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Abstract

This paper extends the previous convergence results in Cerqueti and

Costantini (2008) to a more general case using larger normed set of func-

tions. In this regard, the weight-based convergence of the random ma-

trices and their generalized eigenvalues is obtained under less restrictive

requirements for the weights.
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1 Introduction

This paper extends the previous convergence results in Cerqueti and Costantini

(2008) to a more general context. The main limit of the approach of the quoted

paper relies on the thinness of the functional spaces used to obtain the con-

vergence of a class of random matrices and their generalized eigenvalues. More

precisely, the weights introduced in Cerqueti and Costantini (2008) belong to

rather small functional sets, and this leads to a not general convergence result.
∗Corresponding author
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In this paper, we relax the restrictive assumptions on the weights of the ran-

dom matrices and we provide a more general approach to obtain the conver-

gence of the generalized eigenvalues. In this respect, we prove that the Sobolev

Spaces used in Cerqueti and Costantini (2008) can be embedded into some larger

normed sets of functions. Specifically, the weights considered in Cerqueti and

Costantini (2008) can be also used in our more general framework, but the con-

verse is not true. It is worth to note that, as we will prove, the new functional

spaces are so wide that they also contain the a large class of polynomials and

the functions that are bounded in [0, 1].

The remaining part of the paper is organized as follows. Section 2 describes the

data generating process and the weighted random matrices. In Section 3 the

main properties of the weights are studied. Section 4 presents the generalized

eigenvalue problem and the main convergence results.

2 Preliminaries

This section contains the notation set and the preliminary definitions used

throughout the paper. Consider the following p-variate integrated process of

a real nonnegative order d, I(d), i.e:

Yt = ∆−dεt = (1− L)−dεt, (1)

where Yt = (Y 1
t , . . . , Y p

t ), εt = (ε1t , . . . , ε
p
t ) is a zero-mean stationary process, L

is the lag operator, i.e. Lεt := εt−1, and ∆ := 1− L.

In order to make this study as self-contained as possible, we report the main

Assumptions on the process Yt already stated in Cerqueti and Costantini (2008)

with some discussions.

2.1 Assumptions on the data generating process

We suppose that the process Yt is defined as in (1) and satisfies the following

conditions.

(i) Y0 = 0.

Condition (i) is not restrictive. Indeed, it is easy to show that if Yt ∼ I(d), then

Yt − Y0 ∼ I(d).

(ii) The hypotheses of the Wold decomposition theorem are satisfied, i.e.:

εt =
∞∑

j=0

Cjvt−j =: C(L)vt, t = 1, . . . , n, (2)
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where vt are i.i.d. zero-mean p-variate gaussian variables with variance

equals to the identity matrix of order p, Ip, and C(L) is a p-squared

matrix of lag polynomials in the lag operator L.

(iii) There exist C1(L) and C2(L) p-squared matrices of lag polynomials in the

lag operator L such that all the roots of detC1(L) are outside the complex

unit circle and C(L) = C1(L)−1C2(L).

Conditions (ii) and (iii) can be interpreted as follows.

The lag polynomial C(L) − C(1) attains value zero at L = 1 with algebraic

multiplicity equals to d. Thus, there exists a lag polynomial

D(L) =
∞∑

k=0

DkLk

such that C(L)− C(1) = (1− L)dD(L). Therefore, we can write:

εt = C(L)vt = C(1)vt + [C(L)− C(1)]vt = C(1)vt + D(L)(1− L)dvt. (3)

Let us define wt := D(L)vt. Then, substituting wt into (3), we get:

εt = C(1)vt + (1− L)dwt. (4)

(4) implies that, given Yt ∼ I(d), we can write recursively:

∆d−1Yt = ∆d−1Yt−1 + εt = ∆d−1Yt−1 + C(1)vt+

+(1− L)dwt = ∆d−1Y0 + (1− L)d−1wt − w0 + C(1)
t∑

j=1

vj , (5)

where rank(C(1)) = p− r < p.

By Assumptions (ii) and (iii), we have that C(L)vt and D(L)vt are well-defined

stationary processes.

(iv) Let us consider Rr the matrix of the eigenvectors of C(1)C(1)T corre-

sponding to the r zero eigenvalues. Then the matrix RT
r D(1)D(1)T Rr is

nonsingular.

Assumption (iv) avoids that Yt is an integrated process of order greater than d.

In fact, if there exists d̄ > d such that Yt ∼ I(d̄), then the lag polynomial D(L)

admits a unit root with algebraic multiplicity d̄ − d, and so D(1) is singular.

Therefore RT
r D(1)D(1)T Rr is singular, and Assumption (iv) does not hold.
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2.2 Random matrices and weights

The random matrices involved in the generalized eigenvalue problem depend on

an integer number m ≥ p and they are based on the following property of the

integrated processes:

if Yt ∼ I(d), then ∆kYt is a nonstationary process, for k = 0, 1, . . . , d− 1,

and ∆dYt is a stationary process.

Given k = 1, . . . , m; h = 2, . . . , d, we introduce very generally the functions

Fk : [0, 1] → R, Fk ∈ C1(0, 1);

Gk,h : [0, 1] → R.

We also define

Am :=
m∑

k=1

an,kaT
n,k (6)

and

Bm :=
m∑

k=1

bn,kbT
n,k, (7)

where

an,k :=
MY,∆Y,...,∆d−1Y

n /
√

n√∫ 1

0

∫ 1

0
Fk(x)Fk(y)min{x, y}dxdy

(8)

and

bn,k :=
√

nM∆dY
n√∫ 1

0
Fk(x)2dx

, (9)

with

MY,∆Y,...,∆d−1

n :=
1
n

n∑
t=1

Fk(t/n)∆d−1Yt +
d∑

h=2

[ 1
n2+h

n∑
t=1

Gk,h(t/n)∆d−hYt

]

(10)

and

M∆dY
n :=

1
n

n∑
t=1

Fk(t/n)∆dYt. (11)

Am and Bm represent the random matrices related to the nonstationary and

stationary part of the process, respectively. In order to obtain convergence

results for the random matrices Am and Bm, the weights Fk and Gk,h are

defined as follows.

Definition 2.1. Let us fix m ∈ N, d = 2, 3, . . . and (k, h) ∈ {1, . . . m} ×
{2, . . . , d}.
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• Fk ∈ Fm if and only if the following conditions are satisfied.

lim
n→+∞

1√
n

n∑
t=1

Fk(t/n) = 0; (12)

lim
n→+∞

1
n
√

n

n∑
t=1

tFk(t/n) = 0; (13)

∫ 1

0

∫ 1

0

Fi(x)Fj(y)min{x, y}dxdy = 0, i 6= j; (14)

∫ 1

0

Fi(x)
∫ x

0

Fj(y)dxdy = 0, i 6= j; (15)

∫ 1

0

Fi(x)Fj(x)dx = 0, i 6= j. (16)

• Gk,h ∈ Gm,d if and only if

lim
n→+∞

1
nh+5/2

n∑
t=1

thGk,h(t/n) = 0. (17)

Definition 2.1 provides the functional spaces where the weights should be con-

tained in order to ensure the convergence results. The set Fm has been already

explored in Bierens (1997), while the space Gm,d contains functions satisfying

the asymptotic condition (17). It is worth noting that an asymptotic condition

on the weights is indeed required to obtain our convergence result. We also

stress that, using the previous definition, the convergence result of the random

matrices and their corresponding generalized eigenvalues is obtained in a more

general context than that of Cerqueti and Costantini (2008).

The next section provides the main properties of the weights.

3 Properties of the weights

The properties of the functional class Fm are shown in Bierens (1997). There-

fore, we analyze only Gm,d. The first result shows that Gm,d is not empty, and

is wide enough to contain a large class of polynomial functions.

Proposition 3.1. For each k = 1, . . . , m, h = 2, . . . , d, we consider

Ḡk,h : R→ R,

such that

Ḡk,h(x) =
N∑

j=1

ajx
αj ,
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for each N ∈ N, aj ∈ R+, αj ∈ R, ∀ j ∈ {1, . . . , N}.
The function

Gk,h := Ḡk,h|[0,1]

belongs to Gm,d.

Proof. Let us fix h = 2, . . . , d and consider

Gk,h(t/n) =
N∑

j=1

aj(t/n)αj ,

for N ∈ N, aj ∈ R+, αj ∈ R, ∀ j ∈ {1, . . . , N}. Then we have

0 ≤ lim
n→+∞

1
nh+5/2

n∑
t=1

th
N∑

j=1

aj(t/n)αj = lim
n→+∞

N∑

j=1

aj

n∑
t=1

th+αj

nh+αj+5/2
≤

≤ lim
n→+∞

N∑

j=1

aj
nh+αj+1

nh+αj+5/2
= lim

n→+∞
1

n
√

n

N∑

j=1

aj = 0. (18)

Thus (17) holds, and the proposition is completely proved.

Other important features of the functional spaces G’s can be shown. These

properties provide a further support on the fact that the choice of weights be-

longing to the G’s is not restrictive, since it involves a huge number of functions.

We summarize them in the following result.

Theorem 3.2. Fix m ∈ N, m ≥ p, d = 2, 3, . . . and (k, h), (k1, h1), (k2, h2) ∈
{1, . . . m} × {2, . . . , d}.
Define the operators

+ : Gm,d × Gm,d → Gm,d

and

· : R× Gm,d → Gm,d

such that, for x ∈ [0, 1],

(G(1)
k1,h1

+ G
(2)
k2,h2

)(x) :=

{
G

(1)
k1,h1

(x) + G
(2)
k2,h2

(x), if (k1, h1) = (k2, h2);

0, otherwise.

and

(λ ·Gh,k)(x) := λ ·Gh,k(x).

(i) (Gm,d, +, ·) is a real vectorial space.

(ii) If Gk,h : [0, 1] → R, and there exists M > 0 such that

|Gk,h(x)| ≤ M, ∀x ∈ [0, 1],

then Gk,h belongs to Gm,d.
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Proof. (i) We have to show that, for each c1, c2 ∈ R, G
(1)
k1,h1

, G
(2)
k2,h2

∈ Gm,d,

then

c1 ·G(1)
k1,h1

+ c2 ·G(2)
k2,h2

∈ Gm,d.

If (k1, h1) 6= (k2, h2), then c1 ·G(1)
k1,h1

+c2 ·G(2)
k2,h2

≡ 0, and (17) is obviously

true.

If (k1, h1) = (k2, h2), then the left-hand side of (17) can be rewritten as

lim
n→+∞

1
nh1+5/2

n∑
t=1

th1

[
c1G

(1)
k1,h1

(t/n) + c2G
(2)
k1,h1

(t/n)
]

=

= lim
n→+∞

c1

nh1+5/2

n∑
t=1

th1G
(1)
k1,h1

(t/n) +
c2

nh1+5/2

n∑
t=1

th1G
(2)
k1,h1

(t/n) = 0,

and the proof is complete.

(ii) We have

0 ≤
∣∣∣∣∣

1
nh+5/2

n∑
t=1

thGk,h(t/n)

∣∣∣∣∣ ≤
1

nh+5/2

n∑
t=1

th|Gk,h(t/n)| ≤

≤ M

nh+5/2

n∑
t=1

th ≤ M

nh+5/2
· nh+1 ∼ 1

n
√

n
→ 0 as n → +∞.

A standard comparison result gives

lim
n→+∞

1
nh+5/2

n∑
t=1

thGk,h(t/n) = 0.

Remark 3.3. Theorem 3.2-(ii) assures that every functions that is bounded in

[0, 1] belongs to Gm,d. Moreover, Theorem 3.2-(i) and Proposition 3.1 assure

that the entire set of polynomials restricted to [0, 1] is contained in Gm,d.

In order to make the analysis here more general than the one in Cerqueti and

Costantini (2008), it is shown that the functional space Gm,d contains the weights

used in their approach.

Theorem 3.4. Fix m ∈ N and d > 2.

Assume that Gn belongs to the Sobolev Space (H1,d−1(0,+∞), || · ||1,d−1), for

each n ∈ N, and that

lim
n→+∞

n24n(d−2)||Gn||1,d−2 = 0. (19)

Then Gn ∈ Gm,d.
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Proof. Assume that (19) holds. Then, it results

lim
n→+∞

n24n(d−2)||Gn||d−2 = 0. (20)

Moreover, we have

∣∣∣ 1
nh+5/2

n∑
t=1

thGn

∣∣∣ ≤ 1
nh+5/2

n∑
t=1

|thGn|. (21)

Hölder’s inequality gives

(21) ≤ 1
nh+5/2

||th||p||Gn||q ∼ n
h(p−q)+1

q −5/2||Gn||q as n → +∞, (22)

for each p, q > 1 such that p−1 + q−1 = 1.

The right-hand side of (22) implies that a sufficient condition for Gn ∈ Gm,d is

||Gn||q = Op(n5/2−h(p−q)+1
q ). (23)

The theorem is proved, since (20) implies (23).

4 Convergence of the generalized eigenvalues

This section contains the statement of the generalized eigenvalue problem with

the related convergence results. Using the findings of the previous sections, we

generalize the outcomes in Cerqueti and Costantini (2008). To this end, the

functional spaces containing the weights is broadened (see Theorem 3.4).

First of all, we introduce the notation that will be used in this section. We

define

Ψk :=

∫
(0,1)

Fk(x)W (x)dx
√∫

(0,1)

∫
(0,1)

Fk(x)Fk(y) min{x, y}dxdy
, k = 1, . . . ,m;

Φk :=
Fk(1)W (1)− ∫

(0,1)
fk(x)W (x)dx∫

(0,1)
Fk(x)2dx

, k = 1, . . . , m;

where fk is the derivative of Fk.

Moreover, we define the following p-variate standard normally distributed ran-

dom vectors:

Ψ∗k :=
(
RT

p−rC(1)C(1)T Rp−r

) 1
2
RT

p−rC(1)Ψk ∼ Np−r(0, Ip−r),

Φ∗k :=
(
RT

p−rC(1)C(1)T Rp−r

) 1
2
RT

p−rC(1)Φk,

Φ∗∗k := (RT
r D(1)D(1)T Rr)−

1
2 RT

r D(1)Φk ∼ Nr(0, Ir),
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and we construct the matrix Vr,m as

Vr,m := (RT
r D(1)D(1)T Rr)

1
2 V ∗

r,m(RT
r D(1)D(1)T Rr)

1
2 ,

with

V ∗
r,m =

( m∑

k=1

γ2
kΦ∗∗k Φ∗∗Tk

)
−

( m∑

k=1

γkΦ∗∗k Ψ∗Tk

)( m∑

k=1

Ψ∗kΨ∗Tk

)−1( m∑

k=1

γkΨ∗kΦ∗∗Tk

)
,

where

γk =

√∫ 1

0
F 2

k (x)dx
√∫ 1

0

∫ 1

0
Fk(x)Fk(y) min{x, y}dxdy

.

Theorem 4.1. Suppose that Fk ∈ Fm and Gk,h ∈ Gm,d.

(I) suppose that λ̂1,m ≥ · · · ≥ λ̂p,m are the ordered solutions of the generalized

eigenvalue problem

det
[
Am − λ(Bm + n−2A−1

m )
]

= 0, (24)

and λ1,m ≥ · · · ≥ λp−r,m the ordered solutions of

det
[ m∑

k=1

Ψ∗kΨ∗Tk − λ

m∑

k=1

Φ∗kΦ∗Tk

]
= 0. (25)

Then we have the following convergence in distribution

(λ̂1,m, . . . , λ̂p,m) → (λ1,m, . . . , λp−r,m, 0, . . . , 0);

(II) let us consider λ∗1,m ≥ · · · ≥ λ∗r,m the ordered solutions of the generalized

eigenvalue problem

det
[
V ∗

r,m − λ(RT
r D(1)D(1)T Rr)−1

]
= 0. (26)

Then the following convergence in distribution holds

n2(λ̂p−r+1,m, . . . , λ̂p,m) → (λ∗21,m, . . . , λ∗2r,m).

Proof. The proof is grounded on Anderson et al., (1983) and Bierens, (1997).

We show the result for d = 2 and then we generalize the proof for d > 2.

• Case d = 2.

By definition of the data generating process, we can write recursively

Yt =
t−1∑

j=0

∆Yt−j =
t−1∑

j=0

(j + 1)εt−j =
t(t + 1)

2
· ε1. (27)
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By (27), we have

1
n4

n∑
t=1

Gk,2(t/n)Yt =
1
n4

ε1

n∑
t=1

Gk,2(t/n)
t(t + 1)

2
∼ 1

n4
ε1

n∑
t=1

Gk,2(t/n)t2,

(28)

as n → +∞. Therefore

MY,∆Y
n√

n
=

1
n
√

n

n∑
t=1

Fk(t/n)∆Yt +
1

n4
√

n

n∑
t=1

Gk,h(t/n)Yt ∼

∼ 1
n
√

n

n∑
t=1

Fk(t/n)∆Yt +
1

n2+5/2
ε1

n∑
t=1

Gk,2(t/n)t2. (29)

Since Gk,h ∈ Gm,d, the second addend of the right-term side of (29) van-

ishes as n → +∞. Thus, the set of Assumptions in Subsection 2.1 and

Fk ∈ Fm lead to the hypotheses of a well-known and rather technical con-

vergence in distribution result due to Bierens (1997, Lemma 1), that can

be written as:




1
n
√

n

∑n
t=1 Fk(t/n)∆d−1Yt ∼ C(1)Ψk

√∫
(0,1)

∫
(0,1)

Fk(x)Fk(y)min{x, y}dxdy,

1√
n

∑n
t=1 Fk(t/n)∆dYt ∼ C(1)Φk

√∫
(0,1)

Fk(x)2dx

(30)

as n → +∞, jointly for k = 1, . . . ,m.

By (30) we obtain the thesis.

• Case d > 2.

Consider Y ∼ I(d), with d > 2 integer.

If h ∈ {2, . . . , d}, then

∆d−hYt ∼
h∑

i=1

t−1∑

j=0

∆d−h+iYt−j ∼ thε1 (31)

Thus, we have

1
n2+h

n∑
t=1

Gk,h(t/n)∆d−hYt ∼ 1
n2+h

ε1

n∑
t=1

Gk,h(t/n)th, (32)

as n → +∞. Therefore

MY,∆Y,...,∆d−1

n √
n

=
1

n
√

n

n∑
t=1

Fk(t/n)∆Yt+
d∑

h=2

[ 1
nh+5/2

n∑
t=1

Gk,h(t/n)∆d−hYt

]
∼

∼ 1
n
√

n

n∑
t=1

Fk(t/n)∆Yt +
d∑

h=2

[ ε1
nh+5/2

n∑
t=1

Gk,h(t/n)th
]

(33)
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and Gk,h ∈ Gm,d implies

lim
n→+∞

d∑

h=2

[ ε1
nh+5/2

n∑
t=1

Gk,h(t/n)th
]

= 0.

Analogously to the previous case, using the Assumptions in Subsection

2.1, Fk ∈ Fm and Lemma 1 in Bierens, (1997), we obtain the thesis.

The theorem is completely proved.
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