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ABSTRACT 
This paper aims to review the potential and challenges of non-catalytic transesterification as a sustainable 

route for biodiesel synthesis. Recently, biodiesel production using supercritical technology has undergone 

rapid developments as it provides numerous advantages over conventional catalytic technologies, including 

elimination of catalyst preparation and product separation and purification processes, higher biodiesel yield, 

shorter reaction time, applicability to a wide variety of feedstocks without any pre-treatment requirements. 

Nevertheless, there are many concerns regarding the massive energy obligation to conduct the reaction at the 

supercritical conditions of methanol, which requires high temperature and pressure. Accordingly, the 

challenges facing the supercritical technology to be considered as a sustainable process have been elaborated 

through this review. Different production techniques using supercritical technology have been addressed. 

Several reaction variables affecting the supercritical reaction and their optimisation methodologies have 

been discussed in this review. Moreover, some constructive recommendations have been proposed 

thoroughly to overcome the limitations of this technology. Biodiesel production using supercritical 

technology could be considered as a sustainable route in the near future. 
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1 INTRODUCTION 
 

World’s energy consumption has extensively increased following an exponential growth due to the huge 

industrial developments and increasing world’s population. The world’s total primary energy consumption 

(TPEC) had a huge jump during the last decades reaching 150,000 TW.h in 2015. In addition, 57% growth 

in TPEC is predicted by the year 2050 [1]. The observed and predicted growth in energy consumption will 

eventually result in higher greenhouse gases emissions which is directly affecting the global warming and 

causing other environmental concerns [2]. 

There are numerous reasons to search for alternative fuels, e.g. limitation of petroleum resources, increasing 

demand for fuels, environmental impact of fossil fuels and instability of crude oil prices. Various 

applications of fossil fuels including transportation sector, industrial applications, power generation and 

domestic heat applications have led to steep rise of crude oil from $20/barrel to $140/barrel in the period 

between 2000 to 2015, where recently the price dropped back to nearly $60/barrel [3]. Accordingly, during 

the last decades, researches have focused on finding applicable renewable replacement to reduce the 

dependence on fossil fuels in energy production [4]. 

Biodiesel is considered as the most promising substitute for petroleum diesel fuel. It is defined as mono alkyl 

esters of long chain fatty acids derived from vegetable oils and animal fats [5]. It has many advantages over 

petroleum diesel fuel including biodegradability, sustainability, zero sulphur emissions, greener exhaust 

emission with less smoke, CO, hydrocarbons and particulates and better performance of engine lubricity [6]. 

Numerous methods have been reported for biodiesel production, e.g. microemulsion, pyrolysis and 

transesterification. Among all the mentioned methods, transesterification is considered the most commonly 

used method for biodiesel production. It includes alcoholysis reaction of triglycerides to fatty acid alkyl 

esters (FAAE) [7]. Non-catalytic biodiesel production has been reported with various advantages over 

catalysed methods including shorter reaction time and higher biodiesel yield. It could be applied on a wide 
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range of feedstock without any pre-treatment restrictions. It also eases product separation and purification 

processes [8]. 

This paper aims to provide a brief review on the latest progress in supercritical biodiesel production. The 

factors affecting the production process including temperature, pressure, residence time and methanol to oil 

(M:O) molar ratio have been discussed. Finally, challenges for scaling-up supercritical process and 

recommendations for future considerations have been proposed. 

 

2 PRODUCTION PROCESSES 
 

2.1 Catalysed Processes  
 

Catalyst selection depends on various properties of the feedstock including free fatty acids (FFA) and water 

contents. 

Alkaline Catalysed Processes 
Alkaline homogenously catalysed process is considered as the conventional process for biodiesel production. 

These catalysts, i.e. sodium hydroxide (NaOH), potassium hydroxide (KOH) and sodium methoxide 

(CH3OH), have high reaction activity where biodiesel is produced in high quality within reasonable reaction 

time. In addition, these catalysts are considerably cheap and readily available. However, using alkaline 

homogenous catalysts has many drawbacks including the sensitivity of the presence of high FFA and water 

in the feedstocks. At high FFA content, saponification reaction occurs in parallel to transesterification 

reaction, which reduce biodiesel yield and complicate product separation. In addition, the catalyst removing 

process through washing include consumption of large amount of water and producing wastewater with 

appropriate treatment requirements. Aboelazayem et al. [9] have investigated biodiesel production through 

methanolysis of castor oil using KOH. They have optimised the process resulting in 97.82% biodiesel yield 

at optimum conditions of 0.73% KOH concentration, 64oC temperature, 2.5 h reaction time, 5.4:1 M:O 

molar ratio and 320 rpm for mixing rate. 

On the other hand, using heterogeneous catalyst in transesterification reaction reduces the wastewater 

effluent of the process. Moreover, it simplifies the separation and purification steps of the reaction products. 

In addition, most of the heterogeneous catalysts have high possibilities for regeneration to be reused in 

different reaction where it attributes to decrease the cost of the produced biodiesel [10]. However, the main 

disadvantage of using heterogeneous catalyst technique is the diffusion limitations in the three-phase (oil–

alcohol–catalyst) reaction mixture which lower the reaction rate. Moreover, catalyst preparation includes 

several costly steps including crushing, washing, drying and calcinating at very high temperatures [11]. El-

Gendy et al. [10] have investigated calcium oxide (CaO) prepared from snails shells as heterogenous catalyst 

for biodiesel production from waste frying oil. They have reported 96.7% biodiesel yield at optimal 

conditions of 6:1 M:O molar ratio, 3 wt% of catalyst concentration, 1 h reaction time at 200 rpm.  

 

Acidic Catalysed Processes 
Acidic catalysed technique has lower susceptibility to the presence of FFA in the feedstock as it acts to 

convert both FFAs and triglycerides (TG) to FAME in both esterification and transesterification reactions, 

respectively. Nevertheless, using acid catalysed technique showed slower reaction rate with longer reaction 

time in comparison with alkaline catalysed technique [12]. The most commonly used acids in biodiesel 

production process are hydrochloric, sulphuric and phosphoric acids [13]. 

 

Two-steps Catalysed Processes 
Two-steps technique has been developed to combine both benefits of alkaline and acidic processes. The two-

steps technique includes esterification of FFAs to FAMEs using acidic catalyst as a pre-treatment step to 

reduce the FFA content to 1% followed by transesterification reaction using alkaline catalyst to convert TG 

to FAME. Soap formation has been eliminated in this process as FFA of the feedstock has converted to 

FAME during the esterification step using acidic catalysts. However, the main disadvantage of using two-

steps technique is the higher production cost as compared to conventional, one-step process [16-18]. 
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Comparative analysis between both one-step and two-steps techniques of biodiesel production has been 

studied to evaluate the process from both productivity of FAMEs and economical points of view. It has been 

reported that higher FAMEs yield has been achieved using two-steps technique (about 90%), while one-step 

alkaline transesterification reaction reported 55% yield of FAMEs [17]. Deng et al [18], have reported 

similar evaluations using jatropha oil with 10% FFAs where they observed 96.4% yield of FAMEs using 

two-steps technique while only 50% FAMEs yield was obtained using one-step alkaline transesterification 

reaction. 

 

Enzymatic Catalysed Processes 
Lipases enzymes are used to catalyse both esterification and transesterification reactions of FFAs and TGs, 

respectively. The main advantages of using enzymatic technique are the capability of operating both 

esterification and transesterification reactions simultaneously, minimisation of waste water and using 

feedstocks with high FFA content. However, the high price of the enzyme and the lengthy process are 

considered the main drawback of using enzymatic technique for biodiesel production [21-24]. 

 

2.2 Non-catalysed Processes 
 

In an attempt to overcome the previously mentioned problems of the catalysed techniques, non-catalytic 

technique has been developed as a promising technique for biodiesel production where alcohol and oil are 

mixed in the absence of catalyst at the supercritical conditions of alcohol. The main reason of using catalyst 

in both esterification and transesterification reactions is the low solubility of the alcohol in the oil phase. 

However, it has been observed that alcohols have very high solubility in oil at their supercritical state. Using 

non-catalytic reaction has several advantages, e.g. shorter reaction time, elimination of wastewater effluent, 

exclusion of catalyst preparation cost, elimination of soap formation and simplification of the product 

separation. However, the drawbacks of using this technique are mainly due to the requirement of large 

excess of alcohol and high cost of apparatus that maintain harsh reaction conditions [1,23,49].  

 

3 SUPERCRITICAL METHANOLYSIS PROGRESS 
 

Saka and Kusdiana [25] have firstly introduced biodiesel production using supercritical methanol. They have 

used rapeseed oil as a feedstock where the reaction was conducted in a batch reactor at 350-400oC and 45-65 

MPa. They have reported that supercritical reaction could overcome many problems associated with the 

conventional catalysed processes in addition to its shorter reaction time with simple product separation step. 

Kusdiana and Saka [26] have examined the effect of water content of supercritical methanolysis. They have 

reported that water content does not have any significant effect on biodiesel formation. Moreover, they have 

observed that adding water within certain amount enhance biodiesel formation. Garcia et al. [27] have 

investigated the conversion of raw Jatropha oil to biodiesel using supercritical methanol. They have 

optimised the reaction conditions to maximise biodiesel yield. They have reported 99.5% biodiesel yield at 

optimum conditions of 325oC in 90 min. Aboelazayem et al. [28] have used supercritical methanol for 

biodiesel production from waste cooking oil. They have developed a quadratic model representing biodiesel 

yield function in different reaction parameters including M:O molar ratio, temperature, pressure and reaction 

time. They have reported 91% biodiesel yield at optimum conditions of 37:1, 253.5oC, 198.5 bar and 14.8 

min for M:O molar ratio, temperature, pressure and residence time, respectively. 

Recent studies have been performed to investigate the significance of using supercritical methanolysis in 

converting feedstocks with high FFA content into biodiesel. Aboelazayem et al. [16] have studied the 

conversion of high acid value waste cooking oil using supercritical methanol. They have reported high 

biodiesel yield without any pre-treatment processes. The optimum conditions resulted in 98.8% biodiesel 

yield at M:O molar ratio, temperature, pressure and residence time of 25:1, 256oC, 110 bar and 20 min, 

respectively. They have reported that M:O molar ratio is the most significant parameter affecting biodiesel 

yield followed by reaction temperature. Ong et al. [29] have studied the conversion of leather tanning waste 

with high FFA content using supercritical methanol. They have performed experiments at 12 MPa and M:O 

molar ratio of 40:1 between temperature ranges of 250-325oC. Aboelazayem et al. [30] have investigated the 
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esterification kinetics of FFA to FAME in high acid value waste cooking oil using supercritical methanol. 

They have optimised reaction conditions resulting in 97.7% conversion of the total FFA existed in the 

feedstock at M:O molar ratio, temperature, pressure and residence time of 35:1, 260oC, 110 bar and 16 min, 

respectively. They have reported that the reaction kinetics is following pseudo first order reaction with 

reaction rate constant, activation energy and frequency factor of 0.00103 s-1, 34.5 kJ/mol and 1.26 s-1, 

respectively. In addition, they have simulated a reactor using the experimentally determined kinetic data at 

the optimum conditions.  

 

4 CHELLENGES AND RECOMMENDATIONS 
 

4.1 Challenges  
 

The main challenges facing supercritical methanolysis from scaling up to industrial scale could be 

summarised into two points, e.g. excessive energy consumption and huge excess of methanol. Many studies 

have been reported in lowering the reaction conditions by introducing co-solvents including; propane [31], 

n-hexane [31], and carbon dioxide (CO2) [24]. These co-solvents act to enhance the solubility of methanol in 

oils, where it acts in lowering reaction conditions. In addition, it has been reported that using spiral reactor 

would improve the process energy efficiency. This reactor has been reported by Farobie et al. [32] where it 

composed of a parallel tube heat exchanger and a high temperature transesterification reactor. They reported 

that the reactor is superior to conventional reactors in terms of heat recovery. 

Process integration techniques have been also reported in very limited studies. Debora et al. [33] have 

designed an energy integrated process for biodiesel production from low cost chicken oil using supercritical 

methanol. They have studied to recover the excessive energy consumed through the reaction. Aboelazayem 

et al. [34] have designed an energy integrated process for biodiesel production from waste cooking oil. They 

have simulated a continuous reactor based on experimental kinetic data. They have designed a heat 

exchanger network (HEN) for the process to maximise energy integration through the process. 

The excessive use of methanol has been observed by all studies where the minimum reported ratio was 25:1 

[16], which represent about 8 times higher than the stoichiometric requirements. Moreover, excessive 

methanol recovery also needs high energy. 

In addition to the previously mentioned challenges, other limitations should be addressed for scaling-up this 

process to industrial scale. As the reaction operates at high temperature and pressure, the safety issue is still 

a debate. In addition to the impurities that should be recovered to produce high quality biodiesel. 

Economically, supercritical technology requires high capital costs of special designed equipment, high 

temperature furnace and high-pressure pump. Moreover, operational costs would be relatively high to 

maintain the required reaction conditions. 

4.2 Recommendations  
 

Although supercritical methanolysis has proved to be an efficient technique for biodiesel production with 

various advantages, its feasibility in industrial scale is still a debate. Hence, techno-economic analysis should 

be studied extensively for supercritical processes. In addition, biodiesel production in supercritical DMC, 

methyl acetate and methyl tert-butyl ether (MTBE) where some value-added by-products would be 

considered apart from glycerol. Simultaneous mass and energy integration should be considered while 

designing supercritical processes. Finally, work integration should be addressed in this process as it is 

operated under high-pressure. 

 

5 CONCLUSIONS  
 

Biodiesel production using supercritical methanolysis has been reviewed in this paper. Progress and latest 

developments of biodiesel production using supercritical methanol has been discussed. Supercritical 

transesterification has many advantages over catalysed processes, e.g. shorter reaction times, higher 

biodiesel yields, elimination of catalysts preparation and separation cost and applicability to handle variety 

of feedstocks. However, many limitations have been addressed for scaling-up this technology for industrial 
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scale. Techno-economic studies have been recommended for future work in addition to replacing alcohols 

with different supercritical compounds that would produce value-added by-products other than glycerol. 
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