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A B S T R A C T

I introduce unobservable costly effort into the canonical signalling model of security design. The choice of
effort determines the quality of the security and creates an additional optimisation problem the firm must
solve. My main result is that both optimal effort and optimal profits are decreasing in the firm’s preference
for liquidity. I also show that optimal effort is greater under symmetric information. My approach provides a
theoretical explanation for empirical results that cannot be obtained within the standard signalling framework.
In addition, I extend existing methods to solve signalling models with endogenous private information.
1. Introduction

In many economic settings that involve adverse selection, the as-
sumption of exogenous private information is not the most realistic.
One salient example is a firm that underwrites assets before transform-
ing them into securities to sell on secondary markets. The conventional
approach would model the quality of the security as the realisation
of a random variable. Intuitively, however, each asset’s quality should
be determined, to a large extent, by the effort of the firm during the
underwriting process.

To more closely approximate reality, I introduce endogenous private
information, modelled as an unobservable costly effort choice, into the
canonical signalling model of security design proposed by DeMarzo and
Duffie (1999). I extend a general result of Mailath and von Thadden
(2013) and employ the equilibrium refinement of In and Wright (2017)
to fully characterise the firm’s optimal choice of signal and effort. By
doing so, I obtain a number of novel predictions that lend theoretical
support to several stylised facts that cannot be derived without costly
effort: I show that the firm’s optimal effort is decreasing in its prefer-
ence for liquidity, as are the optimal profits. The former result implies
that optimal effort is greater under symmetric information. Therefore,
a key insight is that adverse selection dampens effort incentives, which
leads to optimal effort being less than under symmetric information.
In addition, I characterise the incentive compatible signal in signalling
games with endogenous private information. This result builds on
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Elements of this paper were taken from the second chapter of my PhD thesis: Signalling with Endogenous Private Information.

an existing approach in the literature and could be applied to other
signalling models that incorporate, for example, costly effort.

In a seminal contribution, DeMarzo and Duffie (1999) showed that a
monopolist issuer of asset-backed securities can signal the quality of the
security using the quantity that it offers for sale. Their model has been
extended to analyse the pooling and tranching of securities (DeMarzo,
2005) and the impact of market power (Biais and Mariotti, 2005).
Chemla and Hennessy (2014) introduce a binary effort choice into a
signalling model of securitisation to study the welfare implications of
optimal retention. In contrast, I allow for a more general choice of effort
and focus on analysing the determinants of optimal effort. Daley et al.
(2020, 2023) study the effect of credit ratings, and scrutiny more gener-
ally, on loan origination and retention. Rather than signalling, Vanasco
(2017) focuses on the implications of endogenous effort in a screening
model. A related strand of literature examines moral hazard in securiti-
sation (e.g, Hartman-Glaser et al., 2012; Malamud et al., 2013; Malekan
and Dionne, 2014) but does not consider signalling.

In Section 2, I lay out the details of the model. In Section 3, I state
my general characterisation theorem, derive the optimal signal and set
up the firm’s effort optimisation problem. In Section 4, I state my main
results, which I relate to the empirical literature in Section 5. Proofs
are in the Appendix.
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2. Model

Consider a monopolist that underwrites and issues asset-backed
securities. Unlike in DeMarzo and Duffie (1999), the quality of the
security 𝑞(𝑒) is determined by the firm’s unobservable effort choice
𝑒 ∈ [𝑒, 𝑒] =  , which has cost 𝑒. One interpretation could be that effort
epresents the money spent on the underwriting and due-diligence
rocess. In this case, the quality of the security would be a non-
ecreasing function of the expenditure and the cost would simply be
he money spent.2 Assume 𝑞(𝑒) > 0 as well as 𝑞′(𝑒) > 0 and 𝑞′′(𝑒) < 0

for all 𝑒 > 𝑒. The firm’s signal is the fraction 𝑥 ∈ [0, 1] of the security
offered for sale. Given 𝑥, the firm discounts the remaining (1 − 𝑥) of
etained earnings at rate 𝛿 ∈ (0, 1). Given a price of 𝑝 for the fraction 𝑥

offered for sale, the firm’s payoff is

𝑣(𝑒, 𝑝, 𝑥) = 𝛿(1 − 𝑥)𝑞(𝑒) + 𝑝 − 𝑒, (1)

and the market investors’ payoff is 𝑢(𝑒, 𝑝, 𝑥) = 𝑥𝑞(𝑒) − 𝑝. Competition
between investors means the best response is �̂� = 𝑥𝑞(𝑒) when 𝑒 is the
investors’ belief about the firm’s effort. This implies that (1) can be
written in a form analogous to Mailath and von Thadden (2013):

𝑉 (𝑒, 𝑞(𝑒), 𝑥) ∶= 𝛿(1 − 𝑥)𝑞(𝑒) + 𝑥𝑞(𝑒) − 𝑒 = 𝛿𝑞(𝑒) + [𝑞(𝑒) − 𝛿𝑞(𝑒)]𝑥 − 𝑒. (2)

3. Analysis

Reordering Invariance (In and Wright, 2017) pins down investors’
beliefs by considering a reordered version of the game in which the
firm first chooses the observable signal before the unobservable effort.3
Therefore, I first solve for the optimal signal 𝑋 ∶  →  . For separation,
the signal must be one-to-one and satisfy incentive compatibility

𝑋(𝑒) ∈ arg max
𝑥∈𝑋()

𝑉 (𝑒, 𝑞(𝑋−1(𝑥)), 𝑥). (IC)

To characterise the optimal signal when the security’s quality is en-
dogenously generated through an unobservable effort choice, I ex-
tend Mailath and von Thadden’s Theorem 3 to the framework in
Section 2.

Theorem 1. Let 𝑋 ∶  →  be one-to-one, where  is compact,
and satisfy (IC). Let 𝑞 ∶  → R+ be differentiable and one-to-one with
𝑞′(𝑒) ≠ 0 ∀ 𝑒 ∈  , except at either 𝑒 or 𝑒. Then, for any 𝑒 ∈  , if
3(𝑒, 𝑞(𝑒), 𝑥) ≠ 0 ∀ 𝑥 ∈  , 𝑋 is differentiable at 𝑒. At all points of
ifferentiability 𝑋 satisfies

′(𝑒) = −
𝑉2(𝑒, 𝑞(𝑒), 𝑥) ⋅ 𝑞′(𝑒)

𝑉3(𝑒, 𝑞(𝑒), 𝑥)
|

|

|

|𝑒=𝑒,𝑥=𝑋(𝑒)
= −

𝑉2(𝑒, 𝑞(𝑒), 𝑋(𝑒)) ⋅ 𝑞′(𝑒)
𝑉3(𝑒, 𝑞(𝑒), 𝑋(𝑒))

. (DE)

Applying Theorem 1 to the transformed payoff (2) yields the follow-
ing optimal signal.

Lemma 1. 𝑋(𝑒) = [𝑞(𝑒)∕𝑞(𝑒)]
1

1−𝛿 .

The optimal signal 𝑋(𝑒) is decreasing in effort: the greater the
ffort exerted during the underwriting and due-diligence process, the
maller the fraction of the security that is offered for sale by the firm.4
ubstituting 𝑋(𝑒) from Lemma 1 into (2) gives

(𝑒, 𝛿) ∶= 𝑉 (𝑒, 𝑞(𝑒), 𝑋(𝑒)) = 𝛿𝑞(𝑒) + (1 − 𝛿)𝑞(𝑒)[𝑞(𝑒)∕𝑞(𝑒)]
1

1−𝛿 − 𝑒,

= 𝛿𝑞(𝑒) + (1 − 𝛿)𝑞(𝑒)
𝛿

𝛿−1 𝑞(𝑒)
1

1−𝛿 − 𝑒. (3)

2 A convex cost function 𝑐(𝑒) could capture non-monetary costs, such as
opportunity cost, but is not necessary for the results.

3 Reordering Invariance eliminates equilibria with unreasonable beliefs
through a similar, but weaker, notion of invariance that is used in strategic
stability (Kohlberg and Mertens, 1986) and proper equilibrium (Myerson,
1978).

4 The relationship between this result and the empirical literature will be
2

discussed in Section 5. b
Lemma 2. 𝒱 has increasing marginal returns on (𝑒, 𝑒] × (0, 1).

The novelty of my approach is that the firm now solves a second
ptimisation problem to find the optimal choice of effort

(𝛿) ∈ arg max
𝑒∈

𝒱 (𝑒, 𝛿). (OE)

Whether (OE) has a solution will depend, in many cases, on the function
𝑞. The following example characterises a class of effort production
functions for which 𝒱 is strictly concave in effort.

Example 1. Suppose 𝑞(𝑒) = 1 + 𝑒𝛼 for 𝛼 ∈ (0, 1) and 𝑒 = 0. Then 𝒱 is
strictly concave in 𝑒.

4. Results

My main result provides a set of qualitative predictions that cannot
be derived in the standard signalling framework, and which arise from
the analysis of (OE).

Proposition 1. Suppose 𝑞 is such that 𝒱 is strictly concave in 𝑒. Then,

(i) optimal effort is greater under symmetric information;
(ii) optimal effort 𝑒∗(𝛿) = arg max𝑒∈ 𝒱 (𝑒, 𝛿) is increasing in 𝛿 for

𝑒 ∈ (𝑒, 𝑒]; and,
(iii) the value function 𝒱 (𝑒∗(𝛿), 𝛿) = max𝑒∈ 𝒱 (𝑒, 𝛿) is increasing in 𝛿 for

𝑒 ∈ (𝑒, 𝑒].

Conversely, suppose arg max𝑒∈ 𝒱 (𝑒, 𝛿) in nonempty. Then,

(iv) any interior optimal effort 𝑒∗(𝛿) ∈ arg max𝑒∈ 𝒱 (𝑒, 𝛿) is increasing
in 𝛿 for 𝑒 ∈ (𝑒, 𝑒].

Intuitively, property (i) states that adverse selection depresses effort
incentives.5 When the firm has to use a costly action to signal its effort,
ptimality requires effort below the first-best. Similar results can arise
n moral hazard models, but the novelty of my approach shows that it
lso holds in an adverse selection framework. Properties (ii) and (iii)
ighlight that both optimal effort and optimal profits are decreasing in
he rate at which the firm discounts retained earnings. When the payoff
rom retaining the security is relatively low, the firm finds it optimal
o exert low effort. The firm then securitises a greater fraction of these
oorer quality assets to sell to investors, as the relatively low price will
e preferred to retention. Conversely, when the payoff from retaining
he security is relatively high, the firm is more willing to expend effort
n the due-diligence process knowing that this will feed through to a
elatively smaller amount sold to investors, but at a greater price. The
ey insights of Proposition 1 are illustrated in Fig. 1. Finally, property
iv) highlights that concavity is not necessary for property (ii) to hold.
y using tools from monotone comparative statics, property (ii) will be
rue as long as there is an interior solution to (OE).

. Discussion

A common interpretation of 𝛿 is that it represents the firm’s prefer-
nce for liquidity, which can arise due to more profitable investment
pportunities, or a need to satisfy capital adequacy requirements. Un-
er this interpretation, the findings of Proposition 1 provide a theoreti-
al explanation for a number of empirical results. Specifically, 𝛿𝐻 > 𝛿𝐿
mplies that 𝑒∗(𝛿𝐻 ) > 𝑒∗(𝛿𝐿), which in turn implies that 𝑞(𝑒∗(𝛿𝐻 )) >
(𝑒∗(𝛿𝐿)) and 𝑋(𝑒∗(𝛿𝐻 )) < 𝑋(𝑒∗(𝛿𝐿)). Therefore, my model predicts that
irms in need of liquidity will underwrite assets of lower quality than

5 Symmetric information implies that investors have correct beliefs about
he firm’s effort and that the firm always sells the entire security: the choice
f effort is observable. Formally, this implies 𝑒 = 𝑒 and 𝑋(𝑒) = 1 for all 𝑒.
onversely, under asymmetric information, 𝑒 may not equal 𝑒 and 𝑋(𝑒) may
e less than one.
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Fig. 1. The optimal signal and effort for 𝛿𝐻 > 𝛿𝐿.
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hose that are less in need of liquidity. The firms with lower quality
ssets will then securitise a larger proportion of these assets to sell.

These theoretical predictions align with Cardone-Riportella et al.
2010), who show that firms with low liquidity will have lower per-
ormance and subsequently securitise more. The driving force behind
y results is 𝛿, which is supported by Martin-Oliver and Saurina

2007), Agostino and Mazzuca (2009) and Cerrato et al. (2012) who
ind that the key motivating factor behind securitisation in Spanish,
talian and UK banks, respectively, over the period 1999–2006 was

need for liquidity. My results can also accommodate Bannier and
ansel’s (2008) finding that banks with lower liquidity are more likely

o securitise and sell a larger proportion of their assets, and Affinito and
agliaferri’s (2010) finding that less liquid banks with more troubled

oans are more likely to securitise assets and at a larger quantity than
therwise.
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ppendix. Proofs

roof of Theorem 1. First, I derive versions of Mailath and von Thad-
en’s preliminary results using my modified framework. In particular,
he following condition is analogous to Mailath and von Thadden’s
A5):

≥ 𝑔(𝑒0, 𝑞(𝑒), 𝑋(𝑒)) ≥ −(𝑒 − 𝑒0)
{

1
2
𝑔11([𝑒; 𝜃])1(𝑒 − 𝑒0)

+ 𝑔12([𝑒;𝜇]23)(𝑞(𝑒) − 𝑞(𝑒0)) + 𝑔13([𝑒;𝜇]23)(𝑋(𝑒) −𝑋(𝑒0))
}

, (4)

where

[𝑒; 𝜃] ∶= (𝜃𝑒 + (1 − 𝜃)𝑒, 𝑞(𝑒), 𝑋(𝑒)),
3

1 0 ≥
[𝑒;𝜇]23 ∶= (𝑒0, 𝜇𝑞(𝑒0) + (1 − 𝜇)𝑞(𝑒), 𝜇𝑋(𝑒0) + (1 − 𝜇)𝑋(𝑒))

nd

(𝑒, 𝑞(𝑒), 𝑥) ∶= 𝑉 (𝑒, 𝑞(𝑒), 𝑥) − 𝑉 (𝑒, 𝑞(𝑒0), 𝑋(𝑒0))

for fixed 𝑒0 ∈  , arbitrary 𝑒, 𝑒 ∈  , 𝜃 ∈ [0, 1], 𝜇 ∈ [0, 1] and 𝑋 ∈  . The
ey change in (4) relative to Mailath and von Thadden’s (A5) is the
resence of the informed agent’s effort technology, which alters the 𝑔12
erm.

I perform a Taylor series expansion on 𝑔(𝑒0, 𝑞(𝑒), 𝑋(𝑒)) around
𝑒0, 𝑞(𝑒0), 𝑋(𝑒0)) and simplify the resulting expression to yield

𝑔(𝑒0, 𝑞(𝑒), 𝑋(𝑒)) = 𝑔2(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0))(𝑞(𝑒) − 𝑞(𝑒0))

+ 𝑔3(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0))(𝑋(𝑒) −𝑋(𝑒0))

+ 1
2
𝑔22([𝑒; 𝛾]23)(𝑞(𝑒) − 𝑞(𝑒0))2 +

1
2
𝑔33([𝑒; 𝛾]23)(𝑋(𝑒) −𝑋(𝑒0))2

+ 𝑔23([𝑒; 𝛾]23)(𝑞(𝑒) − 𝑞(𝑒0))(𝑋(𝑒) −𝑋(𝑒0)), (5)

or some 𝛾 ∈ [0, 1]. Substituting (5) into (4),

≥

2(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0))(𝑞(𝑒) − 𝑞(𝑒0)) + 𝑔3(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0))(𝑋(𝑒) −𝑋(𝑒0))

+ 1
2
𝑔22([𝑒; 𝛾]23)(𝑞(𝑒) − 𝑞(𝑒0))2 +

1
2
𝑔33([𝑒; 𝛾]23)(𝑋(𝑒) −𝑋(𝑒0))2

+ 𝑔23([𝑒; 𝛾]23)(𝑞(𝑒) − 𝑞(𝑒0))(𝑋(𝑒) −𝑋(𝑒0))

− (𝑒 − 𝑒0)
{

1
2
𝑔11([𝑒; 𝜃]1)(𝑒 − 𝑒0) + 𝑔12([𝑒;𝜇]23)(𝑞(𝑒) − 𝑞(𝑒0))

+ 𝑔13([𝑒;𝜇]23)(𝑋(𝑒) −𝑋(𝑒0))
}

,

nd dividing through by (𝑒 − 𝑒0),

≥

2(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0))
𝑞(𝑒) − 𝑞(𝑒0)

𝑒 − 𝑒0
+ 𝑔3(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0))

𝑋(𝑒) −𝑋(𝑒0)
𝑒 − 𝑒0

+ 1
2
𝑔22([𝑒; 𝛾]23)

(𝑞(𝑒) − 𝑞(𝑒0))2

𝑒 − 𝑒0
+ 1

2
𝑔33([𝑒; 𝛾]23)

(𝑋(𝑒) −𝑋(𝑒0))2

𝑒 − 𝑒0

+ 𝑔23([𝑒; 𝛾]23)
(𝑞(𝑒) − 𝑞(𝑒0))(𝑋(𝑒) −𝑋(𝑒0))

𝑒 − 𝑒0
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− 1
2
𝑔11([𝑒; 𝜃]1)(𝑒 − 𝑒0) − 𝑔12([𝑒;𝜇]23)(𝑞(𝑒) − 𝑞(𝑒0))

− 𝑔13([𝑒;𝜇]23)(𝑋(𝑒) −𝑋(𝑒0)). (6)

Finally, taking the limit as 𝑒 approaches 𝑒0 from above in (6) gives

0 ≥ 𝑔2(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0)) lim𝑒↘𝑒0

[

𝑞(𝑒) − 𝑞(𝑒0)
𝑒 − 𝑒0

]

+ 𝑔3(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0)) lim𝑒↘𝑒0

[

𝑋(𝑒) −𝑋(𝑒0)
𝑒 − 𝑒0

]

≥ 0.

his condition implies that 𝑋 is differentiable at 𝑒0 and that

𝑔2(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0)) lim𝑒↘𝑒0

[

𝑞(𝑒) − 𝑞(𝑒0)
𝑒 − 𝑒0

]

+ 𝑔3(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0)) lim𝑒↘𝑒0

[

𝑋(𝑒) −𝑋(𝑒0)
𝑒 − 𝑒0

]

= 0.

herefore, I have shown that when 𝑉3(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0)) ≠ 0 and when
𝑋 is continuous at 𝑒0 that 𝑋 is differentiable at this point and the
derivative satisfies

𝑋′(𝑒0) = −
𝑉2(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0)) ⋅ 𝑞′(𝑒0)

𝑉3(𝑒0, 𝑞(𝑒0), 𝑋(𝑒0))
.

o then show that if 𝑒 → 𝑒0 then 𝑉 (𝑒0, 𝑞(𝑒0), 𝑋(𝑒)) → 𝑉 (𝑒0, 𝑞(𝑒0), 𝑋(𝑒0))
the proof follows Mailath and von Thadden’s Lemma D and so will not
be reproduced. The key point to note is that the proof continues to go
through as I have assumed that 𝑞 is continuous and therefore, for each
𝜖 > 0 and 𝑒 ∈  , there is a 𝜃 > 0 such that

𝑒0 ∈  and |𝑒 − 𝑒0| < 𝜃 ⇒ |𝑞(𝑒) − 𝑞(𝑒0)| < 𝜖,

and hence I still have, as required,

|𝑒 − 𝑒0| < 𝜃 → |𝑉 (𝑒0, 𝑞(𝑒), 𝑥) − 𝑉 (𝑒0, 𝑞(𝑒0), 𝑥)| < 𝜖.

Having shown convergence, the final step is to show the continuity of 𝑋
at 𝑒0. For this, Mailath and von Thadden’s proof of Theorem 3 continues
to apply. They employ the compactness of  , the assumption on 𝑉3, and
the Bolzano–Weierstrass Theorem to find a convergent subsequence
within  that demonstrates continuity of 𝑋 at 𝑒0. □

Proof of Lemma 1. Given (IC), an application of Theorem 1 yields the
following differential equation

𝑋′(𝑒) = −
𝑥 ⋅ 𝑞′(𝑒)

𝑞(𝑒) − 𝛿𝑞(𝑒)
|

|

|

|𝑒=𝑒,𝑥=𝑋(𝑒)
= 1

𝛿 − 1
𝑋(𝑒) ⋅ 𝑞′(𝑒)

𝑞(𝑒)
. (7)

ondition (7) is a first-order differential equation
′(𝑒)(1 − 𝛿)𝑞(𝑒) +𝑋(𝑒)𝑞′(𝑒) = 0

nd can, therefore, be solved by separating the variables
𝑋′(𝑒)
𝑋(𝑒)

= 1
𝛿 − 1

𝑞′(𝑒)
𝑞(𝑒)

.

sing integration by parts, this equals

∫
𝑋′(𝑒)
𝑋(𝑒)

𝑑𝑒 = 1
𝛿 − 1 ∫

𝑞′(𝑒)
𝑞(𝑒)

𝑑𝑒

⇒ ln[𝑋(𝑒)] = 1
𝛿 − 1

ln[𝑞(𝑒)] + 𝑐1 = ln
[

𝑞(𝑒)
1

𝛿−1
]

+ 𝑐1.

The right-hand side can be simplified as

ln
[

𝑞(𝑒)
1

𝛿−1
]

+ 𝑐1 = ln
[

𝑒ln
[

𝑞(𝑒)
1

𝛿−1
]

+𝑐1
]

= ln
[

𝑒ln
[

𝑞(𝑒)
1

𝛿−1
]

𝑒𝑐1
]

= ln
[

𝑞(𝑒)
1

𝛿−1 𝑒𝑐1
]

,

which implies 𝑋(𝑒) = 𝑞(𝑒)
1

𝛿−1 𝑐2 where 𝑐2 = 𝑒𝑐1 . For 𝑒 = 𝑒 the firm
will choose 𝑋(𝑒) = 1. Inserting this boundary condition into 𝑋(𝑒) yields

2 = 𝑞(𝑒)
1

1−𝛿 , which is then substituted to give 𝑋(𝑒) = 𝑞(𝑒)
1

𝛿−1 𝑞(𝑒)
1

1−𝛿 =
[𝑞(𝑒)∕𝑞(𝑒)]

1
1−𝛿 . □

roof of Lemma 2. Partially differentiating (3) with respect to the
irm’s choice of effort yields

(𝑒, 𝛿) = 𝛿𝑞′(𝑒) + 𝛿 (1 − 𝛿)𝑞(𝑒)
𝛿

𝛿−1−1𝑞(𝑒)
1

1−𝛿 𝑞′(𝑒) − 1,
4

1 𝛿 − 1
= 𝛿𝑞′(𝑒) + 𝛿
(

1 − 𝛿
𝛿 − 1

)

𝑞(𝑒)
1

𝛿−1 𝑞(𝑒)
1

1−𝛿 𝑞′(𝑒) − 1,

= 𝛿𝑞′(𝑒) − 𝛿
(

𝛿 − 1
𝛿 − 1

)( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
𝑞′(𝑒) − 1,

= 𝛿𝑞′(𝑒) − 𝛿𝑞′(𝑒)
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
− 1,

= 𝛿𝑞′(𝑒)
[

1 −
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
]

− 1.

The cross partial derivative with respect to 𝛿 is

𝒱12(𝑒, 𝛿) = 𝑞′(𝑒) − 𝑞′(𝑒)
[( 𝑞(𝑒)

𝑞(𝑒)

)
1

1−𝛿
+ 𝛿 𝑑

𝑑𝛿

(

1
1 − 𝛿

)( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
ln
( 𝑞(𝑒)
𝑞(𝑒)

)]

,

= 𝑞′(𝑒)
[

1 −
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
]

− 𝑞′(𝑒)
[

𝛿(−1)(1 − 𝛿)−2 𝑑
𝑑𝛿

(

1 − 𝛿
)( 𝑞(𝑒)

𝑞(𝑒)

)
1

1−𝛿
ln
( 𝑞(𝑒)
𝑞(𝑒)

)]

,

= 𝑞′(𝑒)
[

1 −
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
]

− 𝑞′(𝑒)
[

−𝛿
(1 − 𝛿)2

(−1)
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
ln
( 𝑞(𝑒)
𝑞(𝑒)

)]

,

= 𝑞′(𝑒)
[

1 −
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
]

− 𝑞′(𝑒)
[

𝛿
(1 − 𝛿)2

( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
ln
( 𝑞(𝑒)
𝑞(𝑒)

)]

,

= 𝑞′(𝑒)
[

1 −
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
]

− 𝑞′(𝑒) 𝛿
(1 − 𝛿)2

( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
ln
( 𝑞(𝑒)
𝑞(𝑒)

)

.

Note that 𝒱12(𝑒, 𝛿) = 0 since [𝑞(𝑒)∕𝑞(𝑒)]
1

1−𝛿 = 1 and ln[𝑞(𝑒)∕𝑞(𝑒)] = 0. This
implies that [𝑞(𝑒)∕𝑞(𝑒)]

1
1−𝛿 < 1 for all 𝑒 > 𝑒. Therefore, ln[𝑞(𝑒)∕𝑞(𝑒)] < 0

for any 𝑒 > 𝑒 as 𝑞′(𝑒) > 0 and, subsequently, 𝒱12(𝑒, 𝛿) > 0 for all
(𝑒, 𝑒] × (0, 1). □

Proof of Example 1. The firm’s payoff function is

𝒱 (𝑒, 𝛿) = 𝛿(1 + 𝑒𝛼) + (1 − 𝛿)(1 + 𝑒𝛼)
𝛿

𝛿−1 ,

= 𝛿 + 𝛿𝑒𝛼 + (1 + 𝑒𝛼)
𝛿

𝛿−1 − 𝛿(1 + 𝑒𝛼)
𝛿

𝛿−1 .

Note that the cost 𝑒 has been suppressed as it will play no role in the
roof: the result holds for any weakly convex function. The first-order
ondition with respect to effort is

1(𝑒, 𝛿) = 𝛿𝛼𝑒𝛼−1 + (1 − 𝛿)
(

𝛿
𝛿 − 1

)(

1 + 𝑒𝛼
)

𝛿
𝛿−1−1

𝛼𝑒𝛼−1,

= 𝛿𝛼𝑒𝛼−1 − 𝛿𝛼𝑒𝛼−1(1 + 𝑒𝛼)
1

𝛿−1 ,

= 𝛿𝛼𝑒𝛼−1
[

1 −
(

1 + 𝑒𝛼
)

1
𝛿−1

]

.

The second-order condition is

𝒱11(𝑒, 𝛿) = 𝛿(1 − 𝛼)𝛼𝑒𝛼−2 − 𝛿𝛼
[

(𝛼 − 1)𝑒𝛼−2(1 + 𝑒𝛼)
1

𝛿−1

+ 𝑒𝛼−1
(

1
𝛿 − 1

)(

1 + 𝑒𝛼
)

1
𝛿−1−1

𝛼𝑒𝛼−1
]

,

= −𝛿(1 − 𝛼)𝛼𝑒𝛼−2 + 𝛿(1 − 𝛼)𝛼𝑒𝛼−2(1 + 𝑒𝛼)
1

𝛿−1

+
(

𝛿
1 − 𝛿

)

𝛼2𝑒𝛼𝑒𝛼−2(1 + 𝑒𝛼)
1

𝛿−1−1,

= −𝛿(1 − 𝛼)𝛼𝑒𝛼−2
[

1 −
(

1 + 𝑒𝛼
)

1
𝛿−1

]

+
(

𝛿
1 − 𝛿

)

𝛼2𝑒𝛼𝑒𝛼−2(1 + 𝑒𝛼)
1

𝛿−1−1.

Note that the second-order condition has the same sign as the function
𝑔(𝑒), where

(𝑒) ∶=
(

1 + 𝑒𝛼
)

1
𝛿−1

[

1 + 𝛼 𝑒𝛼
]

− 1,

(1 − 𝛿)(1 − 𝛼) (1 + 𝑒𝛼)
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and so the problem is equivalent to showing that 𝑔(𝑒) < 0. Evaluating
𝑔(𝑒) at 𝑒 yields 𝑔(𝑒) = 𝑔(0) = 0. Moreover, 𝑔(𝑒) is strictly decreasing. The
first-order condition is

𝑔′(𝑒) = 1
𝛿 − 1

(

1 + 𝑒𝛼
)

1
𝛿−1−1

𝛼𝑒𝛼−1

+ 𝛼
(1−𝛿)(1−𝛼)

[

𝛼𝑒𝛼−1(1+𝑒𝛼 )−𝑒𝛼𝛼𝑒𝛼−1

(1+𝑒𝛼 )2

(

1 + 𝑒𝛼
)

1
𝛿−1

+ 1
𝛿−1

(

1 + 𝑒𝛼
)

1
𝛿−1−1

𝛼𝑒𝛼−1
(

𝑒𝛼

1+𝑒𝛼

)

]

,

= 𝛼𝑒𝛼−1

(𝛿 − 1)

(

1 + 𝑒𝛼
)

1
𝛿−1−1

+ 𝛼
(1−𝛿)(1−𝛼)

[

𝛼𝑒𝛼−1

(1+𝑒𝛼 )2

(

1 + 𝑒𝛼
)

1
𝛿−1

+ 𝛼𝑒𝛼−1

(𝛿−1)

(

1 + 𝑒𝛼
)

1
𝛿−1−1

(

𝑒𝛼

1+𝑒𝛼

)

]

.

Simplifying further yields

𝑔′(𝑒) = − 𝛼𝑒𝛼−1

(1 − 𝛿)

(

1 + 𝑒𝛼
)

1
𝛿−1−1

+ 𝛼𝑒𝛼−1
(

1 + 𝑒𝛼
)

1
𝛿−1−2

[

𝛼
(1 − 𝛿)(1 − 𝛼)

− 𝛼𝑒𝛼

(1 − 𝛿)2(1 − 𝛼)

]

.

Then, using
1

(1 − 𝛿)
=

(1 − 𝛿)(1 + 𝑒𝛼)
(1 − 𝛿)2(1 + 𝑒𝛼)

and 𝛼
(1 − 𝛿)(1 − 𝛼)

=
𝛼(1 − 𝛿)

(1 − 𝛿)2(1 − 𝛼)
,

implies that

𝑔′(𝑒) = −𝛼𝑒𝛼−1
(

1 + 𝑒𝛼
)

1
𝛿−1−2

[

(1 − 𝛿)(1 + 𝑒𝛼) − 𝛼(1 − 𝛿) + 𝛼𝑒𝛼

(1 − 𝛿)2(1 − 𝛼)

]

,

= −𝛼𝑒𝛼−1
(

1 + 𝑒𝛼
)

1
𝛿−1−2

[

(1 − 𝛿)[1 − 𝛼 + 𝑒𝛼] + 𝛼𝑒𝛼

(1 − 𝛿)2(1 − 𝛼)

]

< 0.

Therefore, 𝑔(𝑒) is a strictly decreasing function over the domain 𝑒 > 0.
Since 𝒱11(𝑒, 𝛿) has the same sign as 𝑔(𝑒), this implies that 𝒱 (𝑒, 𝛿) is
strictly concave in 𝑒. □

Proof of Proposition 1.

(i) I first solve for optimal effort in the symmetric information case.
In this first-best case, the firm sets 𝑋(𝑒) = 1 for all 𝑒. This
yields the problem max𝑒∈ 𝑉 (𝑒, 𝑞(𝑒), 1) = max𝑒∈ 𝑞(𝑒) − 𝑒, which
provides the unique optimal effort 𝑒∗ implicitly defined by the
solution of 𝑞′(𝑒) = 1 since 𝑞′′(𝑒) < 0. The problem under asym-
metric information is max𝑒∈ 𝑉 (𝑒, 𝑞(𝑒), 𝑋(𝑒)) = max𝑒∈ 𝛿𝑞(𝑒)+ (1−
𝛿)𝑞(𝑒)

𝛿
𝛿−1 𝑞(𝑒)

1
1−𝛿 − 𝑒 and, by Lemma 2, optimal effort 𝑒∗(𝛿) is

implicitly defined by the solution to

𝛿𝑞′(𝑒)
[

1 −
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
]

= 1.

Given that 𝒱 is strictly concave, this first-order condition is both
necessary and sufficient. Since 𝛿 < 1 and [𝑞(𝑒)∕𝑞(𝑒)]

1
1−𝛿 < 1 for

all 𝑒 > 𝑒, optimal effort is greater under symmetric information
𝑒∗ > 𝑒∗(𝛿).

(ii) Under the supposition that 𝒱 is strictly concave, Berge’s maxi-
mum theorem implies that optimal effort 𝑒∗(𝛿) is single-valued
and continuous. I can, therefore, use the implicit function theo-
rem to derive this comparative static because max𝑒∈ 𝒱 (𝑒, 𝛿) has
a unique maximiser. The second-order condition is

𝒱11(𝑒, 𝛿) = 𝛿𝑞′′(𝑒) − 𝛿𝑞(𝑒)
1

1−𝛿

[

𝑞′′(𝑒)𝑞(𝑒)
1

𝛿−1 + 𝑞′(𝑒)
(

1
𝛿 − 1

)

𝑞(𝑒)
1

𝛿−1
−1𝑞′(𝑒)

]

,

= 𝛿𝑞′′(𝑒)
[

1 −
( 𝑞(𝑒))

1
1−𝛿

]

+ 𝑞′(𝑒)
(

𝛿
)(

𝑞′(𝑒)
)( 𝑞(𝑒))

1
1−𝛿

.

5

𝑞(𝑒) 1 − 𝛿 𝑞(𝑒) 𝑞(𝑒) S
Consequently, an application of the implicit function theorem
yields

𝑑
𝑑𝛿

𝑒∗(𝛿) = −

[ 𝑞′(𝑒)
[

1 −
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
]

− 𝑞′(𝑒) 𝛿
(1−𝛿)2

( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿 ln
( 𝑞(𝑒)
𝑞(𝑒)

)

𝛿𝑞′′(𝑒)
[

1 −
( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿
]

+ 𝑞′(𝑒)
( 𝛿
1−𝛿

)( 𝑞′(𝑒)
𝑞(𝑒)

)( 𝑞(𝑒)
𝑞(𝑒)

)
1

1−𝛿

]

.

The numerator is positive by Lemma 2 and the denominator
is negative by the assumption of strict concavity. Therefore,
𝑑
𝑑𝛿 𝑒

∗(𝛿) > 0 for 𝑒 > 𝑒.
(iii) Since 𝒱 is continuous, strict concavity implies that I can use the

envelope theorem to derive

𝜕
𝜕𝛿

𝒱 (𝑒, 𝛿)||
|𝑒=𝑒∗(𝛿)

= 𝑞(𝑒∗(𝛿)) + 𝑞(𝑒∗(𝛿)) 1
(1 − 𝛿)2

( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)
1

1−𝛿
ln
( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)

− 𝑞(𝑒∗(𝛿))
[( 𝑞(𝑒)

𝑞(𝑒∗(𝛿))

)
1

1−𝛿
+ 𝛿

(1 − 𝛿)2

( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)
1

1−𝛿
ln
( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)]

.

Taking common factors and simplifying yields

𝑞(𝑒∗(𝛿))
[

1 −
( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)
1

1−𝛿
]

+ 𝑞(𝑒∗(𝛿))
(1 − 𝛿)
(1 − 𝛿)2

( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)
1

1−𝛿

ln
( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)

= 𝑞(𝑒∗(𝛿))
[

1 −
( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)
1

1−𝛿
]

+ 𝑞(𝑒∗(𝛿)) 1
1 − 𝛿

( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)
1

1−𝛿

ln
( 𝑞(𝑒)
𝑞(𝑒∗(𝛿))

)

.

Now, define 𝑦 ∶= 𝑞(𝑒)∕𝑞(𝑒∗(𝛿)) and note that, since 𝑞(𝑒∗(𝛿)) > 𝑞(𝑒)
for all 𝑒∗(𝛿) > 𝑒, 𝑦 ∈ (0, 1). Moreover, as 𝑞(⋅) is just a positive
constant, showing that the value function is increasing in 𝛿 is
equivalent to showing that 𝑓 (𝑦) > 0, where, by taking common
factors,

𝑓 (𝑦) ∶= 1 − 𝑦
1

1−𝛿 + 1
1 − 𝛿

𝑦
1

1−𝛿 ln(𝑦).

I first find the limit values of 𝑓 (𝑦) and then show that this
function is strictly decreasing from one limit value to another.
Using L’Hopital’s rule, the upper limit is

lim
𝑦→0

𝑓 (𝑦) = 1 − lim
𝑦→0

𝑦
1

1−𝛿 + 1
1 − 𝛿

lim
𝑦→0

𝑦
1

1−𝛿 ln(𝑦) = 1 + 1
1 − 𝛿

lim
𝑦→0

𝑦
1

1−𝛿 ln(𝑦),

= 1 + 1
1 − 𝛿

lim
𝑦→0

ln(𝑦)

𝑦
1

𝛿−1

= 1 + 1
1 − 𝛿

lim
𝑦→0

𝑑
𝑑𝑦

ln(𝑦)

𝑑
𝑑𝑦
𝑦

1
𝛿−1

,

= 1 + 1
1 − 𝛿

lim
𝑦→0

1
𝑦

( 1
𝛿−1

)𝑦
1

𝛿−1
−1

,

= 1 + 1
1 − 𝛿

lim
𝑦→0

1

( 1
𝛿−1

)𝑦
1

𝛿−1

,

= 1 + 𝛿 − 1
1 − 𝛿

lim
𝑦→0

𝑦
1

1−𝛿 ,

= 1 − lim
𝑦→0

𝑦
1

1−𝛿 ,

= 1.

The lower limit is

lim
𝑦→1

𝑓 (𝑦) = 1 − 1 + 1
1 − 𝛿

ln(1) = 0.

Finally, note that 𝑓 (𝑦) is strictly decreasing as

𝑓 ′(𝑦) = −
(

1
1 − 𝛿

)

𝑦
1

1−𝛿
−1 +

(

1
1 − 𝛿

)[(

1
1 − 𝛿

)

𝑦
1

1−𝛿
−1 ln(𝑦) + 𝑦

1
1−𝛿

1
𝑦

]

,

= −
(

1
1 − 𝛿

)

𝑦
𝛿

1−𝛿 + 1
(1 − 𝛿)2

𝑦
𝛿

1−𝛿 ln(𝑦) +
(

1
1 − 𝛿

)

𝑦
𝛿

1−𝛿 ,

= 1
(1 − 𝛿)2

𝑦
𝛿

1−𝛿 ln(𝑦) < 0.

Taken together, these results imply that 𝑓 (𝑦) is a strictly decreas-
ing function that goes from a limit value of 𝑓 (0) = 1 to a limit
value of 𝑓 (1) = 0. Therefore, 𝑓 (𝑦) > 0 for all 𝑦 ∈ (0, 1) and
𝛿 ∈ (0, 1) and I can conclude that 𝜕

𝜕𝛿𝒱 (𝑒, 𝛿)||
|𝑒=𝑒∗(𝛿)

> 0.
uppose arg max𝑒∈ 𝒱 (𝑒, 𝛿) in nonempty.
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A

A

B

B

C

C
C
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(iv) By Lemma 2, 𝒱 has increasing marginal returns. Therefore,
Theorem 1 and Corollary 1 of Edlin and Shannon (1998) im-
plies that any interior selection of the argmax will be strictly
increasing. □

eferences

ffinito, M., Tagliaferri, E., 2010. Why did (or do) banks securtize their loans? Evidence
from Italy. J. Financial Stabil. 6 (1), 189–202.

gostino, M., Mazzuca, M., 2009. Why did banks securtize? Evidence from Italy.
Bancaria 9, 18–38.

annier, C.E., Hansel, D.N., 2008. Determinents of European banks’ engagement in loan
securitization. Technical Report 10, Deutsche Bundesbank.

iais, B., Mariotti, T., 2005. Strategic liquidity supply and security design. Rev. Econ.
Stud. 72, 615–649.

ardone-Riportella, C., Samaniego-Medinab, R., Trujillo-Ponceb, A., 2010. What drives
bank securitisation? The Spanish experience. J. Bank. Finance 34, 2639–2651.

errato, M., Choudhry, M., Crosby, J., Olukuru, J., 2012. Why do UK banks securitize?.
hemla, G., Hennessy, C.A., 2014. Skin in the game and moral hazard. J. Finance 69

(4), 1597–1641.
aley, B., Green, B., Vanasco, V., 2020. Securitization, ratings, and credit supply. J.

Finance 75 (2), 1037–1082.
6

Daley, B., Green, B., Vanasco, V., 2023. Designing securities for scrutiny. Rev. Financ.
Stud. 36 (9), 3693–3737.

DeMarzo, P.M., 2005. The pooling and tranching of securities: A model of informed
intermediation. Rev. Financial Stud. 18, 1–35.

DeMarzo, P., Duffie, D., 1999. A liquidity-based model of security design. Econometrica
67, 65–99.

Edlin, A.S., Shannon, C., 1998. Strict monotonicity in comparative statics. J. Econ.
Theory 81, 201–219.

Hartman-Glaser, B., Piskorski, T., Tchistyi, A., 2012. Optimal securitization with moral
hazard. J. Financ. Econ. 104 (1), 186–202.

In, Y., Wright, J., 2017. Signaling private choices. Rev. Econ. Stud. 1, 1–24.
Kohlberg, E., Mertens, J.-F., 1986. On the strategic stability of equilibria. Econometrica

54 (5), 1003–1037.
Mailath, G.J., von Thadden, E.-L., 2013. Incentive compatibility and differentiability:

New results and classic applications. J. Econ. Theory 143, 1841–1861.
Malamud, S., Rui, H., Whinston, A., 2013. Optimal incentives and securitization of

defaultable assets. J. Financ. Econ. 107 (1), 111–135.
Malekan, S., Dionne, G., 2014. Securitization and optimal retention under moral hazard.

J. Math. Econ. 55, 74–85.
Martin-Oliver, A., Saurina, J., 2007. Why do banks securitize assets.
Myerson, R.B., 1978. Refinements of the Nash equilibrium concept. Internat. J. Game

Theory 7 (2), 73–80.
Vanasco, V., 2017. The downside of asset screening for market liquidity. J. Finance 72

(5), 1937–1982.

http://refhub.elsevier.com/S0165-1765(24)00056-9/sb1
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb1
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb1
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb2
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb2
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb2
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb3
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb3
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb3
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb4
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb4
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb4
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb5
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb5
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb5
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb6
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb7
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb7
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb7
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb8
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb8
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb8
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb9
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb9
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb9
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb10
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb10
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb10
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb11
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb11
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb11
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb12
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb12
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb12
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb13
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb13
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb13
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb14
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb15
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb15
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb15
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb16
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb16
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb16
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb17
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb17
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb17
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb18
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb18
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb18
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb19
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb20
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb20
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb20
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb21
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb21
http://refhub.elsevier.com/S0165-1765(24)00056-9/sb21

	Unobservable costly effort in security design
	Introduction
	Model
	Analysis
	Results
	Discussion
	Declaration of competing interest
	Data availability
	Appendix. Proofs
	References


