
Report from Dagstuhl Seminar 13382

Collaboration and learning through live coding
Edited by
Alan Blackwell1, Alex McLean2, James Noble3, and
Julian Rohrhuber4

1 University of Cambridge, GB, alan.blackwell@cl.cam.ac.uk
2 University of Leeds, GB, a.mclean@leeds.ac.uk
3 Victoria University of Wellington, NZ, kjx@ecs.vuw.ac.nz
4 Robert Schumann Hochschule für Musik – Düsseldorf, DE,

julian.rohrhuber@musikundmedien.net

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13382 “Collaboration
and learning through live coding”. Live coding is improvised interactive programming, typically
to create electronic music and other digital media, done live with an audience. Our seminar
was motivated by the phenomenon and experience of live coding. Our conviction was that those
represent an important and broad, but seldom articulated, set of opportunities for computer
science and the arts and humanities. The seminar participants included a broad range of scholars,
researchers, and practitioners spanning fields from music theory to software engineering. We held
live coding performances, and facilitated discussions on three main perspectives, the humanities,
computing education, and software engineering. The main outcome of our seminar was better
understanding of the potential of live coding for informing cross-disciplinary scholarship and
practice, connecting the arts, cultural studies, and computing.

Seminar 15.–20. September, 2013 – www.dagstuhl.de/13382
1998 ACM Subject Classification J.5 [Computer Applications]: Arts and humanities—Performing

arts, K.3.2 [Computers and Education]: Computer and Information Science Education—
Computer science education, D.2.1 [Software Engineering]: Requirements/Specifications—
Methodologies

Keywords and phrases Live coding, Collaboration, Learning, Improvised interactive program-
ming, Computer music, Algorithmic composition, TOPLAP

Digital Object Identifier 10.4230/DagRep.3.9.130
Edited in cooperation with Jochen Arne Otto (ZKM | Center for Art and Media Karlsruhe, DE)

1 Executive Summary

Robert Biddle
Alex McLean
Alan Blackwell
Julian Rohrhuber

License Creative Commons BY 3.0 Unported license
© Robert Biddle, Alex McLean, Alan Blackwell, and Julian Rohrhuber

The goal of this seminar was to understand and develop the emerging practice, characteristics
and opportunities in live coding, with an emphasis on three perspectives: the humanities,
computing education, and software engineering. The opening days of the seminar were
broadly structured to provide thematic introductions followed by facilitated discussions on

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Collaboration and learning through live coding, Dagstuhl Reports, Vol. 3, Issue 9, pp. 130–168
Editors: Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13382
http://dx.doi.org/10.4230/DagRep.3.9.130
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 131

each of these three perspectives. These were interspersed with live coding performances and
experiments, in order to ensure that theoretical concerns remained grounded within this
discipline that fundamentally blurs the separation of concerns between theory and practice.

The second half of the seminar was problem-oriented, resulting in concrete progress on
specific technical topics, together with development of a research roadmap, publications and
policy strategy to realise the significant benefits that live coding promises in a number of
fields. Finally, in the spirit of both practice as a form of theory and theory as a form of
practice, the seminar included some exciting musical experiences – an Algorave club night in
London, with performances by delegates who were traveling from other countries on their way
to the seminar; an inter-continental collaborative performance hosted jointly with the IEEE
VL/HCC conference in San Jose; a conceptual proposal for an interactive sound installation
in the Schloss Dagstuhl garden; and live-coded jam sessions in venues ranging from the woods
of the old castle, to evening cabaret entertainment in the beautiful Dagstuhl music room.

Our main findings in relation to the three contrasting research perspectives were as
follows:

1. Live coding illuminates the ways in which programming can be an artistic practice,
software-as-art, going beyond a mere supporting role, and illustrating that software
is itself a cultural artefact, not simply an infrastructure commodity. We see many
opportunities for nuanced, cross-disciplinary contributions to the digital humanities, for
example in a revitalisation of the historical connection between computation and weaving,
insights into the role of practice and experiment, and an enrichment of the notion of
computation itself. Indeed, as computing becomes embedded in culture, the live, everyday
authorship of computation becomes a socio-political question of freedom of speech and
empowerment.

2. Live coding can play an important role in computing education, because it allows
programming to be demonstrated and learned in a simple but authentic context. At
the same time, it can support an affective teaching strategy where learners are not only
motivated by the production of sound, visuals and other phenomena, but are also clear on
the distinctly human activity which produces them. Thereby, however, it maintains a sense
of discovery of something unanticipated and not prefigured. Of particular importance for
learning is the potential for deeper engagement with the non trivial nature of computing,
rather than an occupation with the operation of end-user application software.

3. Live coding offers new insights with regard to software engineering processes. The
history of software engineering process can be seen as a move from heavyweight lock-step
approaches to more agile approaches with fast cycles of development and feedback. At their
heart, the new approaches rely on collaboration, as developers, designers, and customers
work together to steer the process toward mutual success. Live coding demonstrates this
kind of approach in a compelling way, with simple tools, a short time frame, but still
allowing improvisational collaboration between performers and various audiences.

Perhaps more significant than any of these individual considerations is an ambitious
holistic vision: that live coding can entirely change the way we think about programming.
Indeed, the common experience articulated at the workshop is that live coding exemplifies
both the power and the excitement of programming – in a small space, in a short time,
available and accessible to anyone. Live coding exposes the soul of programming.

Our next steps are a series of collaborative workshops and programs to articulate and
demonstrate this collection vision of a broad and expanding role for live coding.

This report is a collection of texts that were direct outcomes of the seminar rather than
having been set up in advance. Taking the role of editor seriously, Jochen Arne Otto has

13382

132 13382 – Collaboration and learning through live coding

diligently collected, arranged and revised the heterogeneous materials, a synthesis without
which such a concise paper would not have been possible. While taking responsibility for
all remaining mistakes and omissions, we would like to thank Jochen very much for his
commitment to this difficult task.

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 133

2 Table of Contents

Executive Summary
Robert Biddle, Alex McLean, Alan Blackwell, and Julian Rohrhuber 130

Overview of Talks
Live Coding as a Model for Cultural Practice
Geoff Cox . 135

Live Coding in Education
Mark Guzdial . 135

Live Coding, Software Engineering and Collaboration
Robert Biddle . 136

Group Discussions
Critical Engineering and Software Tools
Roly Perera . 138

Algorithmic Complementarity, or the Impossibility of “Live” Coding
Julian Rohrhuber . 140

Tidal: Representing Time with Pure Functions
Alex McLean . 142

Explicit vs. Implicit and External vs. Internal (Representations of) Time
Julian Rohrhuber . 144

Stress and Cognitive Load
Alex McLean . 145

Practical Implementation Session
Setting Up a Shared Temporal Frame
David Ogborn . 146

Live Coding: Some History and Implementations
Personal Accounts on the History of Live Coding
Renate Wieser and Julian Rohrhuber . 147

Extempore
Andrew Sorensen . 148

Fluxus
Dave Griffiths . 149

ixi lang
Thor Magnusson . 150

SuperCollider and the Just In Time Programming Library
Julian Rohrhuber . 150

Overtone
Samuel Aaron . 152

Republic: Collaborative Live Coding 2003–2013
Alberto de Campo . 152

13382

134 13382 – Collaboration and learning through live coding

Sonic Pi
Samuel Aaron . 153

Personal Reflections
Clickety-Click: Live Coding and Software Engineering
Robert Biddle . 154

Cultural-Epistemological Aspects of Live Coding
Geoff Cox . 159

Dagstuhl: Live Coding and Memorable Discussions
Dave Griffiths . 160

Live Coding, Computer Science, and Education
Mark Guzdial . 162

Algorithms, Live Patterning and the Digital Craft of Weaving
Ellen Harlizius-Klück . 165

A Few Notes from the Seminar
Julian Rohrhuber . 166

Participants . 168

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 135

3 Overview of Talks

3.1 Live Coding as a Model for Cultural Practice
Geoff Cox (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Geoff Cox

Could a precedent for live coding be seen in Wolfgang von Kempelen’s 18th century chess-
playing automaton, a description of which introduces Walter Benjamin’s essay “On the
Concept of History”? The machine’s trickery demonstrates that the dynamic of history and
that of the machine is fake; and the task of the historical materialist is to reveal the inner
workings as ideological constructions.

This relates somewhat to my interest in live coding: how it seems prototypical of
contemporary labour dynamics and what is hidden from view – inasmuch as labour has
become more performative and linguistic in character (and precarious, with reference to
Amazon’s Mechanical Turk – a crowdsourced online workplace – that exhibits so-called
“artificial artificial intelligence”). Live coding makes apparent coding practice and embodiment
(labour) and the visibility of code, coding and coders (“show us your screens”, they proclaim).

Expressed ever so briefly, my point is that in a culture where behaviour is increasingly
prescribed by various scripts, scores, programs (and these are enclosed), live coding offers a
way to understand these dynamics, and accordingly suggests ways out of various automatisms
and determinisms associated with code.

3.2 Live Coding in Education
Mark Guzdial (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Mark Guzdial

In one of the first talks at the Dagstuhl Seminar on Live Coding, Sam Aaron asked, “Why
aren’t kids programming?” It’s fun, it’s creative, and it’s an inexpensive activity that’s easily
accessible. Why isn’t it happening?

The problem is one of perception and access. As Simon Peyton-Jones of Computing At
School has pointed out, most people define “Computer Science” as “a niche university subject
for socially-challenged males,” when most computer scientists see it as “a foundational
discipline, like maths or physics, that every child should learn.” In the United States,
computer science is one of the least-subscribed topics in science, technology, engineering, and
mathematics (STEM) in secondary schools. For the 30,000 high schools in the United States,
there are only some 2,000 high school computer science teachers. There is very little access.
Even if more students wanted to study computer science, it’s not available.

Computer science in the United States is predominantly male and white or Asian. The
United States is 13.1% Black and 16.9% Hispanic. In most of the states (37 out of 50), fewer
than 14 Black students per state took the Advanced Placement Exam in Computer Science
(similar to an A-Level) – not percentage, 14 individuals. California, the largest and most
Hispanic state in the US (38% of population), has a rate of Hispanic students taking the AP
CS exam of less than 10%.

How do we improve access and change perceptions about computer science for students?

13382

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

136 13382 – Collaboration and learning through live coding

First, we create computer science classes that succeed in minority-serving high schools.
Jane Margolis at the the University of California Los Angeles has led the way in this
strategy with the Exploring CS (http://exploringcs.org) that they have had adopted
successfully in many California schools.
Second, we change how we frame and describe computer science. Betsy DiSalvo at Georgia
Tech has had success with her Glitch Game Testers project where she engages Black males
with video game testing as a way of getting them to work with computing technology
in a way that they find attractive. Her results are astounding, with the majority of her
students moving on to study computing in higher-education.

Live coding can play a role in these strategies. Live coding gives an audience opportunity
to see programming and to see a programmer, perhaps for the first time in their lives. They
see programming in a live coding situation not as a solitary, asocial activity, but as a creative
endeavor that creates a valuable product, music. Like Glitch, live coding can be engaging
and draws students into exploring technology.

We need research to explore the value of live coding in changing perceptions about
computer science, in engaging new students in exploring programming, and in the kinds
of programming environments that are successful as both live coding environments and
successful pedagogical tools. We need to explore how live coding can be adopted by a broad
range of students. Teachers must be comfortable with the technology to invite it into their
classrooms, so we need to explore how to make live coding inviting for teachers. Live coding
can be a useful tool in improving access and changing perceptions about computing.

3.3 Live Coding, Software Engineering and Collaboration
Robert Biddle (Carleton University – Ottawa, CA)

License Creative Commons BY 3.0 Unported license
© Robert Biddle

One of the topics of interest in our seminar was software engineering, and I was asked to give
a brief overview to help our discussions. Our focus was collaboration, so I decided to focus
on software engineering process, and especially on agile software development processes.

I began with the “waterfall” diagram from Royce’s classic paper [9] often used (unfairly
[4]) as advocating a strict step-by-step process model. The steps in Royce’s diagram are
requirements, analysis, design, coding, testing, and operations. I outlined the issues that
arise in a strict flow, such as the need for early look-ahead to coding concerns, or the need to
go back to design or analysis when requirements evolve or limitations are recognized. I also
discussed the appeal of the waterfall, the vexing, but for some reason enduring, drift toward
the strict flow between separated phases that can still be seen today. The role of Taylorism or
“scientific management” has been recognized for some time [8] as affecting software process,
and that may be the explanation.

This brought us to agile methods, and I introduced the basics of both Extreme Program-
ming (XP) [2] and Scrum [10]. I emphasized the iterative nature of both processes, and
explained the connection between iterative processes and collaboration, the way in which a
dialog is fostered when work can be begun and then changed or refined subject to feedback
and discussion. I emphasized the practices in XP and Scrum that facilitate this beneficial
loop. In XP, for example, I discussed the “Planning Game”, having a “Customer On-Site”,
the idea of “Test Driven Development”, how “Pair Programming” works, and the role of the

http://exploringcs.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 137

“Daily Standup”. For Scrum I discussed the roles, the “Product Owner”, the “Team”, the
“Scrum Master”, and the flow from “Backlog” through “Sprint Planning” and “Sprint”.

I then moved on to discuss some topics where my research group has focused, typically
through field studies of software development teams. The main topic I addressed was
collaboration between programmers and interaction designers. Aside from embedded software,
this collaboration is crucial to the success of software, but little has been said, either in
academic work or in industry reports, about how this collaboration should work. I first
discussed the work of Miller about interleaved processes [6], and the success it brought in their
application domain. I then outlined our own findings. One common concept we identified
was “alignment work”, where various practices, some formal, some less so, have the beneficial
effect of cross-checking understanding between the groups involved in creating software [3].
Another important finding was the role of artefacts of various kinds in facilitating that
alignment: stories, lists, sketches, and so on. These all serve to keep different viewpoints
aligned, even as the software begins to take shape [2].

To conclude, I reviewed some of the challenges that arise in encouraging collaboration
in software engineering processes. One I identified was that software development needs to
connect to multiple other processes: business processes, organizational change, and so on.
The nature of software is that it serves other purposes, and it can be difficult to link the
software development process in to all the processes that are relevant. The other challenge
that I addressed is that raised by other innovative ideas in software development. One,
for example, is “software craftsmanship” [5], which emphasizes the technical skills and
practices of programmers, and which I feel can de-emphasize the importance of collaboration
with interaction designers, customers, and others involved in creating successful software.
Another recently prominent idea is that of “lean” processes [7] that, inspired by success in
manufacturing, emphases the elimination of waste. Like software craftsmanship, this is a
good idea, but can be misunderstood: practices involving iteration and collaboration can too
easily be seen as superfluous.

References
1 Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Professio-

nal, first edition, 1999.
2 Judith M. Brown, Gitte Lindgaard, and Robert Biddle. Collaborative events and shared

artefacts: Agile interaction designers and developers working toward common aims. In
Proceedings of the 2011 Agile Conference, AGILE’11, pages 87–96, Washington, DC, USA,
2011. IEEE Computer Society.

3 Judith M. Brown, Gitte Lindgaard, and Robert Biddle. Joint implicit alignment work of
interaction designers and software developers. In Proceedings of the 7th Nordic Conference
on Human-Computer Interaction: Making Sense Through Design, NordiCHI’12, pages 693–
702, New York, NY, USA, 2012. ACM.

4 Craig Larman and Victor R. Basili. Iterative and incremental development: A brief history.
Computer, 36(6):47–56, June 2003.

5 Pete McBreen. Software Craftsmanship: The New Imperative. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

6 Lynn Miller. Case study of customer input for a successful product. In Proceedings of
the Agile Development Conference, ADC’05, pages 225–234, Washington, DC, USA, 2005.
IEEE Computer Society.

7 Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile Toolkit.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

8 Hugh Robinson, Patrick A. V. Hall, Fiona Hovenden, and Janet Rachel. Postmodern
software development. Comput. J., 41(6):363–375, 1998.

13382

138 13382 – Collaboration and learning through live coding

9 W. W. Royce. Managing the development of large software systems: Concepts and
techniques. In Proceedings of the 9th International Conference on Software Engineering,
ICSE’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

10 Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

4 Group Discussions

4.1 Critical Engineering and Software Tools
Roly Perera (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Roly Perera

The title of this session was inspired by the Critical Engineering Manifesto,
http://criticalengineering.org.

Codifying Practices in Tools

In human crafts, tools and practices co-evolve. Tools come to assimilate and embody the
practices they support; software engineering is no exception. Test-driven development (TDD),
for example, evolved as a methodology alongside the development of unit-testing tools which
support TDD. When considering tooling for live coding, it may be useful to look at other
programming domains where time plays a central role, such as animation. We may also
look to traditional software engineering for ideas or jargon – such as a spike, a functionally
“narrow but deep” prototype of a system. Moreover different performance scenarios (say
teaching vs. public performance) may imply quite different tool requirements.

Since effective tools co-emerge with patterns of usage, programmers need to be able to
“code without fear”, unhindered by worries about the consequences of exploratory actions. In
current environments, many user actions are transient rather than persistent (i.e. leave no
record of what was done), and this and other uncertainties may be a source of anxiety which
undermines exploration.

Programming environments for live coding need to be open-ended and extensible, like
Smalltalk’s read-eval-print loop (REPL). Open-endedness means the environment places as
few constraints as possible on how it is used. Extensible means that code snippets and other
reusable fragments of code – perhaps a library of synthesisers – can be made easily accessible
from the programming environment. Such small, composable micro-features may also be a
useful granularity for teaching and sharing.

Both performative live coding and other forms of live programming emphasise the
importance of short feedback cycles. Anecdotally, any programmer knows that it is often
hard to see how something works by just staring at code. But there is a tension here: if
short feedback cycles alleviate cognitive load, then necessarily they also reduce the need
for skills that manage that cognitive load. And we should not presume that these skills are
unimportant to the creative process.

Researchers interested in tools and practices need small, focused research problems –
drosophilae for live programming research. The form that these easily digestible problems
might actually take remains unclear. A programme for live coding research may challenge

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://criticalengineering.org

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 139

foundational assumptions about programming languages: whether languages are visual or
textual, or even whether tools and languages can be cleanly separated.

New Models of Collaboration

New collaborative tools have the potential to bring live coding to a wider audience, develop
communities of live coders, and make the whole endeavour more mainstream, through
exposure.

Live coding systems can be less opaque and more communicative than traditional sequen-
cing software like Cubase – more authentic, in the sense of conveying what is actually going
on. This is due to the plurality of roles for source code in live coding. Primarily it is used by
the performer to construct the performance, but importantly it is also often a key part of the
performance. Observing how the code changes and its relationship to the music can elicit an
aesthetic response just as can the auditory component of the music. Moreover it can help
the audience appreciate simply that it is possible to create such a performance live, which
they may not have previously considered. Finally, the code may also be a (partial) record of
the performance, useful for teaching or other communicative activities after the performance.
Thus as with normal programming, the comprehensibility of the code is important, although
typically less so for the live audience, where comprehending everything which is going on
may not be practical or even desirable.

The performative emphasis of live coding may be able to inform more traditional software
engineering. For example music is often learned by observing virtuosity, as in a music
masterclass, but this has only recently begun to happen with traditional programming.
Online videos in which an expert programmer works through a problem are now common.
Indeed performative videos are fast becoming a primary medium for disseminating both
practical and theoretical knowledge: see for example the recreational maths videos of Vi Hart
of the Khan Academy. Given this potential, recorded coding performances should perhaps
be considered a first-class output – part of the “codebase”, even.

The internet is transforming not only knowledge dissemination, but collaborative activities
in general. New collaborative systems tend to be flatter, decentralised (peer-to-peer) and
distributed, rather than hierarchical, centralised and local. GitHub, Wikipedia, and Sta-
ckExchange are just three paradigmatic examples of the “new school”. As new collaborative
practices emerge, we should expect these to be supported and codified by new tools. The new
structures of course also have shortcomings, just as more traditional collaborative regimes,
such as orchestras, have their own unique strengths. Not only that, new structures that start
out simple or democratic often become baroque or draconian, as some argue has happened
to Wikipedia.

Although the internet democratises along some dimensions, it has the potential to alienate
along others, such as gender and computational literacy. American scholar Henry Jenkins has
written about the importance of new media literacy to life in a participatory culture. Because
of the pace of change, age can be a powerful source of disenfranchisement. Conversely, young
people often achieve a very high level of fluency with computer technology, as exemplified by
the thirteen million Minecraft users worldwide.

Hero Culture in Programming

Even outside performing arts, communities have their celebrity “performers”. In software
development, these are usually influential industry practitioners and commentators. Often
their role is to simplify a message; such figures were instrumental in the adoption of object-

13382

140 13382 – Collaboration and learning through live coding

oriented programming and agile methods. In programming language research, and the
academic community in general, gurus of this kind may be less important.

Another role for a luminary is to act as a “benevolent dictator” on a project, avoiding
the pitfalls of design-by-committee. (Fred Brooks, in The Mythical Man Month, compared a
development team to a surgical team, lead by a Chief Surgeon, although his analogy seems
quaint by the standards of modern lightweight methods.)

Every field also needs its visionaries. Recently Bret Victor set out a compelling vision of
programming, showcased not through working implementations but via a series of carefully
crafted demos. In an influential essay “Learnable Programming”, he explicitly distanced
himself from a simplistic construal of live coding as the live updating of the output of a
program, emphasising instead the importance of being able to “see” all of the computation,
and arguing that programming today is like painting with a blindfold on.

As with any performance, a live coding audience focuses their attention on the performer
or ensemble. An algorave places the programmer–musician centre stage, as a traditional club
night does a DJ. This focus on the virtuoso is potentially in tension with the collaborative
and participatory potential of live coding. While some live coders feel that a performance
should – in principle at any rate – be reproducible by a member of the audience, others are
happy with a clearer distinction between virtuoso performer and audience member.

4.2 Algorithmic Complementarity, or the Impossibility of “Live” Coding
Julian Rohrhuber (Robert Schumann Hochschule für Musik – Düsseldorf, DE)

License Creative Commons BY 3.0 Unported license
© Julian Rohrhuber

Origin and Motivation of the Concept

Live coding tries to closely superpose a contradictory pair of entities, both of which are
implied in usual understanding of the term the term program: a structural description for
something to happen in the future and the temporal unfolding of its consequences. By
opening up the conventional black boxes in computer use, live programming apparently sets
out with the promise to finally allow immediate and complete access or control. I have
proposed the term Algorithmic complementarity1 to explicitly name an easily overlooked but
fundamental impossibility of making this superposition complete.

The concept of complementarity is derived in analogy to complementarity as it has been
used in the philosophy of physics and psychology [1, 2, 3] where it refers to a number of
phenomena (like subatomic particles or bistable figures) that have in common that their
complete description requires two points of view which cannot be fully reconciled. I think the
disadvantages of borrowing such a fairly loaded term from a different domain is outweighed
by its potential to shine a different light on live programming. It also may point toward
the theoretical relevance of this practise in a more general consideration of art and science,
which is something that has always been an inspiration for me. [4, 5, 6]

For live coding, I propose that the fundamental impossibility of complete and transparent
access to a programmed process is a positive constraint rather than a hindering obstacle.

1 It was introduced last year at the International Symposium on History and Philosophy of Programming:
Algorithmic complementarity. Some thoughts on experimental programming and the history of live
coding. Cf. http://www.computing-conference.ugent.be/file/12.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.computing-conference.ugent.be/file/12

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 141

Live coding demonstrates this impossibility in general, and finds local solutions to it, which
results in the necessarily variety of existing systems.

Recounting the Dagstuhl Session on Algorithmic Complementarity

At the Dagstuhl seminar, we had one session on algorithmic complementarity, where we tried
to better understand the core of the problem (and the conditions under which it ceases to be
a problem). In the following, I’ll try to recount these steps.

1. Let’s assume a very simple algorithm that is formulated as a function of time, like
y = sin(t), and that y has non-trivial consequences, like controlling a second, more
interesting process.

2. At a certain point in time t1, the programmer realises that the outcome of this function
should be different, e.g. that it should actually have double frequency.

3. She changes the code, e.g. to y = sin(2t).

A live coding system tries to correlate such changes in the description with changes in
the running process, treating the code as its most accurate representation. So what should
be the appropriate semantics of such a change? This depends on an interpretation of the
formalism. There are a number of possibilities, which fall in two classes: state picture and
causal picture.

The state picture interprets the change as a change that happens to the state in which
the running system is at that very moment (t1). By consequence, it will either start the
process y = sin(2t), setting t1 = 0, or it may instead interpret the change as a parameter
change of an assumed implicit parameter a, like in y = sin(at). Thus, the state picture
takes the observable reasons into account which motivate a given change. The new code
doesn’t describe the system from its beginning, though: the causal relation between the
process and the program text is fragmented.
The causal picture is interested instead in maintaining the consistency of the description
at all times. By consequence, it will retroactively interpret the whole past in terms of the
change at t1. This means that one could restart the program from the beginning and at t1
one would get the same result. The resulting state of the system, however, may not at all
be related to the observation that led to the change in the first place – y may end up to
be a very different value, and given that it is connected to some non trivial process, this
may make the whole intervention meaningless. Maintaining the causal picture fragments
the state picture.

In analogy with the corresponding phenomena in physics, it is argued that the two
pictures cannot be reconciled in a single one.

4.2.1 Preliminary Conclusions

In such a way one can conclude (at least this is the hypothesis) that there is an incommensu-
rability of two complementary interpretations of rewriting a part of a running program. As
Roly Perera emphasized that when one unfolds all consequences of such a change and keeps
all textual changes represented as changes,2 a different set of problems appears: program and

2 e.g. in a function like:
y =

{
sin(t) if t < t1

sin(2t) otherwise

13382

142 13382 – Collaboration and learning through live coding

result now are both fragmented. The resulting unfolding becomes an interesting navigational
process, which in itself might not be representable on the same level.

Live coding is a non trivial activity anyhow, as in many cases (like sound synthesis),
the relation between code and result is necessarily nonobvious – the resulting surprises or
frictions with intuition or convention are a large part of its benefit (equally for learning,
art, and science). So in a way, algorithmic complementarity is but one aspect of a much
broader issue. It seems though as if algorithmic complementarity, if it really exists, is a fairly
fundamental obstacle – an empty center perhaps, that prevents live coding from becoming a
merely “technical” problem.

References
1 Atmanspacher, Harald, Thomas Filk, and Hartmann Römer. Complementarity in Bistable

Perception. See [2], pp. 135–150.
2 Atmanspacher, Harald and Hans Primas (Eds.) Recasting Reality. Wolfgang Pauli’s Philo-

sophical Ideas and Contemporary Science. New York, 2009.
3 James, William (1890). The Principles of Psychology. Volume One. New York.
4 Rohrhuber, Julian, Alberto de Campo, and Renate Wieser. Algorithms today – Notes on

Language Design for Just In Time Programming. In Proceedings of International Computer
Music Conference, Barcelona, pp. 455–458. ICMC, 2005.

5 Rohrhuber, Julian. Implications of Unfolding. In Seifert, Uwe, Jin Hyun Kim, and Anthony
Moore (Eds.), Paradoxes of Interactivity. Bielefeld, 2008.

6 Rohrhuber, Julian. Das Rechtzeitige. Doppelte Extension und formales Experiment. In
Volmar, Axel (Ed.), Zeitkritische Medienprozesse. Berlin, 2009.

4.3 Tidal: Representing Time with Pure Functions
Alex McLean (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Alex McLean

Despite being the most common noun in the English language, time can be quite difficult
to talk about. Sometimes, the subject of time has been purposefully avoided in computer
science, its discussion seen as a kind of anthropomorphism of pure mathematics, or simply a
matter for optimisation. Over the past ten years, since the development of Live Programming
as pedagogic and exploratory method [2], as live performance practice [1], and with the
recent exploratory work of Bret Victor, the subject of time has been brought back on the
agenda not only in computation but also in the act of programming itself.

A focus of one session was the music representation of Tidal, a Domain Specific Language
(DSL) embedded in the Haskell language. Its representation is built upon the following
principles;

Time is both cyclic and linear

In music we hear both cyclic repetitions and linear progressions, and so an expressive
representation should allow us to work with both conceptions of time, at the same time. In
other words, the representation should enable structure to be described at multiple timescales.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 143

Pattern is both continuous and discrete

Our electronic computers, as fundamentally digital technology, naturally lend themselves
to discrete representations. But we need not stop there; we experience the world, including
music, through mental imagery as well as discrete events, and so our musical representations
should allow for continuous shape as well as discrete sequences.

Live coding representations are not just designed for describing music, but also for
thinking about, improvising with and composing music

It is not enough to be able to encode any piece of music theoretically, the language of
composition needs to be adaptable to a particular style, and extremely quick to work with
and explore.

Representations for composing music should be perceptually salient

That is, the encoding of pattern should be structured in a way that could potentially be
reverse-engineered in Human perception, just by listening to the output. That said, ambiguity
is generally important in Music, being open to multiple possible interpretations by the creative
listener.

In the following we focus on the first two principles, which are served through the following
features of Tidal’s representation of time.

type Time = Rational

Tidal represents time simply as a monotonically increasing, rational number. This time
value represents the current metric cycle3 number, so that a time value of “8/3” would be
the point that is two thirds through the third cycle. This straightforward notion is enough
to allow us to think about and manipulate time either in progressive linear, or repeating
cyclic terms.

Tidal represents both continuous and discrete patterns with the same higher order type
signature:

type Arc = (Time, Time)
type Event a = (Arc, a)
data Pattern a = Pattern {arc :: Arc -> [Event a]}

Simply put, a pattern is a function from time, to events. This allows pattern transfor-
mations to be expressed as combinators, which may operate on time separately from the
contents of each event, or vice versa.

Because Time is a rational number with arbitrary precision, a Pattern cannot be efficiently
represented and queried as a function from a single time value; we would have to sample
a pattern through multiple queries to retrieve all the events, and depending on the rate
of sampling that we choose, may miss some events. Instead, a Pattern is represented as a
function from a time range, for which we use the term Arc, in sympathy with the notion of
time as a cycle. In practice then, a Pattern is a function from a given Arc of time, to a set of
events which occur during that arc. Furthermore, each Event is returned with its own Arc,
representing when the Event begins and ends.

3 In musical terms, a meter is the underlying structure of a rhythm.

13382

144 13382 – Collaboration and learning through live coding

This representation works well for representing long, complex patterns. Firstly, it allows
random access, so that we only need to calculate the particular section of a pattern we are
currently interested in. Secondly, it allows patterns to be manipulated without calculating
the events themselves, using a higher order combinator function.

Furthermore, by virtue of the use of Arc based queries, this representation works for
notionally continuous as well as discrete patterns. For continuously varying patterns, we
simply take the midpoint of the Arc of the query as the value to return.

In Tidal, the Pattern type is an instance of the Applicative functor and Monad classes,
which allows them to be composed in a highly expressive manner, serving the latter two
design principles listed earlier. Visual examples are provided in the paper “The Textural X”
[3].

References
1 Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. Live coding in laptop

performance. Organised Sound, 8(03):321–330, 2003.
2 Christopher M. Hancock. Real-time programming and the big ideas of computational literacy.

PhD thesis, Massachusetts Institute of Technology, 2003.
3 Alex McLean. The textural X. In Proceedings of xCoAx2013: Computation Communication

Aesthetics and X, pages 81–88, 2013.

4.4 Explicit vs. Implicit and External vs. Internal (Representations of)
Time

Julian Rohrhuber (Robert Schumann Hochschule für Musik – Düsseldorf, DE)

License Creative Commons BY 3.0 Unported license
© Julian Rohrhuber

Ignited by Alex McLean’s introduction of his live coding system Tidal, and by the excellent
moderation of Thomas Green, there was a spontaneous session on the question of time:
how is time represented in different systems and is there a fundamental difference in those
representations? On an implementation level, timing can be a complicated issue, not least
because it is equally relevant for layers of computation that concern the micro and the macro
scale, which each may have very different constraints in terms of efficiency and expressivity.

Implementation itself wasn’t so much the topic of the discussion, however. What was
more central was the way the variable time becomes part of the representation of the relation
between a script and a process. It became apparent that:

1. some systems do not make explicit reference to a “state of time”, some make use of it
excessively, even treating time as a first class object,

2. some systems locate the changing time state outside (usually a single value), some locate
it inside (often multiplying the time references).

As the central domain of live coding are temporal phenomena and programs that unfold
over time, this pair of differences, explicit time vs. implicit time and external time vs. internal
time has a lot of ramifications in the trade offs between expressive power and expressive clarity.
It is no wonder therefore, that the ontologies and computational aspects of time have been
focus of numerous publications in the live coding community. Specific solutions were discussed
at the seminar, such as cyclic time (which in a sense is an intermediary between changing
time and static time), temporal recursion, knitting with time, and multiparadigmatic systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 145

Also we exchanged knowledge about different ways of specifying sequences of events, in
particular considering the difference between polymetric and polyrhythmic interpretations of
a time step.

4.5 Stress and Cognitive Load
Alex McLean (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Alex McLean

It goes almost without saying that live coding music in front of an audience can be stressful.
Now that live coding is popular in conference presentations, as well as in educational settings,
this issue of stress has wider significance. We formed a large breakout group to explore this
issue from a number of perspectives.

Firstly, we noted that cognitive load is not necessarily to be avoided. When participating
in music and other creative tasks, we enter a state of ‘flow’ [2]; deep engagement which requires
a happy medium somewhere between frustratingly difficult on one side, and distractingly
boring on the other. In other words, to support exploration and curiosity, we want some
cognitive load, but not so much that things become too stressful to concentrate.

The Cognitive Dimensions of Notations framework [1] is well established in the Psychology
of Programming field, and in our discussion we made good use of its terms in talking about
the design trade-offs involved in cognitive load. The dimension of hard mental operations
is one; live coding environments should be designed so that mental processing is targeted
on the semantic rather than notational level. This relates to closeness of mapping; if the
notation corresponds closely to the problem world, i.e. supports Domain Specific Language
(DSL), then we are more able to engage the ‘right kind’ of cognitive load, and become more
absorbed in programming as a live experience. Lack of hidden dependencies, low notational
viscosity and of course facilities for progressive evaluation are other highly relevant design
aims which can be articulated using the cognitive dimensions.

In conventional programming situations, the comprehensibility of a program is of great
importance, but in live coding performances the requirements are different: we established
that, in the opinion of most of the live coders present, the audience’s ability to comprehend
the code as it was displayed was not paramount. Thus some of the aspects highlighted by
the cognitive dimensions framework had a lesser role than in conventional programming.
Nevertheless, the various languages used by live coders differ in many important ways,
and the interfaces used to represent and interact with the code are similarly very varied.
These large differences between probably have significant impact on how the code evolves
in performance and on audience reception. For those interested in notational design per
se detailed comparisons would be fascinating, but for most members of the live coding
community, it seemed that there was more interest in what could be achieved with a
particular tool than in abstract comparisons between tools.

We discussed behavioural differences of programmers when coding under the stress of tight
time constraints. For example, whereas copy-and-paste is normally seen as bad programming
practice, when a programmer only has a matter of seconds to effect a change, then it becomes
a more attractive technique. This is especially true in live coding tasks such as improvised
music; maintainability is hardly a factor if the code is discarded at the end of a performance.

There is some relationship between cognitive load, and ease of learning. The popularly

13382

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

146 13382 – Collaboration and learning through live coding

known “learning curve” of programming is related to the creative path of flow, and to be
widely accessible, live coding environments need to support a good path for learners, including
by supporting collaborative practices which provide social scaffolds for learning. Indeed,
the possibility of learning during performance was raised; creating new functions during
preparation, and exploring the possibilities of these functions in front of an audience.

A particularly interesting issue is that understanding your own code is not the same thing
as being able to change it. In live coding of music, being able to quickly make a change, and
then quickly adjust it in response to the musical result, requires knowing where you can make
a change, and what kind of change you can make, but does not require fully understanding
everything else about the code. One possible design response that arose is to make it easier
to locate the section of code that is producing a particular aspect of the the sounds and
patterns you can hear. This is to some extent being explored through visual environments
such as SchemeBricks and Texture, but perhaps much more could be done to visualise data
flow and functional transformations within the code environment.

References
1 Blackwell, Alan, and Thomas Green. Notational Systems – the Cognitive Dimensions of No-

tations framework. In HCI Models, Theories, and Frameworks: Toward a Multidisciplinary
Science, ed. J. M. Carroll, 103–134. Morgan Kaufmann.

2 Nash, C. and Blackwell, A.F. Liveness and Flow in Notation Use. In Proceedings of the
International Conference on New Interfaces for Musical Expression (NIME) 2012, pp. 76–
81.

5 Practical Implementation Session

5.1 Setting Up a Shared Temporal Frame
David Ogborn (McMaster University – Hamilton, CA)

License Creative Commons BY 3.0 Unported license
© David Ogborn

In a session on Wednesday afternoon, the live coding performers in the group addressed
the “infrastructural” issue of a common temporal frame shared via standard networking
technologies. There are many systems (ranging from simple ad hoc constructions through
to more elaborate, maintained and independent software projects) for synchronizing beats
and other types of musical data. The infrastructural issue is not a lack of ways of sharing
timing information, but rather an excess of such methods. Each individual, or group, or
in some cases broader community, has one or more synchronization techniques. A lack of
agreed upon protocols around these techniques hampers collaboration, especially when it is
a case of co-performance involving multiple, distinct live coding software environments.

Much of the shared temporal frame session was devoted to exploring and hacking around
the EspGrid software. EspGrid was developed by seminar participant David Ogborn in
the specific context of a large, live coding laptop orchestra that uses multiple languages/-
performance environments (the Cybernetic Orchestra at McMaster University in Hamilton,
Canada). EspGrid responds to the multiplicity of performance environments by producing
and maintaining synchronization elements independently of those performance environments
(it is a separate application, developed in Objective-C and linked against the Cocoa or GNUs-
tep libraries). This separation from the environments in which live coders perform allows

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 147

EspGrid to implement synchronization techniques of arbitrary complexity while shielding live
coding performers from that complexity. It also allows different synchronization techniques to
be tested and compared efficiently, as the specific synchronization technique can be changed
independently of the code actions carried out by an individual performer.

While a common and relatively language-neutral software utility like EspGrid addresses
some of the challenges of synchronization, it does not in and of itself abstract away the
diversity of representations of time and metre. This was directly evident in the hacking
that ensued during this session: the live coding performers, working very quickly, attempted
to connect their habitual and preferred “internal” representations of time and metre to
the public interface presented by EspGrid, with varying degrees of success. While the live
coding performers performed this work of adaptation, the other seminar participants collected
observations about the nature of the process unfolding before them.

Following the Dagstuhl seminar and informed by its results, a group of seminar participants
have continued to work on the definition and dissemination of a common protocol for shared
clocks and metres. Both the discussion at Dagstuhl and its later continuation have informed
recent updates of the EspGrid software.

6 Live Coding: Some History and Implementations

6.1 Personal Accounts on the History of Live Coding
Renate Wieser (University of Paderborn, DE), Julian Rohrhuber (Robert Schumann Hoch-
schule für Musik – Düsseldorf, DE)

License Creative Commons BY 3.0 Unported license
© Renate Wieser and Julian Rohrhuber

In the following, we briefly sketch a few historical aspects of live coding, bearing in mind
that such a description (besides being too short anyway) cannot be satisfactory – after all,
as it is said, “the contemporary witness is the natural enemy of the historian”[2] How and
when was live coding discovered? If this question that can be answered at all, it is from a
personal perspective. Once recognised, however, live coding turns out to have never been
entirely absent.

One marker for the recognition was, together with the first publication,[1] the first meeting
changing grammars, organised at the University of Fine Arts of Hamburg (HfbK) in winter
2004. In a sense, this institution was a fairly natural environment for live coding: computers
had already been an integral part of art education for a long time, with Kurd Alsleben as one
of the protagonists of early computer art. Various cooperations with the computer science
department of Hamburg University existed, as well as a number of computer labs with an
emphasis on experimenting, network art and free software.

Certainly, this conference was a decisive moment for the form live coding has today.
Firstly, it showed that the idea of rewriting programs at runtime wasn’t relevant only to
a few individuals, but was a problem with many facets and faces and could lead to many
different approaches. This variety has increased ever since and was an important topic at
the Dagstuhl seminar. Secondly, it brought together two important understandings of the
word “live”, which remain central today:

1. programming as public thought
2. reprogramming a program at runtime.

13382

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

148 13382 – Collaboration and learning through live coding

By delocating programming to unusual places like night clubs[3] and by deliberately
entering the paradoxes of using programs to interact with programs, at that time, both
aspects had been realised in a rough, radical, and experimental way. What “public” means
could have been anything from a large concert to an informal conversation or even an abstract
concept.

The further development of live coding in many ways went beyond any expectations at
that time. Then already, however, we can recognise a tendency toward the unobvious, weak,
hard to convey, which, together with exposing this practice to a partly uninformed public,
includes a certain inclination to joke, failure and slapstick. Live coding could have been
oriented more toward virtuoso culture, but it seems that the more conceptualist orientation
has (gladly) remained till today. Also situating the live programming practice at disciplinary
interstices, in particular between art, theory, science and education, was so common that it
was hardly talked about – it wasn’t an explicitly transdisciplinary endeavour. The domain
of sound, in its non-visual and irreducibly temporal character, was an important condition
for this development.The founding of TOPLAP (one surprisingly non-temporary outcome
of this meeting) led the way to a broader community and a consciously open definition
of the practice and its terminology (including live coding, live programming, just in time
programming, conversational programming, interactive programming).

Even if already recognised initially, in the subsequent years, at least two aspects of live
coding came to the surface: firstly, the fact that many ideas had been already existing in
computer science, but had been occluded by an over-emphasis of the computer as a tool
simulation. After the peak of interactive programming in the late 1970s it was almost
completely forgotten (while sometimes implicitly practiced) in mainstream computer science.
When Adrian Kuhn at Dagstuhl reported from his recent live programming workshop that
the participants were either quite young or relatively old, this may point toward the fact
that the realisation of the relevance of live programming is indeed a retrospective one.

Secondly, it became rather obvious that the recognition and formulation of the central
ideas – programming as public thought and programming as rewriting of running programs
– would necessitate and give rise to a multiplicity of different approaches, languages and
disciplinary contexts.

References
1 Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. Live Coding in Laptop

Performance. Organized Sound, (8):321–330, 2003.
2 Wolfgang Kraushaar. Der Zeitzeuge als Feind des Historikers? Neuerscheinungen zur 68er-

Bewegung. Mittelweg 36, (8):49–72, 1999.
3 Alex McLean. Hacking perl in nightclubs.

6.2 Extempore
Andrew Sorensen (Queensland University of Technology – Brisbane, AU)

License Creative Commons BY 3.0 Unported license
© Andrew Sorensen

What makes Extempore reasonably unique in the current computer music landscape, is that
Extempore is efficient enough, and general enough, to make its own audio-stack implementa-
tion available for on-the-fly code modification at runtime. The complete audio stack, right

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 149

down to the audio device driver callback, is written in Extempore and can be extended,
modified, or completely swapped out, on-the-fly at runtime.

Extempore is a general purpose programming environment that hosts two programming
languages, Scheme, and XTLang, and a standard library whose growing scope includes, 2D
and 3D graphics, audio signal processing, mathematics, I/O and networking, concurrency,
high performance computing, abstract data types, etc.

Extempore’s Scheme interpreter is a derivation of the TinyScheme interpreter modified
for real-time use. Extempore’s Scheme interpreter was lifted, in whole, from the Impromptu
programming environment, and in this sense is somewhat of a legacy component in the
Extempore ecosystem. XTLang is a new, general purpose, high performance programming
language designed for both the ‘low-level’ programming tasks often associated with ‘systems’
languages like C and C++, as well as the higher level programming often associated with
‘scripting’ languages. In many respects Extempore derives directly from C, supporting low
level type expressivity, first class pointer semantics, manual memory management and a static
type system. However, Extempore also borrows heavily from functional languages like ML,
supporting first class closures, tail recursion, parametric polymorphism (aka reified generics)
and type inferencing. Most importantly XTLang supports the same level of on-the-fly code
compilation and runtime substitution commonly expected of so called ‘scripting’ languages.
XTLang uses a homoiconic s-expression syntax similar to Scheme, and supports Common
Lisp style macros.

Extempore’s two languages are tightly integrated and share two of the environment’s
most important architectural features – a real-time scheduler for precise control over code
start and execution times, as well as a flexible distributed concurrency semantics. These
two qualities combine to provide the programmer with imperative control in both time and
space. Providing imperative control over wall-clock-time and distribution-in-space makes
Extempore well suited for tasks whose domain is the physical environment, with all of the
causal consequences that this entails. Extempore’s mantra is “real-time in real-time”.

As a live coding language, Extempore supports the high-level expressivity favored by many
live coding environments, but also provides the low-level expressivity and high-performance
required to code down-to-the-metal.

6.3 Fluxus
Dave Griffiths (FoAM – Kernow, GB)

License Creative Commons BY 3.0 Unported license
© Dave Griffiths

Fluxus is a game engine designed for rapid prototyping and live coding of audio/visual 3D
worlds. It’s been used for live coding performance, immersive interactive games, architectural
visualisations and teaching of music and programming concepts from children in the Brazilian
rainforest to teenagers in Barrow in Furness in the UK.

Being built from the Racket language, a dialect of Scheme, Fluxus is an application of
programming language research being carried out by the extensive academic community
around that project.

Fluxus is also used as a foundation to support the research of new visual programming
concepts for live coding performance. Betablocker is an interpreter for live coding assembler
in graphical form with a game pad – prototyped in Fluxus and later developed as a Gameboy

13382

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

150 13382 – Collaboration and learning through live coding

DS game. Daisy Chain is a self modifying petri-net live coding language where the performer
creates colourful dynamic graphs to sequence musical patterns. Scheme bricks is an interface
for programming Scheme graphically, with close integration with audio for performer and
audience feedback tightly connecting a bespoke code description and it’s sonic results.

In recent years Fluxus has moved into browsers, mobile and games console technology,
providing a diversification of live coding into new areas such as citizen science games and
re-programmable tools for researchers working in remote locations.

6.4 ixi lang
Thor Magnusson (University of Sussex – Brighton, GB)

License Creative Commons BY 3.0 Unported license
© Thor Magnusson

ixi lang is a live coding programming language whose interpreter is built in SuperCollider, thus
giving access to the underlying power of that environment. However, unlike SuperCollider,
the aim with the language is to create expressive constraints. Inspired by operator overloading
in C++, the live coding systems of Alex McLean, and esoteric languages such as Whitespace
and Brainfuck (see http://www.esolangs.org), ixi lang was designed as a high-level system
affording certain types of musical patterns, but excluding others. As such, the system
itself becomes a compositional form. Here, constraints inherent in the language are seen as
providing freedom from complexity, yet defining a large enough search space for musicians
other than the author to explore and express themselves. The language is very simple and
intuitive for audience members. Code can be written that changes other code (and updates
the code in the same document), which allows for complex structures and changes over time
that are not directly called by the performers.

ixi lang affords a specific set of musical activities. It provides a scaffold for externalising
musical thinking and, through its simplicity, attempts to ease the live coder’s cognitive load.
As a live-coding system, it goes further than most common live-coding environments in
providing a simple, high-level platform for musical expression. As the system is written in
SuperCollider, regular SuperCollider code can be written in the same document, allowing
the user to tap into the extensive scope of SuperCollider itself. Learning the affordances of
ixi lang as presented in its language constructs might take less than an hour, but getting an
overview of the system’s constraints can take many long sessions of practice.

6.5 SuperCollider and the Just In Time Programming Library
Julian Rohrhuber (Robert Schumann Hochschule für Musik – Düsseldorf, DE)

License Creative Commons BY 3.0 Unported license
© Julian Rohrhuber

A significant technological threshold in sound programming was the moment when sound
could be calculated faster than real time: while before the late 1990s, programs resembled
factories that would produce sound files, suddenly, a programmer could construct a program
that became something like a conversation partner in a musical situation. In such a way,
both graphical and physical interfaces became central orientation points in programming.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.esolangs.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 151

This significance of this type of interactivity has also structured how the relation between
the variable (parameters) and the static (the program) has been conceived of. Today,
programming still defines itself mostly as a preparational task in which this relation between
change and its boundary conditions is specified.

The programming language SuperCollider [1, 2] was an interesting intervention at this
point – its granularity of description of acoustic processes was tuned in such a way that
the separation between parameter and program became increasingly porous. Code became
concise enough to resemble gestures, poems, or interfaces, so that it became thinkable that
the separation between programming activity and music making might have merely been a
conventional one that had been kept in place by the existing practice of setting up graphical
user interfaces.

JITLib,[3] which has later become integral part of SuperCollider, set out to remove the
remaining stumbling blocks which had so far hindered this idea to become an actual practice.
While live coding already at that time was fairly easy to implement in a purely imperative
world (where state simply is changed), in a mixed world between pure functions and objects,
there were a number of problems to solve. The different parts of the library have the purpose
to make it possible to experiment with the non-trivial relation between changes in the code
to respective changes in sound.[4]

This experimentation has thus been made an integral part of various types of contexts
of sound programming: learning, composition, performance, research, exploration. One of
the outcomes of integrating the programming process into these activities is a very general
insight: because programs are plans, or propositions for the future, changing such a plan in
its unfolding cannot be immediate and transparent at the same time. From the beginning,
Just-in-time-programming has therefore been a tongue in cheek cover term for the truth: a
pro–gram is always too late.[5]

References
1 McCartney, James (1996). SuperCollider: a new real time synthesis language. In ICMC

Proceedings.
2 McCartney, James (2002). Rethinking the computer music language: SuperCollider. Com-

puter Music Journal (26), 61–68.
3 Rohrhuber, Julian and Alberto de Campo (2011). Just in time programming. In Col-

lins, Nick, Scott Wilson, and David Cottle (Eds.), The SuperCollider Book. Cambridge,
Massachusetts.

4 Rohrhuber, Julian and Alberto de Campo (2009). Improvising Formalisation: Conversatio-
nal Programming and Live Coding. In Assayag, Gérard and Andrew Gerzso (Eds.), New
Computational Paradigms for Computer Music.

5 Rohrhuber, Julian, Alberto de Campo, and Renate Wieser (2005). Algorithms today –
Notes on Language Design for Just In Time Programming. In Proceedings of International
Computer Music Conference, Barcelona, pp. 455–458. ICMC.

13382

152 13382 – Collaboration and learning through live coding

6.6 Overtone
Samuel Aaron (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Samuel Aaron

Overtone is an open source toolkit designed to facilitate the exploration of new musical
ideas such as audio synthesis and sampling, instrument design, composition, live-coding
and collaborative jamming [2]. It combines the SuperCollider audio synthesis engine, with
Clojure, a JVM language with a specific emphasis on concurrency, immutability and functional
programming.

Overtone supports multiple simultaneous users and provides first level language constructs
to support the safe coordination of concurrent modifications in performance time. This
allows new functionality to be hot-swapped over old. Overtone’s support for lazy sequences
enables infinite streams of events to succinctly model compositional structures such as chord
progressions and recursive melodies. First class support for immutable data structures, as
well as lock-free concurrency constructs, allow concurrent processing of incoming musical
events, including storage and query, without having to block any running musical processes
[1]. Finally, being hosted on the JVM provides Overtone with wrapper free access to a wealth
of previously written Java libraries for interaction with external systems.

References
1 Samuel Aaron and Jenny Judge New Possibilities For Social Digital Music-Making Ari-

sing From The Storage Of History Proceedings Of The International Computer Music
Conference, pages 228–235, 2012.

2 Samuel Aaron, A F Blackwell, Richard Hoadley and Tim Regan A principled approach to
developing new languages for live coding International Conference on New Interfaces for
Musical Expression, pages 381–386, 2011.

6.7 Republic: Collaborative Live Coding 2003–2013
Alberto de Campo (Universität der Künste – Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Alberto de Campo

Republic is an extension library for the SuperCollider language designed to allow highly
collaborative forms of live coding. In a symmetrical network of participants, everyone can
write and evaluate scripts which generate musical processes that can distribute sounds across
all machines.

The library tries to minimize the difference between local and delocated events, i.e.
between sound played on one’s own computer and sound played on any other. Besides code
and sound, a third layer of communication is chatting and shouting (i.e. hard-to-miss chat
messages), which may serve to discuss the evolving performance, to make suggestions for
next directions to take, send previously agreed-on cues, or sometimes try to distract each
other.

Republic has been developed for the musical practice of the ensemble powerbooks_unplugged
(since 2003), which evolved from a series of workshops called Warteraum (“waiting room”)
which attempted to collide the concepts of granular synthesis and music in symmetrical
networks [1]. It has since been used in academic teaching in several ways: the ensemble
Republic111 at the Berlin University of the Arts has been performing based on the Republic

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 153

infrastructure since 2009, and the authors have given numerous workshops in many different
contexts.

Over time, performance practice with Republic has tended towards more use of just-
in-time programming as implemented in JITLib [2]: going from layers of independent,
free-running shortish processes to fewer running processes and precise interventions into
them allow more detailed shaping of the collaborative performance flow. Furthermore, the
atomicity of JITLib-style programming has made reuse and adaptation of code lines by other
participants easier, more likely to work immediately, and thus more rewarding and enjoyable.
This can also lead to considerable uncertainties about causal relations of the concurrent
audible processes (who of the delocalised players is responsible for which delocalised stream
of sounds?), and about how to attribute authorship of the diverging versions of the scripts
being written into and taken from the performance history [3].

It has turned out to be a useful introduction to programming for a wide range of
artists: students of media arts, sound engineering, fine arts, music, and other fields often
are encouraged to studying programming as an artistic practice they may want to integrate
into their working repertoire, but very often show some reluctance, and at times even fear of
coding. Reading very short programs that create a structure in time, hearing that structure
unfold, and hearing how one’s own changes to the code cause corresponding changes in the
unfolding musical structure is a very immediate experience of the potential of programming.

By extension, such experiences allow deeper understanding of the role of programming
in determining the behaviours of the countless devices and services that pervade today’s
technological societies. In fact, such experiences can illuminate the value of programming as
a cultural technique that is both too important and too interesting to leave it to those only
interested in the engineering side of the practice.

References
1 Julian Rohrhuber and Alberto de Campo. Waiting and Uncertainty in Computer Music

Networks. In Proceedings of the ICMC 2004, Miami, 2004.
2 Julian Rohrhuber and Alberto de Campo. Just in time programming. In Nick Collins,

Scott Wilson, and David Cottle, editors, The SuperCollider Book. MIT Press, Cambridge,
Massachusetts, 2011.

3 Julian Rohrhuber, Alberto de Campo, Renate Wieser, Jan-Kees van Kampen, Echo Ho,
and Hannes Hölzl. Purloined letters and distributed persons. In Music in the Global Village
Conference, Budapest, December 2007.

6.8 Sonic Pi
Samuel Aaron (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Samuel Aaron

Sonic Pi is a simple Raspberry Pi based environment designed to introduce basic computer
science concepts through the creation of sounds. This approach aims to extend the creative
opportunities for young Raspberry Pi users, engaging them through a direct emphasis on
ownership and self agency within a programming context. Sonic Pi draws from many of
the ideas within Overtone, presenting a text interface for manipulating the SuperCollider
audio synthesis engine [1]. The text interface is implemented as a Domain Specific Language
embedded within Ruby. Students interact with the language through a simplified text editor

13382

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

154 13382 – Collaboration and learning through live coding

that provides two basic controls: play and stop. Upon pressing the play button, the text is
evaluated and sound is created. The stop button halts any currently executing process. This
simple interaction cycle provides an extremely low barrier to entry for beginners, with their
first program being as simple as typing play 60 , then pressing the play button.

Sonic Pi has been developed through close collaboration with UK school teachers. It is
accompanied by a scheme of work targeted towards introductory Computer Science within
the newly created curriculum. Sonic Pi has also been used to explore the creative potential
of technology within the arts sector. A project with artists, Defining Pi, explored the
collaborative extension of the linguistic capabilities of Sonic Pi to directly support new
art works. Current work focuses upon adding more liveness to the system, to enable the
Raspberry Pi to be treated as a musical instrument, and in doing so bridge the computer
science and music curricula.

References
1 Samuel Aaron and Alan F Blackwell From Sonic Pi to Overtone: Creative Musical Expe-

riences with Domain-Specific and Functional Languages. FARM 2013, ACM

7 Personal Reflections

7.1 Clickety-Click: Live Coding and Software Engineering
Robert Biddle (Carleton University, CA)

License Creative Commons BY 3.0 Unported license
© Robert Biddle

The seminar was an eye-opening experience for me, not in the sense of discovery, but rather
of re-discovery, or perhaps more correctly of recognizing the importance of something so
commonplace. At the workshop we considered various foci involving Live Coding: music
performance, the humanities, computing education, and software engineering. I loved the
music performances, and was inspired by the humanities perspectives, and the computing
education expositions roused my missionary zeal. But I will not comment further on these. I
am going to concentrate on the discussions on software engineering, as I saw them unfold at
the workshop.

Agility and Collaboration

By using the term “software engineering”, we did not adopt any strong scoping: not any
professional or political positioning. Instead we simply meant computer programming for
some purpose. This activity is no longer new, and a few of us have seen it develop over half
a century. And it’s hardly a niche activity, and indeed it is now the main work for millions
of people, the foundation of giant organizations, and supports the infrastructure of much of
the industrial world. But there is still uncertainty about how well we understand the nature
of programming as an activity. When we must articulate that nature, we are still quickly
drawn to exemplars: engineering, manufacturing, science, craft, and so on.

When the buzz about “agile” software engineering began, what was impressive was
how it reflected actual experience. When Kent Beck first talked publicly about Extreme
Programming in 1997, it felt refreshing to hear someone talk out loud about programmer
experience, rather than invoking a model of what should work, based on some other activity.
In truth, however, there has been such reflection throughout the history of programming,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 155

and there is so much commentary on the activity of programming that it is hard to keep
track. The material of programming allows many potential structures, and it seems the same
is true for the activity. Moreover, in all the ecosystems involved, from technology to business,
novelty itself appears to have value, even if only for the disruption it causes.

To begin our discussions on live coding and software engineering, we had a brief pre-
sentation on software processes, with a particular focus on collaboration and agile software
engineering; the presentation is summarized elsewhere in this report (§3.3). The emphasis
was on ideas in agile development that facilitate collaboration, such as pair programming,
having the customer onsite, rapid cycles of development and acceptance, and willingness to
change. Indeed, the subtitle of Beck’s book [2] was “Embrace Change”. In explaining how the
collaboration between customers and programmers might work, one ideal often suggested was
if the customer and programmer sat together, the customer could make suggestions and the
programmer could implement them immediately for review and exploration. The customer
might say “how about . . . ”, and the programmer would change the program: “clickety-click”.
This term, clickety-click, came to represent, in our discussions, the special character of
software engineering exhibited in live coding.

The Blank Page

Hemingway called the blank page the “white bull”. It stares at you, defiant, daring you to
attempt writing. In live coding we reflected on how performers typically began with a blank
screen. No program was running, and indeed no program existed. We made connections to
doing this when teaching, or when demonstrating some programming to colleagues. The
intent is to make the context clear and simple, to make it clear that there is no hidden
process at work, that everything of interest will be introduced explicitly, and only that code
explicitly introduced will be responsible for any behaviour observed. The aim therefore seems
to be clarity, but also the establishment of common ground: my computer begins in the same
state as yours. This emphasizes an important point for some performers: anyone can do this
the same way. This supports the pedagogical aspect of live coding, and some performers
articulated that perspective: they want their audience to understand that the process is
visible and reproducible: anyone can make music just like this. As the magician says, there’s
nothing up my sleeve.

We reflected on elements of the magician’s showmanship. It is manifestly impressive to
audiences that music is created from a blank page. On the other hand, we also discussed
the potential for skepticism. After all, a magician makes an effort to demonstrate a lack
of hidden mechanisms. But then from nothing they produce scarves, or doves, or rabbits.
It is not their intent to show that anyone can do this, but rather suggest to mystify, to
demonstrate “magic”. Might an audience feel live coding is making a similar claim? Or might
they regard the feat as a different kind of demonstration, of mastery of the complicated
skills and knowledge involved in programming? This might then resemble other kinds of
music performance, where the audience does not learn how to perform similarly, yet does not
ascribe the feats to magic, but nonetheless is appreciative of the live demonstration of skill
and knowledge.

In considering the effects of the blank screen, we also acknowledged that no screen is ever
really blank. There is much there: the computer itself, the programming environment, code
libraries and frameworks, audio samples, network access, and all kinds of hardware, software,
and content. So if the blank screen beginning demonstrates a beginning from zero, we have
to ask what “zero” means. It can still, at least, mean common ground: an understanding
that anyone else could start from the same place. If the audience is knowledgeable, then that

13382

156 13382 – Collaboration and learning through live coding

would work directly. But even if the audience is not so knowledgeable, then the claim might
still have some impact: knowing that in principle they might be able to do the same. This
kind of rhetorical device can also misdirected, however: the Formula 1 car may be labelled
“Renault”, but it is not the same Renault one can buy, and might have nothing at all in
common, because naming rights can be bought and sold. So the live coding audience may
still be skeptical, and this is worth further thought.

This discussion of skepticism raises some issues about how to present the nature of live
coding. Live coding is about music and computing, art and science, whereas performers of
“magic”, despite their appeal, are practicing deception. It seems important for live coding to
be understood as eschewing deception. It is important for the audience to recognize this,
and also for them to recognize the consequential and essential vulnerability of the live coding
performer.

Small is Beautiful

In a live coding performance, the screen doesn’t stay blank for long. But while the performer
may spend the entire performance typing, the size of the code never grows very large. Indeed,
it often seems to be stay about the size of the screen, meaning in the range of 20 to 50 lines
of code. Sometimes it is longer, but still not very long. Of course, if the screen starts blank,
the amount of code will be limited by the duration of the performance, and if a line of code
takes a minute to imagine, type, and tweak, then an hour long performance only has at most
60 lines. Yet this still impresses, inspires, keeps an audience rapt. The brevity intensifies the
effect, as does beginning from a blank screen, perhaps because the link between cause (the
programming) and effect (the music) seems so clear, so immediate. I must admit, I’ve always
liked small programs that do big things. The first programming language I learned, in 1968,
was APL, known for enabling complex behaviour in a single line (albeit sometimes a long
one). We take more care with the format and understandability of our code nowadays, but
brevity still has appeal. Live coding reminds us of that appeal, and that power.

Small programs can do big things. Of course small programs can be made hard to
understand – see the work on code obfuscation. But large programs are seldom really easy to
understand. With a good supporting language and environment, small programs seem to have
advantages in ease of creation, comprehension, correctness, adaptability, and manageability.
This doesn’t always match up well with ease at the user interaction level: we discussed those
early Apple Macintosh programs that were so appealingly easy to use, but concealed complex
code in Macintosh Pascal. Will we ever resolve this conflict: can software be simple at both
the user and the developer level?

But in live coding there seems to be an emphasis on keeping the operational elements
more visible. There seems to be an explicit intent to show the workings while demonstrating
their results. We discussed how this was essential when the program or the command line
was the only way to interact with computers. While having a higher barrier to understanding,
this leads to a deeper understanding. We reflected on how it later became commonplace for
computer literacy to become a more superficial kind of literacy. One appeal of live coding,
we thought, was the return to that earlier age. Some people even referred to those who grew
up in the GUI era as “lost generation”, who learned how to use computers without learning
how they worked. We also discussed how, on the other hand, graphical interfaces can also
be used to expose inner workings: Alan Blackwell talked about his Palimpsest language [5],
and Dave Griffiths demonstrated the visual language he uses in his live coding performances
(Scheme Bricks) [8].

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 157

Reduce, Reuse, Recycle

In a live coding performance, the program is not only created live, but it is then changed
over and over again. The program may be small, but it is not static. It seems there are many
kinds of changes that are common. One is accretion, where code is added to create more
complex behaviour. Indeed, even the initial creation from a blank screen might be seen this
way, where the blank screen indicates a running program that simply does nothing; when
more code is added, so the behaviour begins to be visible, or rather audible. Sometimes code
is taken away, simplified, or deleted, and the music becomes less complex. And this is how
some performances end, returning to an empty program and silence. Other performances
ended when a change broke the code – those are also important because they show the
performance risks are real, and familiar!

Sometimes code is created by being copied from one place and pasted in another. In live
coding, the code typically comes from elsewhere in the current program. In real life, code
comes from other local files and sometimes from the wild Internet. (This approach has been
called “Scrapheap Programming”, where search engines help find code to be repurposed,
adapted, and fitted into place [9], but this is not typical a live coding performance.) Other
functionality typically involves simpler textual operations: we type keystrokes and enter
text, can delete and insert, search and replace, and so on. (Of course, there are more refined
approaches to reuse, and indeed the history of programming and programming languages
can be seen as efforts to advance ways of supporting reuse [3].) We make macros or functions
with parameters and call them; we create classes and instantiate them; or objects and clone
them; we create frameworks and populate them. And all these also work with accretion: we
add code, we rename, we split, we merge, we refactor. And we did see some of this in live
coding, albeit on a small scale.

An important thing to notice here is the interplay between the programming language
and the environment. They are not really separate, and how well they fit together is a
significant usability issue. This important relationship between notation and environment is
explored in the Cognitive Dimensions of Notation framework by Green, Petre, and Blackwell,
[6, 7, 4]. In live coding this is all at work: the language, the environment used together. The
small size of the programs raised some interesting questions. With such small size, do we
need such powerful tools? Or are the programs only small because of the power of the tools?
I think I saw evidence for both arguments. At the workshop, Thomas Green also emphasized
the need to support secondary notation, “visual cues which are not part of formal notation”:
interestingly we saw little use of that in live coding.

Reflecting on how the code develops and changes in live coding, we discussed the potential
role of version control systems such as Subversion or Git. As well as helping manage code
in different versions and from different programmers, these tools also make it possible to
try out code ideas with the easy ability to change one’s mind. In this way they provide a
kind of safety net, like an “undo” facility, which in turn encourages exploration. Some of the
performers explained that they did use such systems, and one suggested it feels like it allows
“programming without fear”.

Time and Tide

All programs can change what they do. They do one thing, then another, they select which of
several things to do, and they do things over and over. They change what they do depending
on input, whether static data or live input. With techniques like reflection, they can change
their own code. All of this can happen rapidly.

13382

158 13382 – Collaboration and learning through live coding

In live coding, we see a different kind of change. The programmer changes the code while
the program is running, based on their human perception of time. The changes happen
continually, and always on the human scale of time. It would have been possible for the
programmer to create the program up-front to cause the same behaviour, and indeed that
would more closely resemble conventional programming. In live coding this is not done.
Instead of complex coding done entirely before execution, live coding specifically means
coding during execution. But it means more: the coding is part of the execution. The
programmer is literally part of the machine.

In one of our sessions at Dagstuhl it was suggested that what performers did was tweaking.
It often did seem like that: making small changes to get something just right. Except that
it never stayed just right: or “just right” changed as the performance progressed. It was
exploratory programming, and the direction of the exploration changed as the performance
progressed. The tweaking was the performance. The tweaking, the act of seeking “just
right” and then moving on: that was the experience being intentionally shared between the
performers and the audience.

Live Free or . . .

A live coding performance is compelling, and we discussed the experience as being reawakened
to an almost forgotten sense of what programming can be. Live coding speaks to the
programming soul. For more conventional software engineering, this raises questions about
why this happens and what it suggests for improving the status quo. Our speculative answers
to these questions come from the points above. To begin with the last point, much comes
from the sharing of the experience of exploration.

As with any live performance, there is an anticipation, a tension, a continual awareness
of uncertainty. Some live performances are like tightrope-walking, and the uncertainly is
whether the performance will be successful. More relevant to live-coding is the uncertainty
about what direction the performance will take. And most relevant is where there is a sense
that the performers are communing with each other and with the audience. Having a role in
creation, or co-creation, engenders a heightened awareness of what happens. Espen Aarseth
suggests this is why games form a kind of “ergodic” medium, because one must work for the
results [1].

If the main effect in live coding is the shared experience, it is also important to recognize
that the other characteristics all support this main effect. To react is to change, and to react
fast is to change fast. To support that, therefore, it is important to be able to change software
fast. That means we need the tools, the language and the environment, to make that happen.
The mechanisms involved, copy-paste, calling functions with parameters, refactoring, need to
be at our fingertips. To making the scoping clear, it helps if our code is small, and to make
sure that scoping is evident, there is even an advantage in starting from a blank page.

It is this experience that is possibly the key lesson of live coding for software engineering. In
particular, if agile software engineering is about collaborating and about willingness to change,
then the kind of shared experience shown in live coding is just what is needed. All kinds of
techniques lead in the same direction. In interaction design, low-fidelity prototypes allow us
to try things out and change them fast, in software engineering, test-driven development and
automated testing, also lead to rapid feedback. It’s what made the first spreadsheet software
so compelling, because the automatic and rapid recalculation encourages explorations that
asked “what if?” It reminds me of Shneiderman’s articulation [10] about direct manipulation:
“rapid, incremental, reversible operations whose impact on the object of interest is immediately
visible.” Tanimoto wrote reflectively on this effect and its implications, calling it “liveness”

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 159

[11]. It has taken decades, and it seems both necessary and worthwhile to keep looking at
this.

To work together we need to be able to make changes fast in response to ideas, we need
to be able to experience their effects. How fast? Clickety-click. That fast.

References
1 Espen J Aarseth. Cybertext: perspectives on ergodic literature. JHU Press, 1997.
2 Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Professio-

nal, first edition, 1999.
3 Robert Biddle, Angela Martin, and James Noble. No name: just notes on software reuse.

ACM Sigplan Notices, 38(12):76–96, 2003.
4 Alan F Blackwell. Ten years of cognitive dimensions in visual languages and computing:

Guest editor’s introduction to special issue. Journal of Visual Languages & Computing,
17(4):285–287, 2006.

5 Alan F. Blackwell and Ignatios Charalampidis. Practice-led design and evaluation of a live
visual constraint language. Technical Report UCAM-CL-TR-833, University of Cambridge,
Computer Laboratory, May 2013.

6 Thomas RG Green. Cognitive dimensions of notations. People and computers V, pages
443–460, 1989.

7 T.R.G. Green and M. Petre. Usability analysis of visual programming environments: A
‘cognitive dimensions’ framework. Journal of Visual Languages & Computing, 7(2):131–174,
1996.

8 Alex McLean, Dave Griffiths, Nick Collins, and Geraint Wiggins. Visualisation of Live
Code. In Proceedings of Electronic Visualisation and the Arts London 2010, pages 26–30,
2010.

9 James Noble and Robert Biddle. Notes on postmodern programming. In Proceedings of
the Onward Track at OOPSLA, volume 2, pages 49–71. Citeseer, 2002.

10 Ben Shneiderman. Direct manipulation: A step beyond programming languages. Computer,
16(8):57–69, 1983. cited By (since 1996)359.

11 Steven L Tanimoto. Viva: A visual language for image processing. Journal of Visual
Languages & Computing, 1(2):127–139, 1990.

7.2 Cultural-Epistemological Aspects of Live Coding
Geoff Cox (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Geoff Cox

Many of the introductions on the first day of the workshop suggested similar ideas that I
addressed in my talk: in celebration of messiness in programming (Biddle); in esoteric and
ad hoc language development (Blackwell, Brown, Aaron); and examples like SmallTalk or
Scratch (Green, Griffiths, Kuhn); histories of interactive/conversational programming and
the collaborative dimension (Rohrhuber, Romero); in emphasising real-time or just-in-time
programming (de Campo, Rohrhuber, Sorensen); and the importance of the time dimension
of programming and execution (Magnusson, McLean, Perera); as well as more conceptual
concerns with issues of control and computational thinking, references to defamiliarisation
and new (non-human) aesthetics, and even craft traditions – techne or poeisis (Rohrhuber,
Wieser). Indeed live coding embraces the unexpected, the accident and an “aesthetics of

13382

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

160 13382 – Collaboration and learning through live coding

failure” (perhaps even what some commentators these days refer to as the “post-digital”
condition).

Live programming is the more accepted term in the communities of software engineering
and programming language development. Robert Biddle developed the idea of software
development and language design through a short history of extreme programming and Scrum
methods, and with examples of agile programming, to stress the significance of environments
where the machine and programmers are writeable (e.g. executable scratchpad or xiki, a
wiki with executable code) and the shift back to text-based languages (command line rather
than GUI). It is interesting to note historical comparisons here and possibilities to conceive
of programming as breaking with correctness and allowing for the programmer to reflect on
how they think and feel while programming. The body is more in the frame, and together
with the running program produce an embodied conception of software as a whole.

How do we understand live coding in terms of its genealogy (e.g. TOPLAP), the
development of the field, the community that has emerged? This is not simply a development
method but something more. Does it constitute a field or discourse? Where does it emerge
from in terms of existing disciplines (computer science or music)? What do the analogies to
interactive or conversational programming reveal?

Temporality is also clearly a key concern that live coding is able to highlight: a central issue
in both computing and music-making but perhaps a neglected one at least in computational
cultures. With live coding the source/plan and its execution run at the same time. A focused
discussion ran on the issue of time with reference to the paradox that time is both linear and
cyclical (cf. §4.3). Does procedural logic allow for a different understanding of time, and
perhaps a different understanding of the creative process, where the programmer and program
are running in the very dynamic processes of history (cf. Benjamin’s “Jetztzeit”/nowness)?

This brings me back to my interest to further emphasise the political and epistemological
aspects (someone mentioned Turkle’s “epistemological pluralism”): that live coding produces
new knowledge through artistic and technical experimentation; and open up analogies to
other notation practices more broadly (where scores and execution have resonances in terms
of action and agency). Social context also is important, inasmuch as new formations of
publicness can be perceived – here making reference to the writings of Hannah Arendt and
her understanding of the political. In Two Bits, Chris Kelty argues that the free software
movement is an example of what he calls a “recursive public”, extending Arendt’s definition
of a public through speech and action, to incorporate technical and legal infrastructures.
Publicness is constituted not simply by speaking, writing, arguing, and protesting but also
through modification of the domain or platform through which these practices are enacted.
Live coding seems to fit the description and recombinations of human and non-human (or
more-than human) bodies, and new materialisms.

7.3 Dagstuhl: Live Coding and Memorable Discussions
Dave Griffiths (FoAM – Kernow, GB)

License Creative Commons BY 3.0 Unported license
© Dave Griffiths

Our seminar included people from the fields of Software Engineering, Computer Science
Education as well as plenty of practising live coders and multidisciplinary researchers.

Discussion was wide ranging and intense at times, and the first job was to sufficiently

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 161

explain what live coding actually was – which turned out to require performances in different
settings:

1. Explanatory demo style live coding: talking through it as you do it.
2. Meeting room coffee break gigs: with a closely attentive audience.
3. The music room: relaxed evening events with beer and wine.

So Dagstuhl’s music room was immediately useful in providing a more “normal” live
coding situation. It was of course more stressful than usual, knowing that you were being
critically appraised in this way by world experts in related fields! However it paid off hugely
as we had some wonderful interpretations from these different viewpoints.

One of the most important for me was the framing of live coding in terms of the roots of
software engineering. Robert Biddle, Professor of Human–Computer Interaction at Carleton
University put it into context for us. In 1968 NATO held a “Software Components Conference”
in order to tackle a perceived gap in programming expertise with the Soviet Union.

This conference (attended by many of the “big names” of programming in later years)
led to many patterns of thought that pervade the design of computers and software – a
tendency for deeply hierarchical command structures in order to keep control of the arising
complexity, and a distrust of more ad hoc solutions or any hint of making things up as we go
along. In more recent times we can see a fight against this in the rise of agile programming
methodologies, and it was interesting to look at live coding as a part of this story too.
For example it provides a way to accept and demonstrate the “power to think and feel”
that programming gives us as humans. The big question is accessibility, in a ubiquitously
computational world – how can this reach wider groups of people?

Ellen Harlizius-Klück works with three different domains simultaneously – investigating
the history of mathematics via weaving in ancient Greece. Her work includes live coding,
using weaving as a performance tool – demonstrating the algorithmic potential of looms
and combinations of patterns. Her work exposes the hidden shared history of textiles and
computation, and this made a lot of sense to me as at the lowest level the operations of
computers are not singular 0s and 1s as is often talked about, but actually in terms of
transformations of whole patterns of bits.

Mark Guzdial was examining live coding through the lens of education, specifically
teaching computer science. The fact that so many of us involved in the field are also teaching
in schools – and already looking at ways of bringing live coding into this area, is noteworthy,
as is the educational potential of doing live coding in nightclub type environments. Although
here it works more on the level of showing people that humans make code, it is not a matter
of pure mathematical black boxes – that can be the ground breaking realisation for a lot of
people.

Something that was interesting to me was to concentrate on live coding as a specifically
musical practice (rather than also a visual one) as there are many things about perceiving
the process with a different sense from your description of it that are important. Julian
Rohrhuber pointed out that “you can use sound in order to hear what you are doing” – the
sound is the temporal execution of the code and can be a close representation of what the
computer is actually doing. This time-based approach is also part of livecoding working
against the notion that producing an “end result” is important, Juan A. Romero said that
“if you’re livecoding, you’re not just coding the final note” – i.e. the process of coding is the
art form.

In terms of a school teaching situation sound is also powerful, as described by Sam Aaron,
live coder and creator of Sonic Pi. A child getting a music program to work for the first time

13382

162 13382 – Collaboration and learning through live coding

in a classroom is immediately obvious to everyone else – as it is broadcast as sound, inspiring
a bit of competition and ending up with a naturally collaborative learning experience.

It is impossible to cover all the discussions that we had. It was a great opportunity to
examine what live coding is about now in relation to other practices, where it came from,
and where it might go in the future.

7.4 Live Coding, Computer Science, and Education
Mark Guzdial (Georgia Institute of Technology, US)

License Creative Commons BY 3.0 Unported license
© Mark Guzdial

Most of the attendees were live coders, but there were a number of us others who helped
explore the boundary disciplines for live coding. The seminar explored the ramifications and
research potential of this activity.

Robert Biddle was there to lead discussions about the software engineering implications of
live coding. On the one hand, live coding feels like the antithesis of software engineering, or
as one attendee put it, “an ironic response to software engineering.” There is no test-driven
development, no commenting, no development of abstractions (at least, not while live coding),
no exploration of user needs. On the other hand, live coding (not necessarily with music)
can be an important part of exploring a space. One could imagine using live coding practices
as part of a conversation with a user about needs and how the programmer understands
those needs.

Geoff Cox led a conversation about the humanities research directions in live coding.
Geoff has a particular interest in labor, and he pointed out how live coding surfaces hidden
aspects of the labor in modern society. While computing technology has become ubiquitous
in the developed world, few people in our society have ever seen source code or a programmer.
What does it mean for an audience to see an embodiment of a programmer, to see the labor
of generating code? What’s more, the audience is seeing code doing something that is not
normally associated with people’s notions of what code is for – making music. How does this
change the audience’s relation to the computing technology? The notion of programming-as-
performance is an interesting and novel way of thinking about computing practice, and in
sharp contrast to stereotypical perspectives of programming.

Thomas Green, Alan Blackwell, and others from the PPIG (Psychology of Programming
Interest Group) community pointed to the notations that the live coders used. I’ve drawn
on Thomas’s work on the cognitive dimensions of programming and the implications of our
programming representations since I was a graduate student. The language constraints for
live coding are amazing. Live coders tend not to use traditional development languages
like C++ or Java, but instead work in Scheme, Haskell, and a variety of domain-specific
languages (like SuperCollider) – often building their own implementations. Live coders need
languages that are expressive, provide for the ability to use techniques like temporal recursion,
are concise, and (as one live coder put it) “let me live code at 2 am at a dance club after a
couple of beers.”

I was there to connect live coding to computing education, and learned about many
connections from the seminar. I am fascinated by the humanities questions about introducing
source code and programmers to a technologically-sophisticated audience that probably never
saw the development of code. Also, I am interested in the value of rapid feedback (through

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 163

music) in the performance. Does that help students understand the relationship between the
code and the execution?

A Playful Live Coding Practice to Explore Syntax and Semantics

Three of the nights of the Dagstuhl Seminar on Live Coding included performances. Several
of these combined live coders with analogue instruments (guitar, piano, cello, and even
kazoo), which was terrific to watch.

I found one of their practices fascinating, with real potential for the computer science
classroom. Alex McLean introduced it as “Mexican Roulette”, because they first did it at
a live coding event in Mexico City. Live coders take turns (the roulette part) at a shared
computer connected to speakers at the front of the room.

The first live coder types in some line of code generating music, and gets it running.
From now on, there is music playing.
The next live coder changes the code any way she or he wants. The music keeps playing,
and changes when the second coder then evaluates the code, thus changing the process.
Now the third coder comes up, and so on.
If a live coder is unsure, just a few parameters might be changed.
If a live coder makes a syntax error, the music continues (because the evaluation that
would change the process fails), and the next coder can fix it.
If a live coder makes a mistake (at one point, someone created quite a squeal), the next
live coder can fix it. Or embellish it.

What I found most promising about this practice is that (to use Briana Morrison’s phrase
for this) nothing is ever wrong here. The game is to keep the music going and change it in
interesting ways. Responsibility for the music is shared. Mistakes are part of the process,
and are really up for definition. Is that a mistake, or an exploration of a new direction? This
activity encourages playing with syntax and semantics, in a collaborative setting. It relies
on the separation of program and process – the music is going, while the next live coder is
figuring out the change. This could be used for learning any language that can be used for
live coding.

Live Coders Challenge Computer Science to Think About Expression Again

Live coders think about and talk about expression, as evidenced from the conversations at
Dagstuhl. They build their own languages and their own systems. They talk about the
abstractions that they are using (both musical and computational, like temporal recursion),
how their languages support various sound generation techniques (e.g., unit generators,
synthesized instruments, sampled sounds) and musical styles. If you look at the live coders
on the Dagstuhl Seminar participant list, most of them are in music programs, not computer
science. Why are the musicians more willing to explore expressive notations than the
computer scientists?

Lisp is alive and well in live coding. I now have a half-dozen of these systems running on
my laptop. Overtone is a wonderful system based in Clojure (http://overtone.github.io/)
Andrew Sorensen’s Impromptu was in Scheme, as is his new environment Extempore. Andrew
said that he could build 90% of this in Impromptu, but the low-level bits would have to be
coded in C. He was not happy with changing his expressive tools, so he created Extempore
whose lowest level parts would be compiled (via LLVM) directly to machine code. Andrew
went to this effort because he cares a lot about the expressiveness of his tools.

13382

http://overtone.github.io/

164 13382 – Collaboration and learning through live coding

Not everything is s-expressions. Thor Magnusson’s ixi lang is remarkable. I love how
he explores the use of text programming as both a notation and a feedback mechanism.
When he manipulates sequences of notes or percussion patterns, whatever line he defined the
sequence on changes as well.

Tidal from Alex McLean is a domain-specific language built on top of Haskell, and his
new Texture system creates more of a diagramming notation. Dave Griffiths has built his live
coding environment, Fluxus, in Racket which is used in Program by Design and Bootstrap
CS education projects. Dave did all his live coding at Dagstuhl using his Scheme Bricks,
which is a Scratch-like block language that represents Scheme forms.

Education Research Questions Around Live Coding: Vygotskian and
Non-Constructionist

I saw four sets of computing education research questions in live coding. These are unusual
research questions for me because they are Vygotskian and non-Constructionist.

Live coding is about performance. It is not an easy task. The live coder has to know
their programming language (syntax and semantics) and music improvisation (e.g., including
listening to your collaborator and composing to match), and use all that knowledge in
real-time. It is not going to be a task that we start students with, but it may be a task
that watching inspires students. Some of my research questions are about what it means to
watch the performance of someone else, as opposed to being about students constructing.
I’ve written before about the value of lectures (http://computinged.wordpress.com/2010/07/
27/in-defense-of-lecture/), and I really do believe that students can learn from lectures. But
not all students learn from lectures, and lectures work only if well-structured. Watching a
live coding performance is different – it’s about changing the audience’s affect and framing
with respect to coding. Can we change attitudes via a performance?

Vygotsky argued that all personal learning is first experienced at a social level. Whatever
we learn must first be experienced as an interaction with others. In computing education, we
think a lot about students’ first experience programming, but we don’t think much about how
a student first sees code and first sees programming. How can you even consider studying
a domain whose main activity you have never even seen? What is the role of that coding
generating music, with cultural and creative overtones? The social experience introducing
computing is important, and that may be something that live code can offer.

Here are four sets of research questions that I see:

1. Making visible. In a world with lots of technology, code and programmers are mostly invi-
sible. What does it mean for an audience to see code to generate music and programming
as a live coder? It is interesting to think about this impact for students (does it help
students to think seriously about computing as something to explore in school?) and for
a more general audience (how does it change adults’ experience with technology?)

2. Separating program and process. Live coding makes clear the difference between the
program and the executing process. On the first day, we saw performances from Alex
McLean and Thor Magnusson, and an amazing duet between Andrew Sorensen at Dagstuhl
and Ben Swift at the VL/HCC conference in San Jose using their Extempore system.
These performances highlighted the difference between program and process. The live
coders start an execution, and music starts playing. Meanwhile, they change the program,
then re-evaluate the function, which changes the process and the music produced. There is
a gap between the executing process and the text of the program, which is not something
that students often see.

http://computinged.wordpress.com/2010/07/27/in-defense-of-lecture/
http://computinged.wordpress.com/2010/07/27/in-defense-of-lecture/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 165

3. Code for music. How does seeing code for making music change student’s perception of
what code is for? We mostly introduce programming as engineering practice in Computer
Science class, but live coding is pretty much the opposite of software engineering. Our
biggest challenges in Computer Science Education are about getting students and teachers
to even consider computer science. Could live coding get teachers to see computing as
something beyond dry and engineering-ish? Who is attracted by live coding? Could it
attract a different audience than we do now? Could we design the activity of live coding
to be more attractive and accessible?

4. Collaboration. Live coding is a collaborative practice, but very different from pair
programming. Everybody codes, and everybody pays attention to what the others are
doing. How does the collaboration in live coding (e.g., writing music based on other live
coders’ music) change the perception of the asocial nature of programming?

I will end with an image that Sam Aaron showed in his introduction, a note that he
got from a student in his Sonic Pi class: “Thank you for making dull lifeless computers
interesting and almost reality.” That captures well the potential of live coding in computing
education research – that activity is interesting and the music is real.

7.5 Algorithms, Live Patterning and the Digital Craft of Weaving
Ellen Harlizius-Klück (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Ellen Harlizius-Klück

From the perspective of the humanities, in my case: the history of textile technology, live
coding offers interesting perspectives on questions I generated in my research on patterning
textiles in antiquity. In both cases, craftsmanship is a category that is to define within the
research. The sociologist and philosopher Richard Sennett introduced the idea of software
as craftsmanship in a first chapter of his book on the craftsman. As we heard from Robert
Biddle, this idea was already strong in software engineering, long before, but not comparable
with what live coders understand, when they use this term. Interestingly, Sennett subtitled
one of his chapters “Ancient weavers and Linux Programmers”. However, he rarely says
anything about what they have in common.

Margaret Boden’s book on Artificial Intelligence is more instructive in this respect,
describing algorithms as executing knitting notations. But described like this, even a cooking
recipe is an algorithm and the knitting example does not really convince of a similarity of
knitting and computers executing programmes on a structural level.

My interest lies just in this: demonstrating that weaving was a digital and even dualistic
craft from the very beginning and that the patterning principles can tell us a lot about the
prediction or impossibility of prediction of patterns even if we fully control the production
process. I am therefore looking for tools to code textile patterns, and live coding with
such a tool would enable me to show the production of patterns and their changes on the
fly when demonstrating my topics to an audience. It was interesting to see some coders
already working with the ideas of threads, textures (Alex McLean) and patterned weaves
(Dave Griffiths). Live coding of textile patterns at the moment can only be done with very
complicated programmes that are designed for the use of modern looms and for designers
who, on the level of sketching, work with vector graphics instead of the dualistic and discrete
patterns that are the basis of weaves. Coding patterns on a principal level can help me in

13382

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

166 13382 – Collaboration and learning through live coding

showing that such patterns are not flat but an interference effect of a three dimensional
structure and a special colour order of its elements. Live coding of textile patterns also
makes the algorithmic nature and the involvement of number ratios visible.

From the seminar I learned that live coding could be a way of thinking publicly, as artwork
today mainly does. And it can change our perception of people working with computers as it
was demonstrated by the quote that Renate Wieser presented: “Art removes objects from the
automatism of perception in several ways.”[1] Today programmes project the impossibility of
liveliness into the future. We need a counterbalance against this attitude, a counterbalance
that does not reject programming as a whole but develops possibilities of liveliness in a
surrounding of codes and programmes. Also here, doing live coding as an art form, can
contribute. As Renate Wieser said: Artists are stopping habitual processes and not starting
new habits (which science does). Live coding therefore can be a possibility of exploring the
relationship between liveliness and automation. Live coding also implies a critical perspective
on engineering as the most influential language of our times. And with live coding of pattern
weaving I try to make room for women in the history of computer and software development.

References
1 Victor Shklovsky. Art as Technique. 1917, 10 f.

7.6 A Few Notes from the Seminar
Julian Rohrhuber (Robert Schumann Hochschule für Musik – Düsseldorf, DE)

License Creative Commons BY 3.0 Unported license
© Julian Rohrhuber

The forgotten dimension of programming which turned out to be only half
forgotten

Some historical notes: In the first years, live coding developed within a specific mixed context
between experimental arts, club music, philosophy, and interdisciplinary scientific research.
It grew where people worked together as musicians, as artists, but also as researchers in
interdisciplinary science projects. It was immediately part of a teaching curriculum, or
rather its self-recognition as something special came from learning exchanges, workshops,
collaboration, conversation art, lecture performance.

In such a way, computer science education has been its driving motor from the beginning
– the fact that the forms and topics of teaching didn’t resemble those of informatics courses
shouldn’t obscure the insight that this was collaborative learning efforts that centred on topics
like higher level functions, polymorphism and networking protocols. From the programming
languages involved, this practice inherited knowledge (both tacit and explicit) from a long
history of programming languages.

A note regarding the visibility of programming: the necessity to expose the programming
activity, as well as to see the programming activity as a part of either a performance or the
computational process was far more obvious in this transdisciplinary context than it was
for those who had contemporary training in computer sciences. As it was said a couple of
times during the discussion in the seminar, the abstract and elusive character of the domain
(namely sound in the art and sound as a means to explore scientific data) made it both
more fruitful to do live coding (or just in time programming, as we usually call it) and more
essential to achieve anything interesting in the first place. As far as education concerns: this

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber 167

context made it very obvious that learning itself requires the experience of programming, of
thinking a domain (like sound) through the medium of a program.

Another point implied in the discussions in the seminar: programming always has a
domain, a domain that is addressed (to some degree) in computer science and computer science
education. In the case of pure theoretical computer science, this domain is mathematical, or
formal structures. In many other cases, the domain is a mixed field of knowledge, that may
involve fields as diverse as music, astronomy or accounting. Invariably, however, programming
means speaking doubly, to a machine and to other humans. This is I think what Robert
Biddle showed to be a constant challenge in the relation between programmer and domain
expert, and also between programmers. In how far is it this involvement in a domain through
the activity of programming itself, that live coding makes evident?

Maybe it could be summarised as follows: Live coding was discovered (or, if to a degree
rediscovered) by computer science and by computer science education – but not in their
respective disciplinary institutions. Reintroducing it now to those institutions, the question
is: should this happen as a transfer of a technical tool-idea or should this also transfer at least
parts of the philosophical, methodological, and institutional backdrop that was necessary for
this idea to proliferate? Both seem possible futures.

Chess players

Taking up Geoff Cox’ thought: live coding brings to the surface the social and labour dimension
of programming: programs, like texts, are written, often in a tedious and vacillating process,
involving decisions both rational and aesthetic, sometimes practical and ad hoc. Showing
writing (in the broad sense) reveals the “agency behind” a program, the agency that allows to
make plans rather than just to act. In such a way, live coding shows abstraction in the form
of delegation (this may be just a sort of steering, if it is a more immediate translation, this
may also be a pro–gramming proper in the sense of involving in changing planned setups).
On the other hand, what becomes visible also is that this labour is not reducible to any
core of direct action or intention, it is rather already in itself a mediated process, involving
human actions, but actions which only make sense in the context of a system, a programming
language, its abstract but sensual semantics, its syntactic resistance and fluency, its ability
to speak about itself, to be understood. In such a way, in our context, van Kempelen’s fake
chess robot is half the truth: inside the hollow case, the dwarf is sitting, certainly, but what
makes the dwarf a chess player? Only the context of the chess system, and the fact that the
audience understands this context makes the automaton so fascinating.

In a discussion with Thomas Green, which couldn’t be continued, two understandings
of the term “plan” came up in the context of a chess game: Thomas referred to a plan as
something that a human skilled player has in mind. I pointed out that in a program, contrary
to the chess board, plans are laid out and become readable as plans. I should add now that
in a chess constellation, a skilled player can certainly decipher possible plans; but it would
arguably defeat the purpose of the game if all this were explicit. Thomas disagreed: what
we see in a program is not a plan. The sociological and psychological semantic dimension of
a plan may indeed be something entirely different than the formalised aspect of a plan which
we can read in a program. Nevertheless, if the agency of planning should really play a role in
live coding (and I think it does), it is a particular indistinguishability between those aspects
that define live coding as something different than playing an instrument or a chess game.
The fact that this agency of planning is partly obscure, potentially to the audience but also
to the programmer – for instance when a program becomes readable only retroactively – is
one of the reasons why it is so interesting.

13382

168 13382 – Collaboration and learning through live coding

Participants

Sam Aaron
University of Cambridge, GB

Robert Biddle
Carleton Univ. – Ottawa, CA

Alan Blackwell
University of Cambridge, GB

Andrew R. Brown
Griffith Univ. – Brisbane, AU

Luke Church
University of Cambridge, GB

Geoff Cox
Aarhus University, DK

Alberto de Campo
Universität der Künste –
Berlin, DE

Thomas Green
University of York, GB

Dave Griffiths
FoAM – Kernow, GB

Mark Guzdial
Georgia Inst. of Technology, US

Ellen Harlizius-Klück
University of Copenhagen, DK

Shelly Knotts
Birmingham, GB

Adrian Kuhn
University of British Columbia –
Vancouver, CA

Thor Magnusson
University of Sussex - Brighton,
GB

Alex McLean
University of Leeds, GB

David Ogborn
McMaster Univ. – Hamilton, CA

Jochen Arne Otto
ZKM | Center for Art and Media
Karlsruhe, DE

Roly Perera
University of Edinburgh, GB

Julian Rohrhuber
Robert Schumann Hochschule für
Musik, DE

Juan Gabriel Alzate Romero
Hochschule für Musik –
Karlsruhe, DE

Uwe Seifert
Universität Köln, DE

Andrew Sorensen
Queensland University of
Technology – Brisbane, AU

Jan Kees van Kampen
Robert Schumann Hochschule für
Musik, DE

Renate Wieser
Universität Paderborn, DE

	Executive Summary Robert Biddle, Alex McLean, Alan Blackwell, and Julian Rohrhuber
	Table of Contents
	Overview of Talks
	Live Coding as a Model for Cultural Practice Geoff Cox
	Live Coding in Education Mark Guzdial
	Live Coding, Software Engineering and Collaboration Robert Biddle

	Group Discussions
	Critical Engineering and Software Tools Roly Perera
	Algorithmic Complementarity, or the Impossibility of ``Live'' Coding Julian Rohrhuber
	Tidal: Representing Time with Pure Functions Alex McLean
	Explicit vs. Implicit and External vs. Internal (Representations of) Time Julian Rohrhuber
	Stress and Cognitive Load Alex McLean

	Practical Implementation Session
	Setting Up a Shared Temporal Frame David Ogborn

	Live Coding: Some History and Implementations
	Personal Accounts on the History of Live Coding Renate Wieser and Julian Rohrhuber
	Extempore Andrew Sorensen
	Fluxus Dave Griffiths
	ixi lang Thor Magnusson
	SuperCollider and the Just In Time Programming Library Julian Rohrhuber
	Overtone Samuel Aaron
	Republic: Collaborative Live Coding 2003–2013 Alberto de Campo
	Sonic Pi Samuel Aaron

	Personal Reflections
	Clickety-Click: Live Coding and Software Engineering Robert Biddle
	Cultural-Epistemological Aspects of Live Coding Geoff Cox
	Dagstuhl: Live Coding and Memorable Discussions Dave Griffiths
	Live Coding, Computer Science, and Education Mark Guzdial
	Algorithms, Live Patterning and the Digital Craft of Weaving Ellen Harlizius-Klück
	A Few Notes from the Seminar Julian Rohrhuber

	Participants

