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A B S T R A C T   

Laser nitriding, a high-precision surface modification process, enhances the hardness, wear resistance and 
corrosion resistance of the materials. However, laser nitriding process is prone to appearance of cracks when the 
process is performed at high laser energy levels. Traditional techniques to detect the cracks are time consuming, 
costly and lack standardization. Thus, this research aims to put forth deep learning-based crack recognition for 
the laser nitriding of Ti–6Al–4V alloy. The process of laser nitriding has been performed by varying duty cycles, 
and other process parameters. The laser nitrided sample has then been processed through optical 3D surface 
measurements (Alicona Infinite Focus G5), creating high resolution images. The images were then pre-processed 
which included 2D conversion, patchification, image augmentation and subsequent removal of anomalies. After 
preprocessing, the investigation focused on employing robust binary classification method based on CNN models 
and its variants, including ResNet-50, VGG-19, VGG-16, GoogLeNet (Inception V3), and DenseNet-121, to 
recognize surface cracks. The performance of these models has been optimized by fine tuning different hyper 
parameters and it is found that CNN base model along with models having less trainable parameters like VGG-19, 
VGG-16 exhibit better performance with accuracy of more than 98% to recognize cracks. Through the achieved 
results, it is found that VGG-19 is the most preferable model for this crack recognition problem to effectively 
recognize the surface cracks on laser nitrided Ti–6Al–4V material, owing to its best accuracy and lesser pa-
rameters compared to complex models like ResNet-50 and Inception-V3.   

1. Introduction 

Surface-coated components and structures find extensive application 
in various industries, including medical equipment manufacturing, 
medical implants, optical device production, precision cutting tool 
fabrication, molding can production, and aesthetic gear manufacturing 
[1–5]. Detecting surface defects becomes crucial as they can provide 
valuable insights into the quality of the surface coating technique 
employed and the superiority of the raw materials used for both the 
coating and the base [6]. The development of reliable and efficient crack 
recognition techniques for coated surfaces have been a subject of 
extensive research in the past such as eddy current testing, ultrasonic 
testing, laser testing and microwave testing [7–10]. Such techniques are 

time consuming, costly and require human expertise to interpret the 
results which can lead to variability and errors. 

To overcome the limitations of the noted traditional techniques, 
advancements in image processing and computer vision techniques have 
provided new opportunities for crack recognition on metal surfaces and 
coatings. By analysing digital images or optical profiles of surfaces 
through machine vision, it becomes possible to recognize the presence of 
cracks with high accuracy and efficiency [11–14]. In computer vision, 
convolutional neural networks (CNN) have emerged as a focal point of 
research for metal surface defect recognition [15–18]. CNNs are one of 
the foundational and most used models in computer vision domain and 
can automatically perform end-to-end learning by integrating feature 
extraction and classification into a single framework with minimum 
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number of parameters compared to the complex DL models. A number of 
authors have directed their efforts to use CNN and its variants for surface 
defect recognition. For instance, Nguyen et al. [19] employed a 
CNN-based multi class classification algorithm to classify surface defects 
in cast products, including blow hole, chipping, crack and wash defects. 
The developed CNN model achieved accuracy of more than 95% for all 
of the studied defects. Yang et al. [20] applied transfer learning using 
AlexNet as the proposed model on a small data set to detect damage on 
the surface of wind turbine blades. The authors used a combination of 
different data set arrangements varying in ratios between training, 
validation and testing, and compared the model’s results in different 
modes of transfer earning and without transfer learning. Transferred 
learnt models achieved accuracy of 92% in all data arrangements. 
Comparison of different CNN models is a proven technique to find the 
optimum model for defect classification. In this direction, Gao et al. [21] 
developed a semi-supervised model using CNN variants such as 
ResNet-50, DenseNet-201, VGG-19 and EfficientNet-b0 to detect steel 
surface defects by incorporating pseudo labels to utilize unlabelled 
samples. His results demonstrated that EfficientNet-b0 was the most 
accurate and the fastest model with 100% accuracy to detect steel sur-
face defects. Cheng et al. [22] proposed a CNN based Microcrack-Net 
model to improve the feature detection of noisy images of microcracks 
on the terminal electrode of tantalum capacitors. The proposed model 
gave superior performance in comparison to the more advanced variants 
of CNN like Resnet-50, resNext50, VGG16, SegDecNet and Racki-Net to 
detect micro cracks. 

Similar kind of efforts have been made to detect defects in surface 
coatings, for instance, Lu et al. [23] trained different variants of CNN 
using transfer learning to classify the accuracy of thermal barrier coat-
ings using high resolution SEM images. Zhang et al. [24] used 
multi-scale faster R–CNN to detect cracks in thermal barrier coatings of 
turbine blades. Xiao et al. [25] employed the deep CNN using 2D SEM 
images to detect the cracks in air plasma sprayed thermal barrier coat-
ings with 98% accuracy. Li et al. [26]detected cracks during a laser 
cladding process by using a combination of signal processing of acoustic 
emission signals and deep neural networks. Signal processing was used 
to extract different features from acoustic emission signals and CNN was 
used to identify the cracks based on the extracted feature vector. Zhao 
et al. [27] proposed a CNN based classification method for detecting 
coating surface defects. Experimental results show that the CNN models, 
particularly ResNet-50, achieve high precision and accuracy of more 
than 90% in classifying various coating defects. These studies show that 
Deep Learning (DL) is an efficient technique to recognize defects in 
surface coatings. 

Laser nitriding is one of the most efficient surface modification 
techniques for the improvement of surface performance [28,29]. During 
this process, a metal surface is irradiated by sufficient laser energy in 
nitrogen containing atmosphere. Laser nitriding results in the formation 
of a titanium nitride (TiN) layer on the metal surface. This layer en-
hances the surface properties, increasing its hardness and resistance to 
both corrosion and wear [30]. However, a problem associated with laser 
nitriding process is the appearance of cracks on the surface which can 
initiate the process of mechanical and corrosion failures. These cracks 
often arise due to rapid thermal expansion and contraction during the 
laser nitriding process, creating stress within the Ti material [31]. The 
formation of cracks in nitrided layers of Ti materials is primarily 
attributed to the introduction of excessive residual stress during the laser 
nitriding process. As outlined by Holmberg et al. [32], there are two 
primary mechanisms through which residual stress leads to crack for-
mation. The first involves the generation of excessively high lateral 
tensile residual stresses in the semi-brittle layer. Such stresses can result 
in the formation of tensile cracks, which typically develop perpendicular 
to the interface. The second mechanism pertains to the occurrence of 
critically high compressive stresses, leading to a regular pattern of shear 
cracks. It is important to note that the spatial distribution of these 
stresses within the material layers plays a pivotal role in determining the 

likelihood and nature of crack formation. Recent research conducted by 
Shirazi et al. [33] indicates the impact of tensile stress within the 
nitrided layer as a direct contributor to crack formation. When the 
tensile stress surpasses the material threshold for withstanding elonga-
tion, cracks begin to emerge. In contrast, the compressive stress present 
in the Ti substrate acts as a counterbalancing force to the tensile stress in 
the nitrided layer. While compressive stress typically inhibits crack 
formation, the differential in stress types and intensities between the 
nitrided layer and the Ti substrate can induce instability at their inter-
face. It is this interplay of tensile stress in the nitrided layer and 
compressive stress in the Ti substrate that influences the formation and 
propagation of cracks. 

Ti–6Al–4V is a titanium alloy widely employed across diverse in-
dustries, including aerospace, medical, and automotive, owing to its 
exceptional combination of strength, lightweight characteristics, and 
superior corrosion resistance [34]. The selection of Ti–6Al–4V for the 
laser nitriding process is grounded in its prevalence in applications 
where a balance of robust mechanical properties and reduced weight is 
paramount [35,36]. The urgency of addressing crack formation in 
Ti–6Al–4V surfaces, particularly laser nitriding, is underscored by the 
critical applications of this material in key industries. For instance, in 
aerospace engineering, the structural integrity of components made 
from Ti–6Al–4V is paramount for ensuring the safety and reliability of 
aircraft [37]. 

However, no significant effort has been made in the recent past to 
recognize the surface defects on laser intruded Ti–6Al–4V using DL. To 
bridge this gap, the present study aims to put forth a robust DL based 
crack recognition process for laser nitride surfaces, which has not been 
attempted before. 

In this study, state of the art laboratory equipment has been used to 
perform the laser nitriding of Ti–6Al–4V, and for high resolution image 
collection. Convolutional neural network (CNN) and its different vari-
ants have then been employed using transfer learning for binary clas-
sification between the cracked and no crack images. Further, 
comparative analysis of CNN and its variants have enabled deep insight 
on the accuracy and speed of the approach. 

Compared to existing research, the main scientific contribution of 
this work is as follows:  

• Development of consistently high-quality nitrided surfaces, specially 
tailored for accurate crack detection 

• Robust binary classification method to recognize cracks on the sur-
face of Ti–6Al4V 

• Development of better image acquisition and pre-processing tech-
niques for complex laser nitrided images  

• Comparative assessment of CNN and its variants to select the best 
model for surface crack recognition with best possible accuracy. 

Furthermore, the paper is organized into sections, section 2 provides 
a brief overview of the methodology, data collection, and image- 
processing. Section 3 details the architecture description of the trans-
fer learning models used for the crack recognition and performance 
evaluation metrics. Section 4 presents and discusses the achieved re-
sults. In section 5 and 6, the conclusions and recommendations for 
future improvement are provided. 

2. Overview of the methodology 

To perform the crack recognition using DL, data has been collected 
and processed in different stages as shown in Fig. 1. 

In the first stage, state of the art equipment has been used to perform 
the laser nitride coating process on the material, which has been pre-
pared through machining and grinding process. Then high-resolution 
image data, of about 500 times magnification, of the laser nitrided 
sample has been collected, across a range of nitriding energy levels. The 
image data is then pre-processed to convert the images into a form 
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readable by algorithms, and is cleaned to remove unwanted anomalies. 
CNN model and its variants including ResNet-50, DenseNet-121, and 
Google Net (Inception V3) have been employed as transfer learning 
approaches, to recognize the presence of cracks. These models are 
trained, validated and tested with a data division of 60%, 20% and 20%, 
respectively. Then the accuracy of these models has been calculated and 
analysed using: confusion matrix, metrics of precision, recall and F1 
score. 

2.1. Material preparation for experimentation 

The material employed in this study is Ti–6Al–4V alloy was provided 
by American elements in plate form having dimensions of 
250mmx250mmx2mm. To prepare the sample for the laser nitriding 
process, spark cutting was performed using Electric Discharging 
Machining (EDM) to cut the material in to smaller sizes of 
125mmx30mmx2mm. To improve the surface quality of the samples, 
polishing and grinding was performed with silicon carbide (SiC) sand-
papers ranging from 120 grit to 1000 grit. Subsequently, the polished 
samples were meticulously cleaned and degreased by immersing them in 

Fig. 1. Overview of the methodology.  

Fig. 2. Experimentation of laser nitriding [38].  

M.R. Awan et al.                                                                                                                                                                                                                                



Results in Engineering 22 (2024) 102003

4

an ultrasonic water bath containing acetone for 10 min. After the 
cleaning process, the samples were rinsed with deionized water and 
dried thoroughly using a stream of cool air. 

2.2. Experimentation 

The laser nitriding process was performed on the polished and 
cleaned samples using a SPI 200 W fiber laser machine in open air with 
local gas purging. The experimental setup of the laser nitriding process 
has been shown in Fig. 2. 

The laser machine was the integration of two components, Micro 
Laser systems BV (Driel, Gelderland, the Netherlands) and a fiber laser 
system having 1064 nm in wavelength which is manufactured by SPI 
Lasers UK Ltd. (South Hampton, Hampshire, UK). The laser machine 
offered working in both continuous wave (CW) and modulated modes, 
with modulation capabilities up to 100 kHz and modulated pulses less 
than 5 μs  The specific laser processing parameters were determined 
based on a series of preliminary experiments. They were set as follows: 
laser power of 45 W, duty cycle (DC) ranging from 40% to 100%, laser 
scanning speed of 25 mm/s, stand-off distance (SD) of 1.5 mm (referring 
to the distance between the laser nozzle and the sample surface) and 
purging with pure N2 gas at a pressure of 6 bar, which was delivered 
coaxially with the laser beam. The calculated laser spot size at the SD of 
1.5 mm was approximately 100 μm. In the laser nitriding experiments, 
only the DC parameter was varied, while the other parameters remained 
constant. 

The duty cycle (DC) is defined as the ratio of the ON time to the total 
time (ON + OFF). In the context of these experiments, a DC of 40% 
indicates that the laser was in the ON state for 40% of the total time, 
while a DC of 100% corresponds to continuous wave (CW) mode where 

the laser remained continuously ON. The samples were labelled as 
DC40, DC60, DC80, and DC100, indicating the nitriding at DC values of 
40%, 60%, 80%, and 100%, respectively. The nitrided areas on the 
samples measured 10 × 10 mm2, encompassing approximately 100 laser 
tracks. To ensure repeatability, each DC condition was repeated six 
times. 

2.3. Image data acquisition 

As the probability of cracks are greatest at the highest energy level, i. 
e. DC 100; and can be logically expected to be smallest at the lowest 
energy level, i.e. DC40, these two process areas were considered for 
image data collection. Fig. 3 elaborates the employed image data 
acquisition process. 

The image data has been collected using Alicona Infinite Focus G5, 
which is a 3D coordinate measurement optical instrument based on 
Focus-Variation optical technology. 2 × 10mm2 areas were captured at 
DC 40 and DC 100 as shown in Fig. 3. To get high resolution images of 
the area, extra-large image field datasets were collected using the ×50 
objective lens. This approach provided surface magnification up to level 
of 50×. Measurement areas of 10 mm2 were divided into 11 separate 
image fields and 396 million surface data points were captured per 
image field. To get appropriate images of any cracks, several arrange-
ments were tried for exposure and contrast adjustment to get the right 
combination. About 25 high resolution images were collected for each 
small square of these 11 areas in a single nitride square. A total of 600 
high resolution images of 5117 × 3491 pixels were collected for DC40 
and DC100 energy levels. 

Fig. 3. Image data acquisition.  
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2.4. Image pre-processing 

The images have been pre processed in three stages, as presented in 
Fig. 4. In the first stage, images have been pre processed using different 
images settings within Alicona. First of all, 3D profile of the laser 
nitrided surface has been captured. As the adopted models of CNNs have 
been inherently designed to work with 2D images, and working with 2D 
images reduces the complexity of neural network model and computa-
tional resources required, so using these 3D images or surface profiles 
are further converted in to 2D coloured images. In the next step, back-
ground noise of these images is reduced, which is termed as form 
removal. As shown in Fig. 4, step 2, cracks are not discernible in the 
coloured images, highlighting the height contrast of features in the 
nitrided surfaces, so images were converted into gray scale images 
which show the clear cracked lines. 

The size of images is very large as shown in step 3, which makes it 
difficult for the model to process these images. So these images were 
further patchified (cropped) in to small number of images. This second 
step of the image pre processing has been completed using python li-
brary named as patchify. Cropping the images in to smaller sizes did not 
alter the crack features such as shape and orientation. So, image of size 
5117 × 3491 was patchified into 25 number of smaller images, which 
increased the data set size to almost 3000 for cracked images. The image 
dataset was cleaned to remove images at the boundary line containing 
both the nitride surface and base metal. Images containing the surface 
analyser spots where it could not take measurement were also removed 
from the dataset. 

3. Model architecture 

3.1. CNN 

Like other neural network models, CNNs utilize layers of inter-
connected neurons that enable them to learn hierarchical representa-
tions. These layers are connected via weights and biases. The input layer 
receives the image data as the initial layer, while the output layer pro-
vides predictions, such as classifying between cracks and no-cracks. 
Between these layers, there are hidden layers that transform the in-
put’s feature space to align with the desired output [39]. 

The standard CNN architecture adopted for this research has been 
shown in Fig. 5. It consists of three components, convolutional layer, 
pooling layer and classification layer. Crack features are extracted using 
the convolutional and pooling layers. The classification layer is usually 
connected to the last layer to recognize the presence of cracks. 16 ker-
nels or filters of size (3 × 3) has been used in the first convolution layer 
and 32 kernels or filters of size (3 × 3) have been used in the 2nd 
convolution layer. For the convolution layer, ReLU is chosen as the 
activation function due to higher computation efficiency. After the 
convolution layer, the pooling layer is added to perform subsampling of 
the feature extracted by the convolutional layer and activated through 
ReLU. In this model, max pooling has been used to its ability of fast 
convergence and robustness. Max pooling is represented in Equation (2), 
where R is receptive field representing the local area within the input 
image, and (um,n) shows the value of node location (m,n) on the recep-
tive field [21]. 

ymax =maxm,nϵR
(
um,n

)
(2) 

The classification layer consists of Global average pooling layer, 

Fig. 4. Image pre-processing.  
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dense layer and sigmoid layer. For this study, global average pooling 
layer (GAP) has been preferred over the fully connected layer in similar 
kind of studies [28,30]. After, Global average pooling dense layer has 
been used. The purpose of the used dense layer is to map the learned 
feature to the desired output. The dense layer functions as the final stage 
of feature extraction and mapping. After the dense layer, sigmoid acti-
vation function is used for binary classification, which shows the prob-
ability score for crack and no crack class. 

3.2. Transfer learning models 

In this research work, five pre trained CNN models (VGG19, VGG16, 
Densenet-121, Inception V3 and Resnet-50) have been used through 
transfer learning. The general archietcture of the model is shown in 
Fig. 6. All of these networks have been pretrained on ImageNet data set 
[40]. 

VGG-19 (Visual Geometry Group network), a widely known CNN 
architecture, was developed by Simonyan and Zisserman for image 
recognition tasks [41]. Due to an optimum number of layers in the 
network, VGG-19 has demonstrated proficiency in handling complex 
functions. The first five blocks of the architecture have been focused, in 
which each block has four CONV layer of 3 × 3 filters and a max pooling 
layer of 2 × 2 filters. At the end of the blocks, a global average pooling 
layer of 512 units has been used. For binary classification, the last two 
dense layers have 64 and 1 units respectively. 

VGG-16. The architecture of the VGG-16 only differs from VGG-19 in 
terms of number of convolutional layers in each block. The first two 
blocks have two, and last three blocks have four CONV layer of 3 × 3 
filters. The convolutional layer is followed by max pooling layer of 2 × 2 
filters at the end of each block. For classification two dense layers of 64 
units and 1 unit have been used. 

GoogLeNet In the same year, Szegedy et al. [42] introduced the 
twenty-two layers deep CNN GoogLeNet, it was the best performing 
network at the image net large scale visual recognition challenge 
(ILSVRC) in 2014. 

ResNet-50 was developed by He et al. [43]. Its unique architecture 
of skipping connections enhanced its accuracy, with reasonable 
convergence rates. At the (ILSVRC) 2015, ResNet emerged as the best 
network during the Common Objects in Context (COCO) challenge. The 
adopted model in this project uses 7 × 7 initial convolution layers to 
extract fundamental features, which is followed by a batch normaliza-
tion and ReLU activation. After that a max pooling layer is applied to 
reduce the dimensions. A key part of ResNet-50 are the residual blocks 
which contain multiple convolutional layers with batch normalization 
and ReLU activation. After the residual blocks, global average pooling is 
applied to average out the feature maps. After that a single-unit fully 
connected layer is used for binary decision making. 

DenseNet-121 Huang et al. [44] developed the densely connected 
layers deep CNN DenseNet, which stands out as it has fewer parameters, 
along with feature propagation and feature reuse. In this model, the 
initial convolutional layers are followed by dense blocks consisting of 
multiple densely connected layers. Within the dense blocks, the transi-
tion blocks control feature dimensions. Following the dense blocks, 
global average pooling is applied to extract the feature map, and then a 
fully connected layer with one unit is followed by a sigmoid activation 
function. Among the different DenseNet architectures (DenseNet-201, 
DenseNet-160, DenseNet-121), this study used DenseNet-121. 

These five pre trained CNN models (VGG-19, VGG-16, Densenet-121, 
GoogleNet and Resnet-50) have been used as the feature extractors in 
this study. The base layers are frozen and custom classification layers are 
added on top of the base layers as shown in Fig. 6. The input images of 
the surface are provided to the classification layers to recognize the 

Fig. 5. CNN architecture.  

Fig. 6. Transfer learning architecture.  

M.R. Awan et al.                                                                                                                                                                                                                                



Results in Engineering 22 (2024) 102003

7

presence of cracks. Models size, depth and parameters are given in 
Table 1. 

3.3. Experimental setup and assessment criteria 

After image preprocessing, the dataset was meticulously curated, 
leveraging domain expert knowledge, and cracked and non-cracked 
images were systematically organized into separate folders, labelled as 
0 for non-cracked and 1 for cracked images, for precise binary classifi-
cation during the model training process (see Table 2). These images 
were further augmented to increase the data set. In image augmentation, 
a combination of rotation, flipping, scaling, zooming and shearing was 
applied to enhance the image data set. As the probability of no cracks in 
the two image sets (DC40, and DC100) are low, the number of no 
cracked images was lower than the number of cracked images and thus 
the data set was unbalanced. The total number of images after 
augmentation were 6944 and 12,761 for cracked and no cracked con-
ditions respectively. The images were further divided in to 60% training, 
20% for validation and 20% for testing. 

The process of binary classification of the coated surface images was 
performed by running the models on an Alienware 13th Gen 
Intel@Core-i9 Windows11 computer. A GPU of NVIDIA GeForce RTX 
4080 with 12 GB DDR6 Ram was used to accelerate the model training 
and achieve faster calculations. To access the performance of the binary 
classification of the defects, a confusion matrix is used, which provides 
the comparison of the actual and the predicted classes of the input im-
ages [45]. To evaluate the accuracy of the model, different terms are 
used in the confusion matrix. True positive (TP), the number of instances 
correctly predicted as positives (Belong to the positive class). True 
Negative (TN) the number of instances that are correctly predicted as 
negative (belonging to the negative class). Here Cracked images have 
been defined as the positive class and no cracked images have been 
defined as the negative class. The false positives (FP) indicated here that 
number of actual non cracked images turned out to be cracked images. 
The false negatives (FN) indicates the number of cracked images 
incorrectly predicted as non-cracked images. The confusion matrix 
shows the detailed classification reports through performance metrics 
of: accuracy, precision, Recall and F measure. 

The term Accuracy represents the overall performance of the model 
in terms of the number of correct predictions out of the total number of 

test cases, Equation (3). 

Accuracy=
(TP + TN)

(TP + TN + FP + FN)
(3) 

Precision shows the correctly predicted positive cases from all the 
positive predictions. For instance, it will show how many of the images 
where correctly predicted to be cracked images out of the total number 
of true positive and false positive images, Equation (4). 

Precision=
TP

(TP + FP)
(4) 

Recall calculates how many of the actual positive (cracked images) 
where predicted correctly from the true positive and the true negative 
cases, Equation (5). 

Recall=
TP

(TP + TN)
(5) 

F1 score is the harmonic mean of precision and recall, it provides the 
mutual view of precision and recall. 

4. Results and discussion 

The formation of cracks during laser nitriding can be attributed to 
various factors including: Heat accumulation, thermal cycling effects, 
melt pool dynamics, residual stresses, microstructural evolution, depth 
of the nitrided layer, dendritic growth and rapid solidification, and 
micro segregation in dendritic regions. 

Firstly, in continuous wave (CW) mode, lasers perform at a consis-
tently high power (DC100), leading to an immediate temperature in-
crease and subsequent heat accumulation. This rapid temperature 
change can introduce thermal stresses in materials, potentially causing 
cracks. Conversely, in modulated mode, lasers work intermittently, 
allowing materials periodic cooling periods, which can reduce these 
stresses. Secondly, using modulated mode, especially with duty cycles 
(DC) ranging from 40% to 60%, introduces thermal cycling. This peri-
odic heating and cooling can foster a more consistent grain growth and 
mitigate residual stresses in the nitrided layer, reducing the likelihood of 
crack formation. The rapid cooling characteristic of CW mode can result 
in pronounced residual stresses. When the residual stress surpasses the 
yield strength of the material, it can lead to cracking. Yet, in modulated 
mode, the periodic heating can facilitate stress relaxation, decreasing 
the chances of crack formation [46,47]. 

The presence of cracks or no crack on the laser nitrided surface has 
been investigated using binary classification. The performance of the 5 
models (Table 1) to recognize the cracks on the surface of laser nitrided 
Ti–6Al–4V have been analysed using testing and validation accuracy, 
confusion matrix and classification report. The results show the 
comparative outlook for binary classification of surface cracks on laser 
nitride surfaces using deep learning model of CNN, and its variants of 
Densenet-121, GooLeNet, Resnet50, VGG16 and VGG19, which have 
been applied through transfer learning. These models have been opti-
mized by fine tuning their hyper parameters to achieve the best possible 
performance. These models provide the robust binary classification to 
recognize the surface cracks of laser nitride coating on Ti–6Al–4V. The 
purpose to include the baseline model of CNN in comparison to its 
variants is to gauge the trade-off between complexity and performance 

Fig. 7. Comparison of testing and validation accuracy.  

Table 1 
Models specifications.  

Network Depth Size Total Parameters Trainable Parameters 
VGG-19 19 574 MB 20,057,281 32,897 
VGG-16 16 533 MB 14,747,585 32,897 
Densent-121 121 33 MB 7,103,169 65,665 
GoogLeNet 22 40 MB 22, 065,185 262,401 
ResNet-50 50 167 MB 23, 718, 913 131,201  

Table 2 
Dataset generation.  

Descriptor Crack No-Crack 

Total Number of images 6944 12,761 
Images for training (60% of total images) 4166 7656 
Images for validation (20% of total images) 1328 1740 
Images for testing (20% of total images) 1328 1740 
Image size 128 × 128 × 3 128 × 128 × 3  
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for this data set. It also helped to benchmark the performance of CNN in 
comparison to its variants for this dataset. 

Fig. 7 shows the comparison of the validation and testing accuracy of 
the applied models. Overall, all of the applied models show a testing and 
validation accuracy of more than 92%, which indicates that all of the 
models achieve good performance to classify cracks in laser nitrided 
surface coatings. The best validation and testing accuracy of 99% is 
achieved by the VGG16 and VGG19 models through transfer learning. 
Following closely, the DenseNet-121 demonstrates very good perfor-
mance with an accuracy of 98%. The base model, CNN, demonstrated 
good performance with validation and testing accuracy of 96%. How-
ever, the transfer learnt models, GoogLeNet (Inception V3) and Resnet- 
50, showed lower accuracies of 95% and 92% respectively. 

Looking at the number of total parameters and trainable parameters 
in Table 1, and the performance of the models in Fig. 7, it is important to 
note that models with less training parameters like VGG-19, VGG-16, 
and DenseNet-121 have better validation and testing accuracy. On the 
other hand, models like GoogLeNet and ResNet-50 with more trainable 
parameters have lower validation and testing accuracy. In comparison 
the base model of CNN with significantly fewer training parameters 
performed much better than the ResNet-50 and GoogLeNet (Incep-
tionV3). For this data set, the network architecture of VGG16, and 
VGG19 were found to be more suitable and provided the testing and 
validation accuracy of 99% to recognize the cracks on the surface of 
laser nitrided Ti–6Al–4V. 

Fig. 8 and Table 3 show the classification report of the models along 
with accuracy and testing time in milliseconds. In terms of testing time 
and accuracy, VGG-19 along with base model CNN provided the most 
optimum results, with accuracies of 99 and 97% and testing times of 
12300 ms and 11145 ms respectively. VGG-16 and DenseNet-121 also 
exhibited very good accuracies of 99 and 98% but are slow in compar-
ison to the CNN and VGG-19, with testing times of 13696 ms and 14250 
milli seconds respectively. The DenseNet-121 model achieved accuracy 
of 98% with slightly more training time than the VGG models. ResNet-50 
displayed lowest testing accuracy of 92%, but has a fast testing time. 
GoogleNet (Inception-V3) also has the low accuracy of 95%with very 
slow testing time of 13828 ms. 

The CNN base model along VGG19 have turned out to be more ac-
curate and fast, while inception V3 and have lower accuracy is slow in 
testing. The highest accuracy and faster speed of the models is attributed 
to the less training parameters used in the architecture of VGG19, 
VGG16 and CNN. The high accuracy of these models along with the 

lowest training times also indicate that the data set is more suitable for 
simpler networks with less trainable parameters. 

The confusion matrix along with the classification report results as 
shown in Fig. 9 and Table 3, indicate that the unbalanced data set did 
not influence the models to become biased. As, the present models are 
designed for recognition of cracks, so precision is the most decisive 
parameter. Among the trained models VGG16, VGG19, Densenet-121 
and CNN gave the same precision values to recognize the surface im-
ages with cracks and no cracks. However, a marginal difference in ac-
curacy is seen in the case of GoogLeNet (Inception-V3) and Resnet-50, as 
shown in Table 3. 

Except VGG19 and VGG16 models, all of the other models have 
marginal difference in their Recall Values for cracks and no cracks 
images. 

Considering the testing and validation accuracy, and classification 
report, it appears that this data set was efficient to recognize the cracks 
on laser nitrided surface of Ti–6Al4V. Comparing the base model of CNN 
with its variants, it can deduced that simpler models with less trainable 
parameters were more accurate to recognize cracks in less time. Based 
on this, best model for this kind of data set is VGG19 to recognize and 
classify cracks. 

Figs. 10 and 11 show that training, and validation loss and accuracy 
of the proposed model along with the number of epochs. The VGG 19 
model was so accurate for this data set that it achieved the 98% accuracy 
at the 10th epoch and reached to the minimum loss of 0.05, at 99% 
accuracy at the 60th epoch. 

This study is limited to recognizing the presence of surface cracks 
through image processing and the application of deep learning-based 
models. To comprehensively understand the evolution of cracks, 
including crack initiation, propagation, and growth, additional data 
collection is necessary. This involves new experimentation and con-
ducting different material tests, such as XRD (X-ray diffraction) and SEM 
(Scanning Electron Microscopy). 

5. Conclusion 

The research demonstrated the DL based binary classification 
method to recognize the surface cracks on laser nitrided samples of 
Ti–6Al-4. A state-of-the-art experimental data set and data acquisition 
system has been deployed to process high resolution surface images of 
laser nitrided samples of Ti–6Al4V. The images were pre-processed and 
a base model of a CNN along with its five variants have been applied 

Fig. 8. Performance evaluation of the models based on their Accuracy and testing time.  
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through transfer learning to recognize the surface cracks. Model testing 
and validation accuracy, confusion matrix and classification report has 
been used as the assessment criteria. All of the models exhibited very 
good accuracy of more than 90% to recognize surface cracks. The CNN 
variants used with the transfer learning approach, with the smallest 
number of training parameters, were found to be fast and more accurate 
to make the predictions with an accuracy of 98%. Moreover, VGG-19 
provides best crack recognition accuracy of 99%. For this kind of data 
set, the future work is to localize the cracks within the image. For this 
purpose, object detection using combination of Yolo variants and faster 
RCNN could be applied. The other method to detect cracks could be the 
image segmentation using the different variants of UNET models. 
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Table 3 
Classification report and testing time.  

Network  Precision Recall F1 Score Support Accuracy Testing Time 

CNN Crack 0.97 0.98 0.97 1328 0.97 11145 ms 
No-Crack 0.97 0.96 0.96 1740 

VGG19 Crack 0.99 0.99 0.99 1328 0.99 12300 ms 
No-Crack 0.99 0.99 0.99 1740 

Resnet-50 Crack 0.91 0.93 0.92 1328 0.93 12482 ms 
No-Crack 0.93 0.94 0.94 1740 

VGG16 Crack 0.99 0.99 0.99 1328 0.99 13696 ms 
No-Crack 0.99 0.99 0.99 1740 

Googlenet Crack 0.96 0.93 0.94 1328 0.95 13828 ms 
No-Crack 0.95 0.97 0.96 1740 

Densenet Crack 0.98 0.99 0.98 1328 0.98 14250 ms 
No-Crack 0.98 0.97 0.98 1740  

Fig. 9. Confusion matrixes.  

M.R. Awan et al.                                                                                                                                                                                                                                



Results in Engineering 22 (2024) 102003

10

Data availability 

Data will be made available on request. 

References 

[1] Y. Zhang, W. Li, C. Zhang, H. Liao, Y. Zhang, S. Deng, A spherical surface coating 
thickness model for a robotized thermal spray system, Robot. Comput. Integrated 
Manuf. 59 (Oct. 2019) 297–304, https://doi.org/10.1016/J.RCIM.2019.05.003. 

[2] G. Liu, et al., Development of Bioimplants with 2D, 3D, and 4D additive 
manufacturing materials, Engineering 6 (11) (Nov. 2020) 1232–1243, https://doi. 
org/10.1016/J.ENG.2020.04.015. 

[3] G. Hu, K. Guan, L. Lu, J. Zhang, N. Lu, Y. Guan, Engineered functional surfaces by 
laser microprocessing for biomedical applications, Engineering 4 (6) (Dec. 2018) 
822–830, https://doi.org/10.1016/J.ENG.2018.09.009. 

[4] Y. Wang, et al., Challenges and solutions for the additive manufacturing of 
biodegradable magnesium implants, Engineering 6 (11) (Nov. 2020) 1267–1275, 
https://doi.org/10.1016/J.ENG.2020.02.015. 

[5] H. Khatun, M. Rahman, S. Mahmud, M.O. Ali, M. Akter, Current advancements of 
hybrid coating on Mg alloys for medical applications, Results in Engineering 18 
(Jun. 2023) 101162, https://doi.org/10.1016/J.RINENG.2023.101162. 

[6] Y. Aslam, N. Santhi, N. Ramasamy, K. Ramar, Localization and segmentation of 
metal cracks using deep learning, J. Ambient Intell. Hum. Comput. 12 (3) (Mar. 
2021) 4205–4213, https://doi.org/10.1007/S12652-020-01803-8/TABLES/4. 
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