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Introduction: Although excess iron induces oxidative stress in the liver, it is unclear whether it directly activates the hepatic
stellate cells (HSC).

Materials and Methods: We evaluated the effects of excess iron on fibrogenesis and TGF-β signaling in murine HSC. Cells
were treated with holotransferrin (0.005-5 g/L) for 24 hours, with or without the iron chelator deferoxamine (10 µM). Gene
expressions (α-SMA, Col1-α1, Serpine-1, TGF-β, Hif1-α, Tfrc and Slc40a1) were analyzed by quantitative real time-
polymerase chain reaction, whereas TfR1, ferroportin, ferritin, vimentin, collagen, TGF-β RII and phospho-Smad2 proteins
were evaluated by immunofluorescence, Western blot and enzyme-linked immunosorbent assay.

Results: HSC express the iron-uptake protein TfR1 and the iron-export protein ferroportin. Holotransferrin upregulated TfR1
expression by 1.8-fold (P o 0.03) and ferritin accumulation (iron storage) by 2-fold (P o 0.01), and activated HSC with 2-fold
elevations (P o 0.03) in α-SMA messenger RNA and collagen secretion, and a 1.6-fold increase (P o 0.01) in vimentin
protein. Moreover, holotransferrin activated the TGF-β pathway with TGF-β messenger RNA elevated 1.6-fold (P ¼ 0.05), and
protein levels of TGF-β RII and phospho-Smad2 increased by 1.8-fold (P o 0.01) and 1.6-fold (P o 0.01), respectively. By
contrast, iron chelation decreased ferritin levels by 30% (P o 0.03), inhibited collagen secretion by 60% (P o 0.01),
repressed fibrogenic genes α-SMA (0.2-fold; P o 0.05) and TGF-β (0.4-fold; P o 0.01) and reduced levels of TGF-β RII and
phospho-Smad2 proteins.

Conclusions: HSC express iron-transport proteins. Holotransferrin (iron) activates HSC fibrogenesis and the TGF-β
pathway, whereas iron depletion by chelation reverses this, suggesting that this could be a useful adjunct therapy for patients
with fibrosis. Further studies in primary human HSC and animal models are necessary to confirm this.

Key Indexing Terms: Fibrosis; Fibroblasts; Holotransferrin; Liver. [Am J Med Sci 2017;](]):]]]–]]].]
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During chronic liver injury, activation of hepatic
stellate cells (HSC; the liver pericyte) occurs. This
is characterized by upregulation of the HSC

activation marker alpha smooth muscle actin (α-SMA)
and increased expression of profibrogenic cytokines
such as transforming growth factor-β (TGF-β).
This invariably increases the expression of the mesen-
chymal marker vimentin and leads to the deposition of
extracellular matrix components such as collagen to
form a scar tissue, clinically referred to as fibrosis.
Fibrosis reversibility may occur in early-stage disease,
but it is less likely when scar tissues undergo cross-
linking and become mature (i.e., advanced fibrosis).1,2

Therefore, targeting fibrosis during the early stages may
prevent progression to cirrhosis (or advanced-stage
chronic liver disease). However, despite the promising
advances in the reversion of fibrosis and even cirrhosis
to some extent in human3-5 and in animal models,6,7

mortality due to liver cirrhosis has doubled in the past 25
years. Liver transplantation remains the only curative
option for end-stage cirrhosis, and approximately 60%
lished by Elsevier Inc. on behalf of Southern Society for
� www.ssciweb.org
of liver transplantations are performed because of
cirrhosis.8 Thus, further understanding of fibrogenic
mechanisms is essential to help decelerate disease
progression and increase the probability of regression.

“Fibrosis-promoting” chronic liver injury such as viral
hepatitis, alcoholic liver disease and nonalcoholic fatty
liver disease, often exhibit increased iron loading and
deregulated iron metabolism.9-13 Unlike hereditary hemo-
chromatosis, whereby specific mutations in iron-related
genes lead to excessive systemic and cellular iron over-
load,14 it remains unclear whether excess iron is a
mediator, or simply a marker of advanced liver fibrosis
in the aforementioned etiologies. Under physiological
conditions, iron is bound to its carrier protein transferrin,
which delivers iron to cells by binding to the iron-uptake
protein transferrin receptor (TfR)1 expressed on cell
surfaces. Cellular iron-efflux, on the contrary, is mediated
via the iron-exporter protein ferroportin, and excess iron is
stored as ferritin. Under iron-excess conditions, when
buffering capacities of the iron-binding proteins transferrin
and ferritin are saturated, the excess “free,” unbound iron
accelerates the formation of reactive oxygen species in
Clinical Investigation. 1
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Mehta et al
the hepatocytes via the Fenton reaction, resulting in
oxidative stress and hepatocyte injury.15,16 In turn, the
damaged hepatocytes secrete cytokines and growth
factors, which activate the HSC and promote fibrogene-
sis.17,18 However, apart from these indirect effects (i.e.,
iron induces hepatocyte oxidative stress), no study has
yet reported whether iron can directly modulate the HSC
phenotype in murine HSC.

Herein, we hypothesized that iron can directly regu-
late the HSC phenotype. Unlike previous studies that
had used inorganic sources of iron such as ferric
chloride or ferric chloride: citrate,19,20 we used holo-
transferrin (holo-Tf) because it is the most physiological
form of iron. Murine HSC were treated with a range of
holo-Tf concentrations and core fibrogenic genes and
proteins evaluated by quantitative real time-polymerase
chain reaction (qRT-PCR), Western blot and the
collagen-secretion assay. We assessed whether holo-
Tf could regulate components of the TGF-β pathway and
further examined if reduction of iron with the chelator
deferoxamine (DFO) could inhibit iron-induced fibrogenic
effects. Our studies show for the first time that the HSC
express iron-transport proteins and that holo-Tf can
directly activate HSC in part, via the TGF-β pathway.
We further show that iron chelation reverses HSC
fibrogenesis.

MATERIALS AND METHODS

Cell Culture and Treatments
The mouse HSC line (GRX) was maintained in

Dulbecco's modified Eagle medium (Gibco, UK) with
2% fetal calf serum, 1% penicillin-streptomycin (Gibco,
UK) and 1% gentamycin (Gibco, UK). Trypsinization was
performed with Tryple-E solution (Gibco, UK). Cells were
treated with holo-Tf (Sigma Aldrich, UK) (0, 0.005, 0.05,
0.5, 2 and 5 g/L) for 24 hours and assessed for various
parameters. In separate experiments, cells were treated
with the iron chelator DFO (Sigma Aldrich, UK) (0, 0.1, 1,
10 and 100 µM) for 24 hours and then harvested. In
another set of experiments, referred to as the DFO
double-dosage experiment, HSC were first treated with
0, 0.05, 0.5 and 2 g/L holo-Tf for 24 hours, and then
supplemented with 10 µM DFO for the next 24 hours.
Following this period, HSC were further supplemented
with 10 µM DFO for an additional 24 hours. At the end of
this 72-hour treatment period, cells were harvested and
the parameters were assessed. Gene expressions (α-
SMA, Col1-α1, Serpine-1, TGF-β, Hif1-α, Tfrc and
Slc40a1) were analyzed by qRT-PCR, whereas TfR1,
ferroportin, ferritin, vimentin, collagen, TGF-β RII and
phospho-Smad2 proteins were examined by immuno-
fluorescence, Western blot and enzyme-linked immuno-
sorbent assay.

Immunofluorescence for Iron-Transport Proteins
The cellular iron-uptake protein TfR1 and the

iron-export protein ferroportin were detected by
2

immunofluorescence. Briefly, cells were fixed in 4%
formaldehyde for 10 minutes at room temperature,
blocked with 1% bovine serum albumin in 0.1% phos-
phate-buffered saline (PBS)-tween and then probed
with rabbit anti-TfR1 antibody (5 µg/mL, Abcam
AB84036) or rabbit antiferroportin antibody (10 µg/mL,
Abcam, AB85370), as per manufacturer's instructions.
Fluorescence detection was achieved by using a
secondary goat anti-Rabbit Alexa Fluor 488 antibody
(2 µg/mL, Abcam).
Gene Expression Analysis
Cells were washed with PBS and treated with Trizol

reagent (Sigma Aldrich, UK) (500 µL per well), and RNA
was extracted as per manufacturer's instructions. Com-
plementary DNA (cDNA) synthesis of 1,000 ng RNA was
conducted using iScript cDNA Synthesis Kit (Biorad,
UK), as recommended by the manufacturer. The mes-
senger RNA (mRNA) expressions of the genes Serpine-
1, Col1-α1, α-SMA, TGF-β and Hif1-α were normalized
to s9 expression (Supplementary Table S1 online).21,22

Gene expression was measured using Applied Biosys-
tems 7500, and the data were analyzed by the relative
quantification method, Delta-Delta Ct (ΔΔCt), and
expressed as 2−ΔΔCt.23
Ferritin Level Measurements
Cells were washed with PBS and lysed with lysis

buffer (radioimmunoprecipitation assay buffer [Sigma
Aldrich, UK] and Complete-Miniprotease inhibitor cock-
tail tablet [Roche, UK]), as per manufacturer's instruc-
tions. Samples were collected on ice, vortexed for 3
seconds and ferritin levels measured using a mouse
ferritin enzyme-linked immunosorbent assay kit (Abcam,
UK). Levels were normalized to protein concentration
measured by Precision Red (Cyclosystem, USA).
Western Blot
Cells were washed with PBS and lysed with radio-

immunoprecipitation assay buffer (Sigma Aldrich, UK)
containing Complete-Mini Protease inhibitor cocktail
(Roche, UK) and Phospho-stop (Roche, UK), as per
manufacturer's instructions. Cell extracts were centri-
fuged for 5 minutes at 14,000 rotations/minute, and the
supernatant was electrophoresed on Novex Blot 4-12%
Bis-Tris gels as per the Novex Bolt system (Thermo-
Fisher Scientific, UK). Following protein transfer to
polyvinylidene difluoride or nitrocellulose membrane via
the iBlot system (Invitrogen, UK), membranes were
probed with primary antibodies (1:1,000) overnight in a
cold room, followed by treatment with appropriate
horseradish peroxidase-conjugated detection antibodies
(1:10,000) for 1 hour, at room temperature on shaker
(Supplementary Table 2 online). Protein bands were
observed on the ChemiDoc imager (Biorad, UK) and
analyzed using the Image lab software (Biorad, UK).
THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES
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Effect of Iron on Liver Fibrogenesis
Protein density was analyzed by the Image-J software
available at the National Institutes of Health.

Viability Assay and Collagen Secretion
For viability studies, cells were first seeded at a

density of 5 × 103 cells/well in 96-well plates. After 24
hours of treatment with holo-Tf, viability was measured
by using the CCK-8 kit (Dojindo Laboratories, Japan), as
per the manufacturer's instructions. Secreted collagen
was measured in cell-conditioned media. Cells were first
seeded in a 6-well plate. Following holo-Tf treatments,
conditioned media were collected and collagen meas-
ured using the Sircol assay (Bicolor, UK). Levels were
normalized to protein concentration measured by Precision
Red (Cyclosystem, USA).

Statistical Analysis
Data were analyzed using student’s t-test (two-tailed

distribution, 2 sample and unequal variance). The level of
significance was set at P o 0.05. Data were presented
as mean ± standard deviation (n: 3-9), and statistical
analyses are based on n values.

RESULTS

HSC Expressed Iron-Transport Proteins and
Responded to Exogenous Iron

Mouse HSC expressed the cellular iron-uptake pro-
tein TfR1 (Figure 1A) and the iron-export protein ferro-
portin (Figure 1B). Basal mRNA expression of the core
fibrogenic genes Serpine-1, Col1-α1 and α-SMA, and
the key iron-transport genes Tfrc and Slc40a1 in the
HSC are shown in Figure 1C. To assess whether HSC
would respond to exogenous iron, cells were treated
with holo-Tf, the physiological relevant form of iron.
Holo-Tf significantly upregulated the expression of the
iron-uptake protein TfR1 (holo-Tf 0.05 g/L: 1.7-fold, P o
0.03; holo-Tf 0.5 g/L: 1.8-fold, P o 0.03; holo-Tf 2 g/L:
1.7-fold, P o 0.05) (Figure 1D). As the greatest induction
of fibrogenic genes Serpine-1 and α-SMA occurred 24
hours posttreatment (Supplementary Figure 1 online),
HSC were treated with holo-Tf for 24 hours in all
subsequent experiments. To determine whether holo-Tf
treatment led to accumulation of cellular iron, we
measured levels of the iron-storage protein ferritin.
Results demonstrate that treatment with holo-Tf resulted
in a dose-dependent accumulation of cellular iron: treat-
ment with 0.005 g/L of holo-Tf increased ferritin by
1.6-fold (P o 0.01), and treatment with 5 g/L of holo-Tf
increased ferritin by 2-fold (P o 0.01) (Figure 1E).

Holo-Tf Activated HSC and Induced Deposition of the
Extracellular Matrix Collagen

As HSC expressed iron-transport proteins and
responded to exogenous iron by increasing cellular iron
(Figures 1A and 1E), we next examined whether iron
accumulation was associated with HSC activation.
Copyright © 2017 Published by Elsevier Inc. on behalf of Southern Society for
www.amjmedsci.com � www.ssciweb.org
Accordingly, HSC were treated with holo-Tf for 24 hours
and then harvested for mRNA and protein analysis. We
found that holo-Tf upregulated the HSC activation
marker, α-SMA, by up to 2-fold (P o 0.03) (Figure 2A),
and the profibrogenic marker and TGF-β target gene,
serpine-1, by up to 2.5-fold (P o 0.05) (Figure 2B).

Furthermore, holo-Tf treatment induced collagen
secretion into the conditioned media by up to 1.9-fold
(P o 0.03) (Figure 2C) and increased vimentin protein
levels by up to 1.6-fold (P o 0.01) upon 0.5 g/L holo-Tf
treatment (Figure 2D and Supplementary Figure 2
online). Previous studies had reported that iron could
mediate its effects via the hypoxia-inducible factor 1,
alpha subunit (HIF1 α).24 Herein, we observed that holo-
Tf induced Hif1 α expression by up to 1.9-fold (P o 0.05)
after 24 hours (Supplementary Figure 2 online). The
addition of holo-Tf however, had no effect on HSC
viability (Supplementary Figure 2 online).

Holo-Tf Upregulated TGF-β mRNA and Promoted
TGF-β Signaling

The fibrotic liver microenvironment is enriched with
profibrogenic factors.25 As TGF-β is the prototypical
profibrogenic cytokine and is overexpressed in the
fibrotic liver tissue,26 we examined whether holo-Tf
enhanced TGF-β signaling. Data showed that holo-Tf
upregulated TGF-β mRNA expression (holo-Tf 0.005 g/L:
1.2-fold, P ¼ 0.05; holo-Tf 0.05 g/L: 1.7-fold, P ¼ 0.07;
holo-Tf 0.5 g/L: 1.6-fold, P ¼ 0.05) (Figure 3A), and it
also increased protein levels of the TGF-β receptor TGF-
β RII by up to 1.8-fold (P o 0.01) (Figure 3B) and
phospho-Smad 2 by up to 1.6-fold (P o 0.01)
(Figure 3C). Collectively, the data suggest that holo-Tf
directly activated the HSC via the canonical TGF-β
signaling.

Iron Chelation Abrogated Iron-Induced Fibrogenesis
and Inhibited TGF-β Signaling

DFO treatment has been successfully used in
patients with hemochromatosis (iron overload).27 Having
shown that exogenous iron could promote TGF-β signal-
ing and activate HSC (Figures 2 and 3), we next tested
whether iron depletion with DFO inhibits HSC activation.
To determine the most appropriate concentration of
DFO for iron depletion experiments, HSC were treated
with a range of DFO concentrations for 24 hours. Results
showed significantly reduced ferritin levels (P o 0.03)
when HSC were treated with the lowest DFO concen-
tration (0.1 µM), and this level of reduction was main-
tained across all other DFO concentrations (Figure 4A).
In addition, iron chelation was associated with 450%
reductions (P o 0.05) in α-SMA mRNA (Figure 4B), TGF-
βmRNA (Supplementary Figure 3 online), Col1-α1 mRNA
(Figure 4C), and in the levels of secreted collagen
(Figure 4C).

Next, we determined whether DFO could inhibit
holo-Tf-induced HSC fibrogenesis. Based on earlier
Clinical Investigation. 3
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FIGURE 1. Expression of iron transport and storage proteins in murine HSC. Murine HSC were used, and expression of iron transport or
storage proteins was evaluated by immunofluorescence (IF), qRT-PCR and Western blot. (A) Iron import protein TfR1 by IF; (B) the iron-export
protein ferroportin by IF; (C) 1% agarose gel image of cDNA amplicons obtained during qRT-PCR: Serpine-1, Col1-α1, α-SMA, Tfrc, Slc40a1
and the housekeeping gene s9, respectively; (D) Western blot of TfR1 and corresponding densitometry following holo-Tf treatment for 24 hours;
(E) levels of ferritin (the iron storage protein) by ELISA following holo-Tf treatment for 24 hours. Data are presented as mean ± SD. *P o0.05,
**P o 0.03 and ***P o 0.01 compared to basal conditions. ELISA, enzyme-linked immunosorbent assay; SD, standard deviation.

Mehta et al
findings (Figure 4 and Supplementary Figure 3 online),
HSC were treated with a combination of 10 µM DFO and
holo-Tf (0.05, 0.5 and 2 g/L) for 24 hours. Furthermore,
10 µM DFO was used because this was the lowest
concentration that significantly repressed collagen
mRNA and protein secretion (Figures 4C and 4D). As
we did not observe any significant response with this
(Supplementary Figure 4 online), we proceeded with the
DFO double-dosage experiment, as explained in Meth-
ods. Briefly, HSC were first treated with holo-Tf for 24
hours, then supplemented with 10 µM DFO twice, for 24
hours each time, and then harvested after the 72-hour
4

treatment period. For DFO double-dosage experiments,
we excluded the lowest and the highest dosages of
0.005 and 5 g/L holo-Tf, respectively, because these are
physiologically less relevant, and holo-Tf concentration
ranges from 0.05-2 g/L and more closely represents the
low-to-moderate iron-excess conditions seen in non-
hereditary iron-loaded conditions.

Results showed that DFO double-dosage treatment
significantly reduced iron-induced ferritin levels by 30%
(P o 0.03) (Figure 5A). Holo-Tf-induced collagen secre-
tion was also reduced by up to 60% (P o 0.01)
(Figure 5B). Moreover, α-SMA and Col1-α1 mRNA were
THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES
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FIGURE 2. Exogenous iron activated murine HSC. Mouse HSC
were treated with holo-Tf for 24 hours. HSC were then harvested for
RNA and protein analysis by qRT-PCR and Western blot, respec-
tively; conditioned media was collected for collagen secretion
assay. (A) α-SMA mRNA. (B) Serpine-1 mRNA. (C) Collagen
secretion into conditioned media as measured by the Sircol assay.
(D) Vimentin by Western blot. Data are presented as mean ± SD.
*P o 0.05 and **P o 0.03 compared to basal conditions. SD,
standard deviation.

FIGURE 3. Iron loading activated the TGF-β pathway in murine
HSC. HSC were treated with holo-Tf for 24 hours and then
harvested for RNA and protein analysis by qRT-PCR and Western
blot. (A) TGF-β mRNA; (B) TGF-β RII Western blot and densitometry;
and (C) phospho-Smad 2 Western blot and densitometry. Data are
presented as mean ± SD. *P ≤ 0.05 and **P o 0.03 compared to
basal conditions. SD, standard deviation.

Effect of Iron on Liver Fibrogenesis
significantly repressed by up to 80% (P o 0.05) and
30% (P o 0.03), respectively (Figures 5C and 5D).
Similarly, TGF-β and Hif1-α mRNA were also significantly
downregulated by up to 60% (P o 0.01) and 50% (P o
0.03), respectively (Supplementary Figure 5 online). The
DFO double-dosage treatment also decreased the iron-
induced levels of TGF-β RII (Figure 6A) and phospho-
Smad2 (Figure 6B), components of the TGF-β pathway.
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DISCUSSION
Although the role of excess iron in mediating hep-

atocyte damage is well established,18 its effect on HSC
phenotype and function remains poorly understood.
Herein, we provide compelling evidence to confirm that
excess iron directly enhances HSC fibrogenesis in part,
through TGF-β activation, and that iron chelation
reverses this.

In this study, we have comprehensively evaluated
the fibrogenic response in a mouse HSC line:19,20,28

HSC were treated with a range of holo-Tf and DFO
concentrations, and multiple fibrosis-associated genes
and proteins evaluated by qRT-PCR, Western blot and
collagen secretion assays. We found that iron loading
Copyright © 2017 Published by Elsevier Inc. on behalf of Southern Society for
www.amjmedsci.com � www.ssciweb.org
directly activated HSC significantly; holo-Tf treatment
upregulated α-SMA, increased vimentin levels and
induced collagen secretion. Conversely, treatment with
the iron chelator inhibited or reversed the fibrogenic
phenotype. We also demonstrated for the first time that
the HSC express key iron transporters; the iron-uptake
protein TfR1 and the iron-storage protein ferritin. In
contrast to previous reports,19,20,28 we further confirmed
that holo-Tf induced intracellular iron accumulation
(ferritin levels), and that iron chelation reduced HSC
(i.e., cellular) iron under both basal and holo-Tf supple-
mented conditions. These results imply that the changes
in fibrogenesis observed with holo-Tf treatment and iron
chelation could be attributed to differences in cellular
iron levels. The cause(s) for the apparent “saturation” of
ferritin levels (iron accumulation) upon holo-Tf treatment
(Figure 1E) is not known, but may be related to the
saturation of transferrin receptors on cell surfaces (which
prevented further iron uptake), or the cellular iron
regulatory mechanisms exhibited by the iron response
elements on Tfrc transcripts that prevent its translation
to TfR1 protein under intracellular iron-replete state,
thereby limiting further iron acquisition.29 In addition,
Clinical Investigation. 5
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FIGURE 4. Iron chelation repressed fibrotic responses in murine
HSC. Mouse HSC cultures were treated with a range of DFO
concentrations for 24 hours. At the end of treatment, HSC were
harvested and cellular iron levels (ferritin) measured by ELISA, RNA
analyzed by qRT-PCR and collagen secretion into conditioned
media assessed by the Sircoll assay. (A) Ferritin levels by ELISA;
(B) α-SMA mRNA; (C) Col1-α1 mRNA; and (D) collagen secretion
into conditioned media. Data are presented as mean ± SD. *P o
0.05 and **P ≤ 0.03 compared to basal conditions. ELISA, enzyme-
linked immunosorbent assay; SD, standard deviation.

FIGURE 5. Iron chelation reduced iron-induced ferritin levels and
attenuated fibrotic responses in murine HSC. Mouse HSC were first
treated with 0, 0.05, 0.5 and 2 g/L holo-Tf for 24 hours and then
supplemented with 10 µM DFO for the next 24 hours. Following this
period, HSC were further supplemented with 10 µM DFO for an
additional 24 hours. At the end of this 72-hour treatment period,
cells were harvested and cellular iron levels measured by ELISA,
RNA analyzed by qRT-PCR and collagen secretion into conditioned
media assessed by the Sircol assay. (A) Ferritin levels by ELISA;
(B) collagen secretion by the Sircol assay; (C) α-SMA mRNA; and
(D) Col1-α1 mRNA. Data are presented as mean ± SD. *P o 0.05,
**P o 0.03 and ***P o 0.01 compared to basal conditions. ELISA,
enzyme-linked immunosorbent assay; SD, standard deviation.

Mehta et al
we noted that the holo-Tf upregulated TGF-β mRNA, and
increased expression TGF-β RII and phospho-Smad2,
thereby demonstrating that holo-Tf activates TGF-β
signaling, a key profibrogenic cytokine that is highly
expressed in chronic liver disease.30 Conversely, iron
depletion by the chelator attenuated TGF-β signaling.
Collectively, these novel data suggest that iron-induced
fibrogenesis could be mediated at least in part, by
6

activation of canonical TGF-β signaling. Thus, excess
iron-induced HSC activation can potentially amplify free-
iron–mediated hepatocyte oxidative stress that lead to
progressive liver fibrosis.31

In this study, cells were treated with a wide range of
holo-Tf concentration (from 0.005-5 g/L) that represents
normal physiological range (2-3 g/L) as well as the
ranges of transferrin observed during pathological con-
ditions such as iron deficiency and iron overload. If we
assume the mean iron saturation of 30% and amount of
transferrin as 2 g/L, then the amount of iron-loaded
transferrin equates to 0.6 g/L. In the setting of hemo-
chromatosis, between 45% and 50% of transferrin is
iron-saturated, which then accounts for 1.4-1.5 g/L of
iron-loaded transferrin. Therefore, the concentrations of
THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES
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FIGURE 6. Iron chelation inhibited TGF-β signaling in murine HSC.
Mouse HSCs were treated as described in Fig 5. Cells were
then harvested and protein expression evaluated by Western blot.
(A) TGF-β RII and (B) phospho-Smad 2. Beta actin was used as
loading control.

Effect of Iron on Liver Fibrogenesis
holo-Tf used in this study (i.e., 0.6-5 g/L) represent both
normal to pathological states. We anticipated that the
highest levels of holo-Tf (i.e., 5 g/L) concentration could
lead to outlier and unexpected responses, but felt that
this had to be studied to test this hypothesis. For
example, holo-Tf-induced upregulations in TfR1
(Figure 1D), vimentin (Figure 2D), TGF-β RII (Figure 3B)
and psmad-2 (Figure 3C) occurred only at concentrations
at, or below 2 g/L holo-Tf; treatment with 5 g/L holo-Tf,
by contrast, led to repression of these responses. We
also studied cell responses to significantly lower con-
centrations of holo-Tf (0.005 and 0.05 g/L) to determine
whether there was a dose-dependent response.

Unlike previous studies that had only evaluated the
effects of DFO under basal conditions (i.e., without holo-
Tf treatment),19 this study also evaluated the effects of
DFO on HSC under conditions of “iron-overload” (i.e.,
holo-Tf treated HSC). The observation that DFO could
inhibit HSC fibrogenesis under conditions of “iron-over-
load” is clinically significant because this suggests that
iron chelation could potentially be used to treat individ-
uals with alcoholic liver disease or nonalcoholic fatty
liver disease/nonalcoholic steatohepatitis fibrosis and
concomitant low-moderate iron overload14,32 (i.e., a
useful adjunct therapy to reduce liver fibrosis in those
with chronic liver diseases). DFO is currently being used
to treat individuals with iron overload from genetic
hemochromatosis and is effective in reducing inflamma-
tion and atherosclerosis in murine models.33 The combi-
nation of DFO and deferriprone (another iron chelator)
has also been shown to be effective in reducing intra-
cellular iron pool and transferrin saturation.34,35 Thus,
iron chelation therapy could potentially be translated to
the bedside to treat liver fibrosis.

Interestingly, following the DFO double-dosage
treatment, secreted collagen (protein) was significantly
Copyright © 2017 Published by Elsevier Inc. on behalf of Southern Society for
www.amjmedsci.com � www.ssciweb.org
reduced when treated with DFO (all concentrations)
(Figure 5B), but gene expression changes were only
statistically significant under low holo-Tf concentrations
(i.e., 0.05 g/L; Figure 5D). This could be explained, in
part, by the relatively reduced effects of DFO under “high
iron” conditions or a lag between transcription and
translation/secretion responses at various iron concen-
trations (i.e., mRNA changes occurred quickly and then
returned to basal levels while protein changes are yet to
occur). The latter could also be explained by variations in
mRNA or protein stability or rate of mRNA degradation.
More likely, however, this is because we are measuring
protein already secreted out of cells into the conditioned
media (and stable), while gene expression is dynamic.

Hypoxia has been implicated in the development of
several liver diseases because the gradient of oxygen
through the hepatic lobule greatly affects the functions
of the hepatic cells.24 Although hypoxia modulates
iron homeostasis through hypoxia-inducible factors
(HIFs),24,29,36 several fibrosis-associated HIF-target
genes have been identified, such as serpine-1 and
prolyl-4 hydroxylase α2,37 thus suggesting a link
between iron homeostasis and fibrosis via HIFs. Unsur-
prisingly, HIF-1α has been shown to enhance the
fibrogenic responses.37-39 This study demonstrated an
upregulation of Hif-1α mRNA upon holo-Tf treatments,
followed by its repression upon DFO treatment, which
suggests that the antifibrotic effects of DFO may be
through the modulation of HIF-1α levels. Further studies
will be needed to identify additional HIF-regulated
fibrogenic and iron-related genes that could be devel-
oped as targets for antifibrotic therapies. Additional
experiments using primary human HSC and animal
models of liver fibrosis are also needed to confirm these
DFO-mediated antifibrotic effects.
CONCLUSIONS
We confirm a direct connection between iron and

fibrosis. Our data show that iron can directly activate
the TGF-β pathway and directly promote liver fibrosis,
whereas iron depletion with DFO can reverse this by
reducing intracellular iron, thereby inhibiting TGF-β
signaling, and repressing fibrogenesis. Therefore, iron
chelation may be a useful adjunctive therapy to inhibit
liver fibrosis progression.
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