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� A hydrogen detection system is proposed, and a prototype constructed by modifying a small bench top RF plasma system.

� The plasma sustemr is coupled to a spectrophotometer for capturing spectral data of the plasma as data.

� Spectral data associated with different target gas quantities in the plasma are collected to train a deep learning model.

� The plasma system and the trained model can act as hydrogen quantification conceptual system which is evaluated here.
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a b s t r a c t

In this report we explore the feasibility of a quantitative gas detection system concept

based on alternations in spectral emissions of a radio frequency power generated plasma

in presence of a target gas. We then proceed with training a deep learning residual network

computer vison model with the spectral data obtained from the plasma to be able to

perform regressive calculation of the target gas content in the plasma. We explore this

concept with hydrogen and methane gas present in the plasma at know quantities to

evaluate the applicability of the concept as hydrogen or methane detection system. We will

demonstrate that the system is well capable of quantitatively detecting either of the gases

efficiently while it is challenging to estimate hydrogen content in presence of methane.

© 2023 The Author. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
1. Introduction

The present situation of industrial expansion, alongside a sig-

nificant increase in population, necessitates a substantial de-

mand for energy. This requirement must be fulfilled by a

combination of traditional and renewable energy sources. Un-

doubtedly, sustainable energy sources have served as the

cornerstone for numerous recent advancements in science and
Ltd on behalf of Hydrogen En
technology, but thewalk from fossil fuels to renewables such as

tidal, solar and wind will trail through a bumpy ride due to the

well know limitations associated with their implementation.

Hydrogen, however, can be an ideal substitute for a world

currently so used to thrive on a fossil fuel diet. As an illus-

tration, hydrogen boasts an impressive energy density of

120 MJ/kg, which is roughly three times higher than that of

gasoline and diesel fuels. In electrical terms, each kilogram of

hydrogen contains 33.6 kWh of useable energy (in fuel cell),
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Fig. 1 e Some of the current methods implemented in

hydrogen sensing.
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while a comparable amount of diesel fuel provides about

12e14 kWh/kg. To put this into further context, lithium-ion

batteries, which are considered a high-quality rechargeable

battery technology with advantages over nickel-cadmium

(NieCd) or nickel-metal-hydride (Ni-MH) batteries, have an

energy density of approximately 0.2 kWh/kg [1].

A crucial point to note is that hydrogen can also serve as a

fuel in a fuel cell, which exhibits high efficiency in producing

electricity [2]. This exciting prospect opens new opportunities

for car manufacturers [3].

But let's tread carefully, firstly, there are two primary types

of hydrogen: “grey” hydrogen and “green” hydrogen. Grey

hydrogen is produced using fossil fuels, such as natural gas,

and it releases greenhouse gases during its production pro-

cess. On the other hand, green hydrogen is generated without

emissions by utilising renewable energy sources like solar and

wind energy. “Green hydrogen” is considered the most

promising form of hydrogen for the future since it has the

potential to reduce greenhouse gas emissions and mitigate

the effects of climate change. However, the current

manufacturing process for green hydrogen remains expen-

sive, making it crucial to explore more efficient and cost-

effective methods of production [4].

Secondly, while hydrogen assisted mankind to step on the

moon by thrusting the Saturn V rocket, it also caused the

Hindenburg airship disaster on may 6, 1937. The safety con-

cerns surrounding hydrogen-based technologies is of utmost

importance due to hydrogen's flammability across a broad

range of concentrations in air (4e75%). Moreover, it becomes

explosive within a wide range of concentrations (15e59%) at

standard atmospheric temperatures [5]. In practical terms, if

there is a hydrogen leak in an enclosed space, it is highly

probable that an explosion rather than just a simple flamewill

occur. This characteristic of hydrogen makes its utilization

especially hazardous in confined areas, such as tunnels and

underground parking facilities. Special precautions and safety

measures are essential when dealing with hydrogen in such

environments to mitigate potential risks. So, we need in-

struments to sense hydrogen leaks. The essential re-

quirements for a dependable hydrogen gas sensor can be

summarized as follows [6].

i. The sensor should be capable of indicating low to

moderate levels of gas concentrations, ranging from

0.01% to 10%.

ii. Precise and accurate detection of gases should be

ensured by the sensor.

iii. Minimum interference from humidity and other gases

should be observed.

iv. The sensor should perform effectively under unfav-

ourable operating conditions, including high pressure,

temperature, and gas flow rates.

v. The signal produced by the sensor should exhibit low

overall noise.

vi. Fast response and recovery times are essential, aiming

for less than 5 s.

vii. The fabrication and maintenance costs of the sensor

should be kept low.

viii. The sensor should be designed to be small and compact,

allowing for ease of installation and use.
1.1. The existing sensing technologies

There are many techniques implemented for hydrogen

detection, each utilising a particular property or properties of

materials and their interactions in absence or presence of

hydrogen. These technologies are illustrated in Fig. 1 and

discussed briefly.

Work function method: The minimum amount of energy,

measured in electron volts (eV), needed to remove an electron

from the surface of ametal and send it to infinity is referred to

as a work function. In hydrogen sensing applications, a metal

that is sensitive to hydrogen gas is coated over an oxide layer.

When hydrogen gas is present, its atoms diffuse through the

metallic layer and get adsorbed at the interlayer between the

metal and the oxide. At this stage, the hydrogen atoms

become polarized, leading to a change in the work function of

themetal. This alteration in thework function can be detected

as a voltage change, allowing for the confirmation of the

presence of hydrogen gas [7e9].

Optical Method: The optical method of gas sensing relies

on detecting changes in the optical properties of specific ma-

terials after gas molecules are adsorbed onto them. This

technique utilizes an interferometer compatible optical cable

and a hydrogen-sensitive metallic coating, typically made of

Pd (palladium). As hydrogen gas molecules are adsorbed over

the surface of the Pd coating, the reflectivity of the surface

undergoes alterations. Here's how the process works: A light

beam is transmitted through the optical cable and directed

towards the coated surface. Upon reaching the surface, the

light interacts with the adsorbed hydrogen gas molecules,

causing changes in the reflectivity of the surface. The modi-

fied light beam is then received back by the interferometer,

where the changes in its reflectivity are observed and corre-

lated to the concentration of hydrogen gas present in the

environment. By analysing the variations in reflectivity, this

method allows for the detection and measurement of

hydrogen gas concentrations in the surroundings [9e16].
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Thermal method: The principle behind this method relies

on the fact that hydrogen gas has a higher thermal conduc-

tivity (0.18 W/mK at 300 K) compared to normal air (0.026 W/

mK at 300 K). This property makes it useful for detecting the

presence of H2 gas in the air. The operating principle of this

method involves measuring the heat loss of a body to the

surrounding gas. The extent of heat loss is influenced by the

thermal conductivity of the surrounding gas. When more

hydrogen gas is introduced into the air, the heat dissipation

increases due to the higher thermal conductivity of the me-

dium. To implement this method, two resistors are utilised:

one for the reference gas (air) and the other for the target gas

(H2). These resistors are connected to a Wheatstone bridge.

Under normal conditions, when only air is present in both

cells, the resistors lose heat equally, resulting in the same

reading. However, when the target gas (H2) enters the respec-

tive cell, the heat loss of the target gas resistor differs from the

air resistor due to the presence of hydrogen gas (resulting in an

increase in heat loss). The imbalance in theWheatstone bridge

caused by this heat loss difference allows for accurate detec-

tion of hydrogen gas concentrations in the surrounding envi-

ronment based on the changes in heat dissipation and

resistance imbalance in the Wheatstone bridge [17e20].

Resistive method: Here, metal oxide-based resistive sen-

sors which have variable resistance in presence of hydrogen

are utilised. These materials are typically fabricated on a sub-

strate, which can be an insulating material like Al2O3 or SiO2.

The sensors consist of multiple layers. First, interdigitated

electrodes made of noble metals such as Au, Ag, or Pt are

coated onto the insulating layer. On top of these electrodes, a

metal oxide layer is applied, forming the sensing element. The

resistance across the electrodes coated with the metal oxide

sensing element is measured in the presence and absence of

H2 gas. By calibrating the difference in resistive load with the

ambient gas concentration, hydrogen gas can be detected

[21e28].

Acoustic method: In the acoustic method of gas detection,

changes in the surface properties of a piezoelectric material,

caused by the adsorption of gas molecules, are measured in

the form of surface-generated acousticwaves. Various devices

can be employed to detect these waves, with one such device

being the quartz crystal microbalance (QCM). The QCM con-

sists of a small and thin quartz disc with electrodes printed on

each side. When an electric field is applied to the electrodes, it

causes deformation in the structure of the quartz disc, leading

to its resonance. The resonance frequency of the disc is highly

sensitive to the mass of the material on its surface. Thus,

when gasmolecules in the ambient environment get adsorbed

on the coated surface, the mass of the disc changes. This

alteration in mass is detected by measuring the change in

resonance frequency. The shift in resonance frequency in-

dicates the presence of hydrogen gas in the surrounding

environment. By monitoring these changes in resonance, the

QCM device can effectively detect the concentration of

hydrogen gas with high sensitivity and accuracy [29e35].

Mechanical method: These sensors are based on moni-

toring the changes in the physical properties of a metal in the

presence of hydrogen gas. Typically, a metal sensitive to

hydrogen, such as palladium, is coated over a micro
cantilever. In the presence of hydrogen gas, gas molecules get

adsorbed into the interstitial sites of the metal lattice, causing

the micro cantilever to expand. This expansion is observable

as deflection or bending of the thin film micro cantilever

[36e40].

Electrochemicalmethod: These sensors can be classified as

either amperometric or potentiometric, based on the nature of

the signal they produce. In an amperometric sensor, a con-

stant voltage is applied, and the sensor measures the diffused

current resulting from the reaction between the target gas

(hydrogen) and the sensing material. The sensor typically

consists of three electrodes: the sensing electrode, the counter

electrode, and the reference electrode. The sensing electrode

is made of a material suitable for the oxidation of hydrogen

gas, and it is where the gas reacts and undergoes an electro-

chemical process. The counter electrode's role is to provide a

path for the current to flow back to the sensor circuit,

completing the electrical circuit. The reference electrode

maintains a stable and known potential against which the

potential of the sensing electrode is measured. By measuring

the current flow between the sensing and counter electrodes

at a constant voltage, the sensor can determine the concen-

tration of hydrogen gas in the environment [41e46].

Chauhan et al. have produced a great review on hydrogen

sensing techniques for detailed description of existing tech-

nologies [47]. However, the disadvantage of the techniques

discussed is summarized in Fig. 2.

1.2. Alternative concept

Here we report on some preliminary experiments on

hydrogen detection via spectral analysis of a plasma of air

containing hydrogen. We implement artificial intelligence (AI)

based spectral analysis of the plasma generated with known

quantities of hydrogen content and use the spectral data to

train a deep learningmodel that can extract features from the

plasma emissions and associate them to the precise hydrogen

levels present in the plasma. Such an algorithm coupled to the

hardware can act as a reliable hydrogen purity analyser or

leak detector. We also do look into the application of this

technique for methane quantification.

1.3. Hydrogen plasma

Hydrogen plasma bands and emission peaks refer to the

specific spectral lines and bands of light emitted or absorbed

by hydrogen in a plasma state. A plasma is an ionized gas in

which the atoms are split into charged particles, such as

electrons and ions. When hydrogen is in a plasma state, it can

emit light as the electrons transition between different energy

levels. In the context of hydrogen plasma, there are several

prominent spectral lines and bands that are of particular in-

terest (48e50):

Balmer Series: The Balmer series is a set of spectral lines

corresponding to the transitions of electrons in hydrogen

atoms from higher energy levels to the second energy level

(n¼ 2). These transitions result in the emission of visible light.

The Balmer series includes several lines, with the most

prominent ones occurring in the visible region of the
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Fig. 2 e The main draw backs of the existing hydrogen sensing systems.
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electromagnetic spectrum, such as H-alpha (656.3 nm), H-beta

(486.1 nm), H-gamma (434.1 nm), and so on.

Lyman Series: The Lyman series represents spectral lines

that occur when electrons in hydrogen atoms transition from

higher energy levels to the first energy level (n ¼ 1). These

transitions typically result in the emission of ultraviolet (UV)

light. The most well-known line in the Lyman series is the

Lyman-alpha line (121.6 nm).

Paschen Series: The Paschen series corresponds to the

transitions of electrons in hydrogen atoms fromhigher energy

levels to the third energy level (n ¼ 3). The emitted light is

generally in the infrared (IR) region. The most prominent line

in the Paschen series is Paschen-alpha (1875.1 nm).

Brackett Series: The Brackett series involves transitions of

electrons from higher energy levels to the fourth energy level

(n ¼ 4). This results in the emission of infrared light. The most

notable line in the Brackett series is Brackett-alpha (4.05 mm).

These emission peaks and bands play a crucial role in

spectroscopy and astrophysics, as they provide valuable in-

formation about the energy levels and electronic structure of

hydrogen atoms in plasma. By studying the specific wave-

lengths of light emitted or absorbed, researchers can gain in-

sights into the physical conditions of the hydrogen plasma

and its surroundings, including temperature, density, and

ionization states. As such, our proposed hydrogen detection

concept relies in utilising such emission information from a

hydrogen present in an air plasma to quantify the hydrogen

content. However, in our experiments the plasma is generated

using the ambient air, which includes oxygen, nitrogen, car-

bon dioxide, moisture and basically any gas present in the air.

As such, when low amount of hydrogen is present in such

plasma, the associated peakswill not be apparent to the naked

eye. However, thanks to the modern computing powers and

advanced deep learning algorithms possible with it, we can

produce models capable of extracting such hidden informa-

tion and here we will explore the potential of this approach.
2. Experimental

2.1. Hardware and instrumental setup

The experiments were carried out by utilising a bench top

radio frequency (RF) plasma cleaner system with a slightly

modified chamber door mounted with a collimator that could

capture the spectral data from the plasma in the chamber and

feed it through an optical fibre into a high-resolution spec-

trometer. By varying the plasma power and the hydrogen gas

fed through a mass flow controller (MFC) into the chamber,

numerous plasma conditions were created, and spectral data

associated with the plasma were recorded.

The system was set to generate an RF plasma at 30, 40, 60,

80, 100, 120 and 150 W of RF power. The main motive for

examining different plasma powers was to examine the

impact of power on specific hydrogen lines. Such hydrogen

lineswill ultimately create features in the data that will enable

deep learningmodels to get trainedwith data. The systemhad

three MFC intake ports, one was exposed to ambient atmo-

sphere without an adjustment to moisture levels. The other

two MFC ports were connected to a pure hydrogen and pure

methane source. TheMFC controller allowing ambient air was

kept at a constant ~40sccm of ambient air input, while the

amount of hydrogen allowed into the chamber via the second

MFC ranged from 0 to 2 sccm at 0.1 intervals, as such allowing

a hydrogen content of between 0 and 5% inside the chamber.

For each plasma condition, a total of 20 spectral readings were

taken.

The spectrometer was capable of capturing plasma emis-

sion peaks from 195 nm to 1105 nm at 0.2 nm resolution.

Overall, a total of 2863 spectral plots were captured with each

spectrum containing 4550 data points. The system setup is

illustrated in Fig. 3. There are certain fine-tuning parameters

associated with the RF plasma in these experiments that the

https://doi.org/10.1016/j.ijhydene.2023.10.010
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Fig. 3 e The system setup for collecting spectral data of air plasma with known hydrogen impurity.
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with this project.

Aswe intended to use computer vision based deep learning

models (convolutional neural network structures), each single

spectrum resembling a vector of 4550 data points was trim-

med to only cover emission peaks starting at 200 nm and

ending at 1099.8 nm (containing 4500 data points). Such vector

will easily contain any information associated with the

Balmer series discussed earlier as well as many other possible

emission peaks associated with hydrogen.

2.2. Data collection and processing

The trimmed vectorwas then converted into a 50 by 90matrix,

by stacking every 50 data points of the trimmed vector on top

of each other. As such, each of the 2863 spectral data were

converted into a matrix bearing 50 rows and 90 columns. This

step is graphically illustrated in Figs. 4 and 5. We could now

treat the spectrum as an image. These images will act as our

image data for training a convolutional neural networkmodel

with a regressor output.
Fig. 4 e Conversion of the single array of emission peaks in

to a 2D matrix array. As such the spectral data is converted

into an image form suitable for training computer vision

models.
When looked at with a naked eye, it is literally impossible

to distinguish such images when associated with different

hydrogen content. For example, 2D spectral images associated

with hydrogen content of 0.26% and 1.03% are presented in

Fig. 6. The standard spectra of the two plasma conditions to

the naked eye look extremely similar and so do the 2D images

derived from them.

Similar experiments and data collections were carried out

with an air plasma containing methane impurity. These ex-

periments exactly mimic the hydrogen sensing protocols

except that data were only collected at 120w rather than using

various RF plasma power outputs. The 120w RF power output

was selected given the better performance of 120w plasma

power for hydrogen sensing which will be discussed in the

next sections. In these experiments along with hydrogen

some various quantities of methane were admitted into the

chamber precisely through a MFC inlet.
3. Modelling

Convolutional Neural Networks (CNNs) are a class of deep

learning models primarily designed to process and analyse

visual data, such as images and videos. CNNs use convolu-

tional layers to automatically learn and extract relevant fea-

tures from the input image data in form of 2D tensors. This

process enables CNNs to perform tasks like image recognition,

object detection, and image segmentation, among others.

At its core, the CNN process constitutes:

Input Layer: The input layer receives the raw data, in the

form of images (2D tensors). Each image is represented as a

grid of pixels, where each pixel corresponds to a specific in-

tensity value.

Convolutional Layers: The core building blocks of CNNs are

convolutional layers. Each convolutional layer consists of

multiple filters (also known as kernels), which are small

windows that slide over the input image. The filters learn to

detect different patterns, such as edges, textures, or other

visual features, by convolving (element-wise multiplication

and summing) with the input image. The result is a feature

map that highlights the presence of specific patterns in the

input 2D tensor.

Activation Function: After convolution, an activation

function, commonly the Rectified Linear Unit (ReLU), is

https://doi.org/10.1016/j.ijhydene.2023.10.010
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Fig. 5 e Here as an example, a spectral data (top) is converted into a 2D matrix and visualised as an image (bottom). Such

image associated with a know hydrogen content is then used to train a computer vision model with a regressive output to

predict hydrogen content from such images.
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applied elementwise to introduce non-linearity into the

network. This allows the CNN to learn more complex and

abstract features from the data.

Pooling Layers: Pooling layers follow the convolutional

layers to reduce the spatial dimensions of the feature maps.

Max pooling is a commonly used technique, where the

maximum value within a small window is selected and the

rest are discarded. This down sampling helps to reduce the

number of parameters, control overfitting, and make the

network more computationally efficient.

Fully Connected Layers: After several convolutional and

pooling layers, the output is flattened and fed into fully con-

nected layers,which act as a traditional neural network. These

layers learn to classify and interpret the extracted features into

meaningful outputs, such as object categories or image labels.

Output Layer: The final layer produces the predicted output

of the CNN, which could be the probabilities of different

classes (in case of classification tasks). How ever, in our

approach the output layer, is designed to out put a single
number which is indeed the percentage of hydrogen or

methane present.

Training: During the training process, the CNN learns the

optimal values of its parameters (weights and biases) using

backpropagation and gradient descent. Themodel was trained

with only 80% of our spectral data chosen randomly by com-

puter. Another 20% of our spectral data was hidden from the

model during its training. Once the model was trained, we

evaluated its hydrogen concentration predicting power by

testing it with the 20% unseen data and comparing the esti-

mated hydrogen content with actual known value for that

spectral data.

The convolutional neural network structure discussed

above is the most basic vanilla form of the model structure, in

our initial studies, we realised that simple models can on oc-

casions produce reasonable predictions, but overall were not

stable and the model performance was not accurate. Fig. 7 il-

lustrates the anatomy of such a simple CNN model that we

examined.
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Fig. 6 e An overlap of emission spectra collected for an air plasma containing 0.26% and 1.03% hydrogen (top). The 2D

spectral conversion of the 0.26% hydrogen (middle). The 2D spectral conversion of the 0.26% hydrogen (bottom).
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Fig. 7 e The basic structure of a CNN model and the layers

of operations involved, starting with an input 2D tensor,

convolution process, pooling, flattening and an output

dense layer. While such models usually perform good with

standard image data for image recognition, the model

struggled with calculating hydrogen or methane

concentration.
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Hence, we structured a significantly more complex CNN

model resembling the ResNet v50 residual model structure. In

ResNet-50 v2, the residual blocks are organized into different

stages. The structure of the residual model is illustrated in

Fig. 8. The first stage performs initial convolution and pooling

operations, while subsequent stages consist of multiple re-

sidual blocks stacked together. The number of residual blocks

per stage may vary depending on the architecture variant for

better model performance.

Another key feature of the residual model is the use of

bottleneck blocks. These blocks are designed to reduce

computational complexity by employing 1 � 1 convolutions to

reduce the number of input channels, followed by 3 � 3 con-

volutions, and finally 1� 1 convolutions to restore the number

of channels. This bottleneck design allows the model to ach-

ieve better performance with fewer parameters. ResNet-50 v2

has demonstrated excellent generalization capabilities,

allowing it to learn hierarchical features that are transferable

across different datasets and tasks. Meanwhile, residual

models introduce skip connections to CNN network that

enable the network to learn residual mappings. These skip

connections allow the network to directly learn the difference

between the input and the output of a specific layer, rather
than trying to learn the entire mapping from scratch. This

makes it easier for the network to learn the identity mapping.
4. Results and discussion

The experimental section of the project resulted in spectral

data being produced for experiments carried out at

30,40,60,80,100.120 and 150w of plasma power. All the spectra

was collected every 1 s, with 50 ms integration time produced

averagely by 10 exposures. The basic model and the residual

models were trained using these data. As discussed for each

experiment, 20% of the data was kept hidden from the model

while the model was trained on the 80% of the spectral data

points with known hydrogen content.

4.1. Hydrogen sensing

As previously mentioned, the basic CNN model was simply

unable to learn from the data and performed poorly as can be

seen in Fig. 9. As such, all results presented here are associ-

ated with training the residual model and the predictions

made by the model after training.

The predicted Hydrogen content and real values of the

hydrogen at each consecutive plasma power experiments are

presented in Figs. 10 and 11. Fig. 10 convers results for spectral

data collected with plasma powers under 100w and Fig. 11

presents results associated with above 100w plasma powers.

We can see that data generated at different plasma powers

influence training and prediction accuracy of the residual

models. In particular, the 120w plasma seems to be the

optimal method of data collection in this study. This obser-

vation can be explained by some studies [48e50] where it was

demonstrated that at low plasma powers, only H2 emissions

are observed (577 nme630 nm) while as the RF power further

increases the Ha becomes stronger compared to Hb emissions

as well as a prolonged continuum towards 200 nm

(A16,A17,A18,A19). Also, the optical emission intensities Ib, I g

of H b and Hg linearly increase with the net input power for

different energy levels of the excited hydrogen atoms. This

can perhaps explain that higher plasma powers can ensure

more spectral features become apparent for a computer vision

model to utilise them for feature selection from the images.

However, the 150w plasma power to our surprise did not

outperform the 120 w set of data in terms of model training.

This may be simply due to the fact that ultimately, at 120w

plasma power, all the features required from a spectral emis-

sionareperfectly sufficient for adeep learningcomputer vision

model to train itself with relevantweightswhile the 150wmay

further enhance emissions from other atomic elements pre-

sent in the plasma (Nitrogen, Oxygen, etc …) that may have a

negative effect on feature selection associated with hydrogen

emissions. It is widely acknowledged that hydrogen plasma

contains a diverse range of particles, including electrons and

hydrogenatoms in their groundstate, excitedhydrogenatoms,

hydrogen molecules in their ground state, excited hydrogen

molecules, and so on. Among these particles, numerous

complex reactions occur, leading to complicated collision

https://doi.org/10.1016/j.ijhydene.2023.10.010
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Fig. 8 e The structure of the residual CNN model. The input layer and subsequent convolutional layers are the first stage of

the model followed by a residual stage (left). A residual block that follows the first stage, the number of these can be varied

to achieve maximum accuracy (centre). The output stage which very much resembles the steps discussed in the vanilla

structure of a CNN model (right).
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processes between them. The primary generation of excited

hydrogen atoms happens through electron impact excitation

of H2 molecules or H atoms. Two main methods contribute to

this production: dissociation excitation [51] arising from fast

electrons colliding with hydrogen molecules, and collision

excitation [52] resulting from electrons colliding with

hydrogen atoms in their ground state. Consequently, when

these excited hydrogen atoms at energy levels n ¼ 4 and n ¼ 5

transition to the energy level n ¼ 2, they emit Hb and Hg

emissions [53,54]. However, in our experiments, we also have

air (comprised of oxygen, nitrogen, moisture, and other trace

gases) present in the plasma which further complicates a

detailed discussion on this topic given the scope of our report

here, but ultimately, one can argue that further plasma power

may lead to signals from such a mix plasma that ultimately

overlap features associated with hydrogen emissions.

At this stage, our efforts have been concentrated on

demonstrating the concept of a hydrogen detection system

based on AI-driven spectral analysis of RF-generated plasma.
The results presented thus far offer an intriguing perspective

on the potential of this method for hydrogen sensing. Never-

theless, there are additional steps that can be taken to further

improve the model's accuracy.

Furthermore, we have delved deeper into the method's
capability to assess the presence of methane gas in the

plasma, a topic we discuss in the next section.

4.2. Hydrogen and methane sensing

The results are interesting when we attempted to train the

model with spectral data collected at 120w plasma powerwith

both hydrogen and methane being present the same time. In

these experiments spectral data were collected with both

hydrogen and methane present at the same time at various

quantities in the plasma.

Methane (CH4) plasma has been extensively investigated

for many years, making its cross sections the most studied

among other gases commonly used in semiconductor
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Fig. 9 e Estimation of hydrogen content when a simple

model was trained extensively with the data. It is clearly

apparent that the model is struggling with precise

calculation of the hydrogen content and as such simple

models will be redundant for this application.
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manufacturing, such as CF4 or SiH4. In a notable study, re-

searchers developed a comprehensive, self-consistent, one-

dimensional (1D) simulator to explore the physics and

chemistry of radio frequency (RF) plasmas involving CH4.

Theirmodel incorporates four key species: CH4, CH3, CH2, and

H. The authors made a crucial observation that CH4 plasmas

exhibit electropositive behaviour, with negative ion densities

approximately one order of magnitude lower than that of

electrons. These finding sheds light on the unique character-

istics of CH4 plasmas [55e57]. Based on these studies, the

primary electron reactions in simple plasma model of

hydrogen and methane are presented in Fig. 12.

Once the residual CNN model was trained with spectral

data associated with plasma containing both hydrogen and

methane, the model was examined by testing it with a set of

test spectral data associated with a similar plasma condition

to evaluate its accuracy of target gas content. These results are

presented in Fig. 13. It can be clearly observed that while the

model is fantastically adapted to predict the methane content

in the plasma while hydrogen is present there, its perfor-

mance is significantly undermined for predicting the

hydrogen content. The prediction of hydrogen content is

extremely inaccurate with large variance indicating that the

model is making multiple wrong calculations.

As discussed, and illustrated in Fig. 12, when methane gas

is exposed to a high-energy source such as an electric

discharge or intense heat, some of the molecules can become

ionized, forming ions and free electrons including hydrogen

species. These charged particles interact with the surrounding

air molecules, leading to various chemical reactions and
energy exchanges. While all these exotic ions and chemical

reactions occurring in presence ofmethane are leading to a set

of unique emission peaks and regions that are ultimately

utilised by the deep learning model for self-training and

feature selection associated with methane emissions in

plasma, they will also overlap with features associated with

hydrogen presence in the plasma. The downside of these new

emission characteristics is that they will potentially mask or

overlap the unique hidden features which the model was

previously utilising to train itself for precise hydrogen content

calculations. As such, as it stands despite the impressive

performance of the experimental setup in hydrogen detection,

it seems to significantly suffer if trying to make hydrogen

predictions in presence of methane. As such if a system is

required to predict both gases, in its current stage will be

unable to perform as such. Hence while the system bears

potential as hydrogen detection or methane detection, its

quantitative hydrogen sensing will be undermined in pres-

ence of methane.

Nevertheless, the results at the same time highlight how

powerful the current deep learning computer vision models

are. The ResNetv50 model which we have mimicked in this

study was originally developed by He et al. for the purpose of

image recognition [58]. Just to appreciate how powerful these

models are in capturing features, we extracted spectral

transition data associated with Hydrogen, Oxygen, Nitrogen

and Argon from the National Institute of Standards and

Technology (NIST) and converted the wavelengths associated

with the transitions into a 2D tensor which is presented in

Fig. 14 [59].

Deep learning computer vision models are known to

extract hidden features within 2D tensors, by just observing

the limited features available from hydrogen and knowing

that in our experiments the residual model can detect those

features, clearly demonstrates that apart from the feature

maps hidden within an image, such models identify in-

tensities at pixel level and can associate it to their neural

weights. A plasma with more atomic ingredients will ulti-

mately have numerous signatures on a 2D tensor form which

theoretically can be identified by the residual model, however

in case of methane, we think the hydrogen species coming off

the methane molecule are technically mimicking the exact

features associated with the hydrogen alone and as such

create a challenge for this concept.

4.3. Considering the effect of ambient moisture

As illustrated and discussed, the presence of methane pro-

poses a certain degree of challenge for model training.

Methane, comprised of four hydrogen atoms, has the poten-

tial to fragment into smaller molecular or atomic units when

exposed to a plasma environment (Fig. 12), effectively trans-

forming into hydrogen atoms. As a result, when spectral data

is acquiredwith a controlled flowof hydrogen into the plasma,

an undisclosed amount of hydrogen may emerge in the

presence of methane, introducing an element of uncertainty.

Hydrogen's spectral features exhibit limitations and unique-

ness, in contrast to the considerably more intricate spectral
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https://doi.org/10.1016/j.ijhydene.2023.10.010


Fig. 10 e Hydrogen content prediction of the residual model when trained with spectral data obtained at RF powers of

(30,40,60 and 80w). Higher plasma power seems to result in spectral data that bear features for more efficientmodel learning

and better test predictions results with 30w of RF plasma performing poorest.
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characteristics of methane hence why this situation poses a

potential challenge for the deep learning model.

But at the same time, ambient moisture (water), is a

molecule comprised of two hydrogen atoms and an oxygen

atom. As such a valid question may arise as to whether the

presence of moisture can influence the learning curve of the

deep learning model during training. In our experiments we

did not manipulate the moisture content of the air that was

fed through the MFC into the plasma. Hence, the moisture

content was that of the ambient in the time of data collection.

Table 1 illustrates the minimum and maximum humidity of

the ambient air obtained from (http://nw3weather.co.uk/) for

the 5 days of data capture (see Table 2).

In an RF (radiofrequency) plasma, water molecules (H2O)

can undergo various processes and reactions due to the high

energy environment. Here are some of the processes that can

occur to water molecules in an RF plasma [60].
1). Dissociation: The high energy of the plasma can cause

water molecules to dissociate into their constituent

atoms:

H2O / H þ OH

2). Ionization: Water molecules can also undergo ioniza-

tion, producing ions:

H2O / H2Oþ þ e�

3). Excitation: Water molecules may become excited,

leading to higher energy states:

H2O þ energy / Excited State H2O

http://nw3weather.co.uk/
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Fig. 11 e Hydrogen content prediction of the residual model when trained with spectral data obtained at RF powers of

(100,120 and 150w). The best training and test result predictions occurs at 120w ofplasma powe.
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4). Chemical Reactions: Water molecules can participate in

chemical reactions with other species present in the

plasma. For example, they may react with ions or rad-

icals to form new compounds.

5). Hydrogen and Oxygen Production: In a hydrogen-rich

RF plasma, water can be a source of hydrogen (H2) and

oxygen (O2) production through dissociation.

6). Radical Formation: Water molecules can break into

hydroxyl radicals (OH) and hydrogen radicals (H)

through dissociation and subsequent reactions.

Considering the above statements, we can see that when

moisture is present, therewill be traces of hydrogen present in

the plasma as well as hydroxyl radicals even when there is no

hydrogen being fed into the plasma during data collection. As

such, we can assume that during training, we train the AI
model with a given hydrogen quantity (the quantity we feed

into the system) while simultaneously the hydrogen gener-

ated via watermolecule break down is neglected by themodel

during its training. This is in fact a potential source of error

being introduced into the data. Consequently, the model is

trained with an inherent error in its learning process. How-

ever, this error does not seem to have improvised the model's
accuracy as the presence of methane has.

We think, this can be explained as follows.

a. During the 5 days that we have been collecting the spectral

data, the average ambient moisture levels have been very

similar. If significantmoisture variations existed, the effect

of this error would be significantly pronounced.

b. Considering that during all the plasma conditions, a

certain amount of hydrogen generated from the moisture
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Fig. 12 e A basic representation of species presents in hydrogen and methane plasma. While hydrogen presence in plasma

can lead to limited possible species, a methane plasma can have much more complex set of species forming including

isolated hydrogen species.

Fig. 13 e Predictions made by the residual CNN model on methane content in air while hydrogen is also present (left).

Prediction of hydrogen content while methane is present. While the system is capable of calculating methane content to a

high precision from the spectral data it lacks desired accuracy for predicting hydrogen content.
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has been present, the spectral features associated to that

level of hydrogen content has been captured by the model

and during training that background hydrogen has been

associated with zero content hydrogen during model's
neural weight assignment. Hence, the natural hydrogen

arising from break down of the moisture in the plasma is

set to a zero benchmark in the model's calculation black

box.

c. Unlike moisture which has been present in every single

spectral feature within an average threshold described in

Table 1, the methane has only been present in certain

number of spectral data and as such the model does not

associate methane spectral features to be a bench mark of

any form, hence when calculating hydrogen content, it is

improvised by the methane presence.
However, in future experiments, ambient air drying should

be considered and comparison of results with undried air

should yield significantly better perspective of developing this

concept into maturation.

4.4. Overall assessment

This conceptual technology is currently at its infant stage and

what has been reported here has been an exploration of this

methodology's potential. If it is to be assessed in its current

form, one can argue that it will be an expensive solution while

themethane interference with hydrogen needs to be resolved.

Table two demonstrates a comparison of this technology with

the available technologies in the market. The % content re-

flected in this report, for simplicity represent % flow rate

https://doi.org/10.1016/j.ijhydene.2023.10.010
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Fig. 14 e Atomic spectra emission wavelengths (strong lines) associated with various electronic transitions were extracted

from NIST dataset and converted into a 2D tensor for visualisation. Here we see the transitions for hydrogen (H), argon (Ar),

oxygen (O) and nitrogen (N). Hydrogen has lowest number of features. Only emission wavelengths between 200 nm and

1110 nm are included here.

Tabel. 1 e Data associated with ambient humidity in the region where data was collected over a 5-day period.

Measure Value (anomaly) Time Month cumul. Record High Record Low

Minimum Humidity 54% 14:55 52% 85%, 2021 34%, 2018

Maximum Humidity 90% 05:25 87% 94%, 2012 69%, 2014

Mean Humidity 71% 70% 88%, 2021 51%, 2014

Minimum Humidity 42% 16:45 51% 72%, 2016 31%, 2010

Maximum Humidity 91% 05:57 87% 97%, 2013 73%, 2017

Mean Humidity 70% 70% 80%, 2016 56%, 2018

Minimum Humidity 45% 13:19 50% 74%, 2019 34%, 2015

Maximum Humidity 85% 05:47 87% 94%, 2019 68%, 2017

Mean Humidity 63% 70% 85%, 2019 52%, 2017

Minimum Humidity 56% 14:41 51% 79%, 2021 29%, 2010

Maximum Humidity 82% 23:59 87% 94%, 2009 79%, 2015

Mean Humidity 69% 70% 87%, 2021 55%, 2010

Minimum Humidity 56% 14:41 51% 79%, 2021 29%, 2010

Maximum Humidity 82% 23:59 87% 94%, 2009 79%, 2015

Mean Humidity 69% 70% 87%, 2021 55%, 2010

From the table we can see slight variation in humidity over the span of the days where we collected our data.
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(square cubic centimetre per minute ‘sccm’) of gasses into the

plasma and not ppm figure as the initial objective has been to

explore the feasibility of the technique presented in the

manuscript.

The minimum and maximum dilutions we have been able

to perform with, are dependent on our source gases concen-

tration and the Min/Max flow rate possible with the MFC

controller with minimum of 0.1 sccm flow rate.

In our initial studies which this report is related to, the

minimum methane or hydrogen content in parts per million
we could admit into the plasma to take measurements were

about 1400 parts per million (ppm). While this may sound

high, as this technology is at an early stage, our initial

objective was focused on the experimental set up and con-

structing a suitable model capable of being able to capture

features from the plasma. However, future work will require

experiments with significant tly low part per million or part

per billion figures. As such the limit of detection via this

technique can not be confirmed with confidence until further

exploration.
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Table 2 eA snapshot comparative evaluation of the existing detector technologies and the conceptmodel proposed in this
report.

Technology Low
cost

Stability Wide
Range

Easy
build

Fast
response

Size High
Sensitivity

High
temp

Operation

Major disadvantage

Thermal ✔ ✔ ✔ ✔ Sensitive to interfering gases and

can damage easily

Electrochemical ✔ ✔ Costly and low life

Resistive ✔ ✔ ✔ ✔ Requires oxygen, High cross

sensitivity, poor selectivity

Work function ✔ ✔ ✔ ✔ Severe hysteresis losses, drift, and

saturation at low gas

concentrations

Mechanical ✔ Very hard to fabricate and

maintain

Optical ✔ ✔ ✔ Very cross sensitive with other

gases

Acoustic ✔ ✔ ✔ Sensitive to ambient sound

Catalytic ✔ Slow response, cross interference

with other gases

Triboelectric ✔ ✔ Hard to manufacture

Plasma AI

(Reported here)

✔ ✔ ✔ ✔ ✔ Interference with Methane.

Expensive, at early at experimental

stage. Uncertain limit of detection.
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5. Conclusion

While further fine-tuning and adjustments are still required to

perfect the hydrogen sensing capability of the concept

described here, it clearly demonstrates its potential as a

hydrogen detection system, provided that no methane pres-

ence is considered. Achieving this ambition will necessitate

additional adjustments to the plasma parameters, chamber

configuration, collimator design, and more extensive data

collection and model training.

While this system can serve as an ideal methane detection

system even in the presence of hydrogen, addressing certain

challenges is essential for it to operate as a dual Hydrogen/

Methane sensing concept. These challengesmaybe associated

with hardware design or may involve delving into the image

processing aspect of the concept, such as selective image

analysis, focusing on regions uniquely associated with

hydrogen.

In terms of application, based on our observations and

assessments, rather than being limited to safety leak detec-

tion, this systemmay be considered as a hydrogen production

monitoring tool in the process of methane formation or hy-

drolysis for hydrogen production, achieved by analyzing the

reaction outputs. In fact, this exploration will be the authors'
focus from this point forward.
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