the Lie algebra of
the group or rigid motion. This Lie algebra turns out to be precisely the space of homogeneous element of
grade 2 in the Clifford algebra. Unfortunately, there is not enough space to elaborate on this here.
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