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A B S T R A C T

We explore how information additional to a specific price series can be used to improve the
power of popular univariate autoregressive-based methods for detecting and dating speculative
price bubble episodes. Following Phillips et al. (2011, 2015) we base our approach on
sequences of sub-sample regression-based augmented Dickey–Fuller [ADF] statistics. Our point
of departure from these extant procedures is to allow for additional information in the testing
and dating procedures. To do so we follow the approach of Hansen (1995) and augment the
sub-sample ADF regressions with covariate regressors. The limiting null distributions of the
resulting statistics depend on the long-run squared correlation between the covariates and the
regression error. We show that this dependence can be accounted for by using a residual
bootstrap re-sampling method. Simulation evidence shows that including relevant covariates
can significantly improve the efficacy of both the resulting bubble detection tests and the
associated date-stamping procedure, relative to using standard sub-sample ADF statistics. An
empirical application of the proposed methodology to monthly S&P 500 data is considered,
using a variety of candidate covariates. Using these covariates, the onset of the dotcom bubble
and the bubble associated with Black Monday are both identified significantly earlier than when
using standard methods.

1. Introduction

Large price swings away from fundamentals characterised by bubbles (see Homm and Breitung, 2012; Shiller, 2015; Phillips and
hi, 2018) represent a misallocation of resources during the upward bubble phase and a subsequent destruction of value during the
rash phase. Frequently, crashes are followed by a recession as deleveraging combines with a lack of confidence in the financial
ystem to reduce the supply of credit to the real economy, as occurred in the aftermath of the Global Financial Crisis [GFC] of
007/08. Policymakers reacted by considering new rules for macroprudential regulation and intervention including countercyclical
apital and margin requirements.

A key element of a macroprudential policy approach is the rapid and accurate detection of ongoing asset price bubbles and
he ability to identify the location and duration of historical bubble episodes. Accordingly, a large literature has developed around
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testing for the presence of explosive rational asset bubbles. Recently, Phillips et al. (2011, PWY) and Phillips et al. (2015, PSY)
propose right-tailed tests for the presence of bubble episodes based on the maximum of sequences of recursive univariate augmented
Dickey–Fuller [ADF] unit root statistics applied to overlapping sub-samples of asset price series. The former is designed to detect a
single bubble episode whose origination date is at (or before) the start of the available sample data, while the latter is designed for
detecting multiple bubble regimes. Associated methods for date-stamping bubble episodes are also proposed in PSY, and can also
be used to provide an ongoing approach for monitoring for the emergence of a bubble in real-time.

Further contributions using sub-sample univariate testing methods have been developed in Harvey et al. (2016), Astill et al.
(2017) and Phillips and Shi (2018) among others. However, it seems very likely that information additional to a specific price series
could help improve on the power of existing univariate bubble detection procedures and the associated date-stamping methods.
Indeed, in the context of standard full sample left-tailed unit root tests, Hansen (1995) shows that examining a variable in isolation
can be potentially very costly in terms of power and accordingly suggests a covariate-based version of the standard ADF unit root
test whereby the usual ADF regression is augmented by stationary covariates.

Building on the approach of Hansen (1995), our contribution is to extend the bubble detection and date-stamping procedures
proposed in PWY and PSY by developing analogous procedures based on the corresponding sequences of covariate augmented
ADF (CADF) statistics from overlapping sub-samples of the data. Our approach does this by incorporating such covariates into the
sub-sample ADF regressions used in the PWY and PSY procedures in the same way that the approach in Hansen (1995) incorporates
covariates into the standard full sample ADF regression. Of course, in an empirical setting, the choice of covariate is key (Elliott
and Jansson, 2003) and given the need to detect bubbles is most obviously seen in financial contexts, this also dictates the type of
covariate one might use.

In an asset pricing context, the extant literature suggests several potential covariates that could aid in identifying periods of
explosive, nonstationary behaviour. To mention only a few, for equities, dividend discount type models (Diba and Grossman, 1998;
PSY) link prices to the risk-free rate of interest, whilst the capital asset pricing model (Kim and Kim, 2016) can embed time-
varying volatility. Pricing equations for commodity spot prices (Tsvetanov et al., 2016) indicate inventories (Kilian and Murphy,
2014) and speculation measures (Singleton, 2014), whilst for cryptocurrencies, investor sentiment (Chen et al., 2019) may play
an important role. Finally, given bubble behaviour in real estate may precede equity (Caballero et al., 2008) and commodity
market bubbles (Phillips and Yu, 2011), potential housing market covariates such as interest rates, disposable income and mortgage
finance (White, 2015) may be particularly useful. Overall, in the financial sphere, the availability of many potential covariates holds
out the possibility of enhanced bubble monitoring in a range of systemically important markets and consequently, better-quality
macroprudential policy, if a suitable covariate-based test can be devised.

It is important to note, that as with the full sample CADF statistics of Hansen (1995), the limiting null distributions of our
proposed supremum-based statistics depend on the long-run squared correlation between the covariates and the regression error.
While this nuisance parameter can be consistently estimated under the unit root null hypothesis from the data, Chang et al. (2017,
CSS) demonstrate that this estimate tends to be heavily biased in finite samples leading to potentially severe size distortions in the
CADF test. We find that, perhaps not surprisingly, this problem is somewhat amplified when considering tests based on the suprema
of sequences of such statistics applied across sub-samples of the data. To rectify this issue we implement our tests using a bootstrap
re-sampling procedure originally outlined in CSS. Monte Carlo simulations show that our proposed bootstrap covariate tests offer
impressive size and power performance in finite samples relative to a univariate approach and also improve upon the accuracy of
the associated date-stamping methods.

An empirical application to the S&P 500 is conducted, where we utilise a variety of covariates including Moody’s Seasoned Aaa
Corporate Bond Yield, the return on long-term AAA- and BAA-rated Corporate Bonds, the 10 Year US Treasury Constant Maturity
Rate, the AAA credit spread and VXO volatility index. Our proposed tests are applied to data spanning the period associated with
the lead up to Black Monday in October 1987 and the dotcom bubble in the late 1990s. In the vast majority of cases, our proposed
tests would have detected the emergence of these two bubble episodes significantly earlier than the standard PSY tests. Given the
severity of these crashes, this extra time would have been critical in implementing policies to ameliorate the significant real economic
damage caused by the subsequent loss of investor confidence and associated credit tightening in the aftermath of the implosion of
these bubbles.

The remainder of this paper is organised as follows. In Section 2 we outline the explosive asset price model and the relevant
assumptions. Section 3 provides an overview of the conventional covariate augmented unit root tests of Hansen (1995) and the
univariate bubble detection tests and bubble date-stamping procedures of PWY and PSY based on recursive estimation methods.
Our proposed covariate augmented bubble detection procedures are detailed and their large sample properties derived in Section 4.
Here we also discuss bootstrap implementation of the bubble detection and date-stamping methods. The finite sample properties
of our proposed tests and date-stamping methods are examined through Monte Carlo simulation in Section 5 and compared with
the corresponding univariate methods of PSY. Section 6 presents an empirical application of our proposed methods to the S&P 500
price dividend series previously analysed in PSY. Section 7 concludes. A full description of the bootstrap algorithm used to perform
our proposed tests, discussion of how to allow for various specifications for the deterministic elements of the series used in the tests,
and proofs of the main theorems which appear in the paper are relegated to a mathematical appendix.

In what follows
𝑤
→,

𝑝
→, and

𝑤
→𝑝 denote weak convergence, convergence in probability, and weak convergence in probability,

respectively, in each case as the sample size, 𝑇 , diverges to infinity, ⌊⋅⌋ denotes the integer part of its argument, and I(⋅) denotes

the indicator function which returns the value 1 when its argument is true and 0 otherwise.
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2. The model and assumptions

Consider the time series {𝑦𝑡} satisfying the data generating process (DGP):

𝛥𝑦𝑡 = 𝛿𝑡𝑦𝑡−1 + 𝑢𝑡, 𝑡 = 1,… , 𝑇 (1)

with 𝛥 ∶= (1 − 𝐿), 𝐿 the lag operator such that 𝐿𝑘𝑦𝑡 = 𝑦𝑡−𝑘, 𝑘 = 0,±1,±2....1 We allow the error term, 𝑢𝑡, in (1) to be both serially
correlated and to be related to other stationary covariates. This is done by assuming that 𝑢𝑡 in (1) is generated according to

𝛼(𝐿)𝑢𝑡 = 𝑏(𝐿)′𝑤𝑡 + 𝜀𝑡, (2)

where 𝜀𝑡 is a martingale difference sequence with constant unconditional variance (precise assumptions on 𝜀𝑡 can be found in
Assumption A.1 in Appendix A.3), and 𝑤𝑡 is an 𝑚-vector of (mean zero) stationary covariates, 𝛼(𝐿) is a 𝑝th order stationary lag
polynomial, defined as 𝛼(𝑧) ∶= 1 −

∑𝑝
𝑘=1 𝛼𝑘𝑧

𝑘, and 𝑏(𝑧) ∶=
∑𝑞2

𝑘=−𝑞1
𝛽𝑘𝑧𝑘 is a lag polynomial allowing for, but not requiring, both

leads and lags of the covariate 𝑤𝑡 to enter the DGP. In many applications it will be natural for the covariates specified in 𝑤𝑡 to
constitute the first differences of other relevant financial and/or macroeconomic time series, although we will not impose this in
our formulation which will simply require the elements of 𝑤𝑡 to be weakly dependent (𝐼(0)).

Our interest in this paper centres on testing the constant unit root null hypothesis

𝐻0 ∶ 𝛿𝑡 = 0, for all 𝑡 = 1,… , 𝑇 (3)

in (1) against the alternative hypothesis that the series 𝑦𝑡 displays explosive behaviour for some non-vanishing subset of the sample
observations considered; that is,

𝐻1 ∶ 𝛿
⌊𝑇 𝑟⌋ = 0, 𝑟 ∉ 0; 𝛿

⌊𝑇 𝑟⌋ > 0, 𝑟 ∈ 0 (4)

where 0 is a non-empty convex subset of the unit interval [0, 1]; for example, unions of non-overlapping sub-intervals of [0, 1].
Under the null hypothesis, 𝐻0, 𝑦𝑡 follows a unit root (𝐼(1)) process (subject to the technical conditions on 𝑢𝑡 outlined in Appendix A.3
holding) throughout the sample period, while the alternative hypothesis, 𝐻1, specifies the presence of either a single or multiple
distinct bubble regimes (each of whose length is a fraction of the sample size, 𝑇 ) within the sample period, with 𝑦𝑡 following a
unit root process outside of these bubble regimes. Where a bubble regime terminates before the end of the sample period, 𝑇 , a
mechanism for the collapse of the bubble needs to be specified. This will be discussed later in Section 3.2.

Define 𝑣𝑡 ∶= 𝑏(𝐿)′𝑤𝑡 + 𝜀𝑡 and consider the long-run covariance matrix of 𝜁𝑡 ∶= (𝑣𝑡, 𝜀𝑡)′:

𝛺 =
[

𝜎2𝑣 𝜎𝑣𝜀
𝜎𝑣𝜀 𝜎2𝜀

]

∶=
∞
∑

𝑘=−∞
𝐸(𝜁𝑡𝜁 ′𝑡−𝑘) (5)

Provided 𝛺 is positive definite, we can then define the long-run squared correlation coefficient between 𝑣𝑡 and 𝜀𝑡 as

𝜚2 ∶=
𝜎2𝑣𝜀
𝜎2𝑣𝜎2𝜀

. (6)

The parameter 𝜚2 is crucial to understanding the power gains that can be achieved by extending the bubble testing procedure of PSY
and PWY to incorporate the covariates, 𝑤𝑡. As discussed in Hansen (1995), pp. 1150–1151), 𝜚2 measures the relative contribution
of 𝑤𝑡 to 𝑣𝑡 at the long-run frequency. At one extreme if 𝑏(𝐿) = 𝟎, such that the covariates contain no useful information, then 𝜚2 = 1,
while if the covariates jointly explain almost all of the long-run movement in 𝑣𝑡 then 𝜚2 will be close to zero.

For the purposes of this paper we follow CSS and assume that the covariates 𝑤𝑡 are generated by the 𝐴𝑅(𝓁) process,

𝛹 (𝐿)𝑤𝑡+𝑞1+1 = 𝜂𝑡, (7)

where 𝜂𝑡 is an 𝑚-dimensional martingale difference sequence with constant variance matrix (precise assumptions on 𝜂𝑡 can again be
found in Assumption A.1 in Appendix A.3) and 𝛹 (𝑧) ∶= 𝐼𝑚−

∑𝓁
𝑘=1 𝛹𝑘𝑧𝑘. Like CSS, who develop bootstrap implementations of the full

ample CADF test of Hansen (1995), a parametric DGP is assumed for the covariates in (7) for the purposes of developing bootstrap
mplementations of the covariate augmented bubble detection tests proposed in this paper. Asymptotic versions of these tests (i.e.
ests based on critical values from the limiting null distributions of the statistics) could equally well be based on the corresponding
non-parametric) strong mixing-based assumption employed in Assumption 1 of Hansen (1995, p.1151).

emark 2.1. The DGP specified above implies that both 𝑦𝑡 and 𝑤𝑡 have (unconditional) mean zero and we outline our methods
nder this assumption. This assumption can be relaxed to allow for the possibility of a constant plus linear trend in the mean of
he observed price series and covariates by specifying the price series in the latter case as 𝑦†𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑦𝑡 and 𝑤†

𝑡 = 𝑏0 + 𝑏1𝑡 +𝑤𝑡,
with 𝑦𝑡 and 𝑤𝑡 generated as previously specified, where 𝑎0 and 𝑎1 are scalar constants and 𝑏0 and 𝑏1 are 𝑚-vectors of constants. The
special case thereof where the mean of each of the two series is a constant obtains by setting 𝑎1 = 0 and 𝑏1 = 𝟎. The tests which we
describe in the remainder of the paper are outlined for the case where 𝑦𝑡 and 𝑤𝑡 both have zero mean. Details of how the methods
we outline can be generalised to allow for a constant and/or linear trend in the mean of 𝑦𝑡 and 𝑤𝑡 is provided in Appendix A.2.

1 The initial condition, 𝑦0, does not affect the large sample results given for our proposed tests provided it is stochastically bounded and so we set 𝑦0 = 0 in
what follows for expositional brevity.
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3. Existing test procedures

In this section we briefly review the covariate augmented unit root tests of Hansen (1995) and the univariate bubble detection
procedures of PWY and PSY.

3.1. Hansen’s covariate augmented ADF unit root tests

In the context of the model in (1) under the parameter constancy restriction that 𝛿𝑡 = 𝛿 for all 𝑡 = 1,… , 𝑇 , Hansen (1995)
considers testing the null hypothesis that 𝑦𝑡 is a unit root process, 𝐻0 ∶ 𝛿 = 0 against the alternative of stationarity, 𝐻1 ∶ 𝛿 < 0.

Hansen (1995) shows that, under this parameter constancy restriction, (1) and (2) can be combined to give the following single
equation

𝛥𝑦𝑡 = 𝛿𝑦𝑡−1 +
𝑝
∑

𝑘=1
𝛼𝑘𝛥𝑦𝑡−𝑘 +

𝑞2
∑

𝑘=−𝑞1

𝛽′𝑘𝑤𝑡−𝑘 + 𝜀𝑡. (8)

the parameters of which can be consistently estimated by OLS under Assumptions A.1 and A.2. Eq. (8) is essentially a standard ADF
regression for 𝑦𝑡 augmented by the covariates in 𝑤𝑡, together with the leads and lags thereof (as appropriate). Accordingly, Hansen
(1995) proposes a CADF test of 𝐻0 ∶ 𝛿 = 0 against 𝐻1 ∶ 𝛿 < 0 based on the conventional OLS regression 𝑡-statistic on 𝑦𝑡−1 in (8),
𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2) ∶= 𝛿∕𝑠𝑒(𝛿), where 𝛿 is the OLS estimate of 𝛿 and 𝑠𝑒(𝛿) is its standard error, using the full available data sample,
𝑡 = 1,… , 𝑇 .

Theorem 3, of Hansen (1995, p.1154) provides representations for the limiting distributions of the 𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2) statistics.
These depend on the long-run correlation parameter 𝜚2. Consequently, to form a test of 𝐻0 against 𝐻1 left-tailed critical values
from these distributions are needed. Table 1 of Hansen (1995, p.1155) provides these for 𝜚2 = {1.0, 0.9, 0.8,… , 0.1}. However, the
value of 𝜚2 is not known in practice and so must be estimated from the data. Hansen (1995), pp. 1155–1156) suggests the following
non-parametric estimator of 𝜚2:

�̂�2 ∶=
�̂�2𝑣𝜀
�̂�2𝜀 �̂�2𝑣

(9)

here

�̂� =
[

�̂�2𝑣 �̂�𝑣𝜀
�̂�𝑣𝜀 �̂�2𝜀

]

∶=
𝑀
∑

𝑘=−𝑀
𝑔(𝑘∕𝑀)𝑇 −1

∑

𝑡
𝜁𝑡−𝑘𝜁

′
𝑡 (10)

in which 𝜁𝑡 ∶= (�̂�𝑡, �̂�𝑡)′, where �̂�𝑡 are the OLS residuals obtained from estimating (8) and �̂�𝑡 ∶=
∑𝑞2

𝑘=−𝑞1
𝛽′𝑘𝑤𝑡−𝑘 + �̂�𝑡, {𝛽𝑘}

𝑞2
𝑘=−𝑞1

the OLS
slope estimates from (8). In the context of (10), suitable choices of the kernel function, 𝑔(⋅), and the bandwidth, 𝑀 , are discussed in

ansen (1995, p.1156). The test can then be implemented using the estimated �̂�2 to select the most appropriate asymptotic critical
alue from Table 1 of Hansen (1995).

Theorem 3 of Hansen (1995) also shows that the asymptotic local power of the CADF test based on the 𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2) statistic
as the property that it increases as 𝜚2 decreases, other things equal. Monte Carlo simulations reported in Hansen (1995) and in
SS demonstrate that the inclusion of relevant covariates can lead to substantial increases in finite sample power relative to the
orresponding standard ADF unit root test derived from (8). These simulation results also show that, unlike the property of the
symptotic local power function of the test noted above, the finite sample power of the CADF test is not necessarily higher the
maller the value of 𝜚2.

A serious practical drawback of the approach outlined in Hansen (1995), however, is that the estimate of 𝜚2 in (9) can be quite
adly biased in finite samples; see the simulation results in Table 1 on page 145 of CSS. A consequence of this bias will be that the
symptotic critical value being used based on that estimate will likely be a poor approximation to the true critical value for the test
nd, as a result, the results in CSS demonstrate that the CADF test can be very badly sized in practice. Indeed, the results in CSS
ighlight that the finite sample bias in estimating 𝜚2 is worse the closer is 𝜚2 to zero, so that the CADF test becomes more unreliable
n practice as the theoretical power gains it offers over the standard ADF test become larger. As a result CSS propose a bootstrap
mplementation of the CADF test which does not require an estimate of 𝜚2 and nor does it require tabulations of asymptotic critical
alues. We will subsequently utilise the re-sampling approach proposed in CSS in the context of the covariate augmented bubble
ests proposed in Section 4 of this paper.

.2. The PWY and PSY bubble detection procedures

Proceeding in the broad spirit of Diba and Grossman (1988) while taking account of Evans (1991) criticisms, PWY and PSY
ropose the use of univariate sub-sample estimation methods as a means to testing the unit root null hypothesis against the
lternative hypothesis that explosive financial bubbles are present in the data; cf. (3) and (4).

To first understand the idea behind the PWY approach, consider the generic (non-covariate augmented) ADF regression,

𝛥𝑦𝑡 = 𝛿𝑦𝑡−1 +
𝑝
∑

𝛼𝑘𝛥𝑦𝑡−𝑘 + 𝑣𝑡. (11)

𝑘=1
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For the remainder of this section we will assume, as in PWY and PSY, that 𝑏(𝐿) = 𝟎 in (2) such that 𝑣𝑡 = 𝜀𝑡 in (11).2 Even under this
restriction, the ADF regression in (11) is misspecified under the DGP in (1) and (2) because the parameter on 𝑦𝑡−1 is taken to be fixed
rather than time-varying; that is, the correct ADF re-parametrisation of (1) and (2) would have 𝛿𝑡 as the slope parameter on 𝑦𝑡−1 in
(11). The approach taken by PWY and PSY is based on the use of ADF statistics obtained from estimating (11) over sub-samples of
the full available sample, 𝑡 = 1,… , 𝑇 , treating 𝛿𝑡 as if it were constant across that sub-sample.

To this end, define the sub-sample ADF statistic 𝐴𝐷𝐹 (𝑝)𝑟2𝑟1 ∶= 𝛿(𝑟1, 𝑟2)∕𝑠𝑒(𝛿(𝑟1, 𝑟2)), where 𝛿(𝑟1, 𝑟2) is the OLS estimate of 𝛿 and
𝑠𝑒(𝛿(𝑟1, 𝑟2)) its standard error, from estimating (11) over the data sub-sample 𝑡 = ⌊𝑟1𝑇 ⌋ + 1,… , ⌊𝑟2𝑇 ⌋. Suppose it was suspected,
for example, that a bubble episode occurred starting at 𝑡 = 1 which lasted until 𝑡 = ⌊𝑟𝑏𝑇 ⌋. In this case one would clearly want
to construct a right-tailed ADF test based on the single sub-sample ADF statistic 𝐴𝐷𝐹 (𝑝)𝑟𝑏0 as this would be the largest possible
sub-sample of purely explosive data available. In contrast, the full sample right-tailed ADF test based on 𝐴𝐷𝐹 (𝑝)10 would contain
a mix of explosive and non-explosive observations and so would be expected to be less powerful than the test based on 𝐴𝐷𝐹 (𝑝)𝑟𝑏0 ,
the more so the smaller the value of 𝑟𝑏. In practice, however, we would not know the location of the putative bubble episode and
so PWY propose a right-tailed test based on the maximum of the sequence of ADF statistics obtained across the forward recursive
sequence of sub-samples of the data, viz,

𝑆𝐴𝐷𝐹 ∶= sup
𝑟2∈[𝑟0 ,1]

{𝐴𝐷𝐹 (𝑝)𝑟20 }. (12)

This test is therefore seen to be based on the supremum of the sequence of 𝐴𝐷𝐹 statistics computed over all possible sub-samples
of the data starting at 𝑡 = 1, subject to a minimum sample size ⌊𝑟0𝑇 ⌋. Notice that the full sample ADF statistic, 𝐴𝐷𝐹 (𝑝)10, is the last
element in this sequence. In the example above where an explosive bubble is present between 𝑡 = 1 and 𝑡 = ⌊𝑟𝑏𝑇 ⌋, the supremum
of this sequence would in theory be located at 𝑡 = ⌊𝑟𝑏𝑇 ⌋, and so the supremum test would effectively be based on the 𝐴𝐷𝐹 (𝑝)𝑟𝑏0
statistic but without the practitioner needing to know 𝑟𝑏. Crucially, PWY show that this supremum test is much more powerful at
detecting periodic episodes of explosive behaviour that occur towards the start of the available sample data than the corresponding
right-tailed ADF test based on 𝐴𝐷𝐹 (𝑝)10.

The 𝑆𝐴𝐷𝐹 statistic is constructed from 𝐴𝐷𝐹 statistics calculated over sub-samples with the same start date, 𝑡 = 1, and is therefore
designed to detect explosive episodes that occur towards the start of the sample. If, however, interest centred on explosive episodes
that occur towards the end of the sample, as would naturally be the case in implementing an on-going monitoring exercise for the
emergence of an end of sample bubble, then a natural alternative would be to instead construct a test statistic from 𝐴𝐷𝐹 statistics
calculated on sub-samples of the data whose end date is the end of the sample. This approach is suggested by PSY who propose a
right-tailed test based on the following test statistic,

𝐵𝑆𝐴𝐷𝐹 ∶= sup
𝑟1∈[0,1−𝑟0]

{𝐴𝐷𝐹 (𝑝)1𝑟1}. (13)

This test is therefore based on the supremum taken over the backward recursive sequence of 𝐴𝐷𝐹 statistics computed on all possible
sub-samples of the data ending at time 𝑡 = 𝑇 , subject to a minimum sample size ⌊𝑟0𝑇 ⌋. The 𝐵𝑆𝐴𝐷𝐹 -based test is, therefore, designed
to detect end-of-sample explosive episodes as it is computed using relatively more observations from the end of the sample than
from the start.

PSY also propose a further (right-tailed) test based on the supremum of a sequence of 𝐴𝐷𝐹 test statistics computed over all
possible sub-samples of the data, again subject to a minimum sample size ⌊𝑟0𝑇 ⌋. This test rejects for large positive values of

𝐺𝑆𝐴𝐷𝐹 ∶= sup
𝑟2∈[𝑟0 ,1]

𝑟1∈[0,𝑟2−𝑟0]

{𝐴𝐷𝐹 (𝑝)𝑟2𝑟1}. (14)

The double recursive 𝐺𝑆𝐴𝐷𝐹 -based test is designed to test 𝐻0 against the presence of one or more explosive episodes regardless
of their location in the sample.

A rejection by any of these three tests can only signal that a sample contains at least one explosive episode, but not where these
are located within the sample. Accordingly, PSY propose a wider approach for bubble detection and identification. Here one first
applies the 𝐺𝑆𝐴𝐷𝐹 -based test to identify whether one or more bubble episodes are present in a series. If this test rejects 𝐻0, then
the next step in the PSY procedure is to date-stamp the bubble episode(s) in the data using sequential applications of the 𝐵𝑆𝐴𝐷𝐹
statistic.

To illustrate PSY’s date-stamping procedure, consider the case of a single explosive episode; the full procedure for date-stamping
multiple possible bubbles is detailed in section 3 of PSY. Here one proceeds to estimate the origination date, 𝑡𝑒 and the termination
date, 𝑡𝑓 , of the bubble. The origination date is estimated as the first date at which the 𝐵𝑆𝐴𝐷𝐹 -based test when applied sequentially
to the data would signal a rejection of 𝐻0. Specifically, consider the following statistic

𝐵𝑆𝐴𝐷𝐹𝑟2 ∶= sup
𝑟1∈[0,𝑟2−𝑟0]

{𝐴𝐷𝐹 (𝑝)𝑟2𝑟1}. (15)

2 Observe that (8) and (11) are equivalent representations and that the contribution from the covariates in the former, ∑𝑞2
𝑘=−𝑞1

𝛽′𝑘𝑤𝑡−𝑘, is subsumed into the
error term, 𝑣𝑡, in the latter. An implication of this is that serial correlation in 𝑤𝑡 will, in general, effect serial correlation in the error term in (11) when 𝑏(𝐿) ≠ 𝟎.

s such, for ADF-type tests obtained from (11) to have pivotal limiting null distributions the lag truncation order used in (11) would need to be set to some
alue, 𝑝𝑣 say, where 𝑝𝑣 ≥ 𝑝, to ensure that the error in the ADF regression equation was approximately serially uncorrelated; if 𝑣𝑡 contained a moving average
omponent, then 𝑝 would need to be such that (1∕𝑝 ) + (𝑝2∕𝑇 ) → 0 as 𝑇 → ∞; cf. Chang and Park (2002).
𝑣 𝑣 𝑣
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The test statistic 𝐵𝑆𝐴𝐷𝐹𝑟2 is therefore seen to be simply the 𝐵𝑆𝐴𝐷𝐹 statistic in (13) but applied only to the sample of data
𝑡 = 1,… , ⌊𝑟2𝑇 ⌋ (treating this sub-sample as if it were the full available sample of data). Sequentially applying this statistic (i.e. for
amples ending at ⌊𝑟2𝑇 ⌋ + 1, ⌊𝑟2𝑇 ⌋ + 2, etc. through finally to the full sample ending at 𝑇 ), the estimated origination date of the
ubble is then estimated as 𝑡𝑒 = ⌊�̂�𝑒𝑇 ⌋, where

�̂�𝑒 ∶= inf
𝑟2∈[𝑟0 ,1]

{𝑟2 ∶ 𝐵𝑆𝐴𝐷𝐹𝑟2 > 𝑠𝑐𝑣𝜃𝑇𝑟2 }. (16)

here 𝑠𝑐𝑣𝜃𝑇𝑟2 is the 100(1−𝜃𝑇 )% (asymptotic) critical value from the null distribution of the 𝐵𝑆𝐴𝐷𝐹𝑟2 test statistic. As PSY note, this
pproach could therefore be used as an on-going monitoring procedure to detect the onset of a bubble episode in real-time.

The estimated termination date of the bubble, 𝑡𝑓 , is analogously defined as the first date after 𝑡𝑒 +𝐿𝑇 for which the sequentially
pplied 𝐵𝑆𝐴𝐷𝐹 statistic falls below the critical value 𝑠𝑐𝑣𝜃𝑇𝑟2 . PSY impose the condition that for a bubble to be identified its duration
ust exceed a minimum duration period given by 𝐿𝑇 ∶= 𝛾𝑙𝑜𝑔(𝑇 ) where 𝛾 is a constant chosen based on the frequency of the data. In
ractical applications PSY suggest setting this minimum duration, 𝐿𝑇 , equal to one calendar year. The estimated termination date

of the bubble episode is therefore given by 𝑡𝑓 = ⌊�̂�𝑓𝑇 ⌋, where

�̂�𝑓 ∶= inf
𝑟2∈[�̂�𝑒+𝛾𝑙𝑜𝑔(𝑇 )∕𝑇 ,1]

{𝑟2 ∶ 𝐵𝑆𝐴𝐷𝐹𝑟2 < 𝑠𝑐𝑣𝜃𝑇𝑟2 }. (17)

The significance level, 𝜃𝑇 , used in (16) and (17) can be chosen such that 𝜃𝑇 → 0 as 𝑇 → ∞. This ensures that 𝑠𝑐𝑣𝜃𝑇𝑟2 diverges
to infinity with 𝑇 , thereby eliminating Type I error as 𝑇 → ∞. In empirical applications PSY recommend fixing 𝜃𝑇 at some pre-
determined significance level instead of using drifting significance levels, and it is this approach that we will adopt when performing
our empirical application in Section 6.

PSY demonstrate that (16) and (17) provide consistent estimates of the bubble origination and termination dates, respectively,
in the case of a DGP which contains a single bubble episode that is subject to collapse on termination; that is,

𝑦𝑡 = 𝑦𝑡−1I(𝑡 < 𝑡𝑒) + 𝛿𝑇 𝑦𝑡−1I(𝑡𝑒 ≤ 𝑡 ≤ 𝑡𝑓 ) +

( 𝑡
∑

𝑘=1
𝑣𝑘 + 𝑦∗𝑡𝑓

)

I(𝑡 > 𝑡𝑓 ) + 𝑣𝑡I(𝑡 ≤ 𝑡𝑓 )

where 𝛿𝑇 ∶= 1 + 𝑐𝑇 −𝛼 , 𝑐 > 0 and 𝛼 ∈ (0, 1), and where 𝑦∗𝑡𝑓 = 𝑦𝑡𝑒 + 𝑦∗ with 𝑦∗ = 𝑂𝑝(1).
PSY show that the consistency of the estimated origination and termination dates extends to the case where two or more collapsed

bubble episodes occur. The consistency of PSY’s date-stamping estimates can also be shown to hold for other possible transitional
mechanisms between the explosive and non-explosive phases of the process; see, in particular, Harvey et al. (2017) and Phillips and
Shi (2018).

4. Covariate augmented PWY and PSY procedures

A drawback of the PWY and PSY tests outlined in Section 3.2 is that, although they display increased power to detect the presence
of bubble episodes in the data relative to a full sample ADF test, they are still based on the assumption of a univariate DGP for
𝑦𝑡. Given the complex relationships across multiple asset prices and the other inter-relationships that exist between price variables
and other macro and financial variables, and the power gains demonstrated by Hansen (1995) from using covariate augmentation
in the context of a full sample ADF regression, our contribution is to propose analogous covariate augmentation of the sub-sample
ADF regressions used in constructing the PWY and PSY statistics in (12)–(14).

To that end, we consider applying the sub-sample regression based approach of PWY and PSY but in the context of the covariate
augmented ADF regression in (8) rather than the standard ADF regression in (11) considered by PWY and PSY. Precisely, we propose
right-tailed tests based on the following covariate augmented analogues of the PWY and PSY statistics from Section 3.2,

𝐶𝑆𝐴𝐷𝐹 ∶= sup
𝑟2∈[𝑟0 ,1]

{𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)
𝑟2
0 }, (18)

𝐶𝐵𝑆𝐴𝐷𝐹 ∶= sup
𝑟1∈[0,1−𝑟0]

{𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)1𝑟1}, (19)

𝐶𝐺𝑆𝐴𝐷𝐹 ∶= sup
𝑟2∈[𝑟0 ,1]

𝑟1∈[0,𝑟2−𝑟0]

{𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)
𝑟2
𝑟1}. (20)

where 𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)
𝑟2
𝑟1 ∶= 𝛿(𝑟1, 𝑟2)∕𝑠𝑒(𝛿(𝑟1, 𝑟2)), with 𝛿(𝑟1, 𝑟2) denoting the OLS estimate of 𝛿 and 𝑠𝑒(𝛿(𝑟1, 𝑟2)) its standard error, from

estimating (8) over the data sub-sample 𝑡 = ⌊𝑟1𝑇 ⌋ + 1,… , ⌊𝑟2𝑇 ⌋. The proposed tests based on (18), (19) and (20) are, therefore,
covariate augmented analogues of the right-tailed tests of PWY and PSY based on the statistics defined in (12), (13) and (14),
respectively.

Remark 4.1. The date-stamping methods proposed in PSY discussed in Section 3.2 can similarly be adapted to be based on covariate
augmented ADF regressions simply by replacing 𝐵𝑆𝐴𝐷𝐹𝑟2 in (16) and (17) by 𝐶𝐵𝑆𝐴𝐷𝐹𝑟2 , the 𝐶𝐵𝑆𝐴𝐷𝐹 statistic applied to data
from 𝑡 = 1,… , ⌊𝑟2𝑇 ⌋, and replacing 𝑠𝑐𝑣𝜃𝑇𝑟2 by the analogous (asymptotic) critical value, 𝑐𝑠𝑐𝑣𝜃𝑇𝑟2 say, from the null distribution of the
𝐶𝐵𝑆𝐴𝐷𝐹𝑟2 statistic. In the context of an historical date-stamping exercise, if leads of 𝑤𝑡 are included in (8), so that 𝑞1 > 0, data in
advance of 𝑡 = ⌊𝑟2𝑇 ⌋ could be used in calculating the 𝐶𝐵𝑆𝐴𝐷𝐹𝑟2 statistic, but this would of course not be possible if the procedure

was being used in the context of a real-time monitoring exercise. ⋄
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Just as the limiting null distribution of Hansen’s (1995) CADF statistic differs from that of a standard ADF statistic, so will
the limiting null distributions of the 𝐶𝑆𝐴𝐷𝐹 , 𝐶𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐺𝑆𝐴𝐷𝐹 statistics differ from those of the standard PSY and PWY
𝑆𝐴𝐷𝐹 , 𝐵𝑆𝐴𝐷𝐹 and 𝐺𝑆𝐴𝐷𝐹 statistics. To that end, in Theorem 1 we provide a representation for the limiting null distribution of
the 𝐶𝐺𝑆𝐴𝐷𝐹 statistic, where following CSS we assume 𝜉𝑡 ∶= (𝜀𝑡, 𝜂′𝑡 )

′ to be a (𝑚+1)-dimensional martingale difference sequence with
constant unconditional variance matrix (the precise set of assumptions on 𝜉𝑡 are given in Assumptions A.1–A.2 in Appendix A.3). This
limiting distribution is shown to depend on the long-run correlation parameter, 𝜚2. Corresponding representations for the limiting
null distributions of the 𝐶𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 test statistics are discussed in subsequent remarks. All of these distributions depend
on the long-run correlation parameter, 𝜚2.

Theorem 1. Let {𝑦𝑡, 𝑤𝑡} be generated according to (1) and (2) and let Assumptions A.1 and A.2 hold. Then under the unit root null
hypothesis, 𝐻0 of (3), it holds that

𝐶𝐺𝑆𝐴𝐷𝐹
𝑤
→ sup

𝑟2∈[𝑟0 ,1]
𝑟1∈[0,𝑟2−𝑟0]

⎧

⎪

⎨

⎪

⎩

∫ 𝑟2
𝑟1

𝑄(𝑠)𝑑𝑃 (𝑠)
(

∫ 𝑟2
𝑟1

𝑄(𝑠)2𝑑𝑠
)1∕2

⎫

⎪

⎬

⎪

⎭

=∶ 𝐶𝐺𝑆𝐴𝐷𝐹∞ (21)

where 𝑄(𝑠) ∶= 𝑏(1)′𝛹 (1)𝐵𝜂(𝑠) + 𝐵𝜀(𝑠) and 𝑃 (𝑠) ∶= 𝐵𝜀(𝑠)∕𝜎𝜀.

Remark 4.2. The limiting distribution in (21) depends on both the minimum window size, 𝑟0, and the long-run correlation
coefficient 𝜚2. The latter dependence can be seen more clearly by writing the limiting distribution in (21) in an alternative form.
To illustrate, the limiting null distribution of the full sample 𝐶𝐴𝐷𝐹 statistic of Hansen (1995) can be obtained from Eq. (A.17) in
Appendix A.3 and is given by 𝐶𝐴𝐷𝐹

𝑤
→

∫ 1
0 𝑄(𝑠)𝑑𝑃 (𝑠)

(

∫ 1
0 𝑄(𝑠)2𝑑𝑠

)1∕2 . An equivalent representation for this distribution is given in equation (15) of

Hansen (1995, p.1154) which can be obtained from the form given here on noting that 𝑏(1)′𝛹 (1)𝐵𝜂(𝑠) is a scalar Brownian motion
and using standard rotation arguments; see for example McCabe and Tremayne (1993, p.173). Applying the same arguments to the
𝐶𝐺𝑆𝐴𝐷𝐹∞ limit we can equivalently re-write the limiting null distribution of the 𝐶𝐺𝑆𝐴𝐷𝐹 statistic as

𝐶𝐺𝑆𝐴𝐷𝐹
𝑤
→ sup

𝑟2∈[𝑟0 ,1]
𝑟1∈[0,𝑟2−𝑟0]

⎧

⎪

⎨

⎪

⎩

𝜚
∫ 𝑟2
𝑟1

𝑊1(𝑠)𝑑𝑊1(𝑠)
(

∫ 𝑟2
𝑟1

𝑊 2
1 (𝑠)𝑑𝑠

)1∕2
+ (1 − 𝜚2)1∕2

∫ 𝑟2
𝑟1

𝑊1(𝑠)𝑑𝑊2(𝑠)
(

∫ 𝑟2
𝑟1

𝑊 2
1 (𝑠)𝑑𝑠

)1∕2

⎫

⎪

⎬

⎪

⎭

(22)

here 𝑊1(⋅) and 𝑊2(⋅) are independent standard Brownian motions. ⋄

emark 4.3. The limiting null distributions of the 𝐶𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 statistics follow as immediate corollaries of Theorem 1
ixing 𝑟1 = 0 and 𝑟2 = 1, respectively, in (21), or equivalently in (22). In what follows we denote these distributions as 𝐶𝑆𝐴𝐷𝐹∞
nd 𝐶𝐵𝑆𝐴𝐷𝐹∞ respectively. These depend on both 𝑟0 and 𝜚2. ⋄

emark 4.4. The limiting null distribution of the (covariate unaugmented) 𝐺𝑆𝐴𝐷𝐹 statistic of PSY (where, in view of footnote ,
t is assumed that an autoregressive lag length of 𝑝𝑣 is used in the context of the ADF regression, (11)) obtains as a special case of
he limiting distribution in (22) setting 𝜚 = 1. Limiting null distributions for the 𝐶𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 statistics obtain under this
estriction fixing 𝑟1 = 0 and 𝑟2 = 1, respectively in (22). ⋄

Because of the dependence of the limiting null distributions of the 𝐶𝐺𝑆𝐴𝐷𝐹 , 𝐶𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 statistics on the long-run
orrelation parameter, 𝜚2, and on the minimum window size, 𝑟0, asymptotic tests based on these statistics will require tabulations
f asymptotic critical values across a range of values of both 𝜚2 and 𝑟0. While 𝑟0 is a tuning parameter chosen by the practitioner,
he true value of 𝜚2 is, however, unknown and so would need to be estimated. This can be done using the approach outlined in
ection 3.1. However, as we will subsequently show in our Monte Carlo simulation results in Section 5, the resulting tests have
ery poor finite sample size properties, echoing the findings of CSS for the full sample asymptotic test based on the 𝐶𝐴𝐷𝐹 statistic.
onsequently, we do not recommend the use of such asymptotic tests and so we also develop bootstrap-based implementations of
hese tests which do not require the practitioner to estimate the value of 𝜚2. A detailed description of how the covariate-augmented
ersions of the bubble detection tests of PWY and PSY developed in Section 4 can be implemented using bootstrap methods is
utlined in Algorithm A.1 in Appendix A.1 where we denote the bootstrap analogues of the 𝐶𝑆𝐴𝐷𝐹 , 𝐶𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐺𝑆𝐴𝐷𝐹
tatistics as 𝐶𝑆𝐴𝐷𝐹 ∗, 𝐶𝐵𝑆𝐴𝐷𝐹 ∗ and 𝐶𝐺𝑆𝐴𝐷𝐹 ∗, respectively.

emark 4.5. With only minor modifications Algorithm A.1 can be used to implement bootstrap analogues of the (non-covariate
ugmented) original tests of PWY and PSY in (12)–(14). Specifically, this can be done by: omitting the covariate regressors,
𝑤𝑡−𝑘}

𝑞2
𝑘=−𝑞1

, from Eq. (A.1) in Step 1 and omitting their bootstrap analogues, {𝑤∗
𝑡−𝑘}

𝑞2
𝑘=−𝑞1

, from Eq. (A.4) in Step 5; ignoring Steps
and 4; only re-sampling from �̃�𝑡 in Step 3; and then calculating bootstrap analogues of 𝑆𝐴𝐷𝐹 , 𝐵𝑆𝐴𝐷𝐹 and 𝐺𝑆𝐴𝐷𝐹 statistics,

enoted as 𝑆𝐴𝐷𝐹 ∗, 𝐵𝑆𝐴𝐷𝐹 ∗ and 𝐺𝑆𝐴𝐷𝐹 ∗, respectively, in Step 8. In the light of footnote , the lag length would need to changed
rom 𝑝 to 𝑝𝑣 in Steps 1, 6 and 8 and in the construction of the original 𝑆𝐴𝐷𝐹 , 𝐵𝑆𝐴𝐷𝐹 and 𝐺𝑆𝐴𝐷𝐹 statistics. The asymptotic
alidity of the bootstrap PWY and PSY tests obtained in this way can be established in the same way as is done for the corresponding

ovariate augmented bootstrap tests below. ⋄
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In Theorem 2, we now detail the large sample behaviour of the bootstrap 𝐶𝑆𝐴𝐷𝐹 ∗, 𝐶𝐵𝑆𝐴𝐷𝐹 ∗ and 𝐶𝐺𝑆𝐴𝐷𝐹 ∗ statistics from
lgorithm A.1.

heorem 2. Let {𝑦𝑡, 𝑤𝑡} be generated according to (1) and (2) and let the conditions of Theorem 1 hold. It then holds that 𝐶𝐺𝑆𝐴𝐷𝐹 ∗ 𝑤
→𝑝

𝐶𝐺𝑆𝐴𝐷𝐹∞, 𝐶𝑆𝐴𝐷𝐹 ∗ 𝑤
→𝑝 𝐶𝑆𝐴𝐷𝐹∞ and 𝐶𝐵𝑆𝐴𝐷𝐹 ∗ 𝑤

→𝑝 𝐶𝐵𝑆𝐴𝐷𝐹∞, where ‘
𝑤
→𝑝’ denotes weak convergence in probability, as 𝑇 → ∞.

A comparison of the results for the bootstrap 𝐶𝑆𝐴𝐷𝐹 ∗, 𝐶𝐵𝑆𝐴𝐷𝐹 ∗ and 𝐶𝐺𝑆𝐴𝐷𝐹 ∗ statistics in Theorem 2 with those given
or the 𝐶𝑆𝐴𝐷𝐹 , 𝐶𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐺𝑆𝐴𝐷𝐹 statistics in Theorem 1 demonstrates the usefulness of the bootstrap; as the number of
bservations increases, the bootstrapped statistics have the same first-order limiting null distributions as the corresponding original
est statistic. From this result it follows, using the same arguments as in the proof of Theorem 5 in Hansen (2000), that for each of
he tests the bootstrap 𝑝-values are (asymptotically) uniformly distributed under the unit root null hypothesis, 𝐻0 of (3), leading to
ests with (asymptotically) correct size, thereby establishing the asymptotic validity of the bootstrap tests. It can therefore be seen
hat this validity result is achieved without the practitioner needing to know the true value of the long-run correlation parameter,
2, or having to estimate it. Moreover, the bootstrap automatically accounts for the dependence of the limiting null distributions of
he 𝐶𝑆𝐴𝐷𝐹 , 𝐶𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐺𝑆𝐴𝐷𝐹 statistics on the user-chosen minimum window size, 𝑟0.

Remark 4.6. In practice the cdfs 𝐺∗
𝑖,𝑇 (⋅), 𝑖 = 1, 2, 3, required in Step 9 of Algorithm A.1 will be unknown but can be approximated

in the usual way through numerical simulation. To illustrate for the case of the 𝐶𝐺𝑆𝐴𝐷𝐹 ∗ statistic, this is achieved by generating
𝐵 bootstrap (conditionally) independent statistics, say 𝐶𝐺𝑆𝐴𝐷𝐹 ∗

𝑏 , 𝑏 = 1,… , 𝐵, each computed as in Algorithm A.1 above. The
simulated bootstrap 𝑝-value for the test is then computed as �̃�∗3,𝑇 = 𝐵−1 ∑𝐵

𝑏=1 I
(

𝐶𝐺𝑆𝐴𝐷𝐹 ∗
𝑏 > 𝐶𝐺𝑆𝐴𝐷𝐹

)

, where I (⋅) denotes the
indicator function taking the value 1 when its argument is true and 0 otherwise, and is such that �̃�∗3,𝑇

𝑎.𝑠.
→ 𝑝∗3,𝑇 as 𝐵 → ∞, where

𝑎.𝑠.
→

denotes almost sure convergence. An approximate standard error for �̃�∗3,𝑇 is given by (�̃�∗3,𝑇 (1− �̃�∗3,𝑇 )∕𝐵)
1∕2; see Hansen (1996, p.419).

or a discussion on the choice of 𝐵 see, inter alia, Davidson and MacKinnon (2000). Simulated bootstrap critical values can be
btained for the tests. Again illustrating for the case of a test based on the 𝐶𝐺𝑆𝐴𝐷𝐹 statistic, a 𝜆 level empirical bootstrap critical

value, 𝑐𝑣𝜆,𝐵 say, can be calculated as the upper tail 𝜆 percentile from the order statistic formed from the 𝐵 bootstrap statistics,
𝐶𝐺𝑆𝐴𝐷𝐹 ∗

𝑏 , 𝑏 = 1,… , 𝐵. The resulting bootstrap test, which rejects 𝐻0 of (3) if 𝐶𝐺𝑆𝐴𝐷𝐹 > 𝑐𝑣𝜆,𝐵 , will have asymptotic size that
for sufficiently large 𝐵 will be as close as desired to the given nominal level, 𝜆. ⋄

Remark 4.7. Algorithm A.1 can be used to obtain bootstrap implementations of the covariate augmented versions of the date-
stamping procedure of PSY outlined in Remark 4.1. Here, one replaces the asymptotic critical value 𝑐𝑠𝑐𝑣𝜃𝑇𝑟2 by a corresponding
bootstrap critical value obtained using Algorithm A.1 calculated in exactly the same manner as outlined in Remark 4.6. In the
practical implementation of date-stamping to the real S&P 500 price dividend ratio PSY replace the asymptotic critical value 𝑠𝑐𝑣𝜃𝑇𝑟2
required in (16) and (17) with a finite sample critical value obtained by Monte Carlo simulation methods under the assumption
that the error term 𝑢𝑡 in (1) forms an independent sequence of standard normal random variables; i.e., 𝑢𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 1). Given that,
like most price data, the S&P data appears to be both heavy-tailed (non-Gaussian) and to contain significant patterns of conditional
heteroskedasticity, these simulated critical values are likely to deliver a poor approximation to the true finite sample critical values
for the tests used in the sequential procedure, and so the resulting date-stamping estimates could well be biased as a result. Within
the context of the standard PSY date-stamping method, therefore, we could replace the simulated critical values approach used by
PSY by using bootstrap critical values obtained as above but using the simplified form of Algorithm A.1 detailed in Remark 4.5.
As the bootstrap critical values obtained in this way are valid under both non-normality and conditional heteroskedasticity, the
resulting date-stamping methods are likely to be more reliable in practice for use with financial price data. ⋄

In what follows, as shorthand notation, we will denote by 𝐶𝐺𝑆𝐴𝐷𝐹𝐵 the bootstrap test procedure outlined in Algorithm A.1,
whereby the original statistic 𝐶𝐺𝑆𝐴𝐷𝐹 is compared to its empirical bootstrap critical value, 𝑐𝑣𝜆,𝐵 . Analogously, the corresponding
bootstrap tests based on the 𝐶𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 statistics will be denoted as 𝐶𝑆𝐴𝐷𝐹𝐵 and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 , respectively.

5. Finite sample simulations

In this section we compare the finite sample size and power properties of the backward recursive 𝐵𝑆𝐴𝐷𝐹 -based test of PSY with
the covariate augmented version of this test, based on the 𝐶𝐵𝐴𝑆𝐷𝐹 statistic, developed in this paper. We additionally compare the
relative efficacy of PSY’s date-stamping approach, as outlined in Section 3.2, with the corresponding covariate augmented approach
outlined in Remark 4.1. We focus on backward recursive test procedures as these are designed to detect the emergence of an end-
of-sample explosive episode which is arguably the application of these methods that will be of greatest interest to practitioners.
These are also the tests which we will use in the empirical application we consider in Section 6. We additionally investigated the
relative finite sample size and power properties of the covariate and non-covariate augmented versions of the 𝑆𝐴𝐷𝐹 -based and
𝐺𝑆𝐴𝐷𝐹 -based tests but found these to be qualitatively similar to the results reported here for the 𝐵𝑆𝐴𝐷𝐹 -based tests.

5.1. Monte Carlo simulation design

We use Monte Carlo simulation methods to generate data according to the DGP:
𝛥𝑦𝑡 = 𝛿𝑡𝑦𝑡−1 + 𝑢𝑡, 𝑡 = −99,… , 0, 1,… , 𝑇 (23)
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where the time-varying offset parameter is given by 𝛿𝑡 = 𝑐𝑡∕𝑇 . We discard the first 100 observations to eliminate any start up effects
so that our data samples run from 𝑡 = 1,… , 𝑇 .3 In Section 5.2 we will report results relating to empirical size which is where the
onstant unit root null hypothesis, 𝐻0 of (3), holds; that is, 𝑐𝑡 = 0, 𝑡 = −99,… , 𝑇 . In Section 5.3 we will investigate the power of the

tests to identify locally explosive episodes (i.e. sub-samples where 𝑐𝑡 > 0), and in Section 5.4 investigate how well covariate-based
implementations of the date-stamping method of PSY compare with the basic PSY date-stamping method, both in terms of their
frequencies of detecting the start of such an episode and how accurately they date this start point.

Adopting the same simulation design considered in CSS, the errors 𝑢𝑡 are generated according to the following DGP:

𝑢𝑡 = 𝛼1𝑢𝑡−1 + v𝑡 (24)
v𝑡 = 𝛽𝑤𝑡 + 𝜀𝑡, (25)
𝑤𝑡+1 = 𝜆𝑤𝑡 + 𝜂𝑡, (26)

and where we generate 𝜉𝑡 ∶= (𝜀𝑡, 𝜂𝑡)′ as a sequence of bivariate 𝑁𝐼𝐼𝐷(0, 𝛴) random variables with 𝛴 ∶=
[

1 𝜎𝜀𝜂
𝜎𝜀𝜂 1

]

The finite sample size and power performance of all of the tests considered depend on the (long-run) squared correlation between
the error term v𝑡 and the stationary covariate 𝑤𝑡, and therefore on the parameters 𝜆 and 𝛽. We follow CSS and use values of
𝜆, 𝛽 ∈ {−0.8,−0.5, 0.5, 0.8} and set 𝛼1 = 0.2 and 𝜎𝜀𝜂 = 0.4. We additionally report results for the case where 𝛽 = 0, 𝜆 = 0.8 such that
𝜚2 = 1. This last case allows us to examine the impact on our procedures of including an irrelevant covariate.4

The bootstrap 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 tests are implemented according to Algorithm A.1 with the omission of Step 6 as discussed in
Remark A.2, as we found this step was only necessary when implementing the 𝐵𝑆𝐴𝐷𝐹𝐵 test. In practice the number of lags of 𝛥𝑦𝑡,
𝑝, together with the number of leads and lags of the covariate 𝑤𝑡, 𝑞1 and 𝑞2 respectively, needed to estimate the 𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)

𝑟2
𝑟1

sub-sample statistics and to implement Step 1 of Algorithm A.1 are unknown. These are jointly determined from the full sample
estimation of (8) using the conventional Bayes Information Criterion (BIC) setting a maximum lag length of 4 for 𝑝 and a maximum
lag length of 2 for 𝑞1 and 𝑞2. For the non-covariate augmented bootstrap test based on the 𝐵𝑆𝐴𝐷𝐹 statistic proposed in Remark 4.5,
denoted 𝐵𝑆𝐴𝐷𝐹𝐵 with an obvious notation, the number of lags of 𝛥𝑦𝑡 used in the 𝐴𝐷𝐹 (𝑝𝑣)

𝑟2
𝑟1 statistics is analogously determined

by estimating (11) over the full available sample of data again using the BIC with a maximum lag length of 4.5 The autoregressive
lag order, 𝓁, for 𝑤𝑡 in Step 2 was chosen using the BIC with a maximum lag length of 4. For the non-bootstrap tests reported,
asymptotic critical values were obtained by direct simulation of the limiting null distribution of the test statistic; we will denote
the asymptotic tests based on the 𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 statistics as 𝐵𝑆𝐴𝐷𝐹∞ and 𝐶𝐵𝑆𝐴𝐷𝐹∞, respectively. In the case of the
𝐶𝐵𝑆𝐴𝐷𝐹∞ test, these were based on the estimate of 𝜚2 defined in (9) implemented using a Parzen kernel and Andrews’ (1991)
automatic bandwidth estimator. Following PSY, the minimum window fraction used for all of the recursive test procedures is set at
𝑟0 = 0.01 + 1.8

√

𝑇
.

The size and power simulations in Sections 5.2 and 5.3, respectively, are computed using 5000 Monte Carlo replications, while
hose relating to sequential monitoring in Section 5.4 are considerably more time-consuming and so are based on 2000 Monte Carlo
eplications. All bootstrap tests are performed with 𝐵 = 399 bootstrap replications. All computations are performed on Gauss 17
sing the RNDN random number generator. All tests are performed at a nominal 5% significance level. All of the reported results
ertain to methods which allow 𝑦𝑡 and 𝑤𝑡 to have non-zero means (cf. Remark 2.1) by including a constant in the sub-sample ADF

regressions used to compute the 𝐴𝐷𝐹 (𝑝)𝑟2𝑟1 statistics, and in the sub-sample covariate augmented ADF regression used to compute the
𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2, )

𝑟2
𝑟1 statistic, and using demeaned values of 𝑦𝑡 and 𝑤𝑡 in Steps 1 and 2 of Algorithm A.1, as outlined in Appendix A.2.

5.2. Empirical size

We first examine the size properties of our proposed tests. Data are generated according to (23)–(26) with 𝑐𝑡 = 0 for all
𝑡 = −99,… , 𝑇 . Table 1 reports the size of both the asymptotic and bootstrap tests based on the 𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 statistics for
sample sizes of 𝑇 = 250 (Panel A) and 𝑇 = 400 (Panel B). For reference we also report the value of the (long-run) squared correlation
parameter, 𝜚2, implied by the parameters 𝛽 and 𝜆 in each scenario.

The standard PSY test based on asymptotic critical values, 𝐵𝑆𝐴𝐷𝐹∞, is in general seen to be under-sized, even for 𝑇 = 400,
with the degree of under-size clearly depending on the parameter 𝜆 characterising the degree of persistence of the covariate. While
he degree of under-sizing is relatively modest for 𝜆 = 0.8, for 𝜆 = 0.5 the 𝐵𝑆𝐴𝐷𝐹∞ test is significantly under-sized. As the power

simulations in Section 5.3 will show, this under-sizing phenomenon leads to the 𝐵𝑆𝐴𝐷𝐹∞ test having very poor power properties
in particular for 𝜆 = 0.5. In contrast, our suggested bootstrap implementation of PSY’s test, 𝐵𝑆𝐴𝐷𝐹𝐵 , displays empirical size much
closer to the nominal 5% level throughout the nine cases and for both sample sizes considered, albeit it is slightly over-sized in
most of the cases reported.

3 The initial conditions on 𝑦𝑡 and 𝑤𝑡 are set as 𝑤−100 = 0 and 𝑦−100 = 100. The latter is done so that where bubble episodes are generated in our simulated
ata they will typically be upwardly explosive and therefore representative of the empirical series to which the tests will be applied in practice.

4 We also considered the case where 𝛽 = 0, 𝜆 = 0.5, but the results were near identical to the case where 𝛽 = 0, 𝜆 = 0.8, which is unsurprising given that
2 = 1 in both cases. We therefore only report results for 𝛽 = 0, 𝜆 = 0.8.

5 In calculating bootstrap critical values for the 𝐵𝑆𝐴𝐷𝐹𝐵 test, the value of the lag truncation parameter 𝑝𝑣 in Step 1 of the modified algorithm outlined in
emark 4.5 is chosen according to the Schwert (1989) criterion 𝑝𝑣 = ⌊4(𝑇 ∕100)1∕4⌋. For this DGP, 𝑣𝑡 in (11) follows an 𝐴𝑅𝑀𝐴(1, 1) process and we found this

o deliver considerably better size control than selecting the lag length by BIC (which resulted in very liberal bootstrap tests) but without sacrificing power; cf.
alm et al. (2008).
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Table 1
Empirical size of nominal 0.05-level asymptotic and bootstrap 𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 tests.

Panel A: 𝑇 = 250

𝛽 𝜆 𝐵𝑆𝐴𝐷𝐹∞ 𝐶𝐵𝑆𝐴𝐷𝐹∞ 𝐵𝑆𝐴𝐷𝐹𝐵 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 𝜌2

0.8 0.8 0.038 0.129 0.057 0.062 0.335
0.5 0.8 0.044 0.103 0.056 0.067 0.432
−0.5 0.8 0.041 0.073 0.065 0.055 0.000
−0.8 0.8 0.047 0.091 0.055 0.053 0.026
0.8 0.5 0.011 0.061 0.055 0.052 0.556
0.5 0.5 0.011 0.054 0.057 0.053 0.700
−0.5 0.5 0.008 0.020 0.053 0.045 0.300
−0.8 0.5 0.010 0.040 0.053 0.045 0.057
0.0 0.8 0.009 0.025 0.062 0.047 1.000

Panel B: 𝑇 = 400

𝛽 𝜆 𝐵𝑆𝐴𝐷𝐹∞ 𝐶𝐵𝑆𝐴𝐷𝐹∞ 𝐵𝑆𝐴𝐷𝐹𝐵 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 𝜌2

0.8 0.8 0.033 0.105 0.055 0.050 0.335
0.5 0.8 0.038 0.081 0.056 0.052 0.432
−0.5 0.8 0.033 0.070 0.060 0.052 0.000
−0.8 0.8 0.038 0.089 0.057 0.057 0.026
0.8 0.5 0.009 0.050 0.049 0.043 0.556
0.5 0.5 0.011 0.043 0.051 0.043 0.700
−0.5 0.5 0.006 0.013 0.059 0.041 0.300
−0.8 0.5 0.009 0.034 0.055 0.045 0.057
0.0 0.8 0.006 0.016 0.055 0.040 1.000

Notes: Data simulated according to (23)-(26) where 𝜉𝑡 ∶= (𝜀𝑡 , 𝜂𝑡)′ is a sequence of bivariate 𝑁𝐼𝐼𝐷(0, 𝛴) random variables with 𝛴 ∶=
[

1 𝜎𝜀𝜂
𝜎𝜀𝜂 1

]

.

Bootstrap critical values are obtained using 399 bootstrap replications.

Similarly to 𝐵𝑆𝐴𝐷𝐹∞, the asymptotic critical value based 𝐶𝐵𝑆𝐴𝐷𝐹∞ test displays poor size control. For 𝜆 = 0.8, 𝐶𝐵𝑆𝐴𝐷𝐹∞

is heavily over-sized while for 𝜆 = 0.5 it is significantly under-sized for the negative values of 𝛽 reported. This poor finite sample
size control is largely driven by imprecise estimation of the nuisance parameter 𝜚2. In common with the findings of CSS for the full
sample 𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2) statistic of Hansen (1995), we found that the asymptotic null distribution of the 𝐶𝐵𝑆𝐴𝐷𝐹 statistic is highly
sensitive to the value of 𝜚2. As such, an imprecise estimate of 𝜚2 will likely lead to the use of a poor approximation to the true
limiting critical value with inevitable size distortions. Because of this we will not consider the use of the 𝐶𝐵𝑆𝐴𝐷𝐹∞ test further
in this paper. These size distortions are largely eliminated by using the bootstrap 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test which displays good size control
throughout.

Overall, it can be seen that the bootstrap 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 tests both control finite sample size well, each avoiding the
often significant size distortions seen with the corresponding asymptotic tests, 𝐵𝑆𝐴𝐷𝐹∞ and 𝐶𝐵𝑆𝐴𝐷𝐹∞, respectively.

.3. Empirical power

We next turn to an examination of finite sample power. To that end, simulation data are generated according to Eqs. (23)–(26)
nder the alternative hypothesis of an end-of-sample explosive episode by setting 𝑐𝑡 = 0 for 𝑡 = −99,… , ⌊0.8𝑇 ⌋, and 𝑐𝑡 = 𝑐 > 0 for

𝑡 = ⌊0.8𝑇 ⌋+1,… , 𝑇 . The series {𝑦𝑡} therefore follows a unit root process for 𝑡 = 1,… , ⌊0.8𝑇 ⌋ and is then subject to locally explosive
behaviour for the remainder of the sample. We compute finite sample power over relevant grids of 20 values of 𝑐 for each of the 8
pairings of 𝛽 and 𝜆 considered in the size simulations in the previous section.

Fig. 1 reports finite sample power curves for the bootstrap 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 (solid black line) and 𝐵𝑆𝐴𝐷𝐹𝐵 (solid red line) tests
together with the asymptotic 𝐵𝑆𝐴𝐷𝐹∞ (dashed red line) test, for each pairing of 𝛽 and 𝜆 for 𝑇 = 250. It is clearly seen from Fig. 1
that in the eight cases where 𝛽 ≠ 0, such that the covariate is relevant, the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test displays superior power curves to both
the 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹∞ tests when 𝛽 ≠ 0 in all but the case of panel (g) where 𝛽 = −0.5 and 𝜆 = 0.5. In this latter case the
power curve of the 𝐵𝑆𝐴𝐷𝐹𝐵 test lies very marginally above that of the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test for values of 𝑐 up to about 𝑐 = 1.3 after
which the power curves cross. The power gains from using the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test are particularly strong for each of the cases graphed
in panels (a)–(e) where 𝜆 = 0.8. As an example, for the case considered in panel (d) where 𝛽 = −0.8 and 𝜆 = 0.8, we see that for 𝑐 = 2
the 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹∞ tests both have power of about 31% while the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test has double the power at about 62%.
The power curve for the case where 𝛽 = 0, illustrated in panel (i), shows that the inclusion of an irrelevant covariate effects only
a very small loss of power for the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test vis-à-vis the 𝐵𝑆𝐴𝐷𝐹𝐵 test. Fig. 1 also shows that the power of the asymptotic
𝐵𝑆𝐴𝐷𝐹∞ test is very much lower than both the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹𝐵 tests for the cases where 𝜆 = 0.5 (panels (e)–(g)); this
effect is largely due to the considerable under-size of the 𝐵𝑆𝐴𝐷𝐹∞ test in these cases noted in Section 5.2.

Fig. 2 reports equivalent finite sample power curves for each pairing of 𝛽 and 𝜆 for a sample of size 𝑇 = 400. The pattern of
results for this sample size is qualitatively the same as those discussed in Fig. 1 for 𝑇 = 250. In particular, across the eight cases
where 𝛽 ≠ 0 the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test again displays by far the best power performance overall in all but the case of panel (g) where
𝛽 = −0.5 and 𝜆 = 0.5, although the power differential between 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹𝐵 in this scenario is really very small. Again
including an irrelevant covariate, panel (i) where 𝛽 = 0, only leads to a small loss in power compared to the 𝐵𝑆𝐴𝐷𝐹𝐵 test.
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Fig. 1. Finite sample power of nominal 0.05-level tests.

Notes: Data simulated according to (23)–(26) where 𝜉𝑡 ∶= (𝜀𝑡 , 𝜂𝑡)′ is a sequence of bivariate 𝑁𝐼𝐼𝐷(0, 𝛴) random variables with 𝛴 ∶=
[

1 𝜎𝜀𝜂
𝜎𝜀𝜂 1

]

. Bootstrap

critical values are obtained using 399 bootstrap replications. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

As a final comment, it is worth noting that while the power gains offered by the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test relative to 𝐵𝑆𝐴𝐷𝐹𝐵 can be
substantial, they are not as large as those reported in the simulation studies of CSS and Hansen (1995) in the context of a full
sample test of the null hypothesis of a unit root against the alternative of stationarity. There are several reasons why this is the
case. First, our DGP assumes a deviation from the null hypothesis for only a relatively small sub-sample of the data, whereas CSS
and Hansen (1995) assume a deviation from the null hypothesis that holds across the full sample under the alternative. Second, our
tests are based on the supremum of statistics from a sequence of sub-sample regressions rather than a single statistic based on a full
sample regression. Moreover, due to the highly asymmetric property of the distribution of Dickey Fuller type statistics the power
of left-tailed and right-tailed test procedures are not directly comparable.

5.4. Detection time

Finally, we turn to an examination of the relative efficacy of sequential procedures based on the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 , 𝐵𝑆𝐴𝐷𝐹𝐵 and
𝐵𝑆𝐴𝐷𝐹∞ tests to date-stamp the onset of an explosive episode. As discussed in Section 3.2, one of the main advantages of the
𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 statistics is their ability to detect end-of-sample explosive episodes, therefore making them useful for
detecting the inception date of an explosive bubble if applied in real-time in a sequential manner according to (16). To that end, we
perform a Monte Carlo simulation study in which the 𝐵𝑆𝐴𝐷𝐹∞, 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 tests are applied sequentially, as if in
a real-time monitoring exercise, to a sample of data containing an end-of-sample explosive episode in order to assess their relative
efficacy in date-stamping the beginning of the episode.

Specifically, data were generated according to (23)–(26) with 𝑇 = 300 setting 𝑐𝑡 = 0 for 𝑡 = −99,… , 250, and 𝑐𝑡 = 𝑐 > 0 for
𝑡 = 251,… , 300, so that the data follows a unit root process from 𝑡 = 1,… , 250 before an explosive episode manifests in the data

from 𝑡 = 251,… , 300. This was done for each of the 9 pairings of 𝛽 and 𝜆 considered in Sections 5.2 and 5.3. So as to set a comparable
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Fig. 2. Finite sample power of nominal 0.05-level tests with data simulated according to (23)–(26) with 𝑇 = 400.

Notes: Data simulated according to (23)–(26) where 𝜉𝑡 ∶= (𝜀𝑡 , 𝜂𝑡)′ is a sequence of bivariate 𝑁𝐼𝐼𝐷(0, 𝛴) random variables with 𝛴 ∶=
[

1 𝜎𝜀𝜂
𝜎𝜀𝜂 1

]

. Bootstrap

critical values are obtained using 399 bootstrap replications.

power benchmark across the various simulation DGPs considered, for a given (𝛽, 𝜆) pair, the value of 𝑐 was chosen so that the value
of the explosive offset 𝛿𝑡 = 𝛿 > 0 corresponded as closely as possible to the explosive offset which lead to the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test having
80% power in the power curves in Fig. 1.6 We begin by applying the tests to the sample indexed by 𝑡 = 1,… , 251, then on the sample
from 𝑡 = 1,… , 252, and so on, until finally the tests are applied to the full sample of data. We record the first estimated rejection
date, 𝑡𝑒, implied by each test when run sequentially in this manner. For those cases where no test in this monitoring period rejects
the null hypothesis we set 𝑡𝑒 = 301. For each (𝛽, 𝜆) pair and for each test, Table 2 reports the empirical rejection frequency [ERF]
which is the frequency with which the null hypothesis is rejected by at least one test in the sequential procedure, together with
the median (taken over the 2000 Monte Carlo replications) value of 𝑡𝑒, denoted 𝑡𝑀𝑒 ,7 and (in parentheses) the associated median
average deviation (MAD).

Unsurprisingly, the rankings of ERFs for the different sequential testing procedures is qualitatively similar to the ranking between
these when applied as one-shot tests observed in Section 5.3. In particular, the procedure based on the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test delivers at
least one rejection within the monitoring period more frequently than do the other two procedures in all but the final three scenarios,
the last of which is where an irrelevant covariate is included (𝛽 = 0). In these final three scenarios, corresponding to panels (g) - (i)
of Figs. 1 and 2, the procedure based on the 𝐵𝑆𝐴𝐷𝐹𝐵 test has a marginally higher ERF than the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test. In all cases the
procedures based on the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹𝐵 tests both display higher ERFs than the procedure based on the 𝐵𝑆𝐴𝐷𝐹∞ test.

What is of most relevance is a comparison of the median estimate of 𝑡𝑒 across the three procedures. In all but two scenarios (one
of which is where the covariate is irrelevant) the median detection date for the procedure based on the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test is lower,

6 We set this power benchmark reasonably high so that each of the sequential tests detects a bubble in the majority of the simulation replications. The
elative performances of the three procedures for the values of 𝑐 reported are representative of the results for other choices of 𝑐 not reported here to save space.

7 Setting 𝑡𝑒 = 301 for non-rejections and examining the median gives a small (unfair) advantage to the less powerful tests considered. However, if we were
to use the mean, or to only report the median or mean taken across only those replications where a given procedure delivered a rejection in the monitoring
period, this would give an even greater (unfair) advantage to the less powerful tests.
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Table 2
Empirical rejection frequency, median first rejection date and median average deviation of monitoring procedures. Monitoring commences at 𝑡 = 251.
𝛽 𝜆 c Empirical rejection frequency 𝑡𝑀𝑒 (𝑀𝐴𝐷)

𝐵𝑆𝐴𝐷𝐹∞ 𝐵𝑆𝐴𝐷𝐹𝐵 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 𝐵𝑆𝐴𝐷𝐹∞ 𝐵𝑆𝐴𝐷𝐹𝐵 𝐶𝐵𝑆𝐴𝐷𝐹𝐵

0.8 0.8 3.9 0.70 0.74 0.87 282 (19) 279 (19) 265 (10)
0.5 0.8 3.6 0.78 0.80 0.86 276 (16) 275 (16) 265 (10)
−0.5 0.8 3.0 0.78 0.83 0.85 276 (16) 272 (14) 267 (10)
−0.8 0.8 4.2 0.78 0.80 0.87 276 (16) 274 (15) 265 (10)
0.8 0.5 3.0 0.68 0.85 0.87 286 (15) 272 (13) 267 (10)
0.5 0.5 2.4 0.71 0.86 0.87 284 (17) 271 (12) 269 (11)
−0.5 0.5 1.9 0.78 0.93 0.92 279 (14) 268 (9) 269 (9)
−0.8 0.5 2.4 0.75 0.90 0.89 280 (15) 269 (10) 268 (9)
0.0 0.8 1.5 0.67 0.89 0.86 286 (15) 271 (12) 273 (12)

Notes: Data simulated according to (23)–(26) with 𝑇 = 300 setting 𝑐𝑡 = 0 for 𝑡 = −99,… , 250, and 𝑐𝑡 = 𝑐 > 0 for 𝑡 = 251,… , 300.

nd hence closer to the true bubble inception date, 𝑡𝑒, than that of the other two procedures. Comparing the procedure based on
he 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test to the next most powerful procedure based on the 𝐵𝑆𝐴𝐷𝐹𝐵 test we see that the median detection date for the
ormer can be up to 14 periods sooner than the latter. In the one scenario where the procedure based on 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 does not show
smaller median detection date than the procedure based on 𝐵𝑆𝐴𝐷𝐹𝐵 when a relevant covariate is included the difference in the
edian rejection date for the tests is only a single period. When an irrelevant covariate is included (𝛽 = 0), the median rejection
ate for the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test is only two periods behind that of 𝐵𝑆𝐴𝐷𝐹𝐵 .

Finally, the 𝑀𝐴𝐷 of the three procedures is particularly striking. Not only does the procedure based on the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test reject
ooner on average than the other procedures, it also has much low variability in its estimated inception dates than do the other
rocedures in all but two scenarios, where in each of these two cases the 𝑀𝐴𝐷 of the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵- and 𝐵𝑆𝐴𝐷𝐹𝐵-based procedures
oincide.

Overall, therefore, where a relevant covariate is included the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵-based procedure can detect an ongoing bubble both
arlier, and with less variability, than both the 𝐵𝑆𝐴𝐷𝐹∞-based and 𝐵𝑆𝐴𝐷𝐹𝐵-based detection procedures tests.

. Empirical application

We present results of an empirical application applying our covariate augmented bubble detection procedures to data on the
eal S&P 500 price dividend ratio obtained from Robert Shiller’s website (http://www.econ.yale.edu/shiller/data.htm). The data are
onthly (sampled, in common with the covariate data we will use, on the final day of each month) from January 1960–December
010 (𝑇 = 612). A plot of the price dividend ratio is given in Fig. 3(a). This is a subset of the data utilised by PSY in their own
mpirical application chosen based on data availability of our chosen covariates.

The presence of two major historical bubbles in this dataset is widely accepted, namely the bubble in the lead-up to the Black
onday crash, and the dotcom bubble, with PSY identifying both of these episodes in their sequential date-stamping exercise. As

oted by PSY, this can be viewed as a (pseudo) real-time monitoring exercise, with the estimated origination dates also indicating
he date a test would have identified these episodes if applied in real-time. In particular, if the estimated origination date of a
articular bubble identified by one procedure is 𝑁 months earlier than that identified by another, this can be interpreted as the
ormer procedure being able to detect the onset of an explosive episode 𝑁 months earlier than the latter.

The first two potential covariates we consider are Moody’s Seasoned Aaa Corporate Bond Yield (Aaa) and the 10 Year US
reasury Constant Maturity Rate (GS10). Monthly data on these variables from January 1960–December 2010 were obtained from
he Federal Reverse Bank of St. Louis webpage (https://fred.stlouisfed.org). Many common models for asset price bubbles imply
hat the magnitude of a bubble episode will be a function of the risk-free rate of interest. As such, we might expect that these two
ariables that are closely related to the risk-free interest rate will be suitable covariates when testing for a bubble episode in the
rice dividend ratio.

A further potential covariate we consider is the VXO volatility index. Monthly data on this index from January 1986 to December
010 were obtained from Yahoo Finance. The VXO index measures the market’s expectation of 30-day volatility and it is constructed
y using the implied volatilities on the S&P 100 index options. In their seminal work, Fleming et al. (1995) provide evidence in
upport of the argument that there is a tendency of implied volatility to rise after large sell-offs and fall after large rallies. As such,
mplied volatility could be a potentially useful covariate when testing for a bubble in the price dividend ratio.

In addition we also investigate using the predictor variables in the latest version of the Welch and Goyal (2008) data set8 which
re commonly employed in many empirical applications on return predictability. In particular, we consider Moody’s Seasoned Baa
orporate Bond Yield (Baa), the Book-to-Market Ratio for the Dow Jones Industrial Average (BM), the return on long-term AAA-
nd BAA-rated Corporate Bonds (CORPR), the AAA Credit Spread (CREDSA),9 the Long Term Rate of Returns on the Treasury Bond
LTR), the Long Term Yield on Long-Term U.S. Bonds (LTY), Stock Variance (SVAR), and the Treasury Bill rate (TBL). Like the AAa
nd GS10 covariates, we use data on the covariates from the Welch and Goyal (2008) dataset from January 1960 to December 2010.

8 These data can be found at https://sites.google.com/view/agoyal145.
9 Calculated as the difference between the AAA-rated Corporate Bond Yield (Aaa) and the Long Term Yield on Long-Term U.S. Bonds (LTY).
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Fig. 3. Plots of variables used in empirical application.
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Table 3
Standard unit root tests applied to covariates.

Variable ADF Stat 𝑝-value Variable ADF Stat 𝑝-value

Aaa −1.36 0.606 𝛥GS10 −18.17 0.000
𝛥Aaa −18.38 0.000 LTR −24.02 0.000
Baa −1.45 0.557 LTY −1.49 0.538
𝛥Baa −15.71 0.000 𝛥LTY −23.13 0.000
BM −1.29 0.637 SVAR −11.22 0.000
𝛥BM −24.12 0.000 TBL −2.29 0.177
CORPR −18.49 0.000 𝛥TBL −6.09 0.000
CREDSA −4.72 0.000 VXO −5.16 0.000
GS10 −1.38 0.593

Table 4
Full sample tests for bubbles in the price dividend ratio: January 1960–December 2010.

Test Statistic Bootstrap 𝑝-value

𝐺𝑆𝐴𝐷𝐹∞ 3.171 0.022
𝐺𝑆𝐴𝐷𝐹𝐵 3.171 0.026
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(𝛥Aaa) 3.636 0.005
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(𝛥Baa) 3.827 0.003
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(𝛥BM) 4.885 0.000
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(CORPR) 3.810 0.004
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(CREDSA) 3.223 0.014
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(𝛥GS10) 3.614 0.007
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(LTR) 3.591 0.006
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(𝛥LTY) 3.470 0.006
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(SVAR) 4.187 0.001
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(𝛥TBL) 3.465 0.007
𝐶𝐺𝑆𝐴𝐷𝐹𝐵(VXO) 5.381 0.000

Notes: Asymptotic 𝑝-values based on 10,000 Monte Carlo replications and bootstrap 𝑝-values
based on 1999 bootstrap replications.

The 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test requires the potential covariates to be weakly dependent. To check this condition we apply standard full
sample left-tailed ADF tests to all candidate covariates. In all cases the ADF regressions include a constant and the lag order is
determined using the BIC. The results of these tests are reported in Table 3, where the stated 𝑝-value is the default produced by
EViews. These results indicate that Aaa, Baa, BM, GS10, LTY and TBL are all 𝐼(1) in levels but 𝐼(0) in first differences and so the
first differences of these variables should be used. The CORPR, CREDSA, LTR, SVAR and VXO variables all appear to be 𝐼(0) in
evels and so do not require first differencing. Plots of the variables used as covariates can be found in Fig. 3(b)–(l).

We begin by testing for the presence of at least one bubble episode in the price dividend ratio using the 𝐺𝑆𝐴𝐷𝐹∞, 𝐺𝑆𝐴𝐷𝐹𝐵 and
𝐺𝑆𝐴𝐷𝐹𝐵 tests. Here and throughout the empirical application all test statistics are constructed using exactly the same settings
s in the Monte Carlo simulations in Section 5, including allowing for non-zero means in 𝑦𝑡 and 𝑤𝑡, with a minimum window
idth of ⌊𝑟0𝑇 ⌋ = (0.01 + 1.8∕

√

𝑇 )𝑇 = 50. The exception to this is when using VXO as a covariate where, due to this covariate
only being available for the 300 observations beginning 01/86, the minimum window width is equal to (0.01 + 1.8∕

√

300)300 = 34.
Table 4 reports the 𝐺𝑆𝐴𝐷𝐹 and 𝐶𝐺𝑆𝐴𝐷𝐹 test statistics and the associated 𝑝-values.10 All of the tests can be seen to reject the null
hypothesis of no explosive behaviour in the price dividend ratio at the 5% level. In each case a considerably stronger rejection is
seen for the covariate augmented 𝐶𝐺𝑆𝐴𝐷𝐹𝐵 tests than for either the 𝐺𝑆𝐴𝐷𝐹∞ or 𝐺𝑆𝐴𝐷𝐹𝐵 tests; indeed, excepting CREDSA, the
ovariate augmented tests are able to reject the null hypothesis at the 1% for all of the possible covariates considered.

Given the clear rejection of the null hypothesis of no bubbles by the full sample tests, we next apply, as if in a real-time
onitoring procedure, the date-stamping procedures based on our new covariate augmented bootstrap 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 tests, as outlined

n Remark 4.7, to estimate the origination and termination dates of the bubbles present in the price dividend ratio and compare
hese with the estimates based on corresponding procedures using covariate unaugmented tests from PSY, the latter based on either
ootstrap or asymptotic critical values, 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹∞, respectively.11 We also computed finite sample critical values
ssuming 𝑢𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 1) for 10,000 Monte Carlo replications in the same manner as PSY and denote a test in which the 𝐵𝑆𝐴𝐷𝐹
est statistic is compared to these critical values as 𝐵𝑆𝐴𝐷𝐹 fscv. Using the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test to illustrate, we begin by applying the
𝐵𝑆𝐴𝐷𝐹𝐵 test to the data up to and including January 1980 which indicates whether the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test would have rejected the
ull hypothesis of no bubble if performed at this particular date. We then move forward one month and test using data up to and
ncluding February 1980, and so on, until we eventually apply the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 test to data ending in December 2010. Like PSY we
et the minimum bubble duration requirement to be a year and deem a bubble to have terminated only after observing a year of

10 The 𝑝-values of the 𝐶𝐺𝑆𝐴𝐷𝐹𝐵 and 𝐺𝑆𝐴𝐷𝐹𝐵 tests are calculated as described in Step 9 of Algorithm A.1 using 𝐵 =1999 bootstrap replications, and the
𝑝-value of the 𝐺𝑆𝐴𝐷𝐹∞ test is calculated as (1 −𝐺∞(𝐺𝑆𝐴𝐷𝐹 )) where 𝐺∞(⋅) denotes the cumulative asymptotic null distribution of the 𝐺𝑆𝐴𝐷𝐹∞ test simulated
rom 10,000 Monte Carlo replications.
11 The bootstrap critical values for 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹𝐵 are again based on 𝐵 =1999 replications, while the asymptotic critical values for 𝐵𝑆𝐴𝐷𝐹∞ are

imulated using 10,000 Monte Carlo replications.
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Table 5
Estimated origination and termination dates of bubbles identified in the price dividend ratio.

Test Black Monday Dotcom Bubble

𝑡𝑒 𝑡𝑓 𝑡𝑒 𝑡𝑓
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥Aaa) 03/86 12/87 09/95 05/01
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥Baa) 03/86 12/87 09/95 05/01
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥BM) 01/87 12/87 06/95 05/01
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(CORPR) 03/86 12/87 09/95 05/01
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(CREDSA) 03/87 12/87 08/95 06/09
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥GS10) 03/86 12/87 09/95 05/01
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(LTR) 06/86 12/87 09/95 05/01
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥LTY) 06/86 12/87 09/95 04/01
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(SVAR) 02/86 01/88 01/96 10/08
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥TBL) 03/87 12/87 07/95 05/01
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(VXO) – – 07/95 04/02
𝐵𝑆𝐴𝐷𝐹𝐵 08/87 09/87 12/95 07/01
𝐵𝑆𝐴𝐷𝐹∞ 08/87 09/87 02/96 10/00
𝐵𝑆𝐴𝐷𝐹 fscv 02/87 10/87 12/95 08/01
PSY 06/86 09/87 11/95 08/01

Notes: 𝑡𝑒 is the first date a test rejects the null of no bubble when applied sequentially. 𝑡𝑓 is the first date a test stops rejecting
and continues to fail to reject for 12 consecutive months.

consecutive non-rejections with the first of those non-rejections being the estimated termination date.12 We pay particular attention
to the origination date which is informative about how soon each procedure would have been able to give an early warning signal
of an ongoing bubble.

Table 5 reports the estimated origination and termination dates of the of Black Monday and dotcom bubbles from the procedures
based on the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 , 𝐵𝑆𝐴𝐷𝐹𝐵 , 𝐵𝑆𝐴𝐷𝐹∞ and 𝐵𝑆𝐴𝐷𝐹 fscv tests applied sequentially in this manner, where the notation
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝑥) is used to indicate that the covariate 𝑥 has been used. No other bubbles were detected in addition to the Black

onday and dotcom bubbles. Due to data availability we were only able to use the VXO index when dating the dotcom bubble as
he VXO index was only created in 1986.13 Also reported in Table 5 are the estimated origination and termination dates of these
ubbles identified by PSY in their empirical exercise. As discussed in Remark 4.7, the estimates reported in PSY, like 𝐵𝑆𝐴𝐷𝐹 fscv,

are based on finite sample critical values which assume that 𝑢𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 1). Moreover, the results in PSY are based on sub-sample
test regressions all of which impose a lag order of 𝑝𝑣 = 0, inconsistent with the BIC which we found to select 𝑝𝑣 = 1 in a vast
majority of sub-sample regressions. We report in Figs. 4 and 5 the sequence of test statistics and critical values calculated for each
procedure used in the monitoring exercise in the neighbourhood of the Black Monday and dotcom bubble episodes, respectively.
The estimated origination and termination dates for all of the procedures are also plotted on a graph of the price dividend ratio in
Fig. 6.

Consider first the results in Table 5 pertaining to the Black Monday bubble. We observe that the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(SVAR) test first
rejects the null hypothesis of no bubble 18 months earlier than the 𝐵𝑆𝐴𝐷𝐹𝐵 or 𝐵𝑆𝐴𝐷𝐹∞ tests. Furthermore, the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥Aaa),
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥Baa), 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(CORPR) and the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥GS10) tests reject the no-bubble null hypothesis 17 months earlier
than either the 𝐵𝑆𝐴𝐷𝐹𝐵 or 𝐵𝑆𝐴𝐷𝐹∞ tests. When utilising the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(LTR) or 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥LTY) tests a rejection is signalled
14 months earlier than the 𝐵𝑆𝐴𝐷𝐹𝐵 or 𝐵𝑆𝐴𝐷𝐹∞ tests. Finally, the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥BM) test rejects 7 months earlier than 𝐵𝑆𝐴𝐷𝐹𝐵

and 𝐵𝑆𝐴𝐷𝐹∞, and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(CREDSA) and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥TBL) also reject 5 months earlier than 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹∞. We
note that both the 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹∞ tests only reject the null hypothesis in a single month, August 1987. Consequently
neither the 𝐵𝑆𝐴𝐷𝐹𝐵 or 𝐵𝑆𝐴𝐷𝐹∞ tests actually identify the Black Monday bubble because the minimum required length of one
year between 𝑡𝑒 and 𝑡𝑓 is not met. This is also true for the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(CREDSA) and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥TBL) tests, albeit these tests do
reject for more than a single month.

While it may appear strange that the first rejection dates seen for the bootstrap 𝐵𝑆𝐴𝐷𝐹𝐵-based procedure occur some time
after the bubble origination dates identified by PSY, the finite sample critical values used by PSY are almost identical to those we
calculated graphed on Fig. 4 and can be seen to considerably more liberal than the bootstrap critical values for 𝐵𝑆𝐴𝐷𝐹 graphed
on Fig. 4; as discussed in Remark 4.7, their reliability is highly questionable for the real S&P 500 price–dividend ratio data. This
is also evidenced by the 𝐵𝑆𝐴𝐷𝐹 fscv-based procedure which rejects ahead of both the 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹∞ based procedures.
The 𝐵𝑆𝐴𝐷𝐹 fscv procedure does still reject later than the date reported by PSY. This is likely due to PSY not including any lagged
dependent variables in their sub-sample ADF regressions which tends to inflate the value of the 𝐵𝑆𝐴𝐷𝐹 statistic relative to when
lag augmentation is included. The termination date for the Black Monday bubble episode is identified as December 1987 by all
𝐶𝐵𝑆𝐴𝐷𝐹𝐵 procedures except where SVAR is utilised as a covariate where the estimated termination date is a month later in January

12 The latter condition ensures that we do not spuriously indicate the end of a bubble before it has actually terminated. This could happen for at least two
easons: first, as each of the test statistics in the sequence is the outcome of a random variable, even within a genuine bubble episode the outcomes of some
tatistics in the sequence can lie below the critical value in finite samples by chance; second, bubble episodes often contain short periods of downward movement
efore the underlying upward movement continues (these might be very short-lived mini-collapses or temporary market corrections) and these can be sufficient
o trigger non-rejections in the tests in the sequence.
13 We begin monitoring using the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(VXO) test in April 1994 to ensure the test is initially performed on a reasonably large sample size of 100.
357



S. Astill et al. Journal of Empirical Finance 70 (2023) 342–366
Fig. 4. Sequential test statistics and critical values: January 1986–December 1987 (Black Monday bubble).
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Fig. 5. Sequential test statistics and critical values: January 1995–December 2002 (dotcom bubble).
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Fig. 6. Origination and termination dates of identified bubble episodes.
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1988. PSY, on the other hand, report an estimated termination date of September 1987. It is unsurprising that these estimated
termination dates are quite close together given the sharp crash in world stock markets following Black Monday.

We next turn to the estimated origination dates for the dotcom bubble. The 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥BM) test first rejects the no bubble null
hypothesis 6 months earlier than 𝐵𝑆𝐴𝐷𝐹𝐵 (which in turn first rejects one month later than the estimated origination date reported
in PSY) and 8 months ahead of 𝐵𝑆𝐴𝐷𝐹∞. The 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥TBL) and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(VXO) tests first reject the null hypothesis in
July 1995, 5 months ahead of 𝐵𝑆𝐴𝐷𝐹𝐵 and 7 months ahead of 𝐵𝑆𝐴𝐷𝐹∞. In addition, 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(CREDSA) first rejects the null
hypothesis 4 months ahead of 𝐵𝑆𝐴𝐷𝐹𝐵 and 6 months earlier than 𝐵𝑆𝐴𝐷𝐹∞. Finally, the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥Aaa), 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥Baa),
𝐶𝐵𝑆𝐴𝐷𝐹𝐵(CORPR), 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥GS10), 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(LTR) and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥LTY) tests all reject 3 months earlier than 𝐵𝑆𝐴𝐷𝐹𝐵

and 5 months ahead of 𝐵𝑆𝐴𝐷𝐹∞. Fig. 5 shows that the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵 tests also displays a more consistent pattern of rejections
over time than both 𝐵𝑆𝐴𝐷𝐹𝐵 and 𝐵𝑆𝐴𝐷𝐹∞. The 𝐵𝑆𝐴𝐷𝐹 fscv procedure first rejects a month after the estimated origination date
reported by PSY.

Somewhat more variability is observed in the estimated termination date of the dotcom bubble across the procedures than
was seen for the Black Monday episode, with 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(𝛥LTY) estimating the earliest termination date and 𝐶𝐵𝑆𝐴𝐷𝐹𝐵(SVAR)
estimating the latest termination date. That there is more variability in the estimated termination date of the dotcom bubble relative
to the Black Monday episode is unsurprising given the relative manner in which these two bubbles collapsed. The market collapse
following Black Monday was short and sharp, leading the procedures to identify the termination of this bubble within a very small
window of observations. The decline in stock prices following the dotcom bubble, whilst unprecedented, occurred over a period of
more than one year, leading to somewhat more variability across the estimated termination dates in Table 5.

Our empirical results show that by employing empirically relevant covariates, date-stamping procedures based on the 𝐶𝐵𝑆𝐴𝐷𝐹𝐵

tests typically estimate the origination date of both the bubble preceding Black Monday and the dotcom bubble well in advance of
the standard PSY procedure. An implication is that the covariate augmented methods proposed in this paper would have identified
these bubbles several months earlier than the existing procedures if used as part of a real-time monitoring exercise.

7. Conclusions

Reliable bubble detection procedures provide crucial information for policy makers looking to implement macroprudential policy
aimed at mitigating the damage to the economy that can be caused by bubble episodes in financial markets. Such methods need to
have simultaneously low false detection rates and high true detection rates. We have contributed to this development by extending
the most popular univariate bubble detection and associated date-stamping procedures in the literature developed in PWY and
PSY to allow for the incorporation of additional information from stationary covariates. This leads to a more precise estimate of
the leading autoregressive coefficient upon which bubble detection and date-stamping procedures are based. To account for the
dependency of the null distribution of the covariate augmented statistics to a nuisance parameter (which measures the relevance
of the covariates), asymptotically valid bootstrap implementations of the tests were employed. Monte Carlo simulation results have
shown that the covariate-augmented bootstrap tests display well controlled false detection properties, and that the inclusion of
relevant covariates can lead to considerable gains in the efficacy of both the bubble detection and date-stamping procedures, relative
to the corresponding univariate procedures.

In an empirical application we have explored the use of our proposed covariate-based methods in settings where they have the
potential to be used as early warning mechanisms, informing policy makers in real-time of the emergence of a bubble episode;
information crucial to structuring macroprudential policy. Specifically, we have examined whether or not our proposed covariate-
based methods would have detected the bubble preceding Black Monday and the dotcom bubble in the S&P 500 price dividend
series previously identified by PSY at an earlier date than by the use of the corresponding univariate procedures used in PSY. In
this exercise we investigated the use of multiple candidate covariates, with our results showing that using these covariates would
indeed have allowed for significantly earlier detection of both of these bubble episodes.
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Appendix

This Appendix contains three sections. In Appendix A.1 we outline the residual bootstrap used to generated 𝑝-values for the
covariate-augmented bubble detection tests, and provide some discussion relating to the bootstrap methods. In Appendix A.2 we
outline how the methods outlined in the main text can be generalised to allow for either a constant or linear trend in the data.

Finally, Appendix A.3 provides proofs of Theorems 1 and 2.
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A.1. Bootstrap implementation

Our proposed bootstrap implementation of the covariate-augmented versions of the bubble detection tests of PWY and PSY
developed in Section 4 is first outlined in Algorithm A.1. This is based on the IID residual bootstrap re-sampling approach developed
in CSS for use with the full sample CADF tests of Hansen (1995). Some discussion follows Algorithm A.1.

Algorithm A.1 (Bootstrap CADF tests).
Step 1: Estimate the following regression by OLS,

𝛥𝑦𝑡 =
𝑝
∑

𝑘=1
�̃�𝑘𝛥𝑦𝑡−𝑘 +

𝑞2
∑

𝑘=−𝑞1

𝛽′𝑘𝑤𝑡−𝑘 + �̃�𝑡. (A.1)

Step 2: Estimate the following regression by Yule–Walker14 (see, for example, Brockwell and Davis (1991), pp.239-241),

𝑤𝑡+𝑞1+1 = �̃�1𝑤𝑡+𝑞1 +⋯ + �̃�𝓁𝑤𝑡+𝑞1−𝓁+1 + �̃�𝑡. (A.2)

Step 3: Define 𝜉𝑡 ∶= (�̃�𝑡, �̃�𝑡)′, 𝑡 = 𝑡1, ..., 𝑇 −𝑞1, where 𝑡1 ∶= max(𝓁+1, 2+max(𝑝, 𝑞2)) and where �̃�𝑡 and �̃�𝑡 are the fitted residuals obtained
from equations (A.1) and (A.2), respectively, and generate the bootstrap sample 𝜉∗𝑡 ∶= (𝜀∗𝑡 , 𝜂

∗
𝑡 )

′, 𝑡 = 1, ..., 𝑇 , from the re-centred
residuals, 𝜉𝑐𝑡 ∶= 𝜉𝑡 − (𝑇 − 𝑞1 − 𝑡1 + 1)−1

∑𝑇−𝑞1
𝑠=𝑡1

𝜉𝑠, using a standard residual bootstrap re-sampling (with replacement) scheme; that is,
𝜉∗𝑡 ∶= 𝜉𝑐𝑡

, where 𝑡, 𝑡 = 1, ..., 𝑇 , is an independent and identically distributed (𝐼𝐼𝐷) sequence of (discrete) uniformly distributed
random variables on {𝑡1, ..., 𝑇 − 𝑞1}.
Step 4: Construct the bootstrap sample of the stationary covariate, {𝑤∗

𝑡 }, 𝑡 = 1 − 𝑞2, ..., 𝑇 + 𝑞1, according to the recursion

𝑤∗
𝑡+𝑞1+1

= �̃�1𝑤
∗
𝑡+𝑞1

+⋯ + �̃�𝓁𝑤
∗
𝑡+𝑞1+1−𝓁

+ 𝜂∗𝑡 (A.3)

where �̃�𝑘, 1 ≤ 𝑘 ≤ 𝓁 are the Yule–Walker estimates obtained in Step 2, and where we follow CSS and initialise the bootstrap sample
by setting 𝜂∗𝑡 = 𝑤𝑡+𝑞2 for 𝑡 = 1 − 𝑞2, ..., 𝑞1 + 1 and 𝑤∗

1−𝑞2−𝓁
= ⋯ = 𝑤∗

−𝑞2
= 0.

Step 5: Construct the bootstrap sample {v∗𝑡 } according to

v∗𝑡 =
𝑞2
∑

𝑘=−𝑞1

𝛽′𝑘𝑤
∗
𝑡−𝑘 + 𝜀∗𝑡 (A.4)

where 𝛽𝑘, −𝑞1 ≤ 𝑘 ≤ 𝑞2 are the OLS estimates obtained in Step 1.
Step 6: Generate the bootstrap errors {𝑢∗𝑡 }, according to the recursion

𝑢∗𝑡 = �̃�1𝑢
∗
𝑡−1 + ... + �̃�𝑝𝑢

∗
𝑡−𝑝 + v∗𝑡 (A.5)

where the 𝑝 initial values of 𝑢∗𝑡 are set to zero, and where �̃�𝑘, 1 ≤ 𝑘 ≤ 𝑝 are the OLS estimates obtained in Step 1.
Step 7: Generate the bootstrap sample {𝑦∗𝑡 } by cumulating the bootstrap errors {𝑢∗𝑡 };

𝑦∗𝑡 = 𝑦∗𝑡−1 + 𝑢∗𝑡 = 𝑦∗0 +
𝑡

∑

𝑘=1
𝑢∗𝑘 (A.6)

initialised at 𝑦∗0 = 0. Notice therefore that the unit root null hypothesis is imposed on the bootstrap sample data {𝑦𝑡}.
Step 8: Using the bootstrap sample data {𝑦∗𝑡 , 𝑤

∗
𝑡 }, construct the bootstrap analogues of the 𝐶𝐺𝑆𝐴𝐷𝐹 , 𝐶𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹

statistics as

𝐶𝑆𝐴𝐷𝐹 ∗ ∶= sup
𝑟∈[𝑟0 ,1]

{𝐶𝐴𝐷𝐹 ∗(𝑝, 𝑞1, 𝑞2)𝑟0} (A.7)

𝐶𝐵𝑆𝐴𝐷𝐹 ∗ ∶= sup
𝑟∈[0,1−𝑟0]

{𝐶𝐴𝐷𝐹 ∗(𝑝, 𝑞1, 𝑞2)1𝑟} (A.8)

𝐶𝐺𝑆𝐴𝐷𝐹 ∗ ∶= sup
𝑟2∈[𝑟0 ,1]

𝑟1∈[0,𝑟2−𝑟0]

{𝐶𝐴𝐷𝐹 ∗(𝑝, 𝑞1, 𝑞2)
𝑟2
𝑟1} (A.9)

where 𝐶𝐴𝐷𝐹 ∗(𝑝, 𝑞1, 𝑞2)
𝑟2
𝑟1 denotes the bootstrap analogue of the 𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)

𝑟2
𝑟1 statistic and is obtained from estimating the

regression

𝛥𝑦∗𝑡 = 𝛼𝑦∗𝑡−1 +
𝑝
∑

𝑘=1
𝛼𝑘𝛥𝑦

∗
𝑡−𝑘 +

𝑞2
∑

𝑘=−𝑞1

𝛽′𝑘𝑤
∗
𝑡−𝑘 + 𝜀∗𝑡 (A.10)

over the bootstrap data sub-sample 𝑡 = ⌊𝑟1𝑇 ⌋ + 1, ..., ⌊𝑟2𝑇 ⌋.
Step 9: Bootstrap p-values for the three tests are then computed as: 𝑝∗1,𝑇 ∶= 1 − 𝐺∗

1,𝑇 (𝐶𝑆𝐴𝐷𝐹 ), 𝑝∗2,𝑇 ∶= 1 − 𝐺∗
2,𝑇 (𝐶𝐵𝑆𝐴𝐷𝐹 ) and

𝑝∗3,𝑇 ∶= 1 − 𝐺∗
3,𝑇 (𝐶𝐺𝑆𝐴𝐷𝐹 ), where 𝐺∗

1,𝑇 (⋅), 𝐺∗
2,𝑇 (⋅) and 𝐺∗

3,𝑇 (⋅) denote the conditional (on the original sample data) cumulative
density functions (cdf) of 𝐶𝑆𝐴𝐷𝐹 ∗, 𝐶𝐵𝑆𝐴𝐷𝐹 ∗ and 𝐶𝐺𝑆𝐴𝐷𝐹 ∗, respectively. Notice, therefore, that the bootstrap tests, run at the
𝜆 significance level, based on 𝐶𝑆𝐴𝐷𝐹 , 𝐶𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐺𝑆𝐴𝐷𝐹 are then defined such that they reject the constant unit root null
hypothesis, 𝐻0 of (3), if 𝑝∗1,𝑇 < 𝜆, 𝑝∗2,𝑇 < 𝜆 and 𝑝∗3,𝑇 < 𝜆, respectively.

14 Following CSS, the Yule–Walker estimation method is used to guarantee that the estimated autoregression fitted to 𝑤 has only stable roots.
𝑡
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Remark A.1. Step 1 of Algorithm A.1 estimates the CADF Eq. (8) under the constant unit root null hypothesis, 𝐻0, to obtain the
residuals �̃�𝑡. This will clearly lead to more efficient estimates of the parameters of (8) when 𝐻0 is true. Alternatively, one could
obtain �̃�𝑡 in Step 1 from the unrestricted estimation of (8). Doing so would not alter the large sample properties of the bootstrap
statistics from Algorithm A.1 detailed in Appendix A.3. ⋄

Remark A.2. A simplified version of Algorithm A.1 may be considered whereby the so-called re-colouring aspect of Step 6 can be
omitted. In this case in Step 6 set 𝑢∗𝑡 = v∗𝑡 . The large sample properties of the bootstrap statistics from Algorithm A.1 detailed in
Appendix A.3 are unaffected by this simplification. ⋄

Remark A.3. Where the innovations 𝜉𝑡 follow a specific GARCH model, CSS (p.142) investigate a possible extension of their basic
IID bootstrap re-sampling algorithm which explicitly models the GARCH component of the data. Even where the GARCH model
adopted for the innovations in the algorithm is correctly specified, the simulation results in CSS suggest that the finite sample
performance of this extended bootstrap is no better than that of the basic IID bootstrap. In unreported simulations, we found the
same to be true in the setting considered in this paper and so we will only report results in what follows for the standard IID residual
bootstrap outlined in Algorithm A.1. As discussed in CSS (p.150), it is not entirely surprising that this extended bootstrap performs
no better than the basic IID bootstrap because the limiting null distributions of the test statistics involved are not pivotal (recall that
they depend on 𝜚2) and, hence, the GARCH modification to the bootstrap algorithm will not provide an asymptotic refinement. ⋄

A.2. Allowing for a non-zero mean and/or linear trend in 𝑦𝑡 and 𝑤𝑡

Each of the 𝑆𝐴𝐷𝐹 , 𝐵𝑆𝐴𝐷𝐹 and 𝐺𝑆𝐴𝐷𝐹 statistics in (12)–(14) can be generalised to allow for the presence of a constant
or constant plus linear trend in 𝑦𝑡 (cf. Remark 2.1). As with the full sample CADF tests of Hansen (1995), this can be done by
augmenting the sub-sample ADF regression used in computing the 𝐴𝐷𝐹 (𝑝)𝑟2𝑟1 statistic with either a constant or constant plus linear
trend, respectively.

Similarly, each of the 𝐶𝑆𝐴𝐷𝐹 , 𝐶𝐵𝑆𝐴𝐷𝐹 and 𝐶𝐺𝑆𝐴𝐷𝐹 statistics can be generalised to allow for the presence of a constant
or constant plus linear trend in 𝑦𝑡 and 𝑤𝑡 by augmenting the sub-sample covariate augmented ADF regression used for computing
the 𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)

𝑟2
𝑟1 statistic with either a constant or constant plus linear trend, respectively. The limiting distributions of these

change from those given for the no deterministics case in Theorem 1; see Remark A.6 for further details.
For bootstrap implementation of the tests, Algorithm A.1 is presented for the case where no deterministics are allowed for in

computing the 𝐶𝐺𝑆𝐴𝐷𝐹 , 𝐶𝑆𝐴𝐷𝐹 and 𝐶𝐵𝑆𝐴𝐷𝐹 statistics on the original data. In order to allow for a constant or constant plus
inear trend in the data simply replace 𝑦𝑡 and 𝑤𝑡 in Steps 1 and 2 of Algorithm A.1 by their full sample demeaned or detrended
ounterparts, denoted �̂�𝑡 and �̂�𝑡 respectively, obtained as the OLS residuals from regressing 𝑦𝑡 and the elements of 𝑤𝑡 on either a

constant or a constant and linear trend, over 𝑡 = 1,… , 𝑇 , and commensurately in Step 8 of Algorithm A.1 include either a constant
r constant plus linear trend in (A.10), the bootstrap analogue of the CADF regression. The bootstrap validity results outlined in
heorem 2 continue to hold when allowance is made in this way for either a constant or constant plus linear trend in the analysis.

.3. Proof of Theorems 1 and 2

In what follows we will follow CSS and impose the following assumptions on the innovations 𝜉𝑡 ∶= (𝜀𝑡, 𝜂′𝑡 )
′ and on the variables

𝑢𝑡 and 𝑧𝑡 ∶=
(

𝛥𝑦𝑡−1,… , 𝛥𝑦𝑡−𝑝, 𝑤′
𝑡+𝑟,… , 𝑤′

𝑡−𝑞

)′
.

Assumption A.1 (a). Let
{

𝜉𝑡
}

be a martingale difference sequence [MDS] such that 𝐸(𝜉𝑡𝜉′𝑡 ) = 𝛴 ∶=
(

𝜎2𝜀 𝜎𝜀𝜂
𝜎𝜀𝜂 𝛴𝜂

)

and (1∕𝑇 )
∑𝑇

𝑡=1 𝜉𝑡𝜉
′
𝑡𝑃⃖⃖⃗

𝛴

with 𝛴 > 0 and 𝐸|𝜉𝑡|
𝛾 < 𝐾 for some 𝛾 ≥ 4, where 𝐾 is some constant depending only upon 𝛾, and |.| denotes the Euclidean norm;

and (b) 𝛼(𝑧) ≠ 0 and det(𝛹 (𝑧)) ≠ 0 in each case for all |𝑧| ≤ 1.

Assumption A.2. The following additional conditions are assumed to hold in (1) and (2): (a) 𝜎2𝑣 > 0; and (b) 𝐸(𝑧𝑡𝑧′𝑡) > 0

Remark A.4. A full discussion of Assumptions A.1 and A.2 can be found on page 138 of CSS and page 1151 of Hansen (1995).
Importantly, Assumption A.1(a) allows for conditional heteroskedasticity, including GARCH behaviour, in all equations in the system
including the covariates. The MDS assumption implies that 𝜀𝑡 is serially uncorrelated with 𝜂𝑡+𝑘 for all 𝑘 ≥ 1, and hence is orthogonal
to the lagged differences of the dependent variable, 𝛥𝑦𝑡−1,… , 𝛥𝑦𝑡−𝑝, and to the leads and lags of the covariates, 𝑤𝑡+𝑞1 ,… , 𝑤𝑡−𝑞2 .
Taken together Assumptions A.1 and A.2 ensure that, under 𝐻0, 𝑦𝑡 is an 𝐼(1) process (so that we may interpret our tests of 𝐻0 as
tests for a constant parameter unit root in 𝑦𝑡; see footnote 1 of Hansen (1995), for further discussion on this point) and that the
parameters {𝛼𝑗}

𝑝
𝑗=1 and {𝛽𝑘}

𝑞2
𝑘=−𝑞1

, can be consistently estimated by standard ordinary least squares (OLS) estimation. ⋄

Remark A.5. Under Assumption A.1(a) the innovations, 𝜉𝑡, satisfy the multivariate invariance principle 1
√

𝑇

∑

⌊𝑇 ⋅⌋
𝑡=1 𝜉𝑡

𝑤
→ 𝐵(⋅), where

(𝑟) = (𝐵 (⋅), 𝐵′ (⋅))′ is an (𝑚 + 1)-dimensional Brownian motion with covariance matrix 𝛴. ⋄
𝜀 𝜂
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A.3.1. Proof of Theorem 1
Consider to begin with the case where 𝑟1 and 𝑟2 are fixed. Here the data sub-sample is 𝑡 = ⌊𝑟1𝑇 ⌋ + 1,… , ⌊𝑟2𝑇 ⌋. Defining

𝑇1 ∶= ⌊𝑟1𝑇 ⌋ + 2 + max(𝑝, 𝑞2) and 𝑇2 ∶= ⌊𝑟2𝑇 ⌋ − 𝑞1, we can define the corresponding sub-sample regression quantities

𝐴𝑟1 ,𝑟2 ∶=
𝑇2
∑

𝑡=𝑇1

𝑦𝑡−1𝜀𝑡 −

( 𝑇2
∑

𝑡=𝑇1

𝑦𝑡−1𝑧
′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝑧
′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝜀𝑡

)

(A.11)

𝐵𝑟1 ,𝑟2 ∶=
𝑇2
∑

𝑡=𝑇1

𝑦2𝑡−1 −

( 𝑇2
∑

𝑡=𝑇1

𝑦𝑡−1𝑧
′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝑧
′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝑦𝑡−1

)

(A.12)

𝐶𝑟1 ,𝑟2 ∶=
𝑇2
∑

𝑡=𝑇1

𝜀2𝑡 −

( 𝑇2
∑

𝑡=𝑇1

𝜀𝑡𝑧
′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝑧
′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝜀𝑡

)

. (A.13)

By trivially adapting results given in Lemma 2.1 of Park and Phillips (1989) to the sub-sample data considered here, we
immediately have the results that ∑𝑇2

𝑡=𝑇1
𝑧𝑡𝑧′𝑡 = 𝑂𝑝(𝑇 ),

∑𝑇2
𝑡=𝑇1

𝑧𝑡𝜀𝑡 = 𝑂𝑝(𝑇 1∕2) and ∑𝑇2
𝑡=𝑇1

𝑦𝑡−1𝑧′𝑡 = 𝑂𝑝(𝑇 ). It therefore follows that
he second terms appearing on the right hand sides of (A.11), (A.12) and (A.13), respectively, satisfy

( 𝑇2
∑

𝑡=𝑇1

𝑦𝑡−1𝑧
′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝑧
′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝜀𝑡

)

= 𝑂𝑝(𝑇 1∕2)

( 𝑇2
∑

𝑡=𝑇1

𝑦𝑡−1𝑧
′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝑧
′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝑦𝑡−1

)

= 𝑂𝑝(𝑇 )

( 𝑇2
∑

𝑡=𝑇1

𝜀𝑡𝑧
′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝑧
′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧𝑡𝜀𝑡

)

= 𝑜𝑝(𝑇 ).

Using these results, we therefore have that

(𝑇2 − 𝑇1 + 1)−1𝐴𝑟1 ,𝑟2 = (𝑇2 − 𝑇1 + 1)−1
𝑇2
∑

𝑡=𝑇1

𝑦𝑡−1𝜀𝑡 + 𝑜𝑝(1) (A.14)

(𝑇2 − 𝑇1 + 1)−2𝐵𝑟1 ,𝑟2 = (𝑇2 − 𝑇1 + 1)−2
𝑇2
∑

𝑡=𝑇1

𝑦2𝑡−1 + 𝑜𝑝(1) (A.15)

(𝑇2 − 𝑇1 + 1)−1𝐶𝑟1 ,𝑟2 = (𝑇2 − 𝑇1 + 1)−1
𝑇2
∑

𝑡=𝑇1

𝜀2𝑡 + 𝑜𝑝(1). (A.16)

Defining �̂�2𝑟1 ,𝑟2 as the corresponding OLS regression standard error, the 𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)
𝑟2
𝑟1 statistic can be written, under the unit

root null hypothesis, 𝐻0 of (3), as

𝐶𝐴𝐷𝐹 (𝑝, 𝑞1, 𝑞2)
𝑟2
𝑟1 = 1

�̂�𝑟1 ,𝑟2

𝐴𝑟1 ,𝑟2

𝐵1∕2
𝑟1 ,𝑟2

= 1
�̂�𝑟1 ,𝑟2

⎛

⎜

⎜

⎜

⎝

(𝑇2 − 𝑇1 + 1)−1
∑𝑇2

𝑡=𝑇1
𝑦𝑡−1𝜀𝑡

(

(𝑇2 − 𝑇1 + 1)−2
∑𝑇2

𝑡=𝑇1
𝑦2𝑡−1

)1∕2

⎞

⎟

⎟

⎟

⎠

+ 𝑜𝑝(1)

𝑤
→

∫ 𝑟2
𝑟1

𝑄(𝑠)𝑑𝑃 (𝑠)
(

∫ 𝑟2
𝑟1

𝑄(𝑠)2𝑑𝑠
)1∕2

(A.17)

where the second line follows using the results in (A.14) and (A.15) and the last line follows using a trivial adaptation of Lemma
A.2 of Chang et al. (2013) to the data sub-sample 𝑡 = ⌊𝑟1𝑇 ⌋ + 1,… , ⌊𝑟2𝑇 ⌋ used to construct 𝐴𝑟1 ,𝑟2 and 𝐵𝑟1 ,𝑟2 and the fact that
̂ 2𝑟1 ,𝑟2

𝑝
→ 𝜎2𝜀 , which follows using (A.16). The large sample result in (A.17) holds formally only for fixed 𝑟1, 𝑟2. However, following

the same approach (which is based on the proof strategy adopted by Zivot and Andrews (1992), to prove their Theorem 1) as that
used to establish Equation (A.6) on p.1072 in the proof of Theorem 1 in PSY (pp. 1072–1075), the stated result for the limiting null
distribution of the 𝐶𝐺𝑆𝐴𝐷𝐹 statistic can be shown to follow by means of the Continuous Mapping Theorem [CMT] from the fixed
𝑟1, 𝑟2 representation in (A.17).

Remark A.6. Where a constant is included in the sub-sample CADF regressions the formula for the limiting distribution in (21)
holds with 𝑄(𝑠) replaced by 𝑄𝜇(𝑠) where for a generic Brownian motion process, 𝑊 (𝑠), we define the sub-sample demeaned process
𝑊 𝜇(𝑠) ∶= 𝑊 (𝑠)− 1

(𝑟2−𝑟1)
∫ 𝑟2
𝑟1

𝑊 (𝑡)𝑑𝑡. Where a constant and linear trend are included in the CADF regression, 𝑄(𝑠) is replaced by 𝑄𝜏 (𝑠)

here, generically, 𝑊 𝜏 (𝑠) ∶= 𝑊 𝜇(𝑠) − 12(𝑟2 − 𝑟1)−3(𝑠 −
(𝑟2−𝑟1)

2 ) ∫ 𝑟2
𝑟1

(𝑡 − (𝑟2−𝑟1)
2 )𝑊 𝜇(𝑡)𝑑𝑡. Analogously in (22), replace 𝑊1(𝑠) by 𝑊 𝜇

1 (𝑠)
r 𝑊 𝜏 (𝑠), as appropriate. These resulting limiting distributions depend on both 𝑟 and 𝜚2. ⋄
1 0
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A.3.2. Proof of Theorem 2
As with the proof of Theorem 1, consider to begin with the case where 𝑟1 and 𝑟2 are fixed. Correspondingly, define the bootstrap

sample moment analogues of 𝐴𝑟1 ,𝑟2 and 𝐵𝑟1 ,𝑟2 defined in the proof of Theorem 1 as

𝐴∗
𝑟1 ,𝑟2

∶=
𝑇2
∑

𝑡=𝑇1

𝑦∗𝑡−1𝜀
∗
𝑡 −

( 𝑇2
∑

𝑡=𝑇1

𝑦∗𝑡−1𝑧
∗′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝑧
∗′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝜀
∗
𝑡

)

(A.18)

𝐵∗
𝑟1 ,𝑟2

∶=
𝑇2
∑

𝑡=𝑇1

𝑦∗2𝑡−1 −

( 𝑇2
∑

𝑡=𝑇1

𝑦∗𝑡−1𝑧
∗′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝑧
∗′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝑦
∗
𝑡−1

)

. (A.19)

y trivially adapting results given in Lemma 3 of Chang and Park (2003) to the data sub-sample 𝑡 = ⌊𝑟1𝑇 ⌋ + 1,… , ⌊𝑟2𝑇 ⌋, we
immediately have that

𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝑧
∗′
𝑡 = 𝑂∗

𝑝 (𝑇 ),
𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝜀
∗
𝑡 = 𝑂∗

𝑝 (𝑇
1∕2) and

𝑇2
∑

𝑡=𝑇1

𝑦∗𝑡−1𝑧
∗′
𝑡 = 𝑂∗

𝑝 (𝑇 ) (A.20)

where we use the notation 𝑂∗
𝑝 and 𝑜∗𝑝 to denote the bootstrap analogues of the standard 𝑂𝑝 and 𝑜𝑝 stochastic order symbols for

he original sample asymptotics (for a formal definition and further discussion of these, see Chang and Park (2003), pp. 386–387).
sing the results in (A.20), it therefore follows immediately that the second terms appearing on the right hand sides of (A.18) and

A.19), respectively, satisfy
( 𝑇2
∑

𝑡=𝑇1

𝑦∗𝑡−1𝑧
∗′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝑧
∗′
𝑡

)−1 ( 𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝜀
∗
𝑡

)

= 𝑂∗
𝑝 (𝑇

1∕2)

( 𝑇2
∑

𝑡=𝑇1

𝑦∗𝑡−1𝑧
∗′
𝑡

)( 𝑇2
∑

𝑡=𝑇1

𝑧∗𝑡 𝑧
∗′
𝑡

)−1 ( 𝑇1
∑

𝑡=𝑇1

𝑧∗𝑡 𝑦
∗
𝑡−1

)

= 𝑂∗
𝑝 (𝑇 ).

Using these results we therefore have that

(𝑇2 − 𝑇1 + 1)−1𝐴∗
𝑟1 ,𝑟2

= (𝑇2 − 𝑇1 + 1)−1
𝑇2
∑

𝑡=𝑇1

𝑦∗𝑡−1𝜀
∗
𝑡 + 𝑜∗𝑝(1) (A.21)

(𝑇2 − 𝑇1 + 1)−2𝐵∗
𝑟1 ,𝑟2

= (𝑇2 − 𝑇1 + 1)−2
𝑇2
∑

𝑡=𝑇1

𝑦∗2𝑡−1 + 𝑜∗𝑝(1). (A.22)

Defining �̂�∗2𝑟1 ,𝑟2 to be the bootstrap counterpart of �̂�2𝑟1 ,𝑟2 and noting that Step 7 of Algorithm A.1 imposes 𝐻0 of (3) on the bootstrap
data {𝑦∗𝑡 }, the bootstrap 𝐶𝐴𝐷𝐹 ∗(𝑝, 𝑞1, 𝑞2)

𝑟2
𝑟1 statistic can be written as

𝐶𝐴𝐷𝐹 ∗(𝑝, 𝑞1, 𝑞2)
𝑟2
𝑟1 = 1

�̂�∗𝑟1 ,𝑟2

𝐴∗
𝑟1 ,𝑟2

𝐵∗1∕2
𝑟1 ,𝑟2

= 1
�̂�∗𝑟1 ,𝑟2

⎛

⎜

⎜

⎜

⎝

(𝑇2 − 𝑇1 + 1)−1
∑𝑇2

𝑡=𝑇1
𝑦∗𝑡−1𝜀

∗
𝑡

(

(𝑇2 − 𝑇1 + 1)−2
∑𝑇2

𝑡=𝑇1
𝑦∗2𝑡−1

)1∕2

⎞

⎟

⎟

⎟

⎠

+ 𝑜∗𝑝(1)

𝑤
→𝑝

∫ 𝑟2
𝑟1

𝑄(𝑠)𝑑𝑃 (𝑠)
(

∫ 𝑟2
𝑟1

𝑄(𝑠)2𝑑𝑠
)1∕2

where the second line follows using the results in (A.21) and (A.22), and the last line follows using a trivial adaptation of Lemma
A.4 of Chang et al. (2013) to the bootstrap data sub-sample 𝑡 = ⌊𝑟1𝑇 ⌋ + 1,… , ⌊𝑟2𝑇 ⌋ used to construct 𝐴∗

𝑟1 ,𝑟2
and 𝐵∗

𝑟1 ,𝑟2
, and the fact

that �̂�∗2𝑟1 ,𝑟2 = 𝜎2𝜀 + 𝑜∗𝑝(1), the proof of which follows immediately from Equation (20) of CSS page 154. As in the proof of Theorem 1,
the stated result for the bootstrap 𝐶𝐺𝑆𝐴𝐷𝐹 ∗ statistic can then be shown to follow using an application of the CMT by again using
the same arguments as in the proof of Theorem 1 of PSY.
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