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Abstract. Benford’s Law is a statistical regularity of a large number of datasets;
assessing the compliance of a large dataset with the Benford’s Law is a theme of re-
markable relevance, mainly for its practical consequences. Such a task can be faced
by introducing a statistical distance concept between the empirical distribution of the
data and the random variable associated with Benford’s Law. This paper deals with
the problem of measuring the compliance of a random variable – which can be seen
as describing the empirical distribution of a collection of data – with the Benford’s
Law. It proposes a statistical methodology for detecting the critical values related to
conformity/nonconformity with Benford’s Law in some well-established cases of statis-
tical distance. The followed approach is grounded on the proper selection of a family
of parametric random variables – the lognormal distribution, in our case – and of a
reference statistical distance concept – mean absolute deviation. A discussion of the
obtained results is carried out on the ground of the existing literature. Moreover, some
open problems are also presented.
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1. Introduction

In the current debate on data science and its application, a relevant role is played by
the assessment of specific statistical regularities of the explored samples. In this con-
text, one has to mention the so-called Benford’s Law (BL, hereafter), which has been
observed in [31] and formalized in [5]. BL states that the first non zero digits of the
numbers contained in a large dataset follow a peculiar distribution, giving higher fre-
quencies to smaller digits. Other versions of BL can be presented for the second digit
and the first two digits (and also more than this), but they are out of the scopes of the
present paper. For a detailed view of the BL, we refer to some very relevant monographs
on the matter (see [7, 21, 25, 34]). For a mathematical treatment of such a law, see e.g.
[6, 8, 19, 20].
The popularity of BL – recently acknowledged in a formal way by [29] – is grounded on
two main roots. By one side, BL is found to be valid in an incredibly large number of
situations and from various scientific contexts like finance (see e.g. [1, 10, 12, 23, 28, 38]),
economics (see e.g. [3, 30, 35, 42]), accounting (see e.g. [16, 33]), geophysics and hy-
drology (see e.g. [2, 13, 39]), electoral studies (see e.g. [11, 24, 36]) and other relevant
fields in social science (see e.g. [4, 26, 27]). Under this perspective, we point out that
the original contribution in [5] itself contains the analysis of more than 20 thousand data
coming from twenty different contexts, and highlights the presence of BL in the most
part of the considered datasets; by the other side, BL allows to carry out very intuitive
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conclusions on the dataset, mainly when it is not valid. Indeed, the non-compliance of a
set of numbers with BL calls for a more detailed exploration of such a set. In particular,
it is reasonably assumed that the standard case is the validity of BL, so that being out
from the BL may suggest that data have been manipulated. Of course, this statement
is true under some conditions for the considered data, like having a range of variation
with a uniform distribution of several orders of magnitude, being the outcome of sev-
eral random processes with different probability distributions or being the outcome of
a large number of processes of multiplicative type (see e.g. [18]). Obviously, there are
no scientific reasons to claim a one-to-one relationship between data manipulation and
lack of compliance with BL. However, one can see the invalidity of BL as an occurrence
which deserves further research. Thus, BL is often associated with fraud detection and
data manipulation (see, e.g. [21] and also the papers quoted above).
In the described framework, a task of crucial relevance is the statistical methodology
to be used for assessing the compliance of a statistical variable with BL. By introduc-
ing the empirical distribution associated to the considered statistical variable and the
random variable related to BL, one can face such a task by measuring the statistical
distance between two random variables. There are many classical statistical distance
concepts that can be used to this scope. The most popular ones are chi-square, Mean
Absolute Deviation (MAD) and Sum of Squared Deviations (SSD). The compliance of a
given random variable with BL is statistically proved when the value of the considered
statistical distance is below a critical threshold. Needless to say, the value of the critical
threshold depends on the employed concept of statistical distance.
In [34], there is a long discussion on statistical distances and critical thresholds. The
author states that MAD should be preferred to the chi-square test. Moreover, [34] up-
dates the results obtained by [15] and identifies some ranges of variation of the value
of MAD to have close/acceptable/marginally acceptable conformity with BL and non-
conformity with BL. The distinction of four cases leads to three critical thresholds (see
[34], Table 7.1). Analogously, [21] identifies some critical thresholds of SSD for having
perfect/acceptable/marginal conformity and nonconformity with BL. The argument is
similar to the one in [34]: MAD and SSD have the common feature to measure the
statistical distance between two distributions, with no regard to the sample size.
Unfortunately, there is not an analytical way to derive the critical values associated to
MAD and SSD, and the empirical experiments performed by Kossovsky and Nigrini –
along with their wisdom and outstanding role in the scientific environment surrounding
BL – allow to take for good the proposed critical thresholds (see e.g. [41]). It would be
interesting to assess the consistency between the identified critical thresholds for MAD
and SSD so that the same dataset has the same level of compliance with BL when
evaluated through MAD or SSD. However, to the best of our knowledge, a reliable and
rigorous comparison between the critical values of the statistical distances mentioned
above is still missing.
This paper fills this gap. Indeed, in accord with [34], we here set MAD as reference
statistical distance concept and explore the behavior of chi-square statistical distance
and SSD with respect to MAD. Taking MAD as reference distance is a good choice also
for a mathematical reason. In fact, the value of MAD between two random variables is
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bounded, with lower bound equals to zero and upper bound that can be easily computed
for the BL (see Section 2).
Furthermore, MAD, SSD and chi-square statistical distance share the same perspective
of aggregating the differences – in absolute value or quadratic – between the probabili-
ties, without modifying them through functional transformations, like in the logarithmic
case of the Kullback-Leibler divergence. This property allows a direct comparison among
their critical values.
The followed approach is based on the computation of MAD between BL and some
random variables which depend on a parameter, by letting the parameter change. The
selection of the family of parametric random variables is implemented in a proper way
so that assigning several values to the parameters leads to values of MAD giving a fine
discretization of its range of variation. Then, chi-square and SSD are computed over the
same set of random variables, so that a direct comparison between their values and the
corresponding value of MAD can be carried out.
In the random variables selection phase, we provide some convincing arguments on the
suitability of the lognormal distribution logN(µ, σ) with a fixed µ and taking σ as the
varying parameter.
Results give an effective device for translating the critical values of MAD in the critical
values of chi-square and SSD. Of course, the general idea behind our statistical methodol-
ogy can be applied to any statistical distance concept and also to other reference random
variables – not necessarily BL.
The rest of the paper is organized as follows. Section 2 provides the statistical framework
we deal with, with the main preliminaries and notation. Section 3 outlines the method-
ology used for carrying out the analysis. Section 4 is devoted to the illustration of the
results and also gives a discussion of them. Section 5 offers some conclusive remarks and
introduces some open problems. Appendix A reports the comparison table between the
considered statistical distance measures.

2. The statistical framework

Consider a random variable XBL with nonnegative support such that

δ(d) := P (fBL(d)) = log10

(
1 +

1

d

)
, ∀d = 1, . . . , 9, (1)

where fBL(d) is the event {first digit of XBL = d}.
The components of the vector δ := (δ(1), . . . , δ(9)) form a probability distribution over

the set {1, . . . , 9}, according to formula (1). Such a distribution is called Benford’s Law
(BL, hereafter), and the random variable XBL is the Benford’s variable. Of course, there
exist infinite Benford’s variables. Hereafter, we will refer to XBL as one of the elements
of the set of random variables satisfying (1).

Let us now consider another random variable Y with nonnegative support and denote
by fY (d) the event {first digit of Y = d}. Define γY (d) := P (fY (d)) and the vector γY :=
(γY (1), . . . , γY (9)). Also in this case, γY is a probability distribution over {1, . . . , 9}.
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We define the difformity of a random variable Y with respect to the Benford’s variable
XBL as the statistical distance between the distributions of their first digits, namely δ
and γY . The employed concept of distance rules the conceptualization of difformity.

In the context we deal with, we will use the Mean Absolute Deviation (MAD, hereafter)
as the reference difformity measure. For a given random variable Y the MAD with
respect to the Benford’s variable is defined as the arithmetic mean of the component-
wise deviations between δ and γY :

MAD(XBL, Y ) =
1

9

9∑
d=1

|δ(d)− γY (d)| . (2)

MAD is a common measure and test statistics in BL literature. In [15], the authors
propose a method and the corresponding MAD empirical critical thresholds to assess
the compliance of data with BL. Moreover, in [34] the thresholds are updated, and the
justification of the use of MAD is clarified: tests based on MAD thresholds do not suffer
from the high reject ratio produced by other standard tests in case of large samples.

Therefore, in this specific case, the following result holds true.

Proposition 1. The random variable Ȳ with the maximum difformity with respect to
the Benford’s variable is such that

γȲ (d) =

{
0 for d = 1, . . . , 8
1 for d = 9

(3)

Proof. The distribution Ȳ which maximizes the MAD with respect to the BL solves the
optimization problem

max
γ(d),d=1,...,9

9∑
d=1

|γ(d)− δ(d)| (4)

with the constraints 
9∑
d=1

γ(d) = 1

γ(d) ≥ 0, d = 1, . . . , 9
(5)

The problem (4-5) can be easily linearized; therefore the solution lays on the vertexes
of the admissible set (or in a convex combinations of the vertexes). The vertex of the
admissible set are such that one element of γ is equal to 1, whereas all the other are null.
Let k be index of the unit component, the MAD on the vertex k is∑

d6=k

δ(d) + 1− δ(k) = 1− δ(k) + 1− δ(k) = 2(1− δ(k))

which is maximized for the smallest value of δ(d), i.e. δ(9), therefore, the k which maxi-
mizes the MAD is 9, leading to define the random variable Ȳ with the maximum diffor-
mity with respect to the Benford’s variable as the one satisfying (3). �

There is an infinite number of random variables satisfying (3), like for example U(9, 10);
U(9 × 10k, 10k+1), ∀k ∈ Z; the Dirac mass (see [14]) δDirac(x − γ), with γ ∈ (9 ×
10k, 10k+1), ∀k ∈ Z. Thus, we will refer hereafter to Ȳ as one of the elements of the set
of the random variables satisfying (3).
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The definition of the random variable Ȳ through (3) leads to the upper bound for the
MAD between the random variables XBL and Ȳ . Specifically,b

MAD(XBL, Ȳ ) =
1

9

9∑
d=1

|δ(d)− γȲ (d)| = 2

9
(1− δ(9)) ≈ 0.21. (6)

Thus, for each random variable Y , formula (6) assures that MAD(XBL, Y ) ∈ [0, 0.21],
where the corner cases are

MAD(XBL, Y ) = 0 for Y = XBL; MAD(XBL, Y ) = 0.21 for Y = Ȳ .

MAD will be compared with other well-established statistical distance measures, which
are often used for assessing the compliance of a random variable with the BL. In partic-
ular, we consider the following ones.

• Sum of Squared Deviations (SSD):

SSD(XBL, Y ) =
9∑
d=1

(δ(d)− γY (d))2; (7)

• χ2:

χ2(XBL, Y ) =
9∑
d=1

(δ(d)− γY (d))2

δ(d)
. (8)

Interestingly, Eq. (8) presents the χ2 “distance” or “deviation“ or “dissimilarity“, i.e.
a measure of the difference between two distributions. Such a distance is also denoted
as Neyman χ2 distance (see e.g. [9]), and it is widely used for applications (see e.g.
[22, 32]). Also the selection of the χ2 as in (8) meets the requirement of measuring the
dissimilarity between distributions, without being affected by the sample size. This is
consistent with the arguments provided by [34] and avoids the common issue related to
test statistics, which tend to be too powerful with large samples, yielding to reject the
BL too often.

3. Methodology

This section outlines the methodology employed for exploring the relationship between
the MAD and the other statistical distance measures used for assessing the compliance
with the BL.

The followed approach can be described in a step-wise form.

• We select a family of random variables with nonnegative support and depen-
dent on some parameters – we here take only one real parameter α. We de-
note the generic random variables with parameter α by Y (α). The probability
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γY (α)(d), d = 1, . . . , 9 can be computed through the bilateral series

γY (α)(d) =
+∞∑

h=−∞

P
[
d · 10h ≤ Y (α) < (d+ 1) · 10h

]
=

=
+∞∑

h=−∞

[
FY (α)

(
(d+ 1) · 10h

)
− FY (α)

(
d · 10h

)]
, (9)

where FY (α) : R → [0, 1] is the cumulative distribution function of the random
variable Y (α).
Therefore, the probability distribution γ of the first digit can be numerically
approximated through (9) with great precision (see below).
The selection of such a family is implemented in a proper way (see the next step
and the details in the next section).
• We compute the MAD between Y (α) and XBL by letting the value of α vary.

Specifically, we consider α = α1, . . . , αn and denote MADk := MAD(XBL, Y (αk)),
for each k = 1, . . . , n. The selection of the family of random variable (Y (α) : α ∈
R) and of the set {α1, . . . , αn} are such that the discrete set {MAD1, . . . ,MADn}
represents a fine discretization of the range of variation of the MAD, i.e. [0, 0.21].
As we will see in the next section, we consider the lognormal random variables
Y ∼ logN(µ, σ), by conveniently fixing the value of µ and letting σ play the role
of parameter α.
• We compute SSDk := SSD(XBL, Y (αk)) and χ2

k := χ2(XBL, Y (αk)) according to
formulas (7) and (8), respectively, for each k = 1, . . . , n.
• We compare SSDk and χk with MADk for each k = 1, . . . , n. In so doing, we

derive the relationship between the values of the MAD’s and the ones of the other
considered statistical distance measures.

The bilateral sum in (9) is truncated from −H to H, where H is increasing with the
parameters σ and µ, to account for dispersion and magnitude. For the results that will
be presented in the next section, we set

H = d|log10

(
eσ+ 1

2
µ
)
|e+ 3,

where d·e is the ceil function, and the additional 3 widens the range by 3 orders of
magnitudes (this helps in assuring to span the relevant range, with a small additional
computational cost). From many preliminary numerical trials, this bounds have proven
to provide a high accuracy and a good trade-off between computational speed and pre-
cision; the probability left outside these bounds is negligible.

4. Results and discussion

As already preannounced in the previous section, we identify the family of the random
variables to be used in the analysis. We select the lognormal distribution logN(µ, σ)
with a fixed value of µ and by letting the σ vary. It is well known that the lognormal
distribution gets closer to BL as the parameter σ increases, as shown by simulation
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Figure 1. Difformity values for the lognormal logN(µ, σ), for σ = 0.5
(blue), σ = 0.65 (green), σ = 0.8 (red), σ = 1 (cyan).

studies (see, e.g. [17] and [37]). To further support such a choice, we present some
preliminary investigations of the lognormal random variable in our context.

At this aim, we tackle the problem by analyzing how changing the two parameters
affects the statistical distance between the lognormal random variable and the Benford’s
one.

In this respect, the parameter µ seems not to play a relevant role in determining the
values of the considered statistical distance measures. Indeed, we notice the weak effect
of the variation in µ highlighted in Table 1.

Table 1. Values of MAD between the lognormal random variable and
the Benford’s variable for different values of the parameters µ and σ.

µ \ σ 0.1 0.2 0.4 0.8 1.6
0.5 0.149391 0.116816 0.077774 0.013022 0.000010
1 0.155075 0.135506 0.070392 0.011353 0.000009
2 0.173548 0.135200 0.069979 0.011294 0.000009
4 0.166567 0.135780 0.077769 0.013022 0.000010
8 0.154955 0.134495 0.076634 0.012235 0.001562

Such an argument is further supported by Figure 1, where the effect of µ on the
statistical distances for various values of the parameter σ is shown. Note that all the
statistical distances – and not only MAD – remain bounded on a band for a given value
of σ. Observe that a modification of µ is equivalent to a rescaling of the variable so that
increasing µ by a quantity – say θ ∈ R – is equivalent to multiplying the random variable
by eθ. Hence, the fact that the statistical distance is not constant with respect to µ – and,
therefore, with respect to the scale factor eθ applied to the lognormal random variable –
confirms that the distribution of the first digit of the lognormal is not scale-invariant.

However, the statistical distances are bounded on a very narrow strip depending on the
value of the parameter σ. This supports that the key parameter governing the statistical
distance of the lognormal from the Benford’s variable is σ.

The value of µ for the lognormal random variables is conveniently set to µ = log(9.5)
while – as already stated above – the parameter σ plays the role of the varying parameter
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Figure 2. Values of various statistical distances for the corresponding
MAD thresholds reportd in Table 2. µ = ln 9.5. In the right panes a
magnified region is displayed. Here the vertical lines correspond to the
Nigrini critical values for MAD. In the top right panel, the horizontal lines
correspond to the Kossovsky critical values for SSD.

α, so that logN(log(9.5), σ) = Y (α) by setting σ = α. Indeed, by selecting µ = log(9.5),
one observes an increasing similarity as σ → 0+ between logN(log(9.5), σ) and the Dirac
mass assigning unitary probability to x = 9.5, which then satisfies (3). Therefore, a
proper selection of α1, . . . , αn leads to a fine discretization of [0, 0.21], which is the range
of variation of the MAD.

Table 2 in Appendix A reports the results of the analysis, while Figure 2 offers the
graphical representation of the relationship between the values of MAD and those of the
other considered statistical distances.

Observe that the expertise-driven critical values proposed by Nigrini [34] and Kossovsky [21]
can now be compared. Although they seem to be reasonably coupled in both cases, they
do not exactly correspond to each other. In fact, while the close conformity threshold by
Kossovsky is more severe than the one by Nigrini, the other two thresholds are less strict.
So this comparison allows us to conclude that the two ways those authors consider the
conformity to BL may depend on their experience and their insights.

Interestingly, one can also observe a non-regular behaviour of the relationship between
MAD and both SSD and chi-square, with a small jump around MAD=0.12 and an
increasing rate of growth of SSD and chi-square as MAD increases.
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5. Conclusions and open questions

This paper provides a methodological framework for a rigorous comparison the critical
values of three well-established statistical distances – i.e., MAD, SSD and chi-square –
which are commonly used for assessing the compliance with the BL. According to the
compliance critical values proposed in [34], we take MAD as reference statistical distance.
In comparing MAD with SSD, we also include a discussion on the conformity thresholds
introduced by [21].

Our setting and the obtained results open new questions, rather than writing a final
word on the problem of the compliance of data to the BL. Indeed, due to the relevant
consequences of the findings of nonconformity in forensic activity, the different interpre-
tations of the concept of compliance with the BL can leave room to different conclusions
about the data. Our contribution allows to convert the MAD results into SSD ones
easily and vice-versa.

Furthermore, our study is associated with a deep analysis of the distribution of the first
significant digit of the lognormal random variables. In fact, although some simulated
results are available in the reference literature (e.g., see [17]), this paper eliminates
the Monte Carlo errors completely by providing a numerical analysis of the first digit
distribution (through the computation of (9)). This is a methodological contribution
which can be generalized to any distribution with nonnegative support, hence allowing
the statistical-probabilistic study of the compliance with BL in a broad set of contexts.

Lastly, the employed methodology can be extended to the distribution of the first k
significant digits of the elements of a large enough dataset, with k = 1, 2, . . .. Even if
this will add complexity to the analysis, it would also allow discussing the critical values
for compliance with the BL provided by Nigrini [34] and Kossovsky [21] for the first two
and three digits.
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Appendix A. Comparison table

Table 2: Correspondence table between the MAD and the
other statistical distances: SSD and χ2. Also, the param-
eter σ of the lognormal distribution is shown. In bold the
critical MAD values for Nigrini [34] and the critical SSD
values for Kossovsky [21] – i.e., 0.006, 0.012, 0.015 and
0.0002, 0.0025, 0.0101 for close/acceptable/marginally
acceptable conformity with BL, respectively. Due to the
discretization on MAD, the highest critical value for SSD
is indicated as 0.0101, rather than as 0.01 as it is reported
in [21].

MAD thresholds σ SSD χ2

0.001 1.1460 0.0000 0.0001
0.002 1.0617 0.0001 0.0004
0.003 1.0091 0.0001 0.0009
0.004 0.9701 0.0002 0.0016
0.005 0.9387 0.0003 0.0024
0.006 0.0018 0.0005 0.0035
0.007 0.8893 0.0006 0.0048
0.008 0.8688 0.0008 0.0062
0.009 0.8505 0.0010 0.0079
0.010 0.8337 0.0013 0.0097
0.011 0.8180 0.0016 0.0118
0.012 0.0072 0.0019 0.0140
0.013 0.7903 0.0022 0.0164
0.014 0.7774 0.0025 0.0191
0.015 0.0113 0.0029 0.0219
0.016 0.7541 0.0033 0.0249
0.017 0.7432 0.0037 0.0281
0.018 0.7328 0.0042 0.0315
0.019 0.7227 0.0047 0.0351
0.020 0.7130 0.0052 0.0390
0.021 0.7038 0.0057 0.0429
0.022 0.6947 0.0062 0.0472
0.023 0.6862 0.0068 0.0515
0.024 0.6777 0.0074 0.0561
0.025 0.6696 0.0080 0.0609
0.026 0.6615 0.0087 0.0659
0.027 0.6539 0.0094 0.0710
0.028 0.6463 0.0101 0.0764
0.029 0.6389 0.0108 0.0820
0.030 0.6315 0.0116 0.0879
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MAD thresholds σ SSD χ2

0.031 0.6246 0.0124 0.0938
0.032 0.6177 0.0132 0.0999
0.033 0.6107 0.0140 0.1064
0.034 0.6040 0.0149 0.1130
0.035 0.5973 0.0158 0.1199
0.036 0.5909 0.0167 0.1269
0.037 0.5847 0.0176 0.1340
0.038 0.5782 0.0186 0.1417
0.039 0.5722 0.0195 0.1491
0.040 0.5660 0.0205 0.1571
0.041 0.5600 0.0216 0.1651
0.042 0.5540 0.0226 0.1734
0.043 0.5480 0.0237 0.1821
0.044 0.5422 0.0248 0.1907
0.045 0.5364 0.0259 0.1996
0.046 0.5306 0.0271 0.2088
0.047 0.5249 0.0283 0.2184
0.048 0.5191 0.0295 0.2283
0.049 0.5136 0.0307 0.2380
0.050 0.5080 0.0319 0.2481
0.051 0.5025 0.0332 0.2585
0.052 0.4969 0.0345 0.2692
0.053 0.4914 0.0358 0.2801
0.054 0.4859 0.0372 0.2914
0.055 0.4808 0.0384 0.3021
0.056 0.4755 0.0398 0.3135
0.057 0.4704 0.0411 0.3247
0.058 0.4653 0.0424 0.3361
0.059 0.4602 0.0438 0.3478
0.060 0.4554 0.0451 0.3593
0.061 0.4503 0.0465 0.3715
0.062 0.4452 0.0479 0.3841
0.063 0.4404 0.0493 0.3963
0.064 0.4355 0.0506 0.4088
0.065 0.4305 0.0521 0.4221
0.066 0.4256 0.0535 0.4351
0.067 0.4208 0.0549 0.4484
0.068 0.4157 0.0564 0.4625
0.069 0.4108 0.0578 0.4763
0.070 0.4060 0.0592 0.4904
0.071 0.4012 0.0607 0.5047
0.072 0.3961 0.0622 0.5200
0.073 0.3912 0.0636 0.5349
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MAD thresholds σ SSD χ2

0.074 0.3864 0.0651 0.5501
0.075 0.3815 0.0666 0.5656
0.076 0.3765 0.0681 0.5821
0.077 0.3716 0.0695 0.5982
0.078 0.3665 0.0711 0.6154
0.079 0.3617 0.0725 0.6322
0.080 0.3566 0.0740 0.6501
0.081 0.3515 0.0755 0.6684
0.082 0.3465 0.0770 0.6870
0.083 0.3411 0.0786 0.7070
0.084 0.3361 0.0801 0.7265
0.085 0.3308 0.0817 0.7474
0.086 0.3254 0.0832 0.7689
0.087 0.3201 0.0847 0.7909
0.088 0.3146 0.0863 0.8145
0.089 0.3093 0.0879 0.8377
0.090 0.3035 0.0895 0.8637
0.091 0.2977 0.0912 0.8906
0.092 0.2920 0.0928 0.9184
0.093 0.2860 0.0945 0.9484
0.094 0.2797 0.0963 0.9808
0.095 0.2733 0.0982 1.0158
0.096 0.2668 0.1001 1.0525
0.097 0.2599 0.1021 1.0938
0.098 0.2527 0.1043 1.1389
0.099 0.2451 0.1067 1.1900
0.100 0.2370 0.1093 1.2480
0.101 0.2283 0.1123 1.3160
0.102 0.2223 0.1145 1.3661
0.103 0.2177 0.1162 1.4067
0.104 0.2130 0.1181 1.4494
0.105 0.2084 0.1200 1.4942
0.106 0.2038 0.1220 1.5414
0.107 0.1990 0.1242 1.5937
0.108 0.1943 0.1264 1.6463
0.109 0.1895 0.1289 1.7048
0.110 0.1847 0.1315 1.7669
0.111 0.1796 0.1344 1.8363
0.112 0.1745 0.1375 1.9104
0.113 0.1692 0.1410 1.9935
0.114 0.1636 0.1450 2.0871
0.115 0.1579 0.1495 2.1929
0.116 0.1516 0.1548 2.3180
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MAD thresholds σ SSD χ2

0.117 0.1450 0.1612 2.4666
0.118 0.1373 0.1694 2.6567
0.119 0.1281 0.1810 2.9232
0.120 0.1154 0.2009 3.3725
0.121 0.1092 0.2128 3.6380
0.122 0.1064 0.2186 3.7676
0.123 0.1036 0.2249 3.9051
0.124 0.1009 0.2315 4.0514
0.125 0.0981 0.2386 4.2072
0.126 0.0967 0.2424 4.2890
0.127 0.0956 0.2456 4.3592
0.128 0.0942 0.2496 4.4460
0.129 0.0928 0.2537 4.5359
0.130 0.0916 0.2573 4.6132
0.131 0.0902 0.2617 4.7089
0.132 0.0891 0.2656 4.7914
0.133 0.0877 0.2703 4.8936
0.134 0.0866 0.2744 4.9817
0.135 0.0852 0.2795 5.0912
0.136 0.0840 0.2840 5.1856
0.137 0.0829 0.2885 5.2831
0.138 0.0815 0.2942 5.4044
0.139 0.0803 0.2992 5.5092
0.140 0.0792 0.3043 5.6177
0.141 0.0778 0.3107 5.7529
0.142 0.0766 0.3163 5.8701
0.143 0.0755 0.3220 5.9915
0.144 0.0743 0.3280 6.1174
0.145 0.0729 0.3356 6.2748
0.146 0.0718 0.3421 6.4115
0.147 0.0706 0.3489 6.5536
0.148 0.0695 0.3560 6.7013
0.149 0.0683 0.3634 6.8550
0.150 0.0672 0.3712 7.0150
0.151 0.0660 0.3792 7.1817
0.152 0.0651 0.3860 7.3200
0.153 0.0639 0.3947 7.4995
0.154 0.0628 0.4038 7.6868
0.155 0.0616 0.4134 7.8821
0.156 0.0607 0.4213 8.0446
0.157 0.0595 0.4317 8.2557
0.158 0.0586 0.4403 8.4313
0.159 0.0575 0.4515 8.6595
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MAD thresholds σ SSD χ2

0.160 0.0565 0.4609 8.8494
0.161 0.0554 0.4731 9.0964
0.162 0.0545 0.4833 9.3019
0.163 0.0535 0.4938 9.5146
0.164 0.0526 0.5048 9.7350
0.165 0.0517 0.5162 9.9630
0.166 0.0508 0.5279 10.1991
0.167 0.0499 0.5401 10.4433
0.168 0.0489 0.5528 10.6960
0.169 0.0480 0.5659 10.9571
0.170 0.0471 0.5794 11.2270
0.171 0.0462 0.5934 11.5056
0.172 0.0452 0.6079 11.7932
0.173 0.0445 0.6191 12.0147
0.174 0.0436 0.6344 12.3178
0.175 0.0429 0.6462 12.5509
0.176 0.0420 0.6623 12.8694
0.177 0.0413 0.6747 13.1139
0.178 0.0404 0.6916 13.4472
0.179 0.0397 0.7046 13.7024
0.180 0.0388 0.7222 14.0493
0.181 0.0381 0.7357 14.3141
0.182 0.0372 0.7541 14.6729
0.183 0.0365 0.7680 14.9458
0.184 0.0355 0.7868 15.3140
0.185 0.0349 0.8011 15.5928
0.186 0.0342 0.8155 15.8732
0.187 0.0332 0.8348 16.2485
0.188 0.0328 0.8444 16.4363
0.189 0.0323 0.8541 16.6239
0.190 0.0319 0.8637 16.8112
0.191 0.0314 0.8733 16.9977
0.192 0.0312 0.8781 17.0906
0.193 0.0307 0.8876 17.2756
0.194 0.0302 0.8971 17.4592
0.195 0.0298 0.9065 17.6411
0.196 0.0293 0.9158 17.8210
0.197 0.0289 0.9250 17.9986
0.198 0.0284 0.9340 18.1735
0.199 0.0279 0.9429 18.3453
0.200 0.0272 0.9560 18.5966
0.201 0.0268 0.9644 18.7593
0.202 0.0263 0.9726 18.9177
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MAD thresholds σ SSD χ2

0.203 0.0256 0.9845 19.1463
0.204 0.0252 0.9921 19.2923
0.205 0.0245 1.0029 19.5006
0.206 0.0238 1.0131 19.6953
0.207 0.0231 1.0225 19.8753
0.208 0.0222 1.0338 20.0910
0.209 0.0212 1.0435 20.2776
0.210 0.0201 1.0536 20.4689
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